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most fully in the D1-D5-P system of type IIB supergravity. There are two main research

directions in this program, to produce new examples of micrsostate geometries and to

better understand those that we already have. This work was motivated by finding new

examples of superstrata with separable massless wave equations (SMWEs), a property

that has proven to be critical in recent analysis and critiques of the microstate geometry

program [3–8].

We focus on the microstate geometries that have come to be known as superstrata [6, 9–

11]. These solutions have several key features that make them ideal for exploring the

microstate geometry program:

• Geometries can be produced with either asymptotically flat, or asymptotically anti-

de Sitter crossed with a sphere [12] (possibly with orbifold singularities).

• They can be tuned to produce arbitrarily long BTZ-like throats prior to smoothly

capping off [5].

• It is known how to construct them in both 5 and 6 dimensions [13].

• There are families of solutions with the same asymptotic charges [6].

• Examples can be produced with greater coverage of the charges [14]. For instance,

earlier constructions such as in [15–18] could only produce high angular momentum

solutions, there is no such obstruction for superstrata.

• Some examples are known to have SMWEs [3], this allows the computation of prop-

erties such as energy gaps [5] in the spectrum or investigation of scattering [6–8].

• The dual CFT description is well understood [19].

It is for these reasons that the superstrata have risen to prominence, with many recent

investigations [8, 20–24].

The original superstrata constructed in [10] have three important generalizations that

need to be distinguished. To begin with the original superstrata were generated by solely

bosonic CFT operators, the work of [11] introduced fermionic operators to produce super-

charged superstrata. In [6] a superposition of the original and supercharged superstrata

gave hybrid superstrata, steps were also taken towards constructing superpositions of solu-

tions with multiple modes. Throughout this work we will refer to all of these solutions as

superstata, distinguish between the separate flavors (original, supercharged, hybrid) when

required and treat single and multi-mode solutions separately.

The defining feature of superstrata is they allow fluctuations in the Maxwell fields along

the periodic coordinates. In 6 dimensions the fluctuations are parametrized by three inte-

gers (k,m, n) corresponding to Fourier modes for the three periodic coordinates (v, φ, ψ).

The 6-dimensional superstrata can be expressed as a double circle fibration in the coordi-

nates (v, ψ). A natural SL(2,Q) action, known as a spectral transformation [25, 26], can be

defined which mixes these circles. Any single-mode 6-dimensional superstrata will be cyclic

in some combination of the (v, ψ) circles, so a Kaluza-Klein reduction on this combination
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of circles is possible. In order to preserve the form of the BPS equations in 5 dimensions

it is useful to use a spectral transformation redefining the (v, ψ) coordinates so that the

cyclic direction becomes exactly v.

In addition to the integers (k,m, n), the SL(2,Q) transformation introduces another

3 parameters, giving a total of 6 parameters. One of these parameters is used to ensure

the reduction occurs on the v-circle. The remaining 5 parameters then show up in the 5-

dimensional solutions as: 2 Fourier modes for the (φ,ψ) directions, the 2 Gibbons Hawking

(GH) charges of the now two centered ambipolar GH base and 1 gauge degree of freedom.

Thus the reduction produces the most general single-mode superstrata possible on an

ambipolar two centered GH base in 5 dimensions. If the net GH charge vanishes the

asymptotic geometry is AdS3 × S2, such geometries were produced in [13] and correspond

to microstate geometries for black strings. If the net GH charge is non-zero the asymptotic

geometry is AdS2 × S3 with a possible Zp orbifolding of the S3, these are the microstate

geometries of black holes, a new result.

We use spectral transformations and reductions to produce new examples of super-

strata with SMWEs. In addition to the original (1, 0, n) family that were known to have

SMWEs [3], we show that the (1, 1, n) family do as well in 6 dimensions. Applying spectral

transformations to these families we find that the two remaining spectral transformation

parameters index families of distinct 6-dimensional superstrata with SMWEs. The param-

eters can be used to alter the complexity of the individual separated differential equations.

In addition we show that the (2, 1, n) family has SMWEs in certain circumstances: in 6-

dimensions the supercharged flavor have SMWEs [6], in 5-dimensions both the supercharged

and original flavors have SMWEs, while the hybrid flavor have SMWEs in 5-dimensions

provided the momentum on the φ-circle vanishes.

We show that the (k,m, n) and (k, k−m,n) superstrata in 6 dimensions reduce to the

same solutions in 5 dimensions, hence there is a Z2 symmetry identifying 6-dimensional

solutions after reduction. In addition it is also clear that multi-mode solutions will not

reduce unless the multiple modes are parallel in the (v, ψ) directions. Hence we reveal two

mechanisms that may lead to a greater number of superstrata in 6 than 5 dimensions.

In [27] it was shown how in 5 dimensions the superstrata fluxes could be derived from

a scalar prepotential. This prepotential program is of interest since it promises to simplify

the process of finding BPS solutions to the D1-D5-P system by reducing parts (if not

all) of it to functional analysis on 4-dimensional hyper-Kähler bases. We construct the

prepotentials for our new 5-dimensional superstrata, as well as indicate how the reduction

procedure can be inverted so that prepotentials can be used in 6 dimensions as well.

In section 2 we give an overview of the superstata solutions, including the BPS equa-

tions they solve and how they are constructed. The following sections then separate four

related sets of original results:

• Section 3 illustrates the relationship between single-mode superstrata in 6 and 5

dimensions using spectral transformations.

• Section 4 shows that dimensional reduction of the (k,m, n) and (k, k − m,n) 6-

dimensional superstrata leads to equivalent 5-dimensional superstata. The special

case of the (1, 0, n) and (1, 1, n) families is considered explicitly.
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• Section 5 summarizes a non-exhaustive but systematic search for superstrata with

SMWEs, we show how the (2, 1, n) families has greater separability properties in 5

than 6 dimensions and how spectral transformations can alter the form of the wave

equations in 6 dimensions.

• Section 6 shows how prepotentials can be constructed for superstrata fluxes in both

5 and 6 dimensions, explicit examples are given.

Finally, a discussion of the significance of these results and possible directions for future

investigation is given in section 7.

2 Superstrata and their flavors in supergravity

This section reviews the BPS equations in 6 dimensions and sketches how to construct the

superstrata, more details may be found in [6, 10–12].

2.1 BPS equations

The superstrata and its flavors constructed in [6, 10, 11] are generally studied within

6-dimensional (0, 1) supergravity obtained by compactifying type IIB supergravity with

manifold structure M1,4 × S1 × C on C. The compactification manifold C is required to

be hyper-Kähler, thus it is taken to be either T4 or K3. The circle S1 of radius R is

paramatrized by the periodic coordinate

y ∼ y + 2πR . (2.1)

The simplest models give smooth superstrata involve coupling to two tensor multiplets. It

is also possible [13], in certain circumstances to compactify the theory on a circle direction

inside the M1,4 × S1, the theory then reduces to a 5-dimensional N = 2 supergravity

coupled to three vector multiplets. This compactification is nothing more than a standard

Kaluza-Klein reduction, which ensures the BPS equations in each dimension are related.

The 6-dimensional geometry can be written as

ds26 = − 2
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and the details of (ds24(B), ds23) are discussed around (2.21). Supersymmetry requires all

fields, such as the functions (P,F ), one form β and the (ZI ,Θ
(I)) to be independent of u.

Working with v independent β and ds24(B) simplifies the BPS equations as well, demanding

this ensures ds24(B) is hyper-Kähler and dβ is self dual on this base.

The form of the metric in (2.3) is that of a double circle fibration in the (v, ψ) circles,

thus there is a natural SL(2,Z) action redefining the (v, ψ) coordinates amongst each

other. This action may be used to ensure the fields and metric are independent of v, the

5-dimensional solution is then found by applying a Kaluza Klein reductions to the v-circle.

Completing this procedure and identifying

F = −Z3 , (2.5)

gives the 5-dimensional geometry

ds25 = (Z3P )−
2
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first layer:

∇2Z1 = ∗
(
Θ(2) ∧Θ(3)

)
, (2.16)

∇2Z2 = ∗
(
Θ(1) ∧Θ(3)

)
, (2.17)

∇2Z3 = ∗
(
Θ(1) ∧Θ(2) −Θ(4) ∧Θ(4)

)
, (2.18)

∇2Z4 = ∗
(
Θ(3) ∧Θ(4)

)
, (2.19)

and second layer

(1 + ∗)dw = Z1Θ
(1) + Z2Θ

(2) + Z3Θ
(3) − 2Z4Θ

(4) . (2.20)

It is key to note that in order for this reduction to work all 6-dimensional fields including

the (ZI ,Θ
(I)) must be independent of the v-circle that we reduce on. This will be critical

in section 3.2 where we illustrate the relationship between 6 and 5-dimensional superstrata.

This is also the reason we need to introduce spectral transformations in section 3.1, which

will enable a transformation of any given single-mode 6-dimensional superstrata to remove

all v-dependence before reducing to 5 dimensions.

2.2 Gibbons Hawking bases

The first step in finding solutions to the BPS equations (2.7)–(2.11) or (2.15)–(2.20) is to

specify a hyper-Kähler base. The Gibbons Hawking (GH) geometries provide some of the

simplest yet non-trivial examples of hyper-Kähler manifolds. They are constructed as

ds24(B) =
1
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where

Σ = r2 + a2 cos2 θ and Λ = r2 + a2 sin2 θ . (2.25)

These coordinates are adapted to the superstrata since the (ZI ,Θ
(I)) are sourced on the

locus Σ = 0.

In 6 dimensions the standard GH base used is that of flat R4, given by a single GH

charge of +1, in spherical bipolar coordinates the data V and A are given by

V =
4
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in terms of which a basis for self dual forms is

Ω(1) =
1
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and the Θ(I) as

Θ(1) = 0 , (2.42)

Θ(2) =
R
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The solutions for (Fk,m,n, µk,m,n) can be summarized as

Fk,m,n = 4

[(
m(k+n)
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where α ∈ [0, 2π) and B > 0. The parameter α then parametrizes a continuous family of

superstrata solutions with identical asymptotic charges.

Finally, we need to consider the restrictions on the integers (k,m, n). For the original

superstrata the constraints are 1 ≤ k, 0 ≤ m ≤ k and 1 ≤ n. While for the supercharged

and hybrid solutions the requirements are 1 ≤ m ≤ k − 1 and 1 ≤ n. Thus when we

consider the (1, 0, n) and (1, 1, n) families in sections 4 and 5 we are necessarily looking at

the original flavor, but when we look at the (2, 1, n) family we consider all three flavors.

3 Relating superstrata in 5 and 6 dimensions

This section shows how spectral transformation can be used to turn any given 6-dimensional

single-mode superstrata into a form in which it is independent of v. The transformation

corresponds to a coordinate redefinition among (v, ψ), followed by a lattice re-identification.

It has a non-trivial effect on the ds4(B) base, turning a flat R4 into an ambipolar two

centered GH space. We also discuss how following this transformation reduction to 5-

dimensions is possible for all single-mode solutions, and for multi-mode solutions with

parallel modes.

3.1 Summary of spectral transformations

Spectral transformations as applied to superstrata were studied in detail in [13]. The

basic idea is that the 6-dimensional metric (2.3) is a double circle fibration in the (v, ψ)

coordinates, so it is possible to impose coordinate redefinitions that mix the two coordinates

into new angular coordinates (v̂, ψ̂) as

v̂
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The transformations for (V,A, β, F, ω, ZI ) are then given by

V̂ = dV− c
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3.2 6D ⇐⇒ 5D solutions for single-mode superstrata

In [13] it was noted that if a 6-dimensional superstrata is independent of v it is simple

to reduce the solution to a 5-dimensional solution. However, it was not fully appreciated

that there always exists a transformation of the form (3.1) that makes vk,m,n of (2.34)

independent of v̂. This means that for any single-mode superstrata there exists a spectral

transformation after which it can be reduced to a 5-dimensional solution. The trade off one

makes is that the flow turns the flat R4 base on which the superstrata were first constructed

into an ambipolar two centered GH base. This could be anticipated since in 5-dimensions

the only non-trivial topology capable of supporting non-singular fluxes is the GH base,

whereas the 6-dimensional solutions with a flat base exploit the topology of the v fiber to

support non-singular fluxes.8

The asymptotic geometry in 5 dimensions will depend on the net GH charge. If it

is zero, as for the 5-dimensional examples in [13], then it is AdS3 × S2. But if the net

GH charge is q 6= 0, it will be asymptotically AdS2 × S3/Zq. The former is appropriate

for the microstate geometries of black strings and the latter to those of black holes in 5

dimensions. Since our construction produces both types, we have found the first examples

of superstrata that describe the microstates of black holes in 5 dimensions.

To find the spectral transformations (3.1) that transform (2.34) to be v̂ independent,

it is useful to look at just the parts of the mode (2.34) that are altered by the spectral

transformation (3.1), so we define

χk,m,n = (m+ n)
v
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and a spectral transformation of the form (3.4) constrained by (3.16) and (3.18) then leads

to a two centered ambipolar GH base with

V̂ =
q−
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4 Relations amongst superstrata families

This section highlights several relationships amongst superstrata families that were either

not known or not highlighted in the current literature. In particular it is shown that

after spectral transformation and reduction to 5 dimensions the (k,m, n) and (k, k−m,n)

families are equivalent.

4.1 Equivalence of 5-dimensional solutions related by signs

Some simple observations about the structure of the 5D BPS equations (2.16)–(2.20) can

be made by summarizing the data upon which it depends

(ZI , Z3,Θ
(I),Θ(3), ω) , (4.1)

and altering some signs. A couple of “new” solutions can be found by defining the new

data (Z̃I , Z̃3, Θ̃
(I), Θ̃(3), ω̃) by either of the following:

(Z̃I , Z̃3, Θ̃
(I), Θ̃(3), ω̃) = (−ZI , Z3,−Θ(I),Θ(3), ω) , (4.2)

(Z̃I , Z̃3, Θ̃
(I), Θ̃(3), ω̃) = (ZI , Z3,−Θ(I),−Θ(3),−ω) . (4.3)

The first of these transformations (4.2) corresponds to a trivial redefinition

(Q̃1, Q̃5, b̃4, c̃4) = (−Q1,−Q5,−b4,−c4) . (4.4)

The second transformation (4.3) is more subtle, looking back at the 5-dimensional geom-

etry (2.6) we see that if one also reverses time t̃ = −t then the geometry is unchanged.

If one considers that the ZI control the electric charge and the Θ(I) the magnetic charge,

then these two solutions are indeed just identified by time reversal, and thus equivalent.

If we look closely at the spectral transformations of section 3.1 we discover a third

transformation. Consider the spectral transformation that redefines (v̂, ψ̂) = (−v,−ψ)

using the SL(2,Q) transformation

(a,b, c,d) = (−1, 0, 0,−1) . (4.5)

Under this transformation

(ẐI , Ẑ3, Θ̂
(I), Θ̂(3), ω̂) = (−ZI ,−Z3,−Θ(I),−Θ(3), ω) and d̂s

2

4(B) = −ds24(B) ,
(4.6)

where it is understood that if there is any functional dependence on ψ in the data it must

be replaced by ψ̂ = −ψ. This relabeling does not obviously lead to a new soltion of the BPS

equations, but since the spectral transformation that produces it requires no alterations of

the identifications on the (v, ψ) circles, we conclude it is identical to the solution before

the transformation was performed.

– 15 –
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4.2 Relating the (k,m, n) and (k, k − m,n) superstrata

Based on the results of the previous subsection it is worth considering if any of the 6-

dimensional superstrata when reduced to 5 dimensions lead to the same solution. Consider

two families (k1,m1, n1) and (k2,m2, n2), if they are to posses the same mode dependence

after spectral flow, the same e must be used in each flow and k1 = k2 ≡ k must be fixed.

Consider the situation when the two 5-dimensional GH bases are related by

− q−(k,m1,n1) = q+(k,m2,n2) and − q−(k,m2,n2) = q+(k,m1,n1) , (4.7)

which from (3.20) fixes

m2 = k −m1 and n1 = n2 . (4.8)

The (ZI , β, ds
2
4(B)) for the (k,m, n) family after spectral transformation to remove v̂ de-

pendence are given by:

Z1 =
2e



J
H
E
P
0
9
(
2
0
1
9
)
1
1
7

4.3 The (1, 0, n) and (1, 1, n) original superstrata

The relationship of the previous subsection can be explicitly demonstrated for the (1, 0, n)

and (1, 1, n) original superstrata families. The (F, ω) for the (1, 0, n) family were already

known in closed form [14], while it is possible to compute the closed form for the (1, 1, n)

family:

F1,0,n =
b2
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where i ∈ {5, 6} indexes the 5 or 6-dimensional version. Direct computation gives

G
(6)
2 =

ΣΛ
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• Both families have SMWEs in 5 dimensions.

• The remaining 6-dimensional spectral transformation parameters (a, e) alter the form

of the wave equations substantially, whilst maintaining separability. It is possible to

set either

a(1 + 2n)− e = 0 or a− e = 0 , (5.11)

and simplify the r or θ dependent parts of the wave equation.

• Redefining θ̃ = π
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• Both the original and supercharged flavors have SMWEs in 5 dimensions.

• Unlike the (1, 0, n) and (1, 1, n) families there is now only one obvious choice for fixing

(a, e) to simplify the 6-dimensional wave equations

2a(n+ 1)− e = 0 . (5.16)

There are two non vanishing G
(bc)
x1x2 terms for the hybrid (2, 1, n) family. The term

G(bc)
pw (r) =

Γ2e
(
Γn
(
a4(n+ 1)(n + 2) + 2a2(n+ 2)r2 + 2r4

)
− 2

(
a2 + r2

)2)
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The (ZI , Z3) that solve the BPS equations (2.16)–(2.19) can in principle be found with-

out solving any differential equations. Given any harmonic (1, 1) form Θ, a perturbation

of a Ricci-flat Kähler manifold with metric gµν such that it stays Ricci-flat and Kähler is

given by

δgµν =
1
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Noting the form of equations (3.10), the Θ̂(I) will be of the form

Θ̂(1) = Q5κ , (6.9)

Θ̂(2) = Q1κ+
R
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on 2 centered GH bases could be constructed using 2F1

(
1, 1− k;n+ 1;− r2
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objects released sufficiently far away from the bottom of the throat will be approximately

following a null geodesics by the time they reach the bottom. It may also be possible to

construct Green’s functions for these massless wave equations and study wave scattering in

these geometries, investigations of this type have already been conducted for the (1, 0, n)

family in 6 dimensions [6–8].

The ability to transform solutions so that the fluxes Θ(I) are independent of v is useful

in its own right. Microstate geometries in general use a phenomena known as dissolving

charges in fluxes to avoid having singular sources. To exploit this phenomena the fluxes need

to thread non-trivial cycles in the geometry. In 5 dimensions the only non-trivial geometry

is that of the GH base and so one can bring the full arsenal of tools developed for hyper-

Kähler manifolds to study the Θ(I), and by association through the BPS equations the rest

of the data (ZI , Z3,Θ
(3), F, ω). Using such transformations we showed how prepotentials

can be constructed for the fluxes in 6 dimensions and explicitly constructed them for

all (k,m, n).

There are still open questions raised by the work of [27] around whether it is possible

to uncover a mathematical framework on hyper-Kähler manifolds that gives insight into

BPS solutions. There it was shown how the (ΘI ,Θ(3)) fluxes are derived from prepotential

functions and control moduli of the base which allow one to construct the (ZI , Z3) analyt-

ically without solving any differential equations. The open questions are whether one can

determine the moduli the Θ(I) control? What are the new hyper-Kähler bases these moduli

parametrize? As well as whether another principle can be found such that ω can be found

without solving the final BPS equation? By demonstrating that the same tools can be

used in 6 dimensions we have provided another setting in which these questions might be

answered. Additionally the form of the prepotentials for general (k,m, n) we constructed

are richer than those known previously [27], perhaps they may shed light on some of these

questions.

It is hoped that the results presented here inform and motivate future study of the

superstrata solutions, their rich structure promises to further the microstate geometry

program and our understanding of black hole physics.
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A Table 1: general structure of wave equations

Here we present the general expressions of the

G
(6)
1 (r, θ) =

1
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[11] N. Čeplak, R. Russo and M. Shigemori, Supercharging Superstrata, JHEP 03 (2019) 095

[arXiv:1812.08761] [INSPIRE].

[12] I. Bena et al., Asymptotically-flat supergravity solutions deep inside the black-hole regime,

JHEP 02 (2018) 014 [arXiv:1711.10474] [INSPIRE].

[13] I. Bena, E. Martinec, D. Turton and N.P. Warner, M-theory Superstrata and the MSW

String, JHEP 06 (2017) 137 [arXiv:1703.10171] [INSPIRE].

[14] I. Bena et al., Smooth horizonless geometries deep inside the black-hole regime,

Phys. Rev. Lett. 117 (2016) 201601 [arXiv:1607.03908] [INSPIRE].

[15] I. Bena and N.P. Warner, Bubbling supertubes and foaming black holes,

Phys. Rev. D 74 (2006) 066001 [hep-th/0505166] [INSPIRE].

[16] P. Berglund, E.G. Gimon and T.S. Levi, Supergravity microstates for BPS black holes and

black rings, JHEP 06 (2006) 007 [hep-th/0505167] [INSPIRE].

[17] I. Bena, C.-W. Wang and N.P. Warner, Mergers and typical black hole microstates,

JHEP 11 (2006) 042 [hep-th/0608217] [INSPIRE].

[18] I. Bena, C.-W. Wang and N.P. Warner, Plumbing the Abyss: Black ring microstates,

JHEP 07 (2008) 019 [arXiv:0706.3786] [INSPIRE].

– 28 –

https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1007/978-3-540-79523-0_1
https://arxiv.org/abs/hep-th/0701216
https://inspirehep.net/search?p=find+EPRINT+hep-th/0701216
https://doi.org/10.1016/0370-2693(96)00345-0
https://arxiv.org/abs/hep-th/9601029
https://inspirehep.net/search?p=find+EPRINT+hep-th/9601029
https://doi.org/10.1007/JHEP11(2017)021
https://arxiv.org/abs/1709.01107
https://inspirehep.net/search?p=find+EPRINT+arXiv:1709.01107
https://doi.org/10.1103/PhysRevD.99.066009
https://arxiv.org/abs/1804.10616
https://inspirehep.net/search?p=find+EPRINT+arXiv:1804.10616
https://doi.org/10.1007/JHEP02(2018)122
https://arxiv.org/abs/1710.09006
https://inspirehep.net/search?p=find+EPRINT+arXiv:1710.09006
https://arxiv.org/abs/1903.07631
https://inspirehep.net/search?p=find+EPRINT+arXiv:1903.07631
https://doi.org/10.1007/JHEP12(2018)028
https://arxiv.org/abs/1806.02834
https://inspirehep.net/search?p=find+EPRINT+arXiv:1806.02834
https://arxiv.org/abs/1905.05194
https://inspirehep.net/search?p=find+EPRINT+arXiv:1905.05194
https://doi.org/10.1007/JHEP10(2011)116
https://arxiv.org/abs/1107.2650
https://inspirehep.net/search?p=find+EPRINT+arXiv:1107.2650
https://doi.org/10.1007/JHEP05(2015)110
https://arxiv.org/abs/1503.01463
https://inspirehep.net/search?p=find+EPRINT+arXiv:1503.01463
https://doi.org/10.1007/JHEP03(2019)095
https://arxiv.org/abs/1812.08761
https://inspirehep.net/search?p=find+EPRINT+arXiv:1812.08761
https://doi.org/10.1007/JHEP02(2018)014
https://arxiv.org/abs/1711.10474
https://inspirehep.net/search?p=find+EPRINT+arXiv:1711.10474
https://doi.org/10.1007/JHEP06(2017)137
https://arxiv.org/abs/1703.10171
https://inspirehep.net/search?p=find+EPRINT+arXiv:1703.10171
https://doi.org/10.1103/PhysRevLett.117.201601
https://arxiv.org/abs/1607.03908
https://inspirehep.net/search?p=find+EPRINT+arXiv:1607.03908
https://doi.org/10.1103/PhysRevD.74.066001
https://arxiv.org/abs/hep-th/0505166
https://inspirehep.net/search?p=find+EPRINT+hep-th/0505166
https://doi.org/10.1088/1126-6708/2006/06/007
https://arxiv.org/abs/hep-th/0505167
https://inspirehep.net/search?p=find+EPRINT+hep-th/0505167
https://doi.org/10.1088/1126-6708/2006/11/042
https://arxiv.org/abs/hep-th/0608217
https://inspirehep.net/search?p=find+EPRINT+hep-th/0608217
https://doi.org/10.1088/1126-6708/2008/07/019
https://arxiv.org/abs/0706.3786
https://inspirehep.net/search?p=find+EPRINT+arXiv:0706.3786


J
H
E
P
0
9
(
2
0
1
9
)
1
1
7

[19] I. Bena, E. Martinec, D. Turton and N.P. Warner, Momentum Fractionation on Superstrata,

JHEP 05 (2016) 064 [arXiv:1601.05805] [INSPIRE].

[20] S. Giusto, S. Rawash and D. Turton, Ads3 holography at dimension two,

JHEP 07 (2019) 171 [arXiv:1904.12880] [INSPIRE].

[21] J. Tian, J. Hou and B. Chen, Holographic Correlators on Integrable Superstrata,

arXiv:1904.04532 [INSPIRE].

[22] I. Bena, E.J. Martinec, R. Walker and N.P. Warner, Early Scrambling and Capped BTZ

Geometries, JHEP 04 (2019) 126 [arXiv:1812.05110] [INSPIRE].

[23] E. Bakhshaei and A. Bombini, Three-charge superstrata with internal excitations,

Class. Quant. Grav. 36 (2019) 055001 [arXiv:1811.00067] [INSPIRE].

[24] J. Garcia i Tormo and M. Taylor, One point functions for black hole microstates,

Gen. Rel. Grav. 51 (2019) 89 [arXiv:1904.10200] [INSPIRE].

[25] I. Bena, N. Bobev and N.P. Warner, Spectral Flow and the Spectrum of Multi-Center

Solutions, Phys. Rev. D 77 (2008) 125025 [arXiv:0803.1203] [INSPIRE].

[26] B.E. Niehoff and N.P. Warner, Doubly-Fluctuating BPS Solutions in Six Dimensions,

JHEP 10 (2013) 137 [arXiv:1303.5449] [INSPIRE].

[27] A. Tyukov, R. Walker and N.P. Warner, The Structure of BPS Equations for Ambi-polar

Microstate Geometries, Class. Quant. Grav. 36 (2019) 015021 [arXiv:1807.06596]

[INSPIRE].

[28] I. Bena, S.F. Ross and N.P. Warner, Coiffured Black Rings,

Class. Quant. Grav. 31 (2014) 165015 [arXiv:1405.5217] [INSPIRE].

– 29 –

https://doi.org/10.1007/JHEP05(2016)064
https://arxiv.org/abs/1601.05805
https://inspirehep.net/search?p=find+EPRINT+arXiv:1601.05805
https://doi.org/10.1007/JHEP07(2019)171
https://arxiv.org/abs/1904.12880
https://inspirehep.net/search?p=find+EPRINT+arXiv:1904.12880
https://arxiv.org/abs/1904.04532
https://inspirehep.net/search?p=find+EPRINT+arXiv:1904.04532
https://doi.org/10.1007/JHEP04(2019)126
https://arxiv.org/abs/1812.05110
https://inspirehep.net/search?p=find+EPRINT+arXiv:1812.05110
https://doi.org/10.1088/1361-6382/ab01bc
https://arxiv.org/abs/1811.00067
https://inspirehep.net/search?p=find+EPRINT+arXiv:1811.00067
https://doi.org/10.1007/s10714-019-2566-6
https://arxiv.org/abs/1904.10200
https://inspirehep.net/search?p=find+EPRINT+arXiv:1904.10200
https://doi.org/10.1103/PhysRevD.77.125025
https://arxiv.org/abs/0803.1203
https://inspirehep.net/search?p=find+EPRINT+arXiv:0803.1203
https://doi.org/10.1007/JHEP10(2013)137
https://arxiv.org/abs/1303.5449
https://inspirehep.net/search?p=find+EPRINT+arXiv:1303.5449
https://doi.org/10.1088/1361-6382/aaf133
https://arxiv.org/abs/1807.06596
https://inspirehep.net/search?p=find+EPRINT+arXiv:1807.06596
https://doi.org/10.1088/0264-9381/31/16/165015
https://arxiv.org/abs/1405.5217
https://inspirehep.net/search?p=find+EPRINT+arXiv:1405.5217

	Introduction
	Superstrata and their flavors in supergravity
	BPS equations
	Gibbons Hawking bases
	Original, supercharged and hybrid superstrata in 6-dimensions

	Relating superstrata in 5 and 6 dimensions
	Summary of spectral transformations
	6D <==> 5D solutions for single-mode superstrata
	6D <==> 5D solutions for multi-mode superstrata?

	Relations amongst superstrata families
	Equivalence of 5-dimensional solutions related by signs
	Relating the (k,m,n) and (k,k-m,n) superstrata
	The (1,0,n) and (1,1,n) original superstrata

	Separability of wave equations in 5 and 6 dimensions
	General structure of wave equation for axially symmetric BPS solutions
	Separability of (1,0,n) and (1,1,n) original superstata
	Separability of (2,1,n) superstata

	Prepotentials
	Prepotentials in 5-dimensions
	Prepotentials in 6-dimensions

	Discussion, conclusion and outlook
	Table 1: general structure of wave equations
	Table 2: (1,0,n) and (1,1,n) wave equations
	Table 3: (2,1,n) wave equations

