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1 Introduction

The relation between the de Sitter space and the conformal field theory have been widely

used in cosmology. In particular, a powerful application of this relationship is to use the

isomorphism between the de Sitter group in four dimensions and the conformal group in

three dimensions to fix the form of the primordial correlation functions [1–16].1 The key

1Another approach to the use of symmetries to determining the form of cosmological correlators can be

found in [17].
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idea of this method comes from the fact that, during the inflationary expansion, deep in

the super horizon regime, the fields behave (approximately) like conformal fields. This fact

allows us to use conformal field theory (CFT) methods, such as Ward identities associated

with the conformal symmetries of the theory, as a powerful tool to study general properties

of the inflationary correlation functions.

On the other hand, CMB observations do not totally rule out the existence of small

deviations from the standard predictions of the usual ΛCDM cosmological model, in par-

ticular, there is some (small) room for cosmological models predicting non-vanishing levels

of non-gaussianity, parity violation signals, statistical anisotropy patterns, among oth-

ers [18–21]. Some of these deviations, commonly referred as anomalies, could be explained

with the presence of vector fields (also with the presence of higher spin fields [22–29] or

p-forms [30–38]) during the inflationary expansion. A vector field with a non zero vacuum

expectation value (VEV) constitutes a natural source of anisotropies and parity breaking

signatures because the VEV introduces a privileged direction in the CMB map. Among

the various cosmological models that include vector fields (see [39–41] for reviews on the

topic), we are interested here in a particular class of models in which a single U(1) invariant

vector field is coupled to a scalar field through non standard kinetic couplings of the form

LA(φ,A) = f1(φ)FµνF
µν + f2(φ)FµνF̃

µν , (1.1)

where f1,2(φ) are functions of the scalar field, Fµν = ∂[µAν] is the field tensor of the vec-

tor field, and F̃µν = 1
2
√
−gεµναβF

αβ is its Hodge dual. Within the context of inflation,

many aspects of this class of models have been studied with great detail over the last

years [42–74]. A specific case of this model results when the two kinetic coupling functions

are proportional to each other f2(φ) = αf1(φ) [50, 68, 69, 73, 75, 76]. Besides leading to

interesting possibilities such as providing a mechanism for the generation of the seeds of in-

flationary magnetogenesis [68, 73], and the prediction of non-diluting statistical anisotropic

and parity breaking patterns [50, 69], the vector perturbations in this particular case pre-

serve conformal invariance at super horizon scales when the kinetic coupling function is a

homogeneous function of the scale factor [75, 76]. The conformal invariance of the vector

perturbations offers the possibility of studying this scalar-vector model using CFT tech-

niques to elucidate the structure of inflationary correlation functions. CFT was applied to

the study of the inflationary correlators in presence of vector perturbations in the model

f(φ)FµνF
µν in [54] and, subsequently, this methodology was applied to the case of the

model f(φ)(FµνF
µν + αFµνF̃

µν) in [75, 76]. These works consider general implications of

the conformal symmetry for the correlators involving scalar and vector perturbations, but,

they don’t consider tensor perturbations in their analysis.

Our main purpose in this paper is to extend the application of CFT to derive gen-

eral expressions for the inflationary correlators in Fourier space involving tensor pertur-

bations/gravitational waves γij sourced by the vector fields. To fulfill this objective, we

apply the vast results available in the literature about CFT in momentum space. To our

knowledge, the most comprehensive study of the implications of conformal symmetry in

momentum space in the literature can be found in ref. [11]. This reference displays a com-

plete list of results for the “3-point functions of the stress-energy tensor, conserved currents
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and scalar operators” obtained by solving the Ward identities related with the conformal

symmetries, basically, by solving the conformal Ward identities of dilatations and special

conformal transformations. Given that ref. [11] is devoted to the analysis of parity conserv-

ing systems,2 the main contribution that we aim to present here is to extrapolate the results

obtained in [11] to inflationary scalar-vector models in the presence of a parity breaking

term of the form f(φ)FµνF̃
µν . The main difficulty that we found to this purpose, was to

find a complete extension of the tensorial decomposition for correlators involving vectors

and tensors obtained in such reference, in such a way that the contributions from the parity

breaking sources were properly taken into account. Here, we perform a careful search of the

tensors that account for the presence of parity breaking sources, necessary to construct the

3-point correlators of gravitational waves and scalar perturbations sourced by the vector

perturbations coming from the interaction f(φ)(FµνF
µν + αFµνF̃

µν). Remarkably, what

we found is that the parity breaking terms in the tensor decomposition satisfy the same

differential equations implied by the conformal Ward identities, making the results of [11]

directly applicable to our case. We use this fact to write a general parametrization of the

2-point functions 〈ζζ〉, 〈γζ〉 and 〈γγ〉 and the 3-point functions 〈ζζζ〉, 〈γζζ〉. Then, we

study the soft limits (the limit configuration in which one of the momenta is going to zero)

of the resulting 3-point functions, which become useful for observational purposes.

This work is organized as follows: in section 2 we describe the scalar-vector model

consistent with super horizon conformal invariance of the vector perturbations, and describe

the asymptotic behavior of the fields in the super horizon region. Then, in section 3, we

compute the form of the two point functions for the scalar-scalar, the scalar-tensor and the

tensor-tensor perturbations by including the perturbative effect of the vector fields. In this

section we also introduce the necessary structures accounting for the parity breaking tensor

decomposition of the correlators. We calculate the vacuum and “vector fields sourced”

scalar-scalar-scalar and tensor-scalar-scalar 3-point correlation functions in section 4. In

section 5 we discuss the soft limit of the bispectrum calculated in section 4. Finally, in

section 6 we write our final comments and conclusions.

2 Scalar-vector model

In this work, we study a cosmological scenario, in which a single U(1) invariant vector field

Aµ is coupled to a single scalar field φ, not necessarily the inflaton, during the inflation-

ary period. The relevance of vectors, or higher spin, fields during inflation are severely

constrained by current observations and, on theoretical grounds, by the “cosmic no-hair

theorem” [77] which, in a broad sense, states that, all the possible imprints left by such

fields dilutes exponentially fast during inflation, making them unobservable and irrelevant.

Nevertheless, a way to bypass the conditions of the no-hair theorem, in the case of U(1)

vector fields, consists in the introduction of suitable field dependent couplings of the form

f1(φ)FµνF
µν and f2(φ)FµνF̃

µν , in such way that vector field perturbations survive the

inflationary dilution rate and become long-lived at superhorizon scales. We will focus here

2Parity breaking models in momentum space have been considered for instance in [12, 13].
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in the class of inflationary scalar-vector models, in which the scalar-vector interactions are

mediated by the couplings aforementioned. The full action of the model can be written as

S =

∫
d4x
√
−g

[
M2
pl

2
R− 1

2
∂µφ∂

µφ− V (φ)− 1

4
f1(φ)FµνF

µν − 1

4
f2(φ)FµνF̃

µν

]
, (2.1)

where f1(φ), f2(φ) are suitable functions of the scalar field. As mentioned previously in

the introduction, the models that falls into this category have been widely studied in

the recent literature and many issues, such as the stability and causality of the model,

the sourcing of statistical anisotropic and parity breaking patterns in the CMB map, the

production of chiral gravitational waves, inflationary magnetogenesis, among many others

issues of current interest, have been discussed with great detail [42–74]. Among the models

included in the action (2.1), here, we restrict to the particular case, in which both coupling

functions are proportional, so f1(φ) = f(φ), f2(φ) = αf(φ), where α is a dimensionless

constant [50, 68, 69, 73, 75, 76]. In this case, the interactions in the scalar-vector sector

are described by the interaction Lagrangian:

Lint = −1

4
f(φ)(FµνF

µν + αFµνF̃
µν). (2.2)

Our main interest for such particular case resides on the fact that, when the coupling func-

tion f(φ) is a homogeneous function of time, deep in the super horizon regime k/(aH)→ 0,

the generated vector perturbations preserve conformal invariance [75, 76]. This fact be-

comes very useful because the inflationary coupled scalar-vector system can be analyzed

by using the vast quantity of tools, techniques and results of CFT. The main reason why

we use conformal symmetry in this context is because the spacetime background, during

the inflationary period, can be modelled very accurately with a four dimensional de Sitter

space. The symmetries associated with this maximally symmetric spacetime, the de Sitter

group, acts on the super horizon regime in the very same way as the conformal group in

one dimension less.

In the next subsection we review some basics of this model, in particular, we solve

the equations of motion and describe its asymptotic super horizon limit. Afterwards, we

discuss the way in which the vector field coupled through (2.2) induces the perturbations

in the curvature perturbation and in the gravitational waves. Further details of the mode

solutions can be found in [50, 68, 69, 73, 75, 76].

2.1 Asymptotic super horizon evolution of the modes

Here we consider the super horizon limit of the solutions to the equations of motion derived

from (2.1). In conformal planar coordinates, the line element becomes

ds2 =
1

H2τ2

[
−dτ2 + δijdx

idxj
]
, −∞ < τ < 0, (2.3)

whereH is the Hubble parameter and τ is the conformal time. Let’s consider first the case of

a massive scalar field with mass m, propagating in de Sitter space. In the coordinates (2.3),

the equation of motion for this field becomes

φ′′ − 2

τ
φ′ −∇2φ+

m2φ

H2τ2
= 0. (2.4)

– 4 –
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The asymptotic expression for the growing mode (the dominant solution at late times)

of this field, in the super horizon limit k/(aH) = −kτ → 0, can be written as (see e.g.

section 6.2 of [78])

φ(~x, τ) ≈ τ∆ϕϕ(~x), with ∆ϕ =
3

2

(
1−

√
1− 4m2

9H2

)
. (2.5)

By demanding conformal invariance, it is possible to see that the field ϕ(~x) behaves as a

conformal field with conformal weight ∆ϕ [54, 79]. In general, under the assumption of

slow roll inflation, it is possible to see that a scalar perturbation in de Sitter space behaves

as a conformal field with conformal weight ∆ϕ ∼ O(ε, η), where ε and η are the slow-roll

parameters (see e.g. section 6.5 of [78]).

Now, we turn our attention to the vector field. The equation of motion for the vector

derived from (2.2) is

∇µ
[
f(φ)

(
Fµν + αF̃µν

)]
= 0. (2.6)

Choosing the coupling function as f(φ) = f(τ) = (−Hτ)−2n and the propagation along

the x-axis, ~k = (k, 0, 0), the above equation, in momentum space, is written as(
∂2

∂τ2
+ k2 − n(n+ 1)

τ2
+ λ

2ξk

τ

)
wλ(τ,~k) = 0, (2.7)

where we have defined the canonical fields wλ ≡
√
fAλ, λ = ±1 denote the helicity of the

mode, ξ≡−nα, and the transverse polarizations are defined such that wλ=(wy+λiwz)/
√

2.

The solution of (2.7), in the region |kτ | � ξ , ξ � 1 can be well approximated by [68, 76]

w+(k, τ) '
√
−2τ

π
e
πξ
2 K−(2n+1)

(√
−8ξkτ

)
, (2.8)

w−(k, τ) '
√
−2τ

π
e−

πξ
2 Y−(2n+1)

(√
−8ξkτ

)
, (2.9)

where Km(x) are the modified Bessel functions and Ym(x) are the Bessel functions of the

second kind. The asymptotic solution, deep in the super horizon regime |8ξkτ | → 0, of

those equations can be written as:

wλ(τ, ~x) ≈ uλ(~x)(−ξHτ)n+1 + vλ(~x)(−ξHτ)−n. (2.10)

At this point, we notice that the dominant contribution of this solution depends on the

value of the power of the coupling n. For n > −1/2, the mode v dominates while, for

n < −1/2, the mode u dominates. In this work, we will use values close to n = −2, which

reproduce a scale invariant spectrum for the sourcing modes, so, in the following, we will

work only with the mode u. Consequently, in the super horizon limit, the field behaves like

lim
|τ |→0

wλ(τ, ~x) = τn+1uλ(~x). (2.11)

Under dilatations, for instance, the coordinates change as τ ′ = λτ, x′σ = λxσ, and the

vector (2.10) transforms as

w′λ =
∂xλ
∂x′λ′

wλ′ = λ−1wλ, (2.12)

– 5 –
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which, considering the dominant part of (2.10) we deduce that

w′λ = λn+1τn+1u′λ(~x′) = λ−1τn+1uλ(~x), (2.13)

where in the last equality we used the transformation law for a vector. This implies that

the vector uλ(~x) transforms as

u′λ(~x′) = λ−(n+2)uλ(~x) (2.14)

Then, assuming conformal invariance of uλ(~x) in the super horizon regime, this is

u′λ(~x) = λ−∆uuλ(~x) (see e.g. [54, 76]), we found that the conformal weight of the mode u is:

∆u = n+ 2. (2.15)

This is the conformal weight that we use for the vector contribution to the scalar and

tensor perturbations in this paper.

Finally, to fix the nomenclature, we revisit here a few basics about the tensor modes

in this setup (we use the notation used in, e.g., [49, 69]). The equation for tensor modes

comes from the metric

ds2 =
1

(−Hτ)2

[
−dτ2 + (δij + γij)dx

idxj
]
, (2.16)

with the gauge choice ∂iγij = γii = 0. From (2.16), the Einstein equations for the tensor

modes are

γ′′ij −
2

τ
γ′ij −∇2γij =

2

M2
P

Πlm
ij T

EM
lm , (2.17)

where Πlm
ij is a projector tensor and TEMlm is the spatial part of the energy-momentum

tensor:

TEMlm = −f(τ)a−2A′lA
′
m + (· · · ) , (2.18)

where the dots are other terms projected out by Πij
lm. Finally, we can write eqs. (2.17) in

terms of the helicity modes γλ(τ,~k) as

γ′′λ −
2

τ
γ′λ −∇2γλ =

2

M2
P

Πlm
λ TEMlm , where γλ = Πij

λ γij , and Πlm
λ ≡

εl−λ(~k)εm−λ(~k)
√

2
.

(2.19)

In the following we will reiteratively use the projector Πlm
λ defined in (2.19) to express the

results in terms of the helicity components of the tensor modes γλ. Some useful properties

of this projector are listed in appendix B.3.

2.2 Including the vector perturbations

If we consider a perturbative contribution from the vector field to both tensor and pri-

mordial curvature perturbations, it means that, in the perturbative expansion, there will

arise terms including the vector perturbations δEi(~k). One can formally think about these

corrections in the following form: the vector field contribute to the primordial curvature

perturbation and to the tensor perturbation as follows

ζ = ζ(0) + ζ(1), γij = γ
(0)
ij + γ

(1)
ij , (2.20)

– 6 –
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where the zero superscript (0) stands for the vacuum contributions while the superscript (1)

stands for the “sourced” part.3 The perturbations come from the interaction Hamiltonian

derived from the interaction term (2.2). In terms of the electric and magnetic fields:

Ei = −
√
f

a2
A′i(τ), Bi =

√
f

a2
εijk∂jAk(τ), (2.21)

the interaction Lagrangian is written as

LI = −1

2

(
~B2 − ~E2

)
+ α~E · ~B, (2.22)

and one derives the interaction Hamiltonian [69]

HI = H1 +Hg (2.23)

where

H1 =−2na4E
(vev)
i

∫
d3kδEi(~k,τ)ζ−~k and Hg = a4E

(vev)
i

∫
d3kδEj(~k,τ)γ

ij,−~k (2.24)

are the leading contributions from the variation of the interaction Lagrangian (2.1). In

the following, we only consider the linear order interaction Hamiltonian HI to source the

scalar and tensor perturbations. A quadratic Hamiltonian term H2 will also arise but it will

induce loop corrections that we shall not consider here. Schematically, the perturbation

in the scalar and tensor perturbations will be sourced by the vector field through the

interaction term (2.22) as follows

ζ(1) ∝ (Ê · δ ~E)ζ(0), γ
(1)
λ ∝ (Ê · δ ~E)γ

(0)
λ , (2.25)

here, Êi = Ei/(EkEk)
1/2 is the unit vector along E

(vev)
i . This implies that the sourced

tensor perturbation γ
(1)
ij is introduced as follows

γ
(1)
ij ∝ (Ê · δ ~E)γ

(0)
ij . (2.26)

The way in which the vector perturbations enters into the calculation of scalar and tensor

perturbations is detailed in refs. [52, 66, 69] through the use of the “in-in” formalism.

Eqs. (2.25) and (2.26) are not meant to be precise equalities, they are only a guide for

tracking the presence of vector perturbations in the calculations. For our purpose here, it

is enough to track the presence of a vector perturbation δEi carrying an object with an

index which transforms as a O(3) vector.

Eqs. (2.25) and (2.26) are the expressions that define the structure of the perturbations

that we will consider in this work. With them, we will derive the structure of the two and

three point correlation functions consistent with three dimensional conformal symmetry

generated by such interactions. Due to the particular form (2.25) of introducing the per-

turbations, we assume that the sourced perturbations, in the super horizon limit, behave

like a conformal primary field with conformal weight

∆ζ1 = ∆ζ0 + ∆u, and ∆γ1 = ∆γ0 + ∆u, (2.27)

3Henceforth we will call sourced part to the pure contributions of vector fields to the primordial pertur-

bations.

– 7 –
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where ∆ζ0,∆γ0 ∼ O(ε, η) comes from the contribution of the scalar field Hδϕ/ϕ̇ to the

primordial curvature perturbation and ∆u is the conformal weight of the source vector field

obtained in (2.15).

3 The spectrum

Here we study the structure of the two point functions involving the primordial curvature

perturbations and the tensor perturbations, this is, we consider the symmetry constraints

on the following two point functions:

〈ζζ〉, 〈ζγ〉, 〈γγ〉. (3.1)

First, we write a general form of the two point correlator restricted by momentum conserva-

tion, reality condition of the correlations, and gauge invariance implementing a particular

gauge choice. This results in the conditions for the vanishing of the trace and the divergence

of the vector and tensor perturbations. Afterwards, we use Ward identities to determine

the scaling behaviour of the correlators [54, 76]. To this end, and for the two point cor-

relators, it is enough to use the Ward identity related with dilatations. For the two point

function, the Ward identity related with special conformal transformations (SCT) implies

the vanishing of correlators involving mixed fields with different scaling dimension (see e.g.

the section 1.3 of [80]). Aside from that, the SCT results are redundant. The scaling and

the structure of non-vanishing two point correlators can be derived solely from the Ward

identity for the dilatations and from the transverse and trace free gauge choice for the

perturbations. As mentioned in the introduction, ref. [11] contains a vast list of results

for the correlators of conformal fields in momentum space. It results useful to relate our

notations with theirs in order to campare the results. For the scalar O, the vector Jl and

the tensor field Tij in [11], we will use the following connection through the text ζ(0) ∼ O,

δEl ∼ Jl and γ
(0)
ij ∼ Tij .

3.1 Scalar spectrum

The scalar spectrum comes from the following contributions:

〈ζζ〉 = 〈ζ(0)ζ(0)〉+ 〈ζ(0)ζ(1)〉+ 〈ζ(1)ζ(0)〉+ 〈ζ(1)ζ(1)〉, (3.2)

where the terms 〈ζ(0)ζ(1)〉 and 〈ζ(1)ζ(0)〉, according with (2.25), are proportional to

Êk〈ζ(0)δEk〉. This function is related with 〈JiO〉 in [11] which, as mentioned before, is

zero as a consequence of symmetry under SCT. We can see that explicitly in the case of

the vector perturbations considered here if we construct a two point function with a single

vector index. In general, given that the vector perturbation is imposed to be divergence

free, this correlator can be constructed as a combination of polarization vectors carrying a

single vector index (some relevant properties of polarization vectors and tensors are listed

in appendix B). The only option for such function, with a single vector index, satisfying

simultaneously the dilatations and SCT Ward identities is to be zero. In consequence, for

the scalar spectrum including the effect of the vector sources, we are left with

〈ζζ〉 = 〈ζ(0)ζ(0)〉+ 〈ζ(1)ζ(1)〉. (3.3)

– 8 –
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To compute the vacuum scalar spectrum we propose a general form which, in this case, is

written as

〈ζ(0)(~k1)ζ(0)(~k2)〉 = δ(~k12)P0(k1), (3.4)

where ~k12···n = ~k1 + · · ·+ ~kn. Now, we use the Ward identity for dilatations given by (see

appendix C for the explicit form of these identities)[
−3 + 2∆ζ0 − k1l

∂

∂k1l

]
〈ζ(0)(~k1)ζ(0)(~k2)〉′ = 0, (3.5)

where the apostrophe in the correlation function means that we factor out the delta func-

tion. The solution of this equation is P0(k1) = α0k
−3+2∆ζ0
1 , then, the vacuum spectrum is

written as

〈ζ(0)(k1)ζ(0)(−k1)〉′ = α0k
−3+2∆ζ0 . (3.6)

On the other hand, for the scalar spectrum sourced by vector fields, we propose the following

form

〈ζ(1)(k1)ζ(1)(−k1)〉′ = ÊlÊmPlm(~k1), (3.7)

where Plm is constructed out of the O(3) invariant tensors δlm, kl, km and the Levi-Civita

tensor ηlmn. Due to gauge invariance, zero divergence is imposed over the indices l and m.

The general object that result from these conditions is

Plm = P1(k1)∆lm + P2(k1)η̂lm, where ∆ij = δij − k̂1ik̂1j and η̂lm = ηlmak̂
a
1 . (3.8)

Reality of this correlator implies that P1(k1) is real and P2(k1) is pure imaginary. The

Ward identity for dilatations implies the scaling of the functions P1 and P2:

P1(k1) = α1k
−3+2∆ζ1

1 , P2(k1) = iα2k
−3+2∆ζ1

1 , (3.9)

where αi are real constants and ∆ζ1 = ∆ζ0 + ∆u, as obtained in (2.27), is the conformal

weight of the sourced perturbations. As a result, the scalar two-point correlation function

is written as

〈ζ(1)(k1)ζ(1)(−k1)〉′ = α1k
−3+2∆ζ0+2∆u

1 ÊlÊm∆lm, (3.10)

where we can notice the presence of a quadrupolar term due to the vector perturbations.

This quadrupolar structure has been extensively studied in the context of vector field

models of inflation, see e.g. [66, 69, 76]. We can notice here that, despite of the parity

breaking nature of the system, there are no parity breaking signatures appearing in the

scalar spectrum.

Adding the vacuum and the sourced parts, the total scalar spectrum obtained is:

〈ζ(~k1)ζ(−~k1)〉′= 〈ζ(0)(~k1)ζ(0)(−~k1)〉′+〈ζ(1)(~k1)ζ(1)(−~k1)〉′

=α0k
−3+2∆ζ0
1

[
1+gζ(k1)

(
1−(Ê ·k̂1)2

)]
, where gζ(k1)≡

(
α1

α0

)
k2∆u

1 .

(3.11)

It is interesting to remark that the parameter gζ acquires a scaling of the form

gζ ∼ k2∆u
1 = k4+2n

1 as a consequence of the sourcing of the vector modes. In the case

n = −2, the parameter gζ is scale invariant, but any deviation from this value can intro-

duce a significant scale dependence due to this sourcing mechanism.
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3.2 The tensor-scalar spectrum

Here we consider the mixed tensor-scalar two point function, which is written as

〈γijζ〉 = 〈γ(0)
ij ζ

(0)〉+ 〈γ(0)
ij ζ

(1)〉+ 〈γ(1)
ij ζ

(0)〉+ 〈γ(1)
ij ζ

(1)〉. (3.12)

To evaluate the zero-th order contribution to this correlator we use the divergence and

trace free condition of the tensor perturbations ki1γij(
~k1)= γii(~k1) = 0. For the same

reason mentioned before, and given that 〈γ(0)
ij ζ

(0)〉 involves fields with different scaling

dimension, this correlator is zero as a consequence of invariance under SCT. This implies

that the vacuum scalar and tensor perturbations are not correlated and it is remarkable

that this result can be derived only from symmetry arguments. The same happens for the

terms 〈γ(1)
ij ζ

(0)〉 and 〈γ(0)
ij ζ

(1)〉, they are zero due to invariance under SCT. Then, we are

left with

〈γijζ〉 = 〈γ(1)
ij ζ

(1)〉, (3.13)

which means that the scalar-tensor two point function acquires a non zero value only due

to the presence of the sourced primordial perturbations. Considering the structure of the

interaction terms, which at leading order include Êi and δEj , we write a general expression

for the correlator in the from

〈γ(1)
ij (~k1)ζ(1)(~k2)〉 = δ(~k12)ÊlÊmBijlm, (3.14)

where Bijlm is the more general O(3) invariant tensor with four indices, constructed out

of the O(3) invariant objects ki, δij , ηijk. In the following we will write Bijlm as a function

of only ~k1 due to momentum conservation, while the dependence on ~k2 is contained in the

delta function δ(~k12). The tensor Bijlm can be decomposed in a basis of O(3) invariant

tensors

Bijlm =

4∑
n=1

bnB
(n)
ijlm , (3.15)

where bn are functions of the momenta, and the different, independent objects B
(n)
ijlm,4

obey traceless, divergenceless conditions and are symmetric in the indices (ij), since the

left hand side of (3.14) is symmetric in those indices. The previous conditions are satisfied

by the next set of tensors (we give some details about the derivation of these tensors in

appendix A)

B
(1)
ijlm = ∆mj∆il + ∆lj∆im −∆ij∆lm, (3.16)

B
(2)
ijlm = ∆ilη̂jm + ∆lj η̂im −∆ij η̂lm, (3.17)

B
(3)
ijlm = η̂ilη̂jm + η̂imη̂jl −∆ij∆lm, (3.18)

B
(4)
ijlm = ∆imη̂jl + ∆mj η̂il + ∆ij η̂lm. (3.19)

4It is important to mention that the superscript (n) here is not related with the order of the perturbation

expansion as introduced in (2.20). We use the same notation but the meaning should be understood from

the context.
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From the list before, we can notice that B
(1)
ijlm and B

(3)
ijlm are symmetric in the indices (lm)

and that B
(2)
ijml = B

(4)
ijlm. Due to this relation and taking into account that the contraction

with ÊlÊm don’t recognize the difference between l and m, we will use only the tensor

B
(2)
ijlm for the evaluation of this correlator. Moreover, by using identities of the Levi-Civita

symbol, it is possible to realize that B
(3)
ijlm = −B(1)

ijlm (for details, see appendix B.1). We

can symmetrize the resulting two tensors defining

T
(1)
ijlm =

1

2
B

(1)
ijlm, (3.20)

T
(2)
ijlm =

i

4

(
B

(2)
ijlm +B

(4)
ijlm

)
, (3.21)

as the independent symmetric objects in the indices (ij), (lm), consistent with trace

and divergence free conditions. Additionally, we can use the reality of the correlator,

〈γ(1)
ij (~k1)ζ(1)(−~k1)〉† = 〈γ(1)

ij (~k1)ζ(1)(−~k1)〉, to impose conditions over the functions bn,

this implies
2∑

n=1

b∗n(k1)T
(n)
ijlm(−~k1) =

2∑
n=1

bn(k1)T
(n)
ijlm(~k1) , (3.22)

and therefore b∗1 = b1, b∗2 = −b2, which means that b1 is a real function, while b2 is a pure

imaginary quantity. In this form, the correlation function can be written as

〈γ(1)
ij (~k1)ζ(1)(−~k1)〉 = δ(~k12)ÊlÊm

[
b1(k1)T

(1)
ijlm(~k1) + ib2(k1)T

(2)
ijlm(~k1)

]
. (3.23)

Finally, we apply the Ward identity for dilatations over the last expression of the correlator:[
−3 + ∆γ0 + ∆ζ0 + 2∆u − k1l

∂

∂k1l

]
〈γ(1)
ij (~k1)ζ(1)(−~k1)〉′ = 0 . (3.24)

Given that k1a
∂

∂k1a
T

(n)
ijlm = 0, we obtain an equation for the functions bn[
−3 + ∆γ0 + ∆ζ0 + 2∆u − k1l

∂

∂k1l

]
bn(k1) = 0 , (3.25)

whose solution is

bn(k1) = Bnk
−3+∆γ0+∆ζ0+2∆u

1 , (3.26)

where Bn are constants. Finally, by using the identities of the projector Πlm
λ listed in B,

we project into the helicity basis obtaining:

〈γ(1)
λ (~k1)ζ(1)(−~k1)〉′ = k

−3+∆γ0+∆ζ0+2∆u

1 BλÊ
lÊmΠlm

λ , where Bλ = B1 + λB2. (3.27)

It is remarkable that this result shows an explicit dependence on the helicity in the co-

efficient Bλ coming from the tensor T
(2)
ijlm. Given that the contribution from the vacuum

perturbations in this case is null, we get that the non zero value of this correlation function

is an effect coming purely from the vector fields sources, then:

〈γλ(~k1)ζ(−~k1)〉′ = 〈γ(1)
λ (~k1)ζ(1)(−~k1)〉′ = k

−3+∆γ0+∆ζ0+2∆u

1 BλÊ
lÊmΠlm

λ . (3.28)
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This result, coincides, in structure, with the results reported in [69] and with [33] for the

parity conserving limit ξ → 0 of this model, but, as we mentioned in the introduction, it is

necessary to emphasize that with this approach we are not able to obtain the amplitudes

of the correlators, so, the function Bλ is not fully determined by this method. However,

it is interesting to consider some limit cases of this function. For instance, when B1 ≈ B2

we obtain B+ � B−, and we see a clear difference in the correlation of the different

polarizations. This limit exhibits the parity violating nature of the system. On the other

hand, the limit B2 ≈ 0 leads to a parity conserving situation in which B+ ≈ B−. Another

limit, B1 ≈ 0 leads to the case B+ ≈ −B− in which the correlations have opposite sign.

3.3 Tensor tensor spectrum

Finally, we compute the 〈γγ〉 correlator. As before, we separate the vacuum and the

sourced contributions in the following way:

〈γijγkl〉 = 〈γ(0)
ij γ

(0)
kl 〉+ 〈γ(0)

ij γ
(1)
kl 〉+ 〈γ(1)

ij γ
(1)
kl 〉, (3.29)

however, for the same reasons mentioned before, the mixed correlator 〈γ(0)
ij γ

(1)
kl 〉 is equal to

zero. For the vacuum part we can write a general expression in terms of (3.20) and (3.21)

〈γ(0)
ij (~k1)γ

(0)
lm (~k2)〉 = δ(~k12)

2∑
n=1

tn(k1)T
(n)
ijlm , (3.30)

where, tn(k1) are arbitrary functions of the momentum. This correlator is constructed

with the objects ki, δij , ηijk, which are invariant under O(3), and fulfill the traceless and

divergence free conditions, and is symmetric under i ↔ j, l ↔ m. The correlator must

be real: 〈γ(0)
lm (~k)γ

(0)
ij (−~k)〉† = 〈γ(0)

ij (~k)γ
(0)
lm (−~k)〉, which implies that t1 is real and t2 is a

pure imaginary. Again, by using the Ward identity for dilatation over this correlator and

conclude that

tn(k1) = Tnk
−3+2∆γ0
1 , (3.31)

and contracting with the projector Πij
λ we obtain:

〈γ(0)
λ (~k1)γ

(0)
λ′ (−~k1)〉 = δ(~k12)Πij

λ Πlm
−λ′〈γ

(0)
ij (~k1)γ

(0)
lm (−~k1)〉′, (3.32)

where the −λ′ comes from momentum conservation given that the Dirac’s δ(~k12) implies

that the second projector acts over −~k1. Finally, by using the identities (B.42), the result is

〈γ(0)
λ (~k1)γ

(0)
λ′ (−~k1)〉′ = k

−3+2∆γ0
1 Tλδλ,λ′ , where Tλ = T1 + λT2. (3.33)

Again, one can see that the result depends on the helicity. There is no correlation between

different tensor helicities, and the spectra for both helicities are different. An estimate of the

difference between the two spectra was obtained in a pseudoscalar related model in [49]. In

this reference, it was estimated that the difference in the amplitudes between both spectra

T± is about two orders of magnitude. With the symmetry based approach that we follow

here, we can’t do any estimate about this difference. We can get, however, as in the case
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of the correlator 〈γζ〉, limit cases in which this difference is noticeable. For instance, the

appropriate limit to see a noticeable difference is T1 ≈ T2. In this case we get T+ � T−.

Now, we move to calculate the vector field source contribution, which can be written as

〈γ(1)
ij (~k1)γ

(1)
lm (~k2)〉 = δ(~k12)ÊkÊnUijklmn, (3.34)

where Uijlmkn is an object, which is symmetric and trace free in the indices i ↔ j and

l↔ m and divergenceless in all of them. Uijlmkn can be constructed by using the objects:

B
(s)
ijlm, ∆ij and η̂ij as shown in appendix A. All in all we have,

〈γ(1)
ij (~k1)γ

(1)
lm (−~k1)〉 = δ(~k12)ÊkÊn

16∑
n=1

un(k1)U
(n)
ijklmn , (3.35)

but, inspecting the explicit form of the tensors U (n) in appendix A, and considering that we

contract with the symmetric pair ÊkÊn, we reduce the number of necessary tensors to the

ones listed in (A.5), (A.6) and (A.7). By imposing the reality of the correlator we obtain

〈γ(1)
ij (~k1)γ

(1)
lm (−~k1)〉 = δ(~k12)ÊkÊn

[
3∑
s=1

us(k1)P
(s)
ijklmn + i

6∑
r=4

ur(k1)P
(r)
ijklmn

]
, (3.36)

where ui are real functions. Finally, by using the Ward identity for dilatation and noticing

that the tensors P
(n)
ijlmkn are not affected by the operator k1l

∂
∂k1l

, we obtain

un(k1) = Unk
−3+2∆γ1
1 , (3.37)

where Un are real constants and ∆γ1 = ∆γ0 + ∆u. Then, we have

〈γ(1)
ij (~k1)γ

(1)
lm (−~k1)〉= δ(~k12)k

−3+2∆γ0+2∆u

1 ÊkÊn

[
3∑
s=1

UsP
(s)
ijklmn+i

6∑
r=4

UrP
(r)
ijklmn

]
. (3.38)

Contracting with the projectors to the helicity basis, we get

〈γ(1)
λ (~k1)γ

(1)
λ′ (−~k1)〉′ = Πij

λ Πlm
−λ′〈γ

(1)
ij (~k1)γ

(1)
lm (−~k1)〉 ∝ k−3+2∆γ0+2∆u

1 δλ,λ′Ê
kÊn∆knUλ,

(3.39)

where we have used the identities (B.38)–(B.43), we renamed the constants Us and

Uλ ≡ U + λV =
1

2
[U1 + U2 + U3 + λ (U4 + U5 + U6)]. (3.40)

To summarize, symmetry under conformal transformations, restricts the structure of the

tensor-tensor spectrum to be as follows:

〈γλ(~k1)γλ′(−~k1)〉′

= 〈γ(0)
λ (~k1)γ

(0)
λ′ (−~k1)〉′ + 〈γ(1)

λ (~k1)γ
(1)
λ′ (−~k1)〉′

= Tλk
−3+2∆γ0

1 δλ,λ′
(

1 + gγ(k1)ÊkÊn∆kn

)
, where gγ(k1) ≡

(
Uλ
Tλ

)
k2∆u

1 . (3.41)

We notice again, that, as in the scalar-scalar case, the structure of the correlation function

exhibits a quadrupole term. This quadrupolar structure was already derived in [69] using

the in-in formalism. As before, the correlation functions for the 2 polarizations are different

and the correlation between two different polarizations is zero.
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4 The bispectrum

In this section, we use the approximate conformal symmetry in the inflationary regime

to elucidate the structure of the three-point functions in momentum space. In this case,

the Ward identity for dilatations is not enough to determine the form of the correlation

functions, since these depend on the three momenta, ~k1,~k2 and ~k3, and therefore we need

additional equations to obtain the dependence with all the three momenta. So, it is nec-

essary to use the Ward identities for SCT to determine the structure of the correlator. A

complete and very detailed analysis of the restrictions imposed by SCT in momentum space

can be found in [3, 10] for scalar correlators and in [11] for correlators of scalar, vector and

tensor operators. In this section, we rely on the results found in [11] for parity invariant

correlations and extrapolate their results to include parity breaking. As mentioned in the

introduction, this is not a trivial task, because to extrapolate the results from one context

to the other, we need to obtain the appropriate tensor decomposition including the parity

breaking contributions. To this end, we use the objects T
(a)
ijlm(~kp), ∆ij(~kp) and η̂ij(~kp) with

p = 1, 2, 3 introduced in section 3.

In reference [11], the Ward identities related with SCT are solved in terms of a triple

Bessel K functions integral

JN{pj}(k1, k2, k3) =

∫ ∞
0

dxx1/2+N
3∏
j=1

k
∆j−3/2+pj
j K∆j−3/2+pj (kjx) , (4.1)

where the Kn(x) are the modified Bessel functions of the second kind, ∆j is the conformal

weight of the operator, kj is the magnitude of the corresponding momenta and N is the

number of momenta contracted with the tensors T
(1)
ijlm and ∆ij . Furthermore, we can see

that for the primary SCT Ward identities, defined in (C.6), the JN{pj} satisfies

KabJN{pj} = 2paJN+1{pj−δaj} − 2pbJN+1{pj−δbj}. (4.2)

In these equations, pj is an integer that gives the freedom of making the primary SCT Ward

identities homogeneous or not, according to the particular case. We revisit briefly some

details about the primary conformal equations in appendix C. For more details see [11].

4.1 Scalar bispectrum

Next, we compute the bispectrum including the effects from the vector field. Similar

to what we write in the previous section for the power spectrum, we can introduce the

contributions sourced by the vector field as follows:

〈ζζζ〉 = 〈ζ(0)ζ(0)ζ(0)〉+ 〈ζ(1)ζ(0)ζ(0)〉+ (2 perms.) + 〈ζ(1)ζ(1)ζ(0)〉+ (2 perms.). (4.3)

In the following we will calculate every piece separately. To start, the vacuum bispectrum

can be written as

〈ζ(0)(k1)ζ(0)(k2)ζ(0)(k3)〉 = δ(k123)F (k1, k2, k3), (4.4)
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where F is a scalar function of the momenta consistent with conformal symmetry. The

solution for the Ward identities for conformal symmetries in momentum space found

in [10, 11] is

F (k1, k2, k3) = a0J0{000} (4.5)

= a0

∫ ∞
0

dxx1/2(k1k2k3)∆ζ0−3/2K∆ζ1−3/2(k1x)K∆ζ0−3/2(k2x)K∆ζ0−3/2(k3x),

where a0 is a normalization constant and we have used the notation for the triple-K inte-

grals in (4.1).

Now, we move to compute the second piece of (4.3), which is constructed by considering

the most general object that is divergenceless with respect to k1. This can be written as a

linear combination of ∆la(k1) and η̂la(k1) = ηlack̂1c as follows:

〈ζ(1)(k1)ζ(0)(k2)ζ(0)(k3)〉 = δ(k123)Êl [∆la(k1) + iα1η̂la(k1)]Aa, (4.6)

where the function

Aa = A1(k1, k2, k3)ka2 , (4.7)

is a general function which doesn’t vanish upon contraction with ∆la(k1) and η̂la(k1). The

function Aa is symmetric under the change k2 ↔ k3. This is the general form found in [11]

for this correlator, the only difference here is that we also consider the odd part η̂la(k1).

The function A1(k1, k2, k3) solves the primary conformal Ward identities and is expressed

in terms of the integrals (4.1) as

A1(k1, k2, k3)

= a1J1{000} (4.8)

= a1

∫ ∞
0

dxx3/2k
∆ζ1−3/2
1 (k2k3)∆ζ0−3/2K∆ζ1−3/2(k1x)K∆ζ0−3/2(k2x)K∆ζ0−3/2(k3x),

where a1 is a normalization constant. With the previous results, the total contribution

from first order sourced vector perturbations becomes

〈ζ(1)(k1)ζ(0)(k2)ζ(0)(k3)〉+ (2 perms.) (4.9)

= δ(k123)a1k2J1{000}

[
Ê · k̂2 − (Ê · k̂1)(k̂1 · k̂2) + iα1Ê · (k̂2 × k̂1)

]
+ (2 perms.).

Finally, we compute the second order vector sourced part 〈ζ(1)ζ(1)ζ(0)〉. This contribution is

constructed out with the appropriate combinations of ∆ab(kp) and η̂ab(kp) for the momenta
~kp (p = 1, 2):

〈ζ(1)(k1)ζ(1)(k2)ζ(0)(k3)〉 = δ(k123)ÊlÊm (4.10)

× [∆la(k1)∆mb(k2) + iα2 (∆la(k1)η̂mb(k2) + η̂la(k1)∆mb(k2))− α3η̂la(k1)η̂mb(k2)]Aab.

The previous combination is real and symmetric under ~k1 ↔ ~k2. The function, Aab is

written as

Aab = A2(k1, k2, k3)ka2k
b
3 +A3(k1, k2, k3)δab, (4.11)
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and is the more general object which does not vanish when contracting with the combina-

tion of tensors in the brackets in equation (4.10). We remark here that another possible

term that could be added to the previous solution is η̂ab(k3), but, it can be checked that

this term spoils the symmetry under the change ~k1 ↔ ~k2, hence, this term is not allowed.

Following [11], the solutions for the scalar functions are

A2(k1, k2, k3) = a2J2{000}, (4.12)

A3(k1, k2, k3) = a2J1{001} + a3J0{000}, (4.13)

then, the second order contribution is

〈ζ(1)(k1)ζ(1)(k2)ζ(0)(k3)〉+(2 perms.) = δ(k123)× (4.14)

a2k2k3J2{000}

[
(k̂2 ·Ê)(k̂3 ·Ê)−(k̂2 ·Ê)2(k̂2 ·k̂3)−(k̂1 ·Ê)(k̂3 ·Ê)(k̂1 ·k̂2)

+(k̂1 ·Ê)(k̂2 ·Ê)(k̂1 ·k̂2)(k̂3 ·k̂2)−α3Ê ·(k̂2×k̂1)Ê ·(k̂3×k̂2)

iα2

(
Ê ·(k̂2×k̂1)(k̂3 ·Ê−(k̂3 ·k̂2)(k̂2 ·Ê))+Ê ·(k̂3×k̂2)(k̂2 ·Ê−(k̂1 ·k̂2)(k̂1 ·Ê))

)]
+(a2J1{001}+a3J0{000})

[
1−(k̂1 ·Ê)2−(k̂2 ·Ê)2+(k̂1 ·k̂2)(k̂1 ·Ê)(k̂2 ·Ê)−α3(Ê×k̂1)·(Ê×k̂2)

−iα2

(
(Ê ·k̂2)Ê ·(k̂2×k̂1)−Ê ·(Ê×k̂1)+(Ê ·k̂1)Ê ·(k̂1×k̂2)−Ê ·(Ê×k̂2)

)]
+(2 perms.).

In section 5 we will study the soft limit of this result and propose a general parametrization

for the squeezed scalar bispectrum consistent with conformal symmetry.

4.2 Tensor-scalar-scalar correlator

To finish this section, we study the mixed tensor-scalar-scalar correlator 〈γζζ〉. Mixed cor-

relations such as 〈γζζ〉 have a potential observational interest and constitute an important

tool to constrain and discriminate inflationary models featuring parity breaking signatures,

such as the pseudoscalar coupling f(φ)FF̃ considered here. In those models the gravita-

tional waves sourced by the pseudoscalar coupling are chiral and their presence could leave

some distinctive imprints on the correlation functions.

As in the previous sections, we will consider the vacuum contribution and the leading

order contributions coming from the vector field. Therefore, this particular correlator is

written as

〈γζζ〉 = 〈γ(0)ζ(0)ζ(0)〉+ 〈γ(0)ζ(0)ζ(1)〉+ 〈γ(0)ζ(1)ζ(1)〉+ 〈γ(1)ζ(1)ζ(0)〉+ ( perms.). (4.15)

We begin our computation by proposing a general function for the vacuum part, which is

consistent with zero divergence, zero trace and symmetric in the indices (ij). By using the

objects T
(n)
ijab, we propose the following form for the vacuum bispectrum

〈γ(0)
ij (~k1)ζ(0)(~k2)ζ(0)(~k3)〉′ = B0(k1, k2, k3)k2ak2b

[
T

(1)
ijab(

~k1) + iβ1T
(2)
ijab(

~k1)
]
, (4.16)

where B(k1, k2, k3) is symmetric under the change k2 ↔ k3 and β1 is a real constant. The

solution B(k1, k2, k3) to the conformal constraints equations was found in [11] and here we

use their result. In terms of the triple-K integrals this function is written as

B0(k1, k2, k3) = b0J2{000}, (4.17)
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where b0 is a normalization constant. Projecting into the helicity basis and using the

properties (B.38)–(B.43) we obtain

〈γ(0)
λ (~k1)ζ(0)(~k2)ζ(0)(~k3)〉′ = BλΠab

λ (~k1)k2ak2bJ2{000} , where Bλ = b0 [1 + λβ1] . (4.18)

As in the cases involving tensor modes studied previously, this result depends on the helicity

and exhibits a different value depending on the polarization.

Now we want to compute the contributions to the correlator sourced by the vector fields

up to second order. The first order perturbation 〈γ(0)ζ(1)ζ(0)〉 is related to the correlator

〈TijJkO〉 which was calculated in the appendix F of ref. [11] and it was determined that it

is null for d ≥ 3.5 The leading contributions coming from the vector fields are 〈γ(0)ζ(1)ζ(1)〉
and 〈γ(1)ζ(1)ζ(0)〉. First, we calculate the term

〈γ(0)
ij (~k1)ζ(1)(~k2)ζ(1)(~k3)〉 . (4.19)

To do it, we propose a general form consistent with the appropriate symmetry conditions.

In this case, we have zero trace, zero divergence and symmetry in the indices (ij) for the

momentum ~k1. Additionally, we also have zero divergence in the indices (lm) associated

with the vector perturbations in the momentum ~k2 and ~k3. The most general object which

is real and fulfill the previous assumptions has the following form

〈γ(0)
ij (~k1)ζ(1)(~k2)ζ(1)(~k3)〉= δ(~k123)ÊlÊm×

2∑
n=1

[∆lc(k2)∆md(k3)+iβ2(∆lc(k2)η̂md(k3)+η̂lc(k2)∆md(k3))+β3η̂lc(k2)η̂md(k3)]T
(n)
ijab(

~k1)Babcd(n) ,

(4.20)

where Babcd(n) are functions which are not annihilated upon contractions with the tensors ∆ab,

η̂lc and T
(n)
ijab in the previous decomposition. Those functions can be written in the form

Babcd(n) (k1,k2,k3) =B
(n)
1 ka2k

b
2k
c
3k
d
1 +B

(n)
2 δcdka2k

b
2+B

(n)
3 δack

b
2k
d
1 +B

(n)
3 (k2↔ k3)δadk

b
2k
c
3+B

(n)
4 δacδbd,

(4.21)

where B
(n)
a = B

(n)
a (k1, k2, k3) and B

(n)
3 is symmetrized in k2 and k3. It is important to

mention here that, differently from the case studied in ref. [11], we also need to introduce

the odd parity projectors constructed with η̂ab and T
(2)
abcd and it is not trivial to see that

those projectors obey the same equations for the conformal symmetry constraints than the

even parity projector T
(1)
abcd. They indeed satisfy the same differential equations as shown in

a detailed form in appendices B and C. Consequently, all the functions Babcd(n) also obey the

same differential equations, so, we can infer that they are all equal up to relative constants

that we will define in the form

Babcd(2) = β4Babcd(1) , wich implies B(2)
a = β4B

(1)
a . (4.22)

5This conclusion don’t change in presence of parity breaking terms since the objects used for the tensorial

decomposition in this case obey the same differential Ward identities. See details in appendix B.
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The solution for B
(1)
a was also obtained in ref. [11]:

B
(1)
1 = b1J4{000} , (4.23)

B
(1)
2 = b1J3{100} + b2J2{000} , (4.24)

B
(1)
3 = 2b1J3{001} + b3J2{000} , (4.25)

B
(1)
4 = 2b1J2{011} + b3

(
J1{010} + J1{001}

)
+ b4J0{000}, (4.26)

where b1,2,3,4 are constants. With the previous results, and using the properties (B.42) we

contract with the helicity projector Πij
λ (~k1) obtaining

〈γ(0)
λ (~k1)ζ(1)(~k2)ζ(1)(~k3)〉′ = (1 + λβ4)ÊlÊmΠab

λ (~k1)Babcd(1) × (4.27)

[∆lc(k2)∆md(k3) + iβ2(∆lc(k2)η̂md(k3) + η̂lc(k2)∆md(k3)) + β3η̂lc(k2)η̂md(k3)] .

Finally, we compute the contribution from

〈γ(1)
ij (~k1)ζ(1)(~k2)ζ(0)(~k3)〉 , (4.28)

and, proceeding in the same form as we did before, we construct the most general real

object consistent with the divergence and trace free conditions and with the symmetries in

the appropriate combination of indices. For this case we have:

〈γ(1)
ij (~k1)ζ(1)(~k2)ζ(0)(~k3)〉= δ(~k123)ÊlÊm×

2∑
n=1

[∆lc(k1)∆md(k2)+iβ5(∆lc(k1)η̂md(k2)+η̂lc(k1)∆md(k2))+β6η̂lc(k1)η̂md(k2)]T
(n)
ijab(

~k1)B̄abcd(n) ,

(4.29)

where

B̄abcd(n) = B̄
(n)
1 ka2k

b
2k
c
2k
d
3 + B̄

(n)
2 δcdka2k

b
2 + B̄

(n)
3 δackb2k

d
3 + B̄

(n)
4 δadkb2k

c
2 + B̄

(n)
5 δacδbd, (4.30)

and B̄
(n)
1 = B̄

(n)
1 (k1, k2, k3) are functions of the momenta. As before, given that all the func-

tions B̄abcd(n) obey the same differential equations, they are all equal up to relative constants

that we will define in the form

B̄abcd(2) = β7B̄abcd(1) , which implies B̄(2)
a = β7B̄

(1)
a . (4.31)

Again, we follow the techniques described in [11] to find the solutions for the functions

B̄
(1)
a (k1, k2, k3) obtaining:

B̄
(1)
1 = b5J4{000} , (4.32)

B̄
(1)
2 = B̄

(1)
4 = b6J2{000} , (4.33)

B̄
(1)
3 = 2b5J3{010} + b7J2{000} , (4.34)

B̄
(1)
5 = b6J1{010} + b8J0{000}. (4.35)
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This particular case is not reported in ref. [11]. The explicit and detailed form in which

we derived the previous solution can be found in appendix C. Finally, we project with the

operator Πij
λ (~k1) and use the properties (B.42) to obtain

〈γ(1)
λ (~k1)ζ(1)(~k2)ζ(0)(~k3)〉′ = (1 + λβ7)ÊlÊmΠab

λ (~k1)B̄abcd(1) × (4.36)

[∆lc(k1)∆md(k2) + iβ5(∆lc(k1)η̂md(k2) + η̂lc(k1)∆md(k2)) + β6η̂lc(k1)η̂md(k2)] .

Next section is devoted to study the soft limit of the correlators considered in this section.

5 The squeezed configuration and consistency relations

It is instructive to evaluate the soft limits of the previous results. Soft limits, in which

one or a combination of momenta go to zero, are relevant to constrain the particle content

during inflation [22]. In particular, a significant (measurable) value of the squeezed limit

of the three point function can be seen as a signature of the presence of light and long

lived degrees of freedom during the inflationary expansion [6, 29, 81–85]. We evaluate the

squeezed limit and derive consistency relations for the particular model which we have

discussed here.

5.1 The scalar bispectrum 〈ζζζ〉

To start, let’s evaluate the squeezed limit of the scalar bispectrum. For the vacuum con-

tribution of the scalar bispectrum we take the limit as k1 → 0 of the result (4.5). In that

limit, k1 → 0 and k2 → k3 and we obtain

lim
k1→0
〈ζ(0)(k1)ζ(0)(k2)ζ(0)(k3)〉′ ∝ a0k

−3+2∆ζ0

1 k
−3+∆ζ0

2

∝ a0k
−∆ζ0

2 〈ζ(0)(k1)ζ(0)(−k1)〉〈ζ(0)(k2)ζ(0)(−k2)〉. (5.1)

Now, we calculate the squeezed limit ~k1 → 0 of the sourced contributions to the scalar

bispectrum. In this limit, the contribution from J2{000} and J1{000} vanishes, so, the only

contribution comes from J0{000} and then

B2(k1, k2, k3) ≈ a3k
−3+2∆ζ0+2∆u

1 k
−3+∆ζ0

2 . (5.2)

In this case, the scalar bispectrum can be written as

lim
k1→0
〈ζ(1)(k1)ζ(1)(k2)ζ(0)(k3)〉′+(2 perms.)∝ k−3+2∆ζ0+2∆u

1 k
−3+∆ζ0

2

×
[
2
(

1−(Ê ·k̂1)2−(Ê ·k̂2)2+(k̂2 ·k̂1)(Ê ·k̂1)(Ê ·k̂2)
)
−2α3

(
k̂1 ·k̂2−(Ê ·k̂1)(Ê ·k̂2)

)
−2iα2

(
Ê ·(k̂1−k̂2)Ê ·(k̂1×k̂2)

)
+
(

1−(Ê ·k̂2)2+α3(Ê×k̂2)2
)]
. (5.3)
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Averaging over the vector Ê, that is, integrating over all the possible directions of this

vector
∫
d2Ω
4π we obtain

lim
k1→0
〈ζ(1)(k1)ζ(1)(k2)ζ(0)(k3)〉′ + (2 perms.)

∝ k−3+2∆ζ0+2∆u

1 k
−3+∆ζ0

2

[
1 +

α3

2
− α3k̂1 · k̂2 +

1

2
(k̂1 · k̂2)2

]
∝ k−∆ζ0

2 k2∆u
1 〈ζ(0)(k1)ζ(0)(−k1)〉〈ζ(0)(k2)ζ(0)(−k2)〉

×
[(

7 + 3α3

6

)
P0(k̂1 · k̂2)− α3P1(k̂1 · k̂2) +

1

3
P2(k̂1 · k̂2)

]
, (5.4)

which depends on the magnitude of ~k1 and ~k2 and also on the angle between them

(k̂1 · k̂2) = cos θ̂. In the last line of the previous expression we wrote the polynomial of

cos θ̂ in terms of the Legendre polynomials PL with L = 0, 1, 2. Finally, it is easy to see

that the angle average of the contributions from 〈ζ(1)ζ(0)ζ(0)〉 in (4.9), is zero. With this,

adding the vacuum result (5.1) with the sourced contributions in (5.4) we obtain

lim
k1→0
〈ζ(~k1)ζ(~k2)ζ(~k3)〉 ∝ k−∆ζ0

2 Pζ(k1)Pζ(k2)

2∑
l=0

cL(k1, k2)PL(k̂1 · k̂2) (5.5)

where

c0 = 1 +
a3

a0

(
7 + 3α3

6

)
k2∆u

1 , c1 = −α3
a3

a0
k2∆u

1 , c2 =
a3

3a0
k2∆u

1 . (5.6)

It is interesting to notice that the angular dependence introduced here is a direct conse-

quence of the presence of a vector field. The precise form of the angular dependence of

the three point function provides relevant information about the presence of vector fields

and about their interactions with other fields. Additionally, the coefficients cL(k1, k2) ac-

quire scale dependence through the scaling dimension of the vector perturbations in the

form cL ∼ k2∆u
1 ∼ k4+2n

1 . This dependence exhibits scale invariant behaviour at n = −2.

Nevertheless, when the power of the interaction term (2.2) goes like n & −2, some level of

scale dependence is obtained which can be seen as distinctive feature of the model. The

expression (5.5) constitutes a useful expression to parametrize departures from conformal

symmetry in scenarios allowing for general interactions between scalar and vector fields

through the coupling term (2.2). It is interesting to notice that the term P1(k̂1 · k̂2) is not

symmetric under the reflection θ̂ → π − θ̂ which is a consequence of the presence of the

parity breaking term f(φ)F̃F . A complete calculation, including the amplitude factors in

the case with n = −2, was performed in [69] by using the in-in formalism. Our results

here, agree with the results in [69] up to amplitude factors in the case n = −2.
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5.2 The mixed bispectrum 〈γζζ〉

To start, we evaluate the squeezed limit of the vacuum contribution (4.18) of the mixed

correlator. Taking the limit ~k1 → 0 and evaluating the integral, (4.18) becomes

lim
k1→0
〈γ(0)
λ (~k1)ζ(0)(~k2)ζ(0)(~k3)〉′

∝ B0λk
−3+2∆γ0

1 k
−3−∆γ0+2∆ζ0

2 Πab
λ (~k1)k̂2ak̂2b

∝ B0λk
−∆γ0

2 〈γ(0)
λ (~k1)γ

(0)
λ (−~k1)〉〈ζ(0)(~k2)ζ(0)(−~k2)〉Πab

λ (~k1)k̂2ak̂2b, (5.7)

which is a very well known result that we reproduce here up to normalization factors,

see e.g. [81] and more recently in [29] in the context of inflationary models that include

higher spin fields. Now, we add the contributions from the sourced parts 〈γ(0)
λ ζ(1)ζ(1)〉 and

〈γ(1)
λ ζ(1)ζ(0)〉. To begin, we study the limit ~k1 → 0 and ~k3 → −~k2 of (4.27). First, we notice

that in this limit the contribution from B
(1)
1 is accompanied by ka2k

b
2k
c
2k
d
1 which vanishes

when contracted with the projectors ∆lc(k2) and η̂ac(k2). So, we only need to consider the

contributions from B
(1)
2 , B

(1)
3 , B

(1)
4 . Using the approximation of the triple-K integrals in

the limit k1 → 0 we obtain

B
(1)
2 ≈ σ2k

−3+2∆γ0

1 k
−5+2∆ζ0−∆γ0+2∆u

2 , (5.8)

B
(1)
3 ≈ σ3k

−3+2∆γ0

1 k
−5+2∆ζ0−∆γ0+2∆u

2 (5.9)

B
(1)
4 ≈ σ4k

−3+2∆γ0

1 k
−3+2∆ζ0−∆γ0+2∆u

2 , (5.10)

where we have redefined the constants b1,2,3,4 in terms of the constants σ2,3,4 which carry

some dependence of the conformal weights through the gamma functions appearing in the

expansions of the Bessel K functions. By using the previous results and neglecting the

terms with (k1/k2) and (k1/k2)2, we find that

Babcd(1) ≈ σ2k
−3+2∆γ0

1 k
−3+2∆ζ0−∆γ0+2∆u

2

(
δcdk̂a2 k̂

b
2 +

σ4

σ2
δacδbd

)
. (5.11)

Inserting it into (4.27) we obtain

lim
k1→0
〈γ(0)
λ (~k1)ζ(1)(~k2)ζ(1)(~k3)〉′= (1+λβ4)σ2k

−3+2∆γ0

1 k
−3+2∆ζ0−∆γ0+2∆u

2 (5.12)

×Πab
λ (~k1)k̂2ak̂2b(1−β3)(1−(Ê ·k̂2)2)

+
σ4

σ2
Πab
λ (~k1)

[
(Êa−(Ê ·k̂2)k̂2a)(Êb−(Ê ·k̂2)k̂2b)+β4(Ê×k̂2)a(Ê×k̂2)b

]
∝ k−∆γ0+2∆u

2 〈γ(0)
λ (~k1)γ

(0)
λ (−~k1)〉〈ζ(0)(~k2)ζ(0)(−~k2)〉Πab

λ (~k1)

×
[
k̂2ak̂2b(1−(Ê ·k̂2)2)+σ

[
(Êa−(Ê ·k̂2)k̂2a)(Êb−(Ê ·k̂2)k̂2b)+β4(Ê×k̂2)a(Ê×k̂2)b

]]
where we defined the constant σ = σ4/(σ2(1−β3)). Finally, integrating over all the possible

angles described by the vector Ê we obtain

lim
k1→0
〈γ(0)
λ (~k1)ζ(1)(~k2)ζ(1)(~k3)〉′ (5.13)

∝ B1λk
−∆γ0+2∆u

2 〈γ(0)
λ (~k1)γ

(0)
λ (−~k1)〉〈ζ(0)(~k2)ζ(0)(−~k2)〉Πab

λ (~k1)k̂2ak̂2b.
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Now, following the same procedure, we take the squeezed limit of (4.36). First, we integrate

each of the non-vanishing terms in eq. (4.30), which gives

B̄
(1)
2 ≈ σ̄2k

−5−∆γ0+2∆ζ0

2 k
−3+2∆γ0+2∆u

1 (5.14)

B̄
(1)
5 ≈ σ̄5k

−3−∆γ0+2∆ζ0

2 k
−3+2∆γ0+2∆u

1 , (5.15)

where σ̄2,5 are constants defined in terms of the constants b6,8 and the gamma functions

which appear in the expansions of the Bessel K functions. Using these results, the eq. (4.30)

is written as

B̄abcd(1) ≈ σ̄2k
−3−∆γ0+2∆ζ0

2 k
−3+2∆γ0+2∆u

1

[
δcdk̂a2 k̂

b
2 + δadk̂b2k̂

c
2 +

σ̄5

σ̄2
δacδbd

]
, (5.16)

and inserting this expression into (4.36) we obtain

lim
k1→0
〈γ(1)
λ (~k1)ζ(1)(~k2)ζ(0)(~k3)〉′∝B2λk

−3−∆γ0+2∆ζ0

2 k
−3+2∆γ0+2∆u

1

{
Πλ
ab(
~k1)k̂a2 k̂

b
2

[
1−(Ê ·k̂1)2−2(Ê ·k̂2)2+2(Ê ·k̂1)(Ê ·k̂2)(k̂1 ·k̂2)+β6

(
(k̂1 ·k̂2)−(Ê ·k̂2)(Ê ·k̂1)

)
+iβ5Ê ·(2k̂2−k̂1)Ê ·(k̂1×k̂2)

]
+Πλ

ab(
~k1)k̂b2Ê

a
(

(Ê ·k̂2)−(Ê ·k̂1)(k̂1 ·k̂2)−iβ5Ê ·(k̂1×k̂2)
)

+Πλ
ab(
~k1)k̂b2(Ê×k2)a

(
β6Ê ·(k̂1×k̂2)−iβ5(Ê ·k̂2−(k̂1 ·k̂2)(Ê ·k̂1))

)
+σ̄Πλ

ab(
~k1)
[
ÊaÊb−Êak̂b2(Ê ·k̂2)+β6(Ê×k̂1)a(Ê×k̂2)b

−iβ5

(
Êa(Ê×k̂2)b+Êb(Ê×k̂1)a−k̂b2(Ê×k̂1)a(Ê ·k̂2)

)] }
. (5.17)

where σ̄ = σ̄5/σ̄2. Integrating over all the possible directions of the vector Ê we obtain

lim
k1→0
〈γ(1)
λ (~k1)ζ(1)(~k2)ζ(0)(~k3)〉′

∝B2λk
−∆γ0

2 k2∆u
1 〈γ(0)

λ (~k1)γ
(0)
λ (−~k1)〉〈ζ(0)(~k2)ζ(0)(−~k2)〉Πλ

ab(
~k1)k̂a2 k̂

b
2

× 1

3

[
1−σ̄+2(k̂1 ·k̂2)2+3β6(k̂1 ·k̂2)+λβ5

(
1−(k̂1 ·k̂2)+σ̄

)]
. (5.18)

Finally, we sum up the contributions from (5.7), (5.13) and (5.18) to obtain the squeezed

limit of the full correlator:

lim
k1→0
〈γλ(~k1)ζ(~k2)ζ(~k3)〉′∝B0λk

−∆γ0

2 〈γ(0)
λ (~k1)γ

(0)
λ (−~k1)〉〈ζ(0)(~k2)ζ(0)(−~k2)〉Πλ

ab(
~k1)k̂a2 k̂

b
2

× 1

3

[
1+V1λk

2∆u
2 +k2∆u

1 V2λ

[
λβ5

(
(1+σ̄)P0(k̂1 ·k̂2)−P1(k̂1 ·k̂2)

)
+

((
5

3
−σ̄
)
P0(k̂1 ·k̂2)+3β6P1(k̂1 ·k̂2)+

4

3
P2(k̂1 ·k̂2)

)]]
, (5.19)
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where we have expressed the polynomial in the angle k̂1 · k̂2 in terms of the Legendre

polynomials PL=0,1,2. In a generic form, we can write

lim
k1→0
〈γλ(~k1)ζ(~k2)ζ(~k3)〉′ ∝ B0λk

−∆γ0

2 〈γ(0)
λ (~k1)γ

(0)
λ (−~k1)〉〈ζ(0)(~k2)ζ(0)(−~k2)〉Πλ

ab(
~k1)k̂a2 k̂

b
2

×
2∑

L=0

cλL(k1, k2)PL(k̂1 · k̂2). (5.20)

The previous expression for the parametrization of the tensor-scalar-scalar correlator in the

squeezed limit has some interesting features that is worth to mention. As in the case of the

scalar bispectrum seen before, the coefficients cλL(k1, k2) acquire scale dependence through

the scaling dimension of the vector perturbations in the form cλL ∼ k4+2n. Additionally, the

coefficients cλL(k1, k2) also depend on the particular polarization, establishing in this way

an explicit difference in the correlations 〈γ+ζζ〉 and 〈γ−ζζ〉. This implies that the angular

dependence and the expansion in Legendre polynomials is different for each polarization.

This constitutes another distinctive feature of the model considered here and could be

of potential observational interest. We remark that we derived the previous expression

imposing only nearly conformal invariance of the scalar, vector and tensor perturbations.

6 Conclusion and final remarks

In this paper we have explored the consequences of imposing conformal invariance in the

inflationary scalar vector model described by the interaction Lagrangian (2.2). Following

the analysis done in [54] for the model f(φ)F 2 and in [76] for the model f(φ)(F 2 + αFF̃ ),

here we used CFT methods to constrain the shape of two and three points inflationary

correlators involving scalar, vector and tensor perturbations.

For the analysis of the three point functions we rely on the results reported by Bzowski

et al. in ref. [11]. This reference offers a complete and detailed list of results for the two

and three point functions involving scalar, vector and tensor operators, in any dimension,

in momentum space and restricted to parity conserving systems. Here we have extrapo-

lated the results of this reference to include the parity breaking case, supported for the

model (2.2), which enjoys super horizon conformal symmetry [75, 76]. One of the main

difficulties that we found in applying the results from [11] to our case, was to obtain a

complete tensor decomposition for the three point functions in momentum space in such a

way that the parity breaking contributions were properly taken into account. In section 3

we obtain the tensors T
(a)
ijkl(

~k) which respects O(3) symmetry and reflect the gauge choice of

being divergence free and trace free in the appropriate combination of indices (ijkl). Those

objects include parity breaking contributions by including the Levi-Civita tensor ηijk in

their structure. All the elements necessary to express the two and three point functions

can be written as a combination of the objects T
(a)
ijkl(

~k),∆ij(~k) and η̂ij(~k). Interestingly

enough, we’ve found that the tensors T
(a)
ijkl(

~k) has the property of obeying the same dif-

ferential equations that their parity symmetric counterparts and this property allows us

to extend the results obtained in [11] to our case, just by adding, to the parity preserving

decomposition tensor structure, the appropriate combination of T
(a)
ijkl(

~k),∆ij(~k) and η̂ij(~k).
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With the objects mentioned before, we construct the two and three point correlators.

Our main results can be found in section 4. In this section we obtain a general expression

for the scalar bispectrum 〈ζζζ〉 in equation (4.14) and for the mixed tensor-scalar-scalar

correlator 〈γζζ〉 in equations (4.27) and (4.36). The squeezed limit of those expressions,

after angle averaging over the VEV direction, offers a useful parametrization which reveals

interesting features such as scale dependence as a power law in terms of the conformal

weight ∆u of the vector perturbations. Aside from this, we derived general expressions for

the angular dependence of the three point functions in this limit. The case of the tensor-

scalar-scalar correlator 〈γζζ〉 is interesting because it displays a particular dependence

on the polarization of the tensor mode. In this case, not only the amplitudes but also

the angular dependence expressed by the expansion of Legendre polynomials are different

for the two polarizations. We consider that those particular features of the correlator

〈γζζ〉 could be relevant for seeking possible parity breaking patterns in the CMB. The

correlators 〈γγζ〉 and 〈γγγ〉 would also reveal important information about the mechanism

of sourcing of chiral gravitational waves. Nevertheless, we don’t include explicit details of

such correlators here since it would involve the construction of tensor structures, similar

to the ones listed in appendix A, but with 8 indices. This construction is relevant and

interesting but this goes a bit further from our main purpose with the present work which

is to show the use of conformal symmetries as a guide to reveal aspects of the structure

of the correlators of cosmological perturbations. We consider that this is illustrated with

enough detail with the correlators studied in the paper.

Finally, as mentioned previously, we should emphasize that the formalism that we

followed here does not allow us to find exact and complete expressions for the three point

correlators. Our results are expressed in terms of a set of arbitrary constants that are

not determined only by symmetry considerations. Nevertheless, we illustrated here that

the use of symmetries is a fundamental guiding principle that allows us to reveal general

characteristics and features of the inflationary correlators. One of the most remarkable

results that we found here, is that we were able to find the relevant scale dependence in

the squeezed limit in terms of the power n of the coupling function f(φ). Additionally, the

angular and the helicity dependence of the correlators were obtained relying only on the

symmetries of the system.

Acknowledgments

This work was supported by COLCIENCIAS grant 110671250405 RC FP44842-103-2016,

COLCIENCIAS-DAAD grant 110278258747 RC-774-2017 and by Universidad Antonio

Nariño grant number 2017239. JPBA thanks Universidad del Valle for its warm hospi-

tality during several stages of this project.

– 24 –



J
H
E
P
0
9
(
2
0
1
9
)
1
1
8

A Tensor decomposition consistent with the symmetries and the gauge

choice

In this appendix we show in a broad manner the procedure to build the tensors with four

indices B
(n)
ijlm (3.16)–(3.19) which are invariant under O(3) group and that reflect the gauge

conditions of the perturbations ∇iδEi = ∇iγij = ∇jγij = 0 for the corresponding indices.

The tensors B
(n)
ijlm appear in the construction of the correlator

〈γ(1)
ij (~k1)ζ(1)(~k2)〉 = δ(~k12)ÊlÊmBijlm. (A.1)

On the left hand side of this correlator we have the tensor γij and two vector perturbations

δEl and δEm, which, according with (2.25) enter in the correlator in the form

〈γ(1)
ij (~k1)ζ(1)(~k2)〉 ∼ ÊlÊm〈(δElγ

(0)
ij )(~k1)(δEmζ

(0))(~k2)〉. (A.2)

Then, we need an object with the following properties: divergence free in all the indices

(ijlm), symmetric and trace free in (ij). For the two point correlator, we can think that all

the conditions are evaluated for the same momentum ~k1 or ~k2 since momentum conservation

implies ~k1 = −~k2. For the properties mentioned before we can use the tensors ∆ij and η̂ij
as the starting point of our construction since they are zero divergence for all the indices

(ijlm). In general we can write the tensor Bijlm as an expansion of ∆’s and η̂’s in the form:

Bijlm = b1∆ij∆lm + b2∆il∆jm + b3∆im∆lj + b4η̂ij∆lm + b5η̂il∆jm + b6η̂im∆lj

+ b7∆ij η̂lm + b8∆ilη̂jm + b9∆imη̂lj + b10η̂ij η̂lm + b11η̂ilη̂jm + b12η̂imη̂lj .

Imposing symmetry in (ij) we obtain b2 = b3, b5 = −b9, b6 = b8, b11 = −b12, b4 = 0 and

b10 = 0. This reduces the number of independent combinations to six. Furthermore, im-

posing zero trace in (ij) we obtain b11 = −(b1 + b2) and b5 = b6 + b7, which reduces the

number of independent tensors to four. Finally, using cyclic properties of the Levi-Civita

symbol in three dimensions, we can see that

η̂ilη̂jm + η̂imη̂jl = ∆ij∆lm and η̂il∆jm + ∆imη̂jl = ∆ij η̂ml. (A.3)

With this, we see that the independent tensors correspond precisely to the ones listed

in (3.16)–(3.19). Moreover, as shown in (B.13) of appendix B, we can see that B
(3)
ijlm =

−B(1)
ijlm and so the number of tensors reduces to three.

We can use the tensors B
(a)
ijlm, a = 1, 2, 4, to build more complicated objects needed

for the two and three point correlators. In particular, the six indices tensors Uijlmkn are

constructed out of combinations of B
(a)
ijlm or T

(a)
ijlm which are also symmetric in the indices

(lm). The complete list of all the possible combinations of tensors with six indices obeying
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the gauge symmetry conditions is:

U
(1)
ijklmn(~k) = B

(1)
ijka(

~k)B
(1)
lmna(

~k), U
(9)
ijklmn(~k) = B

(1)
ijka(

~k)B
(2)
lman(~k) ,

U
(2)
ijklmn(~k) = B

(1)
ijna(

~k)B
(1)
lmka(

~k), U
(10)
ijklmn(~k) = B

(1)
ijna(

~k)B
(2)
lmak(

~k),

U
(3)
ijklmn(~k) = B

(2)
ijan(~k)B

(2)
lmak(

~k), U
(11)
ijklmn(~k) = B

(1)
ijka(

~k)B
(2)
lmna(

~k),

U
(4)
ijklmn(~k) = B

(2)
ijak(

~k)B
(2)
lman(~k), U

(12)
ijklmn(~k) = B

(1)
ijka(

~k)B
(2)
lmna(

~k), (A.4)

U
(5)
ijklmn(~k) = B

(2)
ijan(~k)B

(2)
lmka(

~k), U
(13)
ijklmn(~k) = B

(2)
ijan(~k)B

(1)
lmka(

~k),

U
(6)
ijklmn(~k) = B

(2)
ijak(

~k)B
(2)
lmna(

~k), U
(14)
ijklmn(~k) = B

(2)
ijak(

~k)B
(1)
lmna(

~k),

U
(7)
ijklmn(~k) = T

(2)
ijlm(~k)ηknak̂a, U

(15)
ijklmn(~k) = B

(1)
ijlm(~k)ηknak̂a,

U
(8)
ijklmn(~k) = B

(1)
ijlm(~k)∆kn, U

(16)
ijklmn(~k) = T

(2)
ijlm(~k)∆kn,

where we have used the fact that B
(2)
ijlm = B

(4)
ijml. Demanding symmetry in the indices (kn)

and symmetrizing in terms of the tensors T
(1)
ijlm and T

(2)
ijlm defined in (3.20) and (3.21), we

reduce the previous list to a set of independent objects:

P
(1)
ijklmn(~k) = T

(1)
ijka(

~k)T
(1)
lmna(

~k), P
(4)
ijklmn(~k) = T

(1)
ijka(

~k)T
(2)
lman(~k) , (A.5)

P
(2)
ijklmn(~k) = T

(2)
ijan(~k)T

(2)
lmak(

~k), P
(5)
ijklmn(~k) = T

(2)
ijan(~k)T

(1)
lmka(

~k), (A.6)

P
(3)
ijklmn(~k) = T

(1)
ijlm(~k)∆kn, P

(6)
ijklmn(~k) = T

(2)
ijlm(~k)∆kn. (A.7)

Those are the tensors needed to compute the 〈γγ〉 with the contributions coming from the

source vector fields.

B Some useful properties

Here we collect several useful properties of the projectors and the polarization vectors and

tensors used in the text. The main purpose of this appendix is to demonstrate that all the

tensors T
(n)
abcd obey the same differential equations, and that we can extend the procedures

and the results found in ref. [11] to the context of parity breaking models.

B.1 Projectors

Here we list some useful properties involving the projectors

∆ab = δab − k̂ak̂b and η̂ab = ηabck̂c. (B.1)

These projectors obey

ka∆ab = 0, ∆ac∆cb = ∆ab, ∆aa = 2, (B.2)

kaηab = 0, ηacηcb = −∆ab, ηaa = 0. (B.3)
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The derivatives of these objects appear in the conformal Ward identities. Some useful

properties involving the derivatives of ∆ab are

∂af(k) = f ′(k)k̂a, ∂ak̂b =
1

k
∆ab, ∂a∆ab = −2k̂b

k
(B.4)

∂a∆bc = −1

k
(∆abk̂c + ∆ack̂b), ka∂a∆bc = 0, kb∂a∆bc = −∆ac, (B.5)

∇2∆ab = − 2

k2

(
∆ab − 2k̂ak̂b

)
, km∂m∂l∆ab = −∂l∆ab. (B.6)

And, for the derivatives of η̂ij = ηijak̂a we have

∂lη̂ab = ηabc
∆cl

k
=

1

k

(
ηabl − k̂lη̂ab

)
. (B.7)

It is easy to see that the following identity holds

ηijl = k̂iη̂jl − k̂j η̂il + k̂lη̂ij , (B.8)

and if we use this identity in (B.7) we find

∂lη̂ab = −1

k

[
k̂aη̂lb + k̂bη̂al

]
, kl∂lη̂ab = 0, kb∂lη̂ab = −η̂al, ∂lη̂lb = 0, (B.9)

which keeps the same structure of the first derivative of ∆ij .

For the second derivative of η̂ij we have

∇2η̂ab = −2
η̂ab
k2
, km∂m∂lη̂ab = −∂lη̂ab. (B.10)

In section 3 we defined (3.20) and (3.21) as

T
(1)
ijab =

1

2
[∆ia∆jb + ∆ib∆ja −∆ij∆ab] , (B.11)

T
(2)
ijab =

i

4
[∆iaη̂jb + ∆ibη̂ja + ∆jaη̂ib + ∆jbη̂ia] . (B.12)

Here we didn’t include the tensors associated with B
(3)
ijab since using

η̂ij η̂ab + η̂iaη̂jb = ∆ia∆jb + ∆ij∆ab − 2∆ib∆ja, (B.13)

we can show that B
(3)
ijab = −B(1)

ijab.

Some useful properties of the tensors T
(n)
ijab are:

T
(1)
ljlb = ∆jb, T

(2)
ljlb = iη̂jb. (B.14)

The following identities are useful to compute the equations coming from the SCT Ward

identities

T
(1)
ajib = ∆ai∆jb − T

(1)
ijab, (B.15)

T
(1)
iajb = ∆aj∆ib − T

(1)
ijab, (B.16)

T
(2)
ajib =

i

2
(∆iaη̂jb + ∆jaη̂ib + ∆abη̂ji)− T

(2)
ijab, (B.17)

T
(2)
iajb =

i

2
(∆iaη̂jb + ∆jaη̂ib + ∆abη̂ij)− T

(2)
ijab, . (B.18)
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To compute the relations (B.17) and (B.18) we have used the following identities

∆ij η̂ab + ∆biη̂ja + ∆abη̂ij + ∆jaη̂bi = 0. (B.19)

The first derivative for the tensors T can be written as

∂lT
(n)
ijab = −1

k

[
k̂iT

(n)
ljab + k̂jT

(n)
ilab + k̂aT

(n)
ijlb + k̂bT

(n)
ijal

]
. (B.20)

Then we obtain the following properties of the first derivative for each tensor

∂lT
(n)
ljab =−1

k

[
k̂aT

(n)
ljlb+k̂bT

(n)
ljal

]
, ∂lT

(n)
ijlb =−1

k

[
k̂iT

(n)
ljlb+k̂jT

(n)
illb

]
, (B.21)

∂lT
(1)
ljab = ∂j∆ab, ∂lT

(1)
ijlb = ∂b∆ij , kl∂lT

(1)
ijab = 0, (B.22)

∂lT
(2)
ljab =− i

k

[
k̂aη̂jb−k̂bη̂aj

]
, ∂lT

(2)
ijlb =− i

k

[
k̂iη̂jb−k̂j η̂ib

]
, kl∂lT

(2)
ijab = 0. (B.23)

The second derivative of T
(1)
ijab and T

(2)
ijab can be written as

∂m∂lT
(n)
ijab = − k̂m

k
∂lT

(n)
ijab

− 1

k

[
∆im

k
T

(n)
ljab +

∆jm

k
T

(n)
ilab +

∆am

k
T

(n)
ijlb +

∆bm

k
T

(n)
ijal

+k̂i∂mT
(n)
ljab + k̂j∂mT

(n)
ilab + k̂a∂mT

(n)
ijlb + k̂b∂mT

(n)
ijal

]
. (B.24)

For our purposes we compute the contraction of the second derivatives

∇2T
(1)
ijab =− 4

k2

[
T

(1)
ijab−k̂ik̂a∆bj−k̂ik̂b∆aj−k̂j k̂a∆ib−k̂j k̂b∆ia

]
, km∂m∂lT

(1)
ijab =−∂lT

(1)
ijab

(B.25)

∇2T
(2)
ijab =− 4

k2

[
T

(1)
ijab−2(k̂ik̂aη̂jb+k̂ik̂bη̂ja+k̂j k̂aη̂ib+k̂j k̂bη̂ia)

]
, km∂m∂lT

(2)
ijab =−∂lT

(2)
ijab.

(B.26)

B.2 Polarization vectors

Here we write explicit expressions regarding the polarization vectors which are useful when

contracting the various tensors involved here. First, in general we can write a vector ~k in

spherical coordinates as

~k = k(sin θ cosφ, sin θ sinφ, cos θ). (B.27)

The polarization vectors transverse to ~k are obtained by solving the conditions

~ελ(~k) · ~k = 0, k̂ × ~ελ(~k) = −iλ~ελ(~k). (B.28)

The polarization vectors satisfying (B.28) obey the following properties:

ε
(λ)
i (q̂)ε

(λ′)
i (p̂) =

1

2

(
~p · ~q
pq
− λλ′

)
, ε

(λ)
i (~k) · ki = 0, η̂ilε

(λ)
l = iλε

(λ)
i , (B.29)

ε
(λ)
i ε

(λ′)
i = δλ,−λ′ , ε

∗(λ)
i (k̂) = ε

(−λ)
i (k̂) = ε

(λ)
i (−k̂), ε

(λ)
i (k̂)∆ij = ε

(λ)
j (k̂) , (B.30)

ε
∗(λ)
i (k)ε

(λ)
j (k) =

1

2
(∆ij + iλη̂ij) , ∂lε

(λ)
i = − k̂i

k
ε
(λ)
l . (B.31)
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B.3 Polarization tensors

Polarization tensors are defined in terms of the polarization vectors as follows

ε
(2λ)
ij (~k) =

√
2ε

(λ)
i (~k)ε

(λ)
j (~k), (B.32)

where λ = ±1. This tensor obeys the following properties:

ε
(2λ)
ii (~k) = k̂iε

(2λ)
ij (~k) = 0, ε

(2λ)
ij (~k)η̂ij = 0 (B.33)

ε
(2λ)∗
ij (~k) = ε

(−2λ)
ij (~k) = ε

(2λ)
ij (−~k), (B.34)

ε
(2λ)
ij (~k)ε

(2λ′)
ij (~k) = 2δλ,−λ′ , ε

(2λ)
ia (~k)η̂ja = −iλε(2λ)

ij , (B.35)

∂lε
(2λ)
ij (~k) = −1

k

[
k̂iε

(2λ)
lj (~k) + k̂jε

(2λ)
il (~k)

]
. (B.36)

Using the previous results for the polarization tensor, we can also write a list of properties

of the helicity projector tensor

Πij
λ =

εi−λ(~k)εj−λ(~k)
√

2
(B.37)

that we use through the text:

Πij
λ ∆il = Πlj

λ , Πij
λ ∆ij = Πii

λ = 0, Πij
λ Πij
−λ′ =

1

2
δλ,λ′ (B.38)

Πia
λ η̂ja = iλΠij

λ , Πij
λ η̂ij = 0, (B.39)

Πij
λB

(1)
ijlm = 2Πlm

λ , Πij
λB

(2)
ijlm = −2iλΠlm

λ , (B.40)

Πij
λB

(3)
ijlm = −2λ2Πlm

λ , Πij
λB

(4)
ijlm = −2iλΠlm

λ , (B.41)

Πij
λ T

(1)
ijlm = Πlm

λ , Πij
λ T

(2)
ijlm = λΠlm

λ , (B.42)

2ÊlÊmΠla
λ Πam
−λ′ = δλ,λ′Ê

lÊm∆lm . (B.43)

C Conformal Ward identities and triple K integrals

In general the conformal Ward identities can be written as[
−3(N − 1) +

N∑
a=1

(
∆a − ~ka ·

∂

∂~ka

)]
〈σ(~k1) · · ·σ(~ks)vi(~ks+1) · · · vj(~kN )〉′ = 0, (C.1)

for the Dilatation ward identity. And for the Conformal Ward identity we have[
N∑
a=1

2(∆a − 3)∂kia +Di
a

]
〈σ(~k1) · · ·σ(~ks)vi1(~ks+1) · · · viN (~kN )〉′

− 2
N∑

p=s+1

Σijp
ip〈σ(~k1) · · ·σ(~ks)vi1(~ks+1) · · · vjp(~kp) · · · viN (~kN )〉′ = 0,
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where

Di
a = kia∂

2
ka − 2(~ka · ~∂ka)∂kia and Σijp

ip = δijp∂
k
ip
p
− δiip∂kjpp , (C.2)

for more details on the conformal ward identities you can check [3, 76]. In order to illustrate

how the method used in [11] works, we compute the equations for a 3 point correlation

function consisting in rank-2 tensor and two scalars. We will assume the tensor to be

traceless, divergenceless and symmetric since the tensor perturbations also satisfy these

conditions. To start we propose a form for the correlation function to be

〈tij(k1)O1(k2)O2(k3)〉′ = Tijab(k1)ka2k
b
2A(k1, k2, k3). (C.3)

And here we will keep the tensor Tijab generic since the two objects T
(n)
ijab, satisfy the same

equations for they derivatives as shown in (B.20) and they all have the same properties of

trace free and symmetry in the first pair and the second pair of indices and divergence zero

for all the indices. With this, the SCT Ward identity can be written like

N∑
a=1

[
2(∆a − 3)∂kla + kla∂kma ∂kma − 2kma ∂kma ∂kla

]
Tijab(k1)ka2k

b
2A(k1, k2, k3)

− 2ka2k
b
2

[
∂ki1

(Tljab(k1)A(k1, k2, k3))− δli∂km1 (Tmjab(k1)A(k1, k2, k3))
]

− 2ka2k
b
2

[
∂
kj1

(Tilab(k1)A(k1, k2, k3))− δlj∂km1 (Timab(k1)A(k1, k2, k3))
]

= 0. (C.4)

After an extensive calculation and using the properties described in B we find the following

result

Tijabk
a
2k

b
2k
l
1K13A+Tijabk

a
2k

b
2k
l
2K23A+4Tijlbk

b
2LA−2ka2k

b
2

[
k̂i1Tljab + k̂j1Tilab

] A
k1

(∆1−3) = 0,

(C.5)

where Kij are the primary ward identities used in [11] defined, for our particular case, as

Kij = 2(∆i − 2)
1

ki
∂i − ∂2

i − 2(∆j − 2)
1

kj
∂j + ∂2

j . (C.6)

By the other hand, L is one of the secondary SCT Ward identity written like

L = (∆2 − 4)− k2∂2 − (~k2 · ~k1)
1

k2
1

(∆1 − k1∂1). (C.7)

In order to satisfy (C.5) the following equations must hold

K13A = 0, K23A = 0, (C.8)

LA = 0, ∆1 = 3. (C.9)

Notice that for this case the primary equations (which are the equations of interest in this

work) are homogeneous, but in more complicated cases they could not be. For instance,
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doing a similar procedure for 〈γ(1)
ij ζ

(1)ζ(0)〉 we arrive at the following set of primary SCT

Ward identities

K12A1 = 0, K13A1 = 0, (C.10)

K12A2 = 0, K13A2 = 0, (C.11)

K12A3 = 4A1, K13A3 = 0, (C.12)

K12A4 = 0, K13A4 = 0, (C.13)

K12A5 = 2A4, K13A5 = 0, (C.14)

which are solved by the triple-K integrals described in section 4. For more details about

the primary and secondary conformal Ward identities, the reader is referred to [11].
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