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1 Introduction

String theory has long been a source of insight for investigations in strong coupling dy-

namics of quantum field theory. In particular, dualities in field theories often follow from

properties of the corresponding brane configuration in string theory. Having independent

evidence from field theory and string theory is a step in verifying dualities. Most of the

effort so far has been largely focused on supersymmetric theories in various dimensions,

owing to the fact that non-perturbative phenomena in both string theory and field theory

are better understood in that setting.

One may naturally ponder the ubiquity of dualities in generic QFTs, and their rela-

tionship to string theory. Indeed, recent years have seen progress made on the field theory

front for non-supersymmetric gauge theories in three dimensions. There has been significant

progress in the understanding of the phase diagram of QCD3 with a Chern-Simons term.
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Consider a U(Nc) theory with Nf massless Dirac fermions and a level K Chern-Simons

term. It was argued [1–4] (see also [5, 6]) that for Nf/2 ≤ K the theory admits a dual

description in terms of a gauge theory coupled to scalars as follows

U(Nc)K,K±Nc ⊕Nf fermions ←→ U

(

K +
Nf

2

)

−Nc,−Nc∓(K+Nf/2)

⊕Nf scalars . (1.1)

However, one may wonder whether something changes for Nf/2 > K. In the case of

SU(Nc) gauge symmetry, it was conjectured in [7] that when N⋆ > Nf/2 > K the theory

admits a flavour symmetry breaking phase where

U(Nf ) → U(Nf/2−K)×U(Nf/2 +K) . (1.2)

A similar picture was developed in [7] also for SO(N) and Sp(N) gauge theories. For

Nf ≥ N⋆ the theory is expected to flow to a CFT.1

Following [9] which concerned the symplectic gauge group, we propose that the infrared

phase diagram of U(Nc) QCD3 can be understood in terms of a non-SUSY Seiberg duality.

Our proposal involves a modification of the UV theory, i.e. we start with a UV theory, which

we refer to as the electric theory, whose Lagrangian is more complicated than QCD3. This

theory flows in the IR to QCD3. The electric theory also admits a Seiberg dual description,

which we refer to as the magnetic theory. The various IR phases of the electric theory (and

so of QCD3) can then be identified with the phases of the magnetic dual. In particular

both the bosonized phase and the symmetry breaking phase, which will be our main focus,

can be understood in terms of the condensation of a scalar field, namely the dual “squark”,

in the magnetic theory.

Our proposal of Seiberg duality is motivated by string theory.2 In order to realise

U(Nc) QCD3 we embed the gauge theory in a Hanany-Witten brane configuration of type

0B string theory. The brane configuration consists of Nc D3 branes suspended between an

NS5 branes and a (1, k) fivebrane. In addition, there exits Nf flavour branes and an O′3

orientifold plane. It is similar to the corresponding supersymmetric brane configuration of

Giveon and Kutasov in type IIB [14].

By swapping the fivebranes we obtain the brane configuration that realises the mag-

netic Seiberg dual. The relation between field theory and string theory phenomena teaches

us about non-supersymmetric brane dynamics. The aforementioned squark condensation

translate into a reconnection of colour and flavour branes.

Our Seiberg duality proposal passes several non-trivial checks: as in the symplectic

case [9] it satisfies global anomaly matching and RG flows after mass deformations. It

is also supported by planar equivalence [15, 16]: when Nc, Nf , k are taken to infinity the

electric theory becomes equivalent to a supersymmetric theory and the magnetic theory

becomes equivalent to a supersymmetric theory. The electric and magnetic theories form

1In the ’t Hooft limit, when Nc → ∞ and K,Nf are kept fixed, the theory exhibits rich vacua [8]. The

discussion of this limit is beyond the scope of this paper.
2Other approaches to obtain 3d duality with relation to string theory are given in [10, 11], while the

possibility of relating these dualities to supersymmetric dualities were explored in [12, 13].
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an N = 2 supersymmetric Giveon-Kutasov dual pair. Therefore, there exists a limit in

which our non-supersymmetric dual pair becomes a known supersymmetric dual pair.

Another method of obtaining Seiberg duality in string theory is by using non-critical

strings [17]. The method relies on the embedding of SQCD in non-critical string theory,

pioneered in [18]. Instead of swapping the fivebranes, the duality is obtained by replacing

the sign of the coefficient in front of the Liouville term in the string worldsheet action,

µ → −µ. The advantage of using this method is that the non-critical type 0 string does

not contain a closed string tachyon in the bulk [19, 20]. The field theory that lives on the

branes is the same in both the critical and the non-critical approaches.

In the following we will always denote the bare CS level by k, with k ≥ 0. In addition,

we define the frequently occurring combination

κ ≡ k −Nc + 2 , K ≡ κ− Nf

2
(1.3)

The paper is organised as follows: in section 2 we review the essential properties of

type 0B string theory and its brane configurations. In section 3 we consider a certain brane

configuration and propose a Seiberg duality. In section 4 we show how the phase diagram

of the electric theory manifest itself in the magnetic and in section 5 we focus on QED3.

Section 6 is devoted to conclusions.

2 Overview of type 0B

In this section we review aspects of D3 branes and O′3 planes in type 0 string theory. For

the relevant background we refer the reader to [21].

Type 0B string theory can be obtained by a Z2 orbifold of type IIB, with the Z2 action

generated by (−1)Fs , the mod 2 spacetime fermion number operator. The untwisted sector

is therefore identical to the bosonic sector of the parent type IIB theory. The twisted sector

is composed of a tachyon in the NS-NS sector as well as a new full set of R-R fields. The

tachyon will eventually be projected out by the orientifold action. The doubled set of R-R

fields lead in effect to a doubling of the D-brane spectrum. In particular there are now two

types of threebranes which we denote by D3 and D3′ respectively.

The worldvolume theory on a stack of n D3 and m D3′ branes was worked out in [22,

23]. It is a U(n)×U(m) gauge theory with 3 complex scalars in the adjoint representation,

and a pair of bifundamental Weyl fermions.

In order to project out the closed string tachyon we make use of the Ω(−1)fR pro-

jection [24, 25]. Here, Ω is worldsheet parity and (−1)fR is the operator that counts the

number of right moving worldsheet fermions mod 2. Combining this with reflection in 6

spatial directions I6 we get an O′3± orientifold, the (3+1) dimensional fixed hyperplane

with respect to the Ω(−1)fRI6 action. The existence of two types of orientifold planes fol-

lows from the fact that the NS-NS two form can have a non-trivial Wilson line exp
(
i
∫
B
)

and the signs are chosen to reflect the R-R charge of the orientifold plane. Note that unlike

the O3-planes of type IIB we do not have the additional possibilities associated with the

R-R discrete torsion. Under the action of Ω, D3 turns into D3′, thus requiring an equal
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SO(2N) N = 4 SYM

J(−1)F

Y− ( )

Sp(N) N = 4 SYM

J(−1)F

Y+ ( )

Figure 1. The “orientifold” daughters of N = 4 SYM.

Y− ( ) U(N) SO(6)

B−
µ Adj ·

X− Adj 6v

ξ− ⊕ 4s ⊕ 4c

Y+ ( ) U(N) SO(6)

B+
µ Adj ·

X+ Adj 6v

ξ+ ⊕ 4s ⊕ 4c

Table 1. The field content of the world volume theory of N D3 branes on top of an O′3± plane.

number of each type of brane. In fact Ω projects out half of the doubled set of R-R fields

in the closed string sector.

We are interested in stacks of N D3 branes (together with their image N D3′s) on top

of O′3±, with the worldvolume directions of D3 and D3′ parallel to that of the O′3±-plane

(see table 2). The worldvolume theory of such a configuration was worked out in [23]. In

both cases one has a U(N) gauge field and 6 adjoint scalars parameterising the directions

transverse to the worldvolume. There are also a pair of Weyl fermions which transform in

the 2-index symmetric or antisymmetric representation of U(N) in the configuration with

O′3+ and O′3− respectively. We will denote these theories by Y+ ( ), Y− ( ) respectively,

highlighting the orientifold type on which they live as well as the representation of the

worldvolume fermions (the two features relevant for our purposes). We summarise this in

table 1. The Lagrangian for these theories can be obtained by subjecting the component

fields of N = 4 SYM, collectively denoted by ϕ, to the constraints

JϕJT = (−1)Fϕ , (2.1)

where (−1)F is the mod 2 fermion number operator and J is the symplectic form

J =

(

0 1N

−1N 0

)

. (2.2)

The choice of gauge group for the N = 4 theory descends to the choice of fermion repre-

sentation (figure 1); starting from the parent theory with SO(2N) gauge group one lands

on Y− ( ), and the supersymmetric Sp(N) theory leads to Y+ ( ) [26].

The Möbius amplitude for a single D3 and its image D3′ separated by a distance 2|X±|
across the O′3± is [23]

AM = ± V4

(8π2α′)2

∫ ∞

0

dt

2t3

f8
2
(iq)

f8
1
(iq)

exp

(
−2tX2

±

πα′

)

, (2.3)
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where q = e−πt and the fi(q) are defined as in [27]. We would like to extract the charge of

the orientifold plane as well as the brane-orientifold potential. We note that the integrand

in (2.3) is, up to a sign, identical to the case analysed in [28]. We will state the relevant

results in the following. For large separationX±, the leading order term as t −→ 0 is given by

AM ∼ ±πV4G6(X
2
±) , (2.4)

where G6(X
2
±) = (4π3)−1|X±|−4Γ(2) is the 6d scalar propagator. We see that the long

range potential between the branes and O′3− (O′3+) is attractive (repulsive). For small

X±, (2.4) is no longer a valid approximation, instead one can expand the exponential

in (2.3) around X± = 0

AM = ±
[
Λ−MX2

± +O
(
X4

±

)]
, (2.5)

where the coefficients Λ, M are both positive, with the explicit form given in [28]. From

this, it follows that there is a short range attractive (repulsive) force between the branes

and O′3− (O′3+) plane. The nature of the interaction at short and long distances from

the orientifold is similar. Therefore, the theory with fermions in the antisymmetric (sym-

metric) representation is perturbatively stable (unstable). Note that instabilities of non-

perturbative nature may still arise, but are less straightforward to detect in string theory.

Instead, we may rely on the field theory analysis and try to revert some lessons back to

the brane setup (as in section 4.2.2).

Notice that the (in)stability of the brane configuration translates in the worldvolume

field theory to statements about the vev of the scalars X±. This is obvious from the second

term in (2.5), where the sign of the mass term for the scalars is positive (negative) for the

theory with anti-symmetric (symmetric) fermions. In the Field theory, this is encoded in

the 1-loop Coleman-Weinberg potential, which gets unequal contributions from the bosons

and fermions in each theory.

As observed in [29], the threebranes in type 0 carry the following charge and tension

QD3 =
√
π, TD3 =

√
π

√
2κ0

. (2.6)

It is then a matter of comparing (2.4) with 4V4G6(X
2
±)TO′3±TD3κ

2
0
to see that the orientifold

charge and tension are

QO′3± = ±QD3

2
, TO′3± = ±TD3

2
. (2.7)

This is clearly different from the situation in type II theories where an Op± plane carries

±2p−5 units of Dp brane charge. The charges (2.7) of the O′3± relative to the D3 will be

crucial in constructing seiberg dual pairs in the next section.

2.1 A pseudo-moduli space

The discussion in the previous section shows that the Y+ ( ) theory is unstable, namely

the D3s are repelled away from the orientifold. But the analysis tells us nothing about

where the stable vacuum of the theory lies. In a non-SUSY setup, the scalar vevs, or
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correspondingly the coordinates of the branes are not to be viewed as moduli but are rather

dictated by the dynamics of the theory. Generically one expects a scalar potential V (X+)

to be induced via loop corrections. It is however useful to have a completely kinematical

discussion of the possible pseudo-moduli of the brane system before imposing the dynamical

constraints. We will examine the situation both in string theory and field theory.

Using the U(N) matrices, the most generic vev for the scalars X+ takes the diagonal

form

〈X+〉 = diag (a1, a2, · · · , aN ) ; ai ∈ R . (2.8)

From a field theoretic point of view, depending on the specific values of the eigenvalues ai
we encounter 3 possibilities:

(i) The ai are all distinct. In this case the gauge group is broken to its U(1)N maximal

torus and the worldvolume fermions all become massive. There are also adjoint

(charge 0) scalars for each U(1) factor in U(1)N

(ii) When n of the N eigenvalues become exactly degenerate there is an enhanced U(n)

symmetry. The breaking pattern in this case takes the form

U(N) → U(n)×U(1)N−n . (2.9)

All worldvolume fermions are massive but there are scalars in the adjoint of the

unbroken gauge group. A special case of this type is when all the eigenvalues coincide

and the entire gauge symmetry is unbroken.

(iii) There is a more exotic possibility. Consider the situation where n eigenvalues take

the opposite sign of an exactly degenerate set of m eigenvalues, i.e.

〈X+〉 = diag
( n
︷ ︸︸ ︷
v, · · · , v,

m
︷ ︸︸ ︷

−v, · · · ,−v, a1, · · · , aN−(n+m)

)

. (2.10)

The unbroken gauge symmetry is now U(n)×U(m)×U(1)N−(n+m). As in the cases

(i), (ii) above there are scalars transforming in the adjoint of the unbroken gauge

symmetry. Unlike those cases, there are now also massless fermions thanks to the

cancellation between the positive and negative eigenvalues of equal magnitude. These

fermions transform in the bi-fundamental of the non-abelian U(n) × U(m) factor of

the unbroken gauge group.

From the string theory perspective, case (i) corresponds to a configuration where all

branes are at distinct points away from the orientifold, that is, none of the D3s coincide.

Case (ii) corresponds to n D3 branes coinciding in the bulk (away from the orientifold).

Case (iii) is more interesting. Suppose that v > 0, then in the brane picture v denotes the

coordinates of n D3 branes in the transverse space. On the other hand giving negative vevs

to m of the scalars corresponds to separating m D3s from the orientifold in the negative

direction. But only the quotient space, i.e. the positive direction is physical. When we

send m D3s to a negative point in the transverse space, their image D3’s are given positive

coordinates and appear in the physical space. So we see that case (iii) corresponds to n

D3s and m D3’s coinciding at coordinate v in the bulk. The worldvolume theory of this

configuration beautifully matches what one would expect from field theory discussed in (iii).

– 6 –
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NS5 3 4 5

NS5′ 3 8 9

D3 |6|
O′3 6

D5 7 8 9

(1, k)
[
3

7

]

θ
8 9

Table 2. The various extended objects and their orientation in R
1,9. All objects extend along the

shared x0,1,2 directions as well as those indicated below.

NS5

NS5′

O′3+

NS5

NS5′

(a) (b)

O′3+

Figure 2. The Hanany-Witten effect. In passing from the configuration (a) to (b) a pair of D3s

are created between the non-parallel NS5s.

2.2 Hanany-Witten setup

We are interested in Hanany-Witten setups to study 3d theories, which requires the intro-

duction of NS5 branes. Our construction is the non-SUSY analogue of the 3d N = 2 setup

in type IIB (see e.g. [30]). In particular, we have NS5 branes which are non-parallel in two

of their spatial coordinates as in table 2, we distinguish them by referring to one as an

NS5′. The orientifold charge is switched from O′3+ to O′3− and vice versa on either side

of an NS5 or NS5′ which intersects the orientifold. We will only consider configurations

where the orientifold is asymptotically O′3+ and label only the asymptotic charge of the

orientifold plane in our diagrams (see figure 2).

Seiberg duality has a standard string theory derivation [31] which follows from a re-

arrangement of non-parallel NS5 branes in the Hanany-Witten setup. In constructions

without an orientifold, it is possible to achieve this rearrangement without the need for

the NS5 branes to intersect. This is done by using the freedom to separate them in a

direction mutually transverse to the NS5 and NS5′. In the presence of an orientifold, the

NS5s are bound to the orientifold plane and this is no longer possible. The NS5 branes

will inevitably intersect as we try to move them past one another [32].

The result of moving non-parallel fivebranes through one another in the presence of

an orientifold is well understood. This is the so called Hanany-Witten transition [33]. In

– 7 –
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type IIB constructions with an orientifold this amounts to the creation/annihilation of a

D3 between the NS5 and NS5′ depending on the orientifold type, a fact that follows from

imposing the conservation of linking number. In the absence of D5 branes the linking

number of an NS5 is proportional to the difference of the net D3 brane charges ending on

it from the left and right respectively. Following the discussion around (2.7) it is easy to

see that for the type 0 configuration of figure 2 the linking number of the NS5 and NS5′ are

conserved provided a pair of D3s are created in between them as we go from (a) to (b). This

is twice the corresponding situation in type IIB as one would expect from the fact that the

charge of O′3± relative to the type 0 D3 is a factor of two greater than the type IIB analogue.

In the next section we discuss the Hanany-Witten setup that leads to the non-SUSY

gauge theories of interest with and without flavours.

3 3d dualities from non-supersymmetric brane configurations

In this section we consider Hanany-Witten setups that lead to three-dimensional CS theo-

ries. See figure 3 and 4. The construction is analogous to [30]. The difference here, besides

being in type 0B, is the presence of the O′3 orientifold discussed previously.

In section 3.1 we consider the setup of figure 3. The low-energy theory of such a

configuration is that of non-SUSY analogue of N = 2 CS theories without flavours of

(s)quarks. Such a setup turns out to be meaningful for the discussion of 3d dualities

without matter. These dualities are also known in the literature as level-rank dualities.

In section 3.2 we consider the addition of Nf flavour D5-branes, see figure 4. The

low-energy theory emerging from such a brane configuration includes quarks and squarks

in the fundamental representation of the gauge group.

3.1 Level-rank duality

We begin by discussing how level-rank duality is realised in our setup. The discussion

follows that of [34], and we provide a more refined account. In particular, we will be more

careful about the CS level of the U(1) factor of the gauge group.

The starting point is the brane configuration (a) of figure 3 withNc D3 branes stretched

between an NS5 brane and a (1, k) 5-brane. We will refer to this as the electric theory.

The worldvolume theory is the dimensional reduction of the Y− ( ) subject to suitable

boundary conditions. There is a U(Nc) gauge field Aµ with a YM term and level k CS

interactions, as well as a real scalar σ in the adjoint of U(Nc) and two antisymmetric

(complex) Dirac fermions in the and the of U(Nc), respectively. The Lagrangian takes

the following form3

L
(E)

Nf=0
=

1

g2e
Tr

[

−1

2
(Fµν)

2 + (Dµσ)
2 + iλ̄ /Dλ+ i

¯̃
λ /Dλ̃− iλ̄σλ− i

¯̃
λσλ̃+D2

]

+
k

4π
Tr

[

ǫµνρ
(

Aµ∂νAρ −
2i

3
AµAνAρ

)

+ 2Dσ − λ̄λ− ¯̃
λλ̃

]

.

(3.1)

3Such a Lagrangian is understood as descending from its parent N = 2 counterpart. In the large N limit

we expect to recover a supersymmetric YM-CS theory. The following rule is expected to hold: ⊕ → Adj.

– 8 –
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NS5

(1, k)

Nc D3O′3+

NS5

κ D3

(1, k)

O′3+

(a) (b)

Figure 3. The brane setup for the (a) electric and (b) magnetic theory which give rise to level-rank

duality.

U(Nc)k
Aµ Adj

σ Adj

λ

λ̃

U(κ)−k

aµ Adj

s Adj

l

l̃

Table 3. The field content of the worldvolume theories of the brane constructions in figure 3.

Here Fµν is the gauge field strength and Dµ ≡ ∂µ − iAµ is the covariant derivative. The

covariant derivative is understood to act on the various fields in the representations of

U(Nc) they belong to. D is the auxiliary field of the vector multiplet borrowed from the

supersymmetric parent theory. It belongs to the adjoint representation of the gauge group

just like the gauge field and scalar gaugino.

It is straightforward to obtain the Seiberg dual of this theory following e.g. [30, 32] with

a slight modification that takes into account the effect discussed in figure 2. After reshuffling

the NS5 and (1, k) fivebrane we arrive at the configuration (b) in figure 3, where the number

of colour D3s is now κ ≡ k−Nc+2. We refer to this as the magnetic theory. The worldvol-

ume theory is now that of a gauge field aµ with YM term and level −k CS interactions as

well as a real adjoint scalar s and antisymmetric Dirac fermions l and l̃. The Lagrangian is

L
(M)

Nf=0
=

1

g2m
Tr

[

−1

2
(fµν)

2 + (Dµs)
2 + il̄ /Dl + i

¯̃
l /Dl̃ − il̄sl − i

¯̃
lsl̃ +D2

]

+
k

4π
Tr

[

ǫµνρ
(

aµ∂νaρ −
2i

3
aµaνaρ

)

+ 2Ds− l̄l − ¯̃
ll̃

]

.

(3.2)

We are interested in the IR dynamics of these theories. In the absence of supersym-

metry, the scalars on the two sides are expected to acquire a 1-loop mass of the order of

the cutoff [34]

m2
σ ∼ g2eΛ, m2

s ∼ g2mΛ . (3.3)

– 9 –
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NS5

(1, k)Nc D3

Nf D5

O′3+

NS5

Nf D5 Ñc D3

(1, k)

O′3+

(a) (b)

Figure 4. The brane setup for the (a) electric and (b) magnetic theory of our proposal. Here

Ñc = Nf + k + 2−Nc.

As in the discussion following (2.5) this translates to an attractive force between the branes

and the orientifolds, signalling perturbative stability of the configuration. At energies well

below the cutoff scales, the scalars are decoupled and do not play a role. Note that the

scalars also have tree level CS masses, but we expect them to be subleading due to the

stringy nature of the masses in (3.3). After integrating out the scalars we are left with gauge

fields and antisymmetric fermions, both of which have tree-level CS masses MCS = ±g2k

where the sign of the mass follows from the sign of the bare CS levels in (3.1) and (3.2). Due

to the lack of supersymmetry, also the gauginos (the antisymmetric fermions) get a mass at

one-loop and can be integrated out. Integrating out the antisymmetric fermions shift the

levels of the U(1) and SU(Nc) (resp. SU(κ)) factors of the gauge group by disproportionate

amounts. As a result the IR of the electric theory is a U(Nc)K1,K2
CS TQFT where

K1 = k −Nc + 2 ≡ κ, K2 = k − 2Nc + 2 ≡ κ−Nc . (3.4)

While the IR of the magnetic theory is described by a U(κ)L1,L2
CS TQFT with

L1 = −k + κ− 2 = −Nc , L2 = −k + 2κ− 2 = −Nc + κ . (3.5)

Putting everything together we end up with the TQFTs U(Nc)κ,κ−Nc and U(κ)−Nc,−Nc+κ,

In fact, these theories are dual to each other. Therefore, in the IR, we recover the following

level-rank duality

U(Nc)κ,κ−Nc ←→ U(κ)−Nc,−Nc+κ . (3.6)

3.2 Including flavours

We can include flavours in the discussion by adding D5 branes to the setup, the worldvolume

directions spanned by the flavour D5 branes are as in table 2. The IR phases of the electric

theory turn out to be richer than the cases studied above and are nicely encoded in terms

of the dual magnetic theory. We begin by analysing each theory separately semi-classically

before mapping out the phase diagram.
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Electric Theory

U(Nc)k SU(Nf )

Aµ Adj ·
σ Adj ·
λ ·
λ̃ ·
Φ

Ψ

Magnetic Theory

U(Ñc)−k SU(Nf )

aµ Adj ·
s Adj ·
l ·
l̃ ·
φ

ψ

M · Adj

χ ·
χ̃ ·

Table 4. The field content of the electric and magnetic theory.

3.2.1 Electric theory

The flavoured electric theory is realised on the brane configuration (a) of figure 4. The

worldvolume theory on the D3 branes now includes Nf complex scalars Φ and Nf Dirac

fermions Ψ. The relevant flavour symmetry emerging from the branes is an SU(Nf ) group.

The representations of the scalars and fermions with respect to the gauge and flavour

groups are listed in table 4. These are essentially determined by their coupling to the

antisymmetric gauginos, see later (3.8).

The tree level Lagrangian is given by

L
(E) = L

(E)

Nf=0
+ Lmatter , (3.7)

where L
(E)

Nf=0
is, as before, given by (3.1). The additional flavour terms are described by

Lmatter = |DµΦ
a
i |2 + iΨ̄ai( /DΨ)ai − Φ̄i

a(σ
2)

a
bΦ

b
i + Φ̄i

a(D
2)

a
bΦ

b
i

−Ψaiσ
a
b
Ψ̄bi − (iλ[ab]Φ

a
i Ψ̄

bi + iλ̃[ab]Φ̄i
aΨbi + h.c.) .

(3.8)

Here a, b = 1, · · · , Nc are colour indices and i, j = 1, · · · , Nf are flavour indices. The inter-

actions with the gauginos fix the representations of the (s)quark fields to be as in table 4.

The fate of the scalar σ of the gauge multiplet of the electric theory is similar to the

flavourless case. The one-loop corrections to the scalar propagator get positive contribu-

tions from its coupling to itself and to the gauge field and negative contributions from its

coupling to the gaugino λ. Since there are more bosonic than fermionic degrees of freedom,

the vacuum 〈σ〉 = 0 is stable; σ does not play a role in the IR dynamics of the theory and

can be integrated out.

A similar story pans out for the squark Φ. Indeed, the squark couples to the gauge field

Aµ, the scalar σ and the gaugino λ. Since there are more bosonic than fermionic degrees

of freedom, one expects the squark to acquire a positive mass M2
Φ
> 0 and decouple from

the IR physics.
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For a non-zero level k 6= 0, the gauge field and the gaugino acquire a Chern-Simons

mass MCS = g2k. We therefore expect the IR physics to be dominated by the topological

CS theory coupled to Nf fundamental quarks, i.e. QCD3 with Nf quark flavours.4 The IR

levels of the electric theory are shifted by the gaugino as in (3.4), as well as the fundamental

quarks. In summary, using the dictionary (1.3) we have

electric IR: U(Nc)K,K−Nc ⊕Nf fermions , (3.9)

which is nothing but the left hand side of (1.1).

On the other hand, when k = 0, the IR theory is that of YM theory coupled to the

gaugino and the fundamental quarks. It is less straightforward to say anything concrete

about the IR dynamics of this theory.

3.2.2 Magnetic theory

The flavoured magnetic theory lives on the configuration (b) of figure 4. It is obtained

from the flavoured electric theory by the standard Giveon-Kutasov move [30, 32] modified

so as to account for the brane creation described in figure 2. One can easily verify that the

resulting number of colour branes between the NS5 and the (1, k) fivebrane is

Ñc = Nf + k −Nc + 2 ≡ Nf + κ . (3.10)

The magnetic field content is given in table 4. This can be obtained in a similar fashion

to the electric theory, i.e. by subjecting the theory on the D3 branes in table 1 to the appro-

priate boundary conditions. We have a gauge multiplet identical to the magnetic theory of

the Nf = 0 case. The matter multiplet consists of a complex scalar φ and a Dirac fermion

ψ. Their representations with respect to the gauge and flavour groups are given in table 4.

There are in addition new degrees of freedom, which have no analogue on the electric side,

corresponding to the motion of the flavour D3 branes along the x8,9 directions. These give

rise to two gauge singlets; the meson M which is an SU(Nf ) adjoint and its fermionic part-

ners, the “mesinos” χ transforming as of SU(Nf ) and χ̃ transforming as of SU(Nf ).

The tree level Lagrangian for this theory is

L
(M) = L

(M)

Nf=0
+ Lmatter , (3.11)

where L
(M)

Nf=0
is as in (3.2). The matter Lagrangian is

Lmatter = |Dµφ
i
a|2 + iψ̄( /Dψ)ai − φ̄a

i (s
2)baφ

i
b
+ φ̄a

iD
b
aφbi − ψai(s)baψ̄bi

−
(

il̃[ab]φi
aψ̄bi + il[ab]φ̄

a
iψ

bi + h.c.
)

+ |∂µM i
j |2 + iχ̄{ij}/∂χ{ij}

− y2φ̄a
i φ

i
aφ̄

b
jφ

j

b
− y2φi

aM̄
j
i
Mk

j φ̄
a
k
− y

(

χ{ij}φ
i
aψ

aj + χ̃{ij}φ̄a
i ψ̄aj + h.c.

)

− y
(

ψaiM j
i
ψ̄aj + h.c.

)

.

(3.12)

4Integrating out the gauge sector is somewhat more natural in the semiclassical regime k ≫ 1. We

expect this to remain true also at finite k, unless something drastic happens.
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Note that in addition to the magnetic gauge coupling gm, we now have another coupling

constant y which controls interactions between the (s)quarks and the meson multiplet.

The scalar s of the magnetic gauge multiplet gets a positive mass and decouples, just

as it did in the flavourless case. This signals the stability of the colour branes near the

orientifold.

The squark φ couples to the gauge multiplet as well as the meson multiplet. There are

more bosonic than fermionic degrees of freedom in the gauge multiplet, and more fermionic

than bosonic degrees of freedom in the meson multiplet. Therefore, the squark aquires a

1-loop mass of the form

M2
φ
∼ (−y2 + g2m)Λ . (3.13)

The two effects compete and the squark may become massive or tachyonic. Since at large

k the gauge field becomes heavy and decouples we operate under the assumption that in

this limit the squark is tachyonic.

The matter Lagrangian (3.12) for the magnetic theory includes a coupling between the

meson field and the scalar quarks

y2φi
aM̄

j
i
Mk

j φ̄
a
k
. (3.14)

If the meson acquires a vev of the form
〈

M̄ j
i
Mk

j

〉

= u2δk
i
the squark φ becomes massive.

If the squark acquires a vev
〈
φi
a

〉
= vδia, and flavour symmetry is unbroken, the mesons

become massive. Therefore, the most likely scenario is that in all phases [9]

M2
φ
M2

M < 0 . (3.15)

In the following we will always work with this assumption in mind. This will be crucial in

obtaining the phase diagram of QCD3.

4 Phase diagram

As we saw in (3.9), the IR theory on the electric brane configuration is precisely QCD3. In

this section we argue that the conjectured phase diagram of QCD3 can be understood in

terms of the dual magnetic description. Many of the features are similar to the symplectic

case analysed in [9]. For this reason we will be somewhat brief and focus only on the details

which are new to the unitary theory.

4.1 Region I: bosonization

We start with the region of the parameter space where κ ≡ k + 2 − Nc ≥ Nf . This

corresponds to region I in the phase diagram of figure 5. In this region the rank of the

magnetic gauge group Ñc = Nf + κ is automatically positive. Following the discussion

around (3.13), the Nf squarks are assumed to be tachyonic throughout this region. This

is reasonable as one can go to arbitrarily large values of k while keeping Nf fixed. In

this regime the gauge sector becomes heavy and decouples from the dynamics. The main

contribution to the mass of the squark (φ) comes from the meson multiplet, which is indeed

negative. Thus, our main assumption is that this remains true as we move to finite k.
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Nf = |κ|

N∗

I

IIII′

No seiberg duality

IIIIII′

Figure 5. Phase diagram of QCD
3
.

Let us then assume that the magnetic squarks condense. In the brane configuration,

this corresponds to Higgsing Nf colour D3 branes via reconnection to Nf flavour D3 branes.

This is the Higgs mechanism in the string theory language. The world-volume of the Nf

Higgsed D3 branes no longer supports a gauge multiplet as they end on D5s from one side

and end on the NS5 brane from the other. However, we still have κ colour D3 branes which

support a U(κ)−k gauge theory with massive gauge field and massive gauginos. The CS

mass is still proportional to k, and we can integrate out the gauge field and gauginos at

energies below g2k. The reconnection preserves the original U(Nf ) global symmetry. We

will shortly argue, from the field theory side, that there are Nf scalars in the fundamental

after the Higgsing. In the brane set-up these can only come from open strings stretched

between the colour branes and Nf Higgsed D3 branes.

Let us try to understand the phenomenon described in the last paragraph in terms

of the field theory description of the magnetic theory. Indeed, the Higgsing corresponds

to giving a colour-flavour locking vev to the magnetic squark without breaking the global

U(Nf ). The gauge symmetry breaking pattern is given by

U(κ+Nf ) → U(κ) , (4.1)

leaving the gauginos in the and of the Higgsed gauge group as well as Nf fundamental

squarks. The Nf magnetic quarks become massive due to Yukawa terms. In addition,

the meson and the mesino all become massive due to interactions like (3.14) and can

be integrated out. The IR levels get shifted after integrating out the gaugino according

to (3.5) so that, using the dictionary (1.3), the IR of the magnetic theory in this region of

the parameter space is described by

magnetic IR: U

(

K +
Nf

2

)

−Nc,−Nc+K+
Nf

2

⊕Nf scalars . (4.2)

Such a bosonic dual is described in the IR by a Lagrangian that contains, in addition to

a CS term with appropriate levels and coupling between the scalars and gauge field, also
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self-interactions for the squarks. These correspond to mass terms of the form φ̄a
i
φi
a as well

as quartic interaction of the form (single-trace) (φ̄a
i
φj
a)(φ̄

b
j
φk
b
) and (double-trace) (φ̄a

i
φi
a)

2.

These terms can be generated, if not already present, by the RG flow consistently with

global symmetries.

As a final step, tuning the mass terms both in the electric IR theory in (3.9) and in

the magnetic IR theory in (4.2), we recover a well-established duality. This is nothing but

the duality (1.1).

4.2 Symmetry breaking

When N⋆ > Nf > κ, which corresponds to region II and II′ in the phase diagram of

figure 5, we expect rather different dynamics for the system and we anticipate breaking of

the flavour symmetry. As we shall see, the physics in these regions is still captured by a

tachyonic squark, colour-flavour locking and brane reconnection, but the implications and

the resulting physics will be different with respect to region I. Note that the electric theory

we discuss is a U(Nc) gauge theory, while the result in ref. [7] is for SU(Nc).

4.2.1 Region II′

Let us begin with region II’ in the phase diagram of figure 5. In this region κ < 0.

Therefore, on the magnetic side, there are less colour D3 branes than flavour D3 branes:

Ñc = Nf+κ < Nf . We will assume that the squarks condense also in this case. Nonetheless,

squark condensation leads in this case to a fully Higgsed gauge group. Once again this is

realised in string theory by reconnecting Nf+κ colour and flavour D3 branes (we stress that

κ < 0 here). After the Higgsing, we are left with |κ| flavour D3 branes stretched between

the D5 brane and the (1, k) fivebrane, as well as the Nf + κ connected D3 branes. The

latter no longer support a gauge multiplet and therefore gauge symmetry is fully broken.

The global symmetry now consists of a U(Nf+κ) factor corresponding to the symmetry

on the Nf + κ reconnected branes as well as a U(κ) factor from the remaining flavour D3

branes. Using the dictionary (1.3) we have that in this region the global symmetry breaking

pattern is

SU(Nf ) → S

[

U

(
Nf

2
+K

)

× U

(
Nf

2
−K

)]

. (4.3)

This symmetry breaking pattern is the one anticipated in [7]. As a consequence, the IR

physics of this phase is described in terms of the Grassmannian

M
(

K +
Nf

2
, Nf

)

=
SU(Nf )

S
[

U
(
Nf

2 +K
)

× U
(
Nf

2 −K
)] (4.4)

corresponding to the symmetry breaking pattern given in (4.3). Such a Grassmannian will

be essentially parametrised by5

N2
f
− 1−

[
(Nf + κ)2 + κ2 − 1

]
= 2|κ|(Nf − |κ|) = 2

(
Nf

2
+K

)(
Nf

2
−K

)

(4.5)

5In order to be consistent with the UV symmetries one must also include CS terms in the effective

description. The required modification is discussed in detail in [7].
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massless Nambu-Goldstone bosons. We identify the Nambu-Goldstone bosons as the mass-

less modes of open strings stretched between the two stacks of flavour branes.

4.2.2 Region II

When 0 < κ < Nf < N⋆ (or 0 < K +
Nf

2 < Nf < N⋆), after reconnection the theory in

the IR is

U

(

K +
Nf

2

)

−Nc,−Nc+K+
Nf

2

⊕Nf φ . (4.6)

Naively, we seem to have a puzzle: instead of obtaining a theory of massless Nambu-

Goldstone bosons we obtain bosonization. The NG theory we are seeking is nothing but

the effective description of (4.6) for large negative masses of the squarks φ. According to

the field theory analysis of Komargodski and Seiberg [7] upon condensation of the squarks

we land on the symmetry breaking phase.

Indeed, after reconnection, the scalars in the bosonic dual (4.6) correspond to scalar

modes of the open strings in the brane configuration. Therefore our proposal is that these

scalars are tachyonic and are to be stabilised via open string tachyon condensation. We do

not know whether a nice geometric picture emerges after this condensation. Regardless, in

the field theory limit one eventually lands on the Grassmannian M(Nf , κ). This picture

is consistent with the mass deformations of the brane setup, already discussed in [9].

5 Comments about QED3

The discussion of the phase diagram in the preceding sections holds for a general number

of colours Nc. However, “accidents” happen when Nc = 1, 2 that modify parts of the

discussion. In the case of Nc = 2 the electric gaugino is a singlet of the SU(2) factor of

the gauge group, but it carries charge 2 under the abelian factor. Because of this, some

intermediate steps taken to arrive at the general phase diagram in figure 5 are slightly

modified, the end result is however unaffected and the phase diagram of figure 5 is the

correct picture for Nc ≥ 2.

On the other hand, we start to see deviations from the general picture of figure 5 for

Nc = 1 i.e. QED3. In particular, as we shall see momentarily, when k = 0 there is no

symmetry breaking phase. This in turn suggests that no symmetry breaking can occur for

non-zero k since the window for which a Grassmannian phase exists in the IR is maximised

for k = 0 [7].

5.1 QED3 with vanishing CS-term

When the electric gauge group is U(1), there is no electric gaugino. Therefore, the IR of

the electric theory is U(1)0 theory coupled to Nf fermions. The magnetic dual has a gauge

group U(Nf + 1) with vanishing CS level at tree-level. Previously, squark condensation

lead to masses being generated for the quarks, meson and the mesino, due to the presence

of Yukawa interactions. However, in this case after reconnection we have a U(1) gauge

theory with no CS term and Nf massless Dirac fermions. The reason that in this specific

– 16 –



J
H
E
P
0
9
(
2
0
1
9
)
1
1
1

case the fermions do not acquire a mass is that there is no gluino when the gauge group

is U(1) and no Yukawa term. In the absence of supersymmetry and without fine-tuning

the squarks acquire a mass. So we end up with a magnetic theory that admits the same

matter content as the electric theory, namely a dual U(1) theory with Nf dual quarks.

The brane setup is such that the flavour branes coincide and hence flavour symmetry

remains unbroken. Thus, our magnetic theory predicts no spontaneous breaking of U(Nf ).

This is consistent with existing conjectures about the IR behaviour of QED3 [35].

6 Conclusions

In this manuscript we discussed QCD3 based on a unitary group and its embedding in string

theory. The UV field theory on the brane configuration consists of fields that acquire a

mass and decouple as the theory flows to the IR. The advantage of having such a UV theory

is that it admits a Seiberg duality. The magnetic Seiberg dual leads to new insights about

QCD3. In particular the bosonized theory admits a simple realisation as a magnetic dual

of the electric fermionic theory. While in the electric side scalar quarks acquire a mass and

decouple, in the magnetic side the fermionic quarks acquire a mass due to Yukawa coupling

and decouple.

The Seiberg dual also enables us to gain a better understanding of the symmetry

breaking phase. Triggered by condensation of the dual squark the magnetic gauge theory

is completely Higgsed and flavour symmetry gets broken.

In addition, we learned about the abelian theory, with or without a Chern-Simons

term. The level k (with k ≥ 0) U(1) theory with Nf flavours admits a magnetic dual

that upon Higgsing flows to another U(1) theory with k′ = −k and Nf flavours. Flavour

symmetry is not broken, as expected from field theory analysis. For k = 0 the theory looks

self-dual. While for Nf = 2 the self duality is well understood [7], for Nf 6= 2 the naive

self-duality deserves further investigation.

We haven’t discussed the regime of Nf > N⋆. This regime is hard to analyse both

in field theory and in string theory. As in the symplectic case [9] we anticipate that it is

described by meson condensation.
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