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1 Introduction and summary

Relativistic particles coupled to a constant electro-magnetic field enjoy symmetries that

extend the usual Poincaré algebra symmetries [1, 2]. Assuming that the electro-magnetic

field transforms, one obtains a non-central extension of the Poincaré algebra by an anti-

symmetric tensor generator Zab that transforms covariantly under the Lorentz group and

the resulting algebra has been called the Maxwell algebra in [2]. This algebra has also

been recovered from studying the Chevalley-Eilenberg cohomology of the Poincaré alge-

bra [3, 4], where also further non-central extensions have been identified. The algebraic

structure can be embedded in a free Lie algebra construction as shown in [5] such that

different quotients of the free Lie algebra yield the known relativistic Maxwell algebra or

related extensions [6–9]. A similar analysis was undertaken for the supersymmetric theory

in [10–15].

For massive non-relativistic particles the algebra obtained by contraction of the

Poincaré algebra is the Galilei algebra. A non-relativistic Maxwell-type extension in a

constant electro-magnetic background is known to arise [6, 16] and this has also been un-

derstood from Lie algebra cohomology [3]. However, in the non-relativistic case there are

more options depending on how the contracting limit [17–19] is taken from the relativistic

Maxwell algebra.

In the present paper we shall take the different non-relativistic limits of the Maxwell

algebra as a starting point and consider their embedding in free Lie algebra constructions.

As was investigated in [18] and as we shall explain in more detail in section 2, there are three

distinct non-relativistic limits of the Maxwell algebra in the point particle case depending

on the relative scaling between the electric and magnetic field as the speed of light is sent to
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infinity. These three cases can be embedded in free Lie algebra extensions and two of them

interestingly require different free Lie algebra constructions. The free Lie algebra permit

a plethora of quotients that connect to the Bargmann algebra and other non-relativistic

symmetry algebras that have appeared recently in the literature [20–23].

Investigating the possible non-relativistic symmetry algebras is relevant for obtaining

physical models with non-relativistic invariances. Beyond point particle dynamics, one

can also consider realisations that lead to non-relativistic gravity [20–22, 24–34] or even

symmetries of extended objects such as strings [35–37] branes [38, 39] and stringy non-

relativistic gravities [23, 40, 41]

In this paper we shall not study the dynamical realisations of the symmetry algebras we

present. However, we expect that there can be additional symmetries in a given dynamical

realisation beyond the one that was used when writing down the model [42, 43], see also [39].

This happens for example already for the non-relativistic massive particle that enjoys

Schrödinger [42, 43] invariance even though the original symmetry algebra is only Galilei

as can be seen by studying the Killing symmetries of the model. The Schrödinger algebra

is the maximal point symmetry group it has three extra generators with respect to the

Galilei algebra, these are the central charge associated to the mass of the particle, the

dilatation D that gives a different scaling for the time coordinates and spatial coordinates

and the one-dimensional special conformal transformation C.1 It is not clear how to fit

this extended algebra into a free Lie algebra construction similar to the one considered in

the present paper.

One of the features of our analysis is that it also provides a bridge to (affine) Kac-

Moody algebras and so-called Lie algebra expansions. The latter were studied in [44–46]

in order to construct a series of new Lie algebras from an initial given Lie algebra. The

method has also been used as a way of obtaining actions that are invariant under an

extended (“expanded”) symmetry algebra when starting from an action with a given smaller

symmetry algebra. In [31] it was applied systematically in order to obtain various non-

relativistic gravitational models in D = 3 and D = 4 from the Einstein-Hilbert action by

expanding the Poincaré algebra arranged in a non-relativistic point particle split. As we

shall explain in section 3, the expansion method is the same as constructing an affine Kac-

Moody extension of the finite-dimensional Lorentz algebra and considering a truncation

and contraction of the Borel subalgebra. The connection can be traced back to the fact

that both the affine algebra and the expanded Lie algebra can be thought of as formal

power series in an expansion parameter.

The reason for the greater variety of non-relativistic symmetries compared to the

relativistic case can be traced back to the fact that the non-relativistic space and time

coordinates can have a different scaling. There are (at least) three different ways of con-

structing models with Galilean invariance: (i) from non-relativistic limits of relativistic

theories [27, 35, 39, 47–50], (ii) doing a null reduction of relativistic theories in one di-

mension higher [51–54] and (iii) an ab initio non-relativistic construction [24–26, 55–58].

1The generators of time translation H, dilatation D and one-dimensional special conformal transforma-

tions C form an SL(2,R) algebra.
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As mentioned above, we do not consider any specific non-relativistic model in the present

paper but rather present possible algebraic building blocks for Galilean invariance of point

particles or extended objects that we hope prove useful for explicit constructions. Such

explicit models in turn are important for understanding better non-relativistic gravity, in

particular in the context of non-relativistic holography [59, 60] or non-relativistic string

theory [35, 36, 39, 61–63].

This paper is structured as follows. In section 2, we recall three distinct contractions

of the relativistic Maxwell algebra [17, 18] and study how the resulting three extensions of

the Galilei algebra in the point particle case are embedded in distinct free Lie algebras. We

discuss how their quotients give rise to known algebras. Section 3 is devoted to studying a

particularly interesting case that has recently attracted attention in connection with non-

relativistic gravity [20–22, 31–34] and we show that this algebra can actually be obtained

as a truncation of an affine Kac-Moody algebra. In section 4, we generalise from the

Galilei algebra of point particles to that of extended p-branes. Focussing our attention on

one particular embedding in a free Lie algebra we recover known central and non-central

extensions of the string Galilei algebra of [37].
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2 Galilean free Lie algebras

We consider the question of embedding Galilean algebras in free Lie algebras in a fash-

ion similar to the embedding of the (supersymmetric) Maxwell algebra in a free Lie

(super)algebra [5, 15]. Before considering the construction of the free Lie algebra, we first

study the different (unextended) Galilean algebras that can arise in an electro-magnetic

context.

2.1 Galilei Maxwell algebras

Going back to Le Bellac and Levy-Leblond one can study several limits of the relativistic

Maxwell and Lorentz equations that lead to different forms of non-relativistic systems. In

the original paper [17], two different forms of Galilean electromagnetisms were constructed:

1) The magnetic Galilean Maxwell equations, where the non-relativistic limit was taken

with the magnetic field much larger than the electric field.
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2) The electric Galilean Maxwell equations, where the limit was taken with the electric

field much larger than the magnetic one.

One could also consider a third case:

3) The pulse/shockwave Galilean Maxwell equations, where the limit is taken with the

electric field and magnetic field large and of equal modulus.

This last case has also appeared in a recent study [18] of contractions of the Maxwell

algebra. The Maxwell algebra [2] is a tensorial extension of the Poincaré algebra of the form

[Pa, Pb] = Zab with a new anti-symmetric Lorentz tensor generator Zab that is associated

with a constant electro-magnetic field. This algebra and its realisations have been further

studied, see for example [4, 5].

The magnetic limit of the Maxwell algebra in D space-time dimensions can be obtained

by considering the generators

M̃ij = Mij , G̃i =
1

ω
Mi0 ,

H̃ = ωP0 , P̃i = Pi , (2.1)

Z̃ij = Zij , Z̃i = ωZ0i

and sending ω → ∞. In order to keep the notation light, we shall henceforth drop the

tildes on the generators after contraction. Our indexing notation above is such that the

spatial indices i run from 1 to D − 1. We refer to Mij as the spatial rotations, Gi as the

boost generators, H as the Hamiltonian, Pi as the spatial (transverse) translations, Zij as

the magnetic field and Zi as the electric field. The algebra obtained from the relativistic

Maxwell algebra after the magnetic contraction above is2

[Gi, Pj ] = 0 , [Mij , Pk] = 2δk[jPi] , [Gi, Zj ] = −Zij ,
[H,Gi] = Pi , [Mij , Gk] = 2δk[jGi] , [Pi, Pj ] = Zij , (2.2)

[H,Pi] = Zi , [Mij , Zk] = 2δk[jZi] , [Gk, Zij ] = 0 ,

[Gi, Gj ] = 0 , [Mij , Zkl] = −4δ[i[lZk]j] .

In the terminology of [18] this is the k = 1 contraction of the Maxwell algebra, corre-

sponding to a point particle. In section 4, we shall consider generalisations to extended

objects.

By contrast, the electric Maxwell algebra is (this differs by scaling the magnetic field

Zij by ω2 instead of ω0)

[Gi, Pj ] = 0 , [Mij , Pk] = 2δk[jPi] , [Gi, Zj ] = 0 ,

[H,Gi] = Pi , [Mij , Gk] = 2δk[jGi] , [Pi, Pj ] = 0 , (2.3)

[H,Pi] = Zi , [Mij , Zk] = 2δk[jZi] , [Gk, Zij ] = 2δk[iZj] ,

[Gi, Gj ] = 0 , [Mij , Zkl] = −4δ[i[lZk]j] .

2We are using the conventions [Mab,Mcd] = ηbcMad+. . . and [Mab, Pc] = ηbcPa−ηacPb for the relativistic

Poincaré algebra with mostly plus Minkowski metric as in previous work [5].
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Comparing equations (2.2) and (2.3) we see that the difference lies in the third columns of

equations. For instance in the electric limit (2.3) the large electric field Zi becomes boost-

invariant while it is the large magnetic field Zij that is boost-invariant in (2.2). Moreover,

the non-trivial commutator [Pi, Pj ] in (2.2) is inherited from the Maxwell algebra while it

is contracted to zero in the electric case.

We also note that the usual unextended Galilei algebra is obtained from either Maxwell

Galilei algebra by setting to zero the electro-magnetic generators Zi and Zij .

In the pulse case the algebra becomes (the scaling for Zij is with ω in this case, so that

the electric and magnetic fields scale in the same way) [18]

[Gi, Pj ] = 0 , [Mij , Pk] = 2δk[jPi] , [Gi, Zj ] = 0 ,

[H,Gi] = Pi , [Mij , Gk] = 2δk[jGi] , [Pi, Pj ] = 0 , (2.4)

[H,Pi] = Zi , [Mij , Zk] = 2δk[jZi] , [Gk, Zij ] = 0 ,

[Gi, Gj ] = 0 , [Mij , Zkl] = −4δ[i[lZk]j] .

Comparing this to (2.2) and (2.3) we see that both the large electric and magnetic field gen-

erators have become boost invariant and that the magnetic field generator is not generated

by the commutator of two translations anymore.

We note that the pulse algebra (2.4) can be obtained from a further contraction of

either (2.2) or (2.3) by scaling Zij appropriately such that the overall scaling of Zij and

Zi match.

2.2 Free Lie algebra embedding

Similar to the embedding of the Maxwell algebra in a free Lie algebra [5], one has to find

a consistent grading of the generators. In the Maxwell case one could take the grading

where the Lorentz generators Mab had a level ` = 0, the translation generators Pa were at

level ` = 1 and the tensor generator Zab then consistently at level ` = 2. As we shall see,

there is no unique choice that works for all non-relativistic limits once extensions are taken

into account.

While the ordinary Galilei algebra can be constructed as a contraction of the Poincaré

algebra using the first two lines of (2.1), it is not directly possible to construct a free Lie

algebra extension of the Galilei algebra from a contraction of the free Lie algebra extension

Maxwell∞ of the Poincaré algebra studied in [5]. This can already be anticipated from

investigations in [30, 64–67] where it was necessary to extend the Poincaré or Maxwell

algebra by additional abelian factors to obtain the correct contraction. We shall see below

that one can obtain the different non-relativistic algebras (2.2)–(2.4) by starting from

different free Lie algebras with different level assignments.

In view of extensions of the Galilei algebra studied in [3], different level assignments

appears more appropriate for embedding the various Galilean algebras in free Lie algebras.

For instance, we might want to allow a non-trivial (central)3 extension

[Gi, Gj ] = Sij = −Sji . (2.5)

3This extension is not strictly central in that Sij is a tensor under rotations but it commutes with all

generators besides the rotation generators.
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` = 0 ` = 1 ` = 2 ` = 3 ` = 4 · · ·

m = 0 Mij Gi Sij Yij,k + · · ·

m = 1 H Pi Bij , Zi,j + 2 + · · ·

m = 2 Zi + 2 · · ·

m = 3 · · ·

Table 1. The free Lie algebra extension of the magnetic Galilei Maxwell algebra, generated by Gi

and H (together with the rotation generators Mij) One of the two Young tableaux with two boxes

in one column at (`,m) = (4, 2) corresponds to the magnetic field generator Zij .

Leaving the boost generators at ` = 0 would also extend the ` = 0 algebra and thus not

all extensions are captured by the free Lie algebra. In other words, we only would like to

keep the rotation generator Mij at ` = 0 and move all other generators to positive levels.

The simplest choice is to put the Hamiltonian H and the boost generator Gi at ` = 1 with

all other level assignments induced by the structure of the algebra. This works well for

the magnetic case (2.2) while for the electric case (2.3) one has to be careful in the case

of the magnetic field Zij that is not produced by any commutator — its level is fixed by

the commutation relations (2.3). The fact that the spatial rotations are considered at level

zero is in agreement with the Eilenberg-Chevalley cohomology calculation done in [3].

An additional feature that we can use for the non-relativistic free Lie algebras is that

there are two ‘types’ of generators H and Gi at ` = 1 and we can introduce another

(abelian) label that discriminates them and produces a second grading on the free Lie

algebra. We shall call this label m and Gi is given m = 0 while H is given m = 1, so that

the m counts basically the number of zero (time) indices compared to the relativistic case.

2.2.1 Magnetic Galilei Maxwell algebra

As indicated above we consider the free Lie algebra based on the generators H and Gi
at ` = 1 that transform under the spatial rotation group. We also assign m = 0 to Gi
and m = 1 to H. The resulting free Lie algebra is shown in table 1 for any space-time

dimension D, where we also included the rotation generators Mij at ` = 0 and the Young

tableaux are those of gl(D − 1), i.e., they contain traces when viewed as tensors of the

rotation algebra so(D − 1).

The table can be obtained by the algorithm described in [5, 15, 68] and the level m

can be incorporated as an additional abelian charge. As the free Lie algebra is completely

generated by everything at ` = 1, this means that we could refer to ` as the principal

grading of the free Lie algebra such that ` counts how many commutators of the generating

elements have been taken.
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The free Lie algebra structure entails for example the following commutators of the

basic generators:

` = 1 : H , Gi . (2.6a)

` = 2 : Pi = [H,Gi] , Sij = [Gi, Gj ] . (2.6b)

` = 3 : Zi = [H,Pi] , Bij = [H,Sij ] ,

Zi,j +
1

2
Bij = [Gi, Pj ] , Yij,k = [Sij , Gk] . (2.6c)

` = 4 : Zij = [Pi, Pj ] , . . . (2.6d)

The notation we use here and elsewhere is that groups of indices enclosed between commas

are antisymmetric and belong to one column of a Young tableaux while a comma indicates

the beginning of a new column with the associated Young irreducibility constraint. The

translation to Young tableaux then is for instance

Zij ↔ , Zi,j ↔ , Yij,k ↔ . (2.7)

The corresponding tensor symmetries are therefore

Zij = −Zji , Zi,j = Zj,i , Yij,k = −Yji,k and the hook constraint Y[ij,k] = 0 . (2.8)

At ` = 4 in (2.6d) we have only shown the commutator of the translation generators P̃i
giving the magnetic field generator Zij = −Zji.

We note that the Jacobi identity fixes the anti-symmetric part in [Gi, Pj ] via[
G[i,Pj]

]
=
[
G[i,

[
H,Gj]

]]
=
[[
G[i,H

]
,Gj]

]
+[H, [Gi,Gj ]] =−

[
G[i,

[
H,Gj]

]]
+Bij . (2.9)

We can connect this free Lie algebra to the magnetic Galilei Maxwell algebra (2.2) by

setting Sij = Bij = Zi,j = Yij,k = 0 and keeping only the electric field generator Zi at ` = 3

and the magnetic field generator Zij at ` = 4. These restrictions at higher levels generate

an infinite-dimensional ideal and therefore we can take the quotient of the Galilei free Lie

algebra by this ideal. The commutation relations agree in the corresponding quotient. We

will further discuss such truncations in section 2.3.

2.2.2 Electric Galilei Maxwell algebra

The electric Galilei Maxwell algebra does not fit directly into the same framework. We

rather have to consider a different grading and even an enlarged set of generators of the

free Lie algebra. This can be seen by looking at equation (2.3) and noticing that the

magnetic field generators Zij does not arise on the right-hand side of any commutator.

Keeping Gi and H at level ` = 1 leads to ` = 3 for the electric field generator Zi as before.

Therefore the consistency of the last commutator in the third column of (2.3) requires

putting the magnetic field generators Zij at level ` = 2 — and it should appear as a new

and independent generator of the free Lie algebra. Such a construction is possible if ` is not

the principal grading as in the preceding section. Let us discuss this in a bit more generality.

– 7 –
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Let us denote by X = (X1, . . . , Xn) the generating elements of the free Lie algebra

f(X). The principal grading assigns level ` = 1 to each of them and keeps track of how

many times the generating elements X appear in a multiple commutator, i.e. level ` denotes

an `-fold commutator of the Xi. This is only one possibility of grading a free Lie algebra

with a given set of generators. The most general grading is obtained by keeping also track

of which of the Xi appears in a multiple commutator and this is captured for instance by

formula (A.8) in [5].

The electric Galilei Maxwell algebra (2.3) requires the use of a different grading by

assigning ` = 2 to the magnetic field generators Zij . In other words, we are considering

the free Lie algebra on the generators

X = {Gi , H︸ ︷︷ ︸
`=1

, Zij︸︷︷︸
`=2

} , (2.10)

where we have indicated the new ` level assignments. We denote the corresponding spaces

of the generating set of the free Lie algebra by

x1 =
〈
Gi, H̃

〉
x2 = 〈Zij〉 . (2.11)

The free Lie algebra f(X) then still is graded as f(X) =
⊕

`>0 f` but the recursive

algorithm obtained from specialising (A.8) in [5] is different. It becomes

f1 = x1 ,

f2 = ∧2f1 ⊕ x2 ,

f3 = f2 ⊗ f1 	 ∧3f1 ,
f4 = (f3 ⊗ f1 ⊕ ∧2f2)	 f2 ⊗ ∧2f1 ⊕ ∧4f1 ,
f5 = (f1 ⊗ f4 ⊕ f2 ⊗ f3)	 (f3 ⊗ ∧2f1 ⊕ f1 ⊗ ∧2f2)⊕ f2 ⊗ ∧3f1 	 ∧5f1 , (2.12)

where the difference compared to the usual recursive algorithm is that now we have an

extra piece from the additional generators Zij contained in x2 contributing to f2.

Applying this formula, we obtain table 2 where we have also introduced the additional

m-degree that distinguishes H and Gi and we have assigned m-degree m = 2 to Zij . Note

that at level (`,m) = (3, 2) we have two vectors: one associated to the Young tableau

with one box and one associated to the trace part of the hook when decomposed into

representations of so(D−1). If we want to recover the electric generator, we should impose

[Gk, Zij ]− 2δk[i[H,Pj]] = 0 (2.13)

in such a way we only have one vector that we can call Zi. In this way we get the electric

Galilei Maxwell algebra, if we also factor out the ideal generated by Sij , everything else at

` = 3 and [Zij , Zkl] at (`,m) = (4, 4).

The extended Maxwell exotic Bargmann algebra was already investigated in [30] inD =

2 + 1 dimensions and our analysis is in agreement with the results there when specialising

to D = 2 + 1, see eq. (3.25) in [30]. In this case one can also simplify the calculation by

using Zij = εijZ where Z is only a (pseudo-)scalar.
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` = 0 ` = 1 ` = 2 ` = 3 ` = 4 · · ·

m = 0 Mij Gi Sij Yij,k + · · ·

m = 1 H Pi Bij , Zi,j + 2 + · · ·

m = 2 Zij + + + 2 + + + 2 + · · ·

m = 3 + 2 + 2 · · ·

m = 4 + · · ·

Table 2. The free Lie algebra extension of the electric Maxwell Galilei algebra, generated by Gi,

H and Zij (together with the rotation generators Mij). The electric field generator Zi corresponds

to a linear combination of the single box and the traceless part of the hook Young tableau at

(`,m) = (3, 2).

2.2.3 Pulse Galilei Maxwell algebra

The pulse Galilei Maxwell algebra in (2.4) can also be obtained from the same free Lie

algebra as the electric Galilei Maxwell algebra, generated by Gi, H and Zij , by factoring

out the ideal generated by Sij , everything at ` = 3 and [Zij , Zkl] at (`,m) = (4, 4). One can

see that it is better to include Zij as an independent generator as it does not appear on the

right-hand side of any commutator in (2.4). In addition it commutes with all generators

of (2.4) except for the rotation generators.

2.3 Truncations

By factoring out various ideals of the Galilei free Lie algebras one can obtain as quotients

the ordinary Galilei algebra, the electric and magnetic Galilei Maxwell algebras, but also

other extensions of the Galilei algebra that have appeared in the literature. If we set

Sij = 0, then we have to set Yij,k = Bij = 0 as well, since these generators can be reached

by acting on Sij with Gi and H, respectively. Furthermore, not only Yij,k has to be set to

zero, but also any other generator at ` ≥ 2 and m = 0. In the magnetic case (the free Lie

algebra generated by only Gi and H) we are then left with Zi,j and Zi at ` = 3. Keeping

only Zi and setting Zi,j to zero gives the magnetic Galilei Maxwell algebra as we have

discussed. Keeping instead only the trace of Zi,j and setting Zi to zero gives the central

Bargmann extension of the Galilei algebra.

We now consider the possibility of keeping Sij in the magnetic case. If we then still

set to zero everything but the traces Bi ∼ δjkYij,k and N ∼ δijZi,j at ` = 3 then we get

an extension of the Bargmann algebra, where the subalgebra at m = 0 alternates between

two- and one-forms: Mij , Gi, Sij , Bi for ` = 0, 1, 2, 3. Similarly, the m = 1 subspace

alternates between singlets and one-forms: H, Pi, N for ` = 1, 2, 3. We can continue the

alternating sequence at m = 1 to ` = 4 by including Ti = [N,Gi] and setting everything

– 9 –
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`= 0 `= 1 `= 2 `= 3 `= 4 `= 5 · · ·

m= 0 Mij Gi Sij Bi Zij · · · · · ·

m= 1 H Pi N Ti Y · · ·

n= 0 n= 1 n= 2 n= 3 n= 4

Table 3. The extension of the algebra in [20] with one more diagonal level [21].

`= 0 `= 1 `= 2 `= 3 `= 4 `= 5 · · ·

m= 0 Jij
(0) Bi

(0) Jij
(1) Bi

(1) Jij
(2) · · · · · ·

m= 1 H(0) P
(0)
i H(1) P

(1)
i H(2) · · ·

Jab0 Pa1 Jab2 Pa3 Jab4 Pa5 · · ·

Table 4. The generators named as in [22] in the first two rows. The generators of the affine algebra

are given in the last row, where the superscript is just the level `, and decomposes into those in the

rows above under the so(D − 1) subalgebra of so(1, D − 1).

else at ` = 4 to zero, as well as everything at higher levels `. We then obtain a Lie algebra

with the following nonzero commutation relations (not involving rotations):

[H,Gi] = Pi , (2.14a)

[Pi, Gj ] = δijN , (2.14b)

[N,Gi] = Ti , (2.14c)

[H,Bi] = Ti , (2.14d)

[Sij , Pk] = 2δk[iTj] , (2.14e)

[Gi, Gj ] = −Sij , (2.14f)

[Sij , Gk] = 2δk[iBj] . (2.14g)

This Lie algebra has recently been considered as underlying Newton gravity in the same

way as the Poincaré algebra underlies general relativity [20]. By subsequently factoring out

the appropriate ideals, this alternating pattern can be continued to an arbitrary number

of diagonal levels, and also to infinity. The algebra in [20] was extended to (`,m) = (4, 0)

and (`,m) = (5, 1) in [21] (for D = 3, in order to construct a corresponding Chern-

Simons action) and to infinity in [22]. These algebras are shown in table 3, where we have

introduced a new “diagonal” grading, given by n = `−m, and in table 4.
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We can thus obtain the algebra in [22] by factoring out infinitely many ideals of the free

Lie algebra extension of the Galilei Maxwell algebra, but these ideals have to be determined

recursively level by level such that we are left with only the desired generators. In the next

section we will see that the algebra can also be obtained more directly by factoring out

only one ideal, corresponding to one of the Serre relations in an affine Kac-Moody algebra,

and then performing a contraction.

3 Construction from affine Kac-Moody algebras

Consider the free Lie algebra where the generators Pa are vectors under so(1, D − 1). As

shown in [5] this gives an infinite-dimensional extension of the (relativistic) Maxwell algebra

in D dimensions. From the basic generators Pa at level ` = 1 we get

[Pa,Pb] = Zab , [Zab,Pc] = Yab,c (3.1)

at level ` = 2 and ` = 3, respectively. The generator Zab is antisymmetric and Yab,c has

the hook symmetry under gl(D). By splitting the indices according to a = (0, i) into time

and space we get the free Lie algebra extension of the magnetic Galilei Maxwell algebra

above generated by the so(D − 1) vectors Gi and scalars H. From this point of view the

level m counts how many times the index 0 appears in the tensors. At the first three levels

we have explicitly

` = 1 : H ↔ P0 , Gi ↔ Pi (3.2a)

` = 2 : Pi ↔ Z0i = −Zi0 , Sij ↔ Zij (3.2b)

` = 3 : Zi ↔ Yi0,0 , Bij ↔ −Yij,0 ,
Zi,j ↔ −Y0(i,j) , Yij,k ↔ Yij,k . (3.2c)

Note that Y0[i,j] corresponds to 1
2Bij because of the Young irreducibility of Yab,c, see (2.9).

As we will see, by factoring out the ideal generated by ηbcYab,c = η00Ya0,0 +ηijYai,j we

get, together with the rotation generators Mij at ` = 0, a Lie algebra which has the same

structure as the one in [22], shown in table 4. However, as we will see, the commutation

relations will be different, until we also perform a contraction. This is a subalgebra of a

(twisted or untwisted) affine Lie algebra which is an extension of so(1, D − 1). In order to

describe it we first need to consider the cases of odd and even D separately.

The Lorentz algebra so(1, D − 1) is a real form of Br if D is odd, D − 1 = 2r, and of

Dr if D is even, D − 1 = 2r − 1. Both Br and Dr can be extended to affine Lie algebras

by adding a node 0 to the Dynkin diagram, attached to node 1 with a double line pointing

outwards, as shown in figure 1. The resulting affine Lie algebra is here denoted B
(1)
r if

D = 2r and D
(2)
r+1 if D − 1 = 2r, following the standard terminology [69]. The algebra

D
(2)
r+1 is a twisted affine algebra, whereas B

(1)
r is untwisted [69].4

4The untwisted affine algebra B
(1)
r is built from the horizontal subalgebra Br that is obtained by removing

node r from its Dynkin diagram and considering the associated loop algebra, together with a central

extension and derivation element. The twisted affine algebra D
(2)
r+1 is constructed from the loop algebra of

maps from the circle into the algebra Dr+1 that differ by an application of the order-2 diagram automorphism

exchanging the two ‘spinor nodes’ when going around the circle. The subalgebra of the ‘horizontal’ Dr+1

that is invariant under this automorphism is Br and its diagram is obtained by removing node r (or 0) from

the diagram of D
(2)
r+1.
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0 1 r − 1

r

0 1 r

Figure 1. Dynkin diagrams of B
(1)
r (upper) and D

(2)
r+1 (lower).

The Cartan matrix is

Aij =



2 −2 0 · · · 0 0 0

−1 2 −1 · · · 0 0 0

0 −1 2 · · · 0 0 0
...

...
...

. . .
...

...
...

0 0 0 · · · 2 −1 −1

0 0 0 · · · −1 2 0

0 0 0 · · · −1 0 2


(3.3)

for Br
(1) and

Aij =



2 −2 0 · · · 0 0 0

−1 2 −1 · · · 0 0 0

0 −1 2 · · · 0 0 0
...

...
...

. . .
...

...
...

0 0 0 · · · 2 −1 0

0 0 0 · · · −1 2 −1

0 0 0 · · · 0 −2 2


(3.4)

for Dr+1
(2). Here, i, j = 0, 1, . . . , r. The affine algebra (either Br

(1) or Dr+1
(2)) is generated

by 3(r + 1) elements ei, fi, hi modulo the Chevalley-Serre relations

[hi, ej ] = Aijej , [hi, fj ] = −Aijfj , [ei, fj ] = δijhj , [hi, hj ] = 0 , (3.5)

(ad ei)
1−Aij (ej) = (ad fi)

1−Aij (fj) = 0 . (3.6)

It can be given a Z-grading where the level ` is the number of e0 generators if ` ≥ 0

(and otherwise −` is the number of f0 generators). We are here interested in the (Borel)

subalgebra generated by all generators but f0, which thus only has non-negative levels `.

The Serre relations (3.6) associated to the pair of nodes 0 and 1 (in both affine algebras)

are

[e1, [e1, e0]] = 0 , [e0, [e0, [e0, e1]]] = 0 . (3.7)

However, [e1, e0] and [e0, [e0, e1]] are nonzero elements at level 1 and 2, respectively. When

we decompose the algebra with respect to node 0 we have e0 as a lowest weight vector
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at level 1 since [fi, e0] = 0 for i = 1, 2, . . . , r and the associated r Dynkin labels (of the

corresponding highest weight representation) are [1, 0, 0, . . . , 0] since

[h1, e0] = −1 , [h2, e0] = [h3, e0] = · · · = [hr, e0] = 0 . (3.8)

We then get the algebra from the free Lie algebra generated by this representation by

factoring out the ideal generated by the Serre relation [e0, [e0, [e0, e1]]] = 0. Since it appears

at level 3 we have the full content of the free Lie algebra at level 2, that is, [0, 1, 0, . . . , 0] (the

antisymmetric product of two [1, 0, 0, . . . , 0]’s). The corresponding lowest weight vector is

[e0, [e0, e1]]. The Dynkin labels associated to [e0, [e0, [e0, e1]]] = 0 is [1, 1, 0, . . . , 0], so this

representation has to be removed from the content of the free Lie algebra at level 3, and also

all representations at higher levels in the ideal that it generates. Thus only [1, 0, 0, . . . , 0]

remains at level 3, and it turns out that this pattern of alternating [1, 0, 0, . . . , 0] and

[0, 1, 0, . . . , 0] continues to all levels. This can be checked with the SimpLie software [70].

We can thus introduce generators Jab` at all even levels ` and Pa` at all odd levels `. We

get the commutation relations

[Jab2k,Jcd2k
′
] = 4η[c[bJa]d]2(k+k

′) , (3.9a)

[Jab2k,Pc2k
′+1] = 2ηc[bPa]2(k+k

′)+1 , (3.9b)

[Pa2k+1,Pb2k
′+1] = Jab2(k+k

′+1) , (3.9c)

where the superscript is the level `.

We note that this subalgebra of the affine Kac-Moody algebra is an infinite-dimensional

extension of the Bk algebras obtained by Lie algebra expansions in [9] and thus it could be

denoted B∞. For a given k, the finite-dimensional Lie algebra Bk is obtained by factoring

out the ideal generated by everything at level ` = k − 1. In D = 3 space-time dimensions

infinite extensions of the Bk algebras have also been considered in [71].

Next we decompose the so(1, D − 1) tensors into so(D − 1) tensors by setting

Jij
(k) = Jij2k , Bi

(k) = Pi2k+1 ,

Pi
(k−1) = J0i2k , H(k) = P02k+1 . (3.10)

The algebra (3.9) in this basis of generalized boost, spatial momenta and Hamiltonian

generators becomes

[Jij
(m), Jkl

(n)] = 4δ[k[jJi]l]
(m+n) , (3.11a)

[Jij
(m), H(n)] = 0 , (3.11b)

[Jij
(m), Bk

(n)] = 2δk[jBi]
(m+n) , (3.11c)

[Jij
(m), Pk

(n)] = 2δk[jPi]
(m+n) , (3.11d)

[H(m), Bi
(n)] = Pi

(m+n) , (3.11e)

[Pi
(m), Bj

(n)] = δijH
(m+n+1) , (3.11f)

[Bi
(m), Bj

(n)] = Jij
(m+n+1) (3.11g)

[H(m), Pi
(n)] = −Bi(m+n+1) (3.11h)

[Pi
(m), Pj

(n)] = Jij
(m+n+2), (3.11i)

[H(m), H(n)] = 0 . (3.11j)
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On top of the Z-grading by ` inherited from (3.9), we see that this algebra admits a Z2-

grading, where we assign (as before) Z2-degree m = 0 to those generators of (3.10) that

do not carry a 0 space-time index (in the first line) while we assign m = 1 to those that

do (in the second line), see table 4. The Z2-grading means that the commutator of two

generators at m = 1 gives a generator at m = 0 (not something at m = 2, which would

have to be zero, since there are only generators at m = 0 and m = 1).

This algebra generalizes the Poincaré algebra. In order to turn it into a non-relativistic

algebra we perform the contraction

J̃ij = Jij , B̃i = Bi ,

P̃i =
1

ω
Pi , H̃ =

1

ω
H , (3.12)

where we have suppressed the superscript since it does not play any role. In the limit

ω → ∞, the commutators (3.11h) and (3.11i) will then vanish, and we end up with the

commutation relations (1) in [22] (up to a minus sign in the last equation there, which

is (3.11g) here, because of different conventions for the Lorentz algebra in [22]). Note that

this converts the (Z × Z2)-grading to a (Z × Z)-grading as now the commutators leading

to m = 2 vanish and thus the grading can be extended trivially to Z.

The generators obtained in this process are exactly the ones shown in table 3. We

note that the diagonal n-level shown rearranges the generators into repeating copies of

V0 = 〈Mij , H〉 and V1 = 〈Gi, Pi〉 and the expansion in n is precisely the Lie algebra

expansion used in [31]. Thus the Lie algebra expansion method can also be understood in

terms of (affine) Kac-Moody algebras by adding nodes to the initial symmetry algebras as

explained in this section. Furthermore, the algebras of [21, 22, 31] can be understood as

contractions of the algebras Bk of [9] in light of the comments below (3.9).

4 String Galilei algebra

There is a natural extension of the Galilei algebra that is called the string Galilei alge-

bra [37, 38] see also [18]. In the same way that the Galilei algebra has a special direction 0

corresponding to the longitudinal direction of the world-line of a particle, one can consider

the (p+1)-dimensional world-volume of an extended p-dimensional object and treat all the

longitudinal directions differently from the transverse ones.5

The simplest case would be p = 1 corresponding to a string, but higher branes are

also possible. We use the notation that α = 0, . . . , p denotes the longitudinal indices

and continue to use i for the transverse directions. The relativistic Lorentz and translation

generators decompose under SO(1, D−1)→ SO(1, p)×SO(D−1−p) with this convention as

Mab →Mij , Giα, Mαβ ,

Pa → Pi, Hα . (4.1)

5In general, there are p + 1 possible contractions of the relativistic algebra [39]. Here, we consider the

most symmetric case among the longitudinal variables by scaling them all in the same way.
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`= 0 `= 1 `= 2 `= 3 · · ·

m= 0
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,

)
+
(

,
) (

,
)

+
(

,
)

+
(

,
)

+
(

,
)

+
(

,
) · · ·

m= 1 (•, ) ( , )+
(

,
) (

,
)

+2×
(
,
)

+
(
,
)

+
(

,
)

+2×
(

,
)

+( , )

· · ·

m= 2
(
•,

) (
,
)

+( , )+2×
(
,
)

· · ·

m= 3
(
•,

)
· · ·

Table 5. The free Lie algebra for the ‘magnetic’ string Galilei algebra. As objects now transform

under SO(D − p − 1) × SO(1, p) we list the representations as pairs of Young tableaux (of the

corresponding linear group). The first entry in each pair refers to the transverse rotation group.

The new feature compared to the point particle is now the rotation generator Mαβ in the

world-volume and that the Hamiltonian H is replaced by a family of ‘Hamiltonians’ Hα with

a similar additional index for the boosts Giα. In the above equation we already have made

the transition to the non-relativistic limit by performing a contraction analogous to (2.1):

M̃ij = Mij , M̃αβ = Mαβ , G̃iα =
1

ω
Miα ,

H̃α = ωPα , P̃i = Pi . (4.2)

The non-trivial algebra of these generators obtained by the contraction of the Poincaré

algebra is

[Hα, Giβ ] = −ηαβPi , [Mij , Gkα] = −2δk[iGj]α , [Mαβ , Giγ ] = 2ηγ[αGiβ] . (4.3)

Here, ηαβ = (−+ · · ·+) is the flat Minkowski metric along the world-volume and δij is the

flat Euclidean metric in the transverse space.

We can construct a free Lie algebra extension of this that will generalise the magnetic

Galilei Maxwell algebra (2.2) by taking as the generating set the Hamiltonians Hα and the

boosts Giα on ` = 1. This produces table 5.

In that table, we have only shown things up to level ` = 2, but the structure can be

easily generalised. The corresponding commutation in the free Lie algebra going to ` = 2 are

m = 0 : [Giα, Gjβ ] = Sijα,β + Si,jαβ , (4.4)

m = 1 : [Hα, Giβ ] = Piα,β + Piαβ , (4.5)

m = 2 : [Hα, Hβ ] = Wαβ . (4.6)

We use the comma labelling convention for Young tableaux for both of the groups

SO(D − p− 1) and SO(1, p). The usual string Galilei momentum generator Pi is contained
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in these commutation relations as the trace Pi = − 1
p+1η

αβPiα,β . Moreover, the transverse

trace of Si,jαβ gives Zαβ = − 1
D−p−1δ

ijSi,jαβ which is an extension that appears as

[Giα, Gjβ ] = δijZαβ + . . . (4.7)

in the commutator of two boost generators and has been studied before in the litera-

ture [37, 38]. The generator Zαβ appears at (`,m) = (2, 0) in the free Lie algebra.

For level ` = 3 we do not present complete commutation relations but only some that

are relevant for comparing with the usual string Galilei algebra and its Maxwell extensions.

Specifically, we note that

[Pi, Gjα] = δijZα , [Hα, Zβγ ] = ηα[βZγ] + . . . . (4.8)

The new generator Zα arises at (`,m) = (3, 1) in the free Lie algebra and has appeared

in the literature before in a different context [37, 38]. In fact, there are three different

possible occurrences of such a tensor structure at (`,m) = (3, 1) by taking traces over the

symmetric transverse indices and traces of the longitudinal representations (that is either

a hook or a completely symmetric representation).

In summary, we see that the free Lie algebra approach has more than ample room

to accommodate the different non-relativistic kinematic algebras that have appeared in a

particle or brane context.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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(première partie), Annales Sci. École Norm. Sup. 40 (1923) 325.
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