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Abstract: Candidate counterterms break E7 type U-duality symmetry of N ≥ 5 super-

gravity theories in four dimensions [1, 2]. A proposal was made in [3] to restore it, starting

with a double set of vector fields and argued that a supersymmetric extension of their pro-

posal should exist. We show that the extra vectors, needed for the deformation, can not be

auxiliary fields in an eventual off-shell formulation of N ≥ 5 supergravity, assuming that

such a formulation exists. Furthermore we show that these extra vector fields can not be

dynamical either since that changes the unitary supermultiplets underlying these theories

and requires one to go beyond the standard framework of extended simple supergravities.

To show this we list all relevant unitary conformal supermultiplets of SU(2, 2|N + n). We

find that doubling of vectors consistent with linearized supersymmetry requires to change

the number of scalars, violating the coset structure of the theory, and also to add a finite

number of higher spin fields, which do not admit consistent couplings to theories with spins

≤ 2. Thus, the proposed duality restoring deformation along the lines of [3] can not be

implemented within the standard framework of extended supergravity theories. We argue

therefore that, in the absence of anomalies, E7 type duality together with supersymmetry,

might protect N ≥ 5 supergravity from UV divergences, in particular, N = 5 supergravity

at 4 loops in d=4.
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1 Introduction

The 3-loop and 4-loop UV finiteness [4, 5] of N = 8 supergravity in 4d [6, 7] was explained

in various ways, either using the absence of candidate counterterms in the light-cone for-

malism [8, 9] or in a Lorentz covariant case, based on E7(7) duality symmetry and su-

persymmetry in [10–12] and in [1, 2, 13]. These explanations were based on the expected

structure of the Lorentz covariant candidate counterterms [14–16] and supergravity duality

symmetry [6, 7, 17].

Most relevant to the current work is the observation that all known counterterms,

candidates for UV divergences in N = 8 supergravity, would break the Noether-Gaillard-

Zumino E7(7) deformed duality current conservation [1, 2]. However, Bossard and Nicolai

(BN) suggested in [3] that it is possible to fix the problem pointed out in [1, 2] by deforming

the classical twisted self-duality constraint in the presence of higher derivative terms in

the action.

In the classical maximal supergravity theory with E7(7) symmetry there are 28 inde-

pendent Maxwell field strengths as a consequence of supersymmetric twisted self-duality

constraint [6, 7]. To identify a deformed constraint according to BN, one has to find a mani-

festly duality invariant higher derivative supersymmetric invariant which requires doubling

of the Maxwell field strengths and their duals, i.e. two sets transforming in 28 and 28 of
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the R-symmetry group SU(8) in N = 8 supergravity. Examples of such deformation of

the classical twisted self-duality constraint were given in [3] for some non-supersymmetric

models. The proposal in [3] was further developed in [18–20] where covariant procedures

for perturbative non-linear deformations of duality-invariant theories were established to

all orders in the deformation parameter. The starting point requires the existence of some

‘Source of Deformation’ (SoD). Various examples of SoD’s were given in [18–20] which

resulted in building novel models with U(1) duality symmetry.

It was actually known long before the BN supergravity proposal [3], that perturbative

non-linear deformations of U(1) duality-invariant theories with global supersymmetry are

available, see for example [21–26] where the review of nonlinear selfduality and supersym-

metry is given, and many aspects of related problems were studied much earlier.

More recently a deformation proposal was presented in [27] for N ≥ 5 supergravity,

using a symplectic formalism of [28] that was developed for studies of black hole attractors.

A closed form of the bosonic deformed action, exact to all orders in deformation parameter

was produced for an original choice of the SoD in [3]. The issue of a supersymmetrization

of such a SoD remains unclear.

Using the first order formalism with manifest E7 duality symmetry an explanation

of the UV finiteness at L=4, N = 5, discovered in [29], was proposed in [30]. Assuming

absence of duality-supersymmetry anomalies, it was argued in [30] that these symmetries

might protect N ≥ 5 at higher loops.1 Here we will reach the same conclusion based on

supersymmetry in the framework of the second order formalism, in particular with regard

to UV finiteness at L=4, N = 5.

It was assumed in BN proposal in [3] that the supersymmetric version of the proposal

for SoD is available, and that all other symmetries of the theory, local supersymmetry

and general covariance are respected. The existence of the supersymmetric SoD in N = 8

supergravity was further investigated in [32] and it was concluded there that its existence

with 56 independent vectors contradicts the N = 8 superspace construction [33, 34], and

the relevant solutions of the superspace Bianchi identities. It was suggested in [32] that

the existing N = 8 superspace has to be deformed to admit the SoD. The superspace

deformation is very complicated and things remained inconclusive.

The supersymmetry issue was investigated in [35] at the linearized level, using the

fact that the linearized N = 8 supergravity is based on the representations of SU(2, 2|8)

superconformal algebra. More specifically it was shown long ago that the fields of N = 8

supergravity can be fitted into the CPT self-conjugate doubleton supermultiplet of the

N = 8 superconformal algebra SU(2, 2|8) [36]. Motivated by the work of [12] on the

study of counterterms of maximal supergravity using this doubleton supermultiplet it was

reformulated in terms of constrained superfields in [37]. The result of the investigation

of [35] was that it is not possible to deform the maximal supergravity to restore E7(7)

duality, while maintaining both general covariance and N = 8 supersymmetry, as was

proposed in [3], if the required extra vector fields are assumed to be dynamical. Deformation

1It was shown in [31] that E7 duality symmetry can be maintained at all orders of perturbation theory

using a non-Lorentz covariant formulation of the theory. See the discussion section on this point.
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of N = 8 supergravity with extra dynamical vector fields along the lines of BN proposal

necessarily involves higher spins and multiple gravitons and hence requires one to go beyond

the standard framework of supergravity.

More recently, a significant progress was achieved in understanding the absence of

anomalies in one-loop amplitudes in N ≥ 5 supergravities [38]. The new analysis in [38]

is based on a classification of all linearized chiral superfields in N ≥ 5 supergravities, in

addition to constrained ones which were known for a long time [14–16]. It became possible

to explain the UV finiteness of L = 3 = N − 2 in N = 5 theory [39], using the soft scalar

limits of amplitudes, as it was done for L ≤ 6 = N − 2 in N = 8 case in [12], but not in

the case of L = 4 = N − 1, N = 5 theory. This is analogous to the case L = 7 = N − 1 in

N = 8 theory, where the soft scalar limit analysis was not conclusive.

Here we will first revisit the work of [35] and extend and apply the analysis given

there to all supergravities with N ≥ 5. The BN proposal required that 1) the number

of vectors is doubled to make G duality manifest, but 2) scalars have to preserve the

original GH coset space. As was shown for the N = 8 supergravity in [35] we find that

the doubling of vectors requires the introduction of higher spins and multiple gravitons for

all N ≥ 5 supergravities if the extra vector fields are dynamical. Furthermore we show

that this doubling process with extra dynamical vectors necessarily introduces additional

scalar fields which changes the coset G
H . This means that the BN proposal with extra

dynamical vector fields can not be made supersymmetric within the standard framework

of supergravity with a single graviton.

This raises the question whether the BN proposal can be consistent with supersym-

metry if the extra vector fields are not dynamical. In particular, one may ask whether

one can use auxiliary vector fields in an off-shell formulation of N ≥ 5 supergravities to

drive the deformation. To date no off-shell formulations of N ≥ 5 supergravities have been

found. However N ≥ 5 supergravities admit consistent truncations to N = 2 supergravity

coupled to vector multiplets whose off-shell formulations are known. Using this fact we

will also show that the extra vector fields needed for the deformation can not be identified

with some auxiliary fields in a possible off-shell formulation of N ≥ 5 supergravities.

The plan of the paper is the following. In section 2 we review the BN proposal about the

deformation of the supergravity action based on a SoD. In section 3, we study the question

whether the extra vector fields needed for the deformation can be identifed with auxiliary

fields in potential off-shell formulation of N ≥ 5 supergravity theories and argue these extra

vector fields can not be identified with some of the auxiliary fields. In section 4 we explain

how using the unitary representations of the conformal superalgebras SU(2, 2|N+n) we can

list all possible supermultiplets which have a chance to support the BN proposal with extra

dynamical vectors. We therefore will list all possibilities to double the number of physical

vectors such that the linearized approximation preserves the SU(2, 2|N ) superconformal

symmetry. For N = 8 it was done in [35] but here we will pay attention to the number of

scalars in supersymmetric theories with a double number of vectors and extend the analysis

to the case of N = 6, 5. In all cases we will have two options. In the first case, in section 5

we do not enlarge the R-symmetry group and try to find all possible supermultiplets which

will allow us to double the vectors within SU(2, 2|N ) for the N -extended supergravity. In
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the second case in section 6 we enlarge the R-symmetry group, corresponding to increase in

the number of Q,S supersymmetries, and study multiplets of SU(2, 2|N +n) superalgebra

with a consequent decomposition into SU(N )× SU(n). We also present the corresponding

supermultiplets as linearized superfields, in section 7. In the appendix we discuss the

related issues for N = 2 supergravity with matter.

We conclude that in all cases, when doubling vectors, we either have to double the

scalars in their required SU(N ) representation, or we have to add SU(N ) singlet scalars.

These changes in the number of scalar fields are incompatible with duality symmetry since

the coset space structure is not preserved. Also, we always get some fields in these super-

multiplets with higher spins s > 2, which makes the coupling to gravity questionable [35].

Furthermore they contain multiple gravitons whose interacting theories have been shown

to be inconsistent [40]. Therefore the proposal of [3] to restore duality symmetry, broken

by UV divergence, can not be made consistent with supersymmetry within the standard

supergravity framework. In the absence of any other proposal to do it, we conclude that

the UV finiteness in N = 5 supergravity at 4 loops may be explained by the fact that

UV divergence breaks duality symmetry [1, 2]. Whether a BN type proposal [3] to restore

duality symmetry in presence of UV divergences can be made consistent with supersym-

metry beyond the standard framework of supergravity, such as string theory or higher spin

theories is an open problem.

2 Source of deformation proposal

Here we explain why a doubling of vectors is required in the SoD according to BN proposal

in N = 8, and we generalize it to the case of N ≥ 5. So we will need 56,32,20 instead

of 28,16,10 physical vectors for N = 8, 6, 5 respectively. We will also explain here that

SoD according to BN proposal has to depend on original scalars forming a coset space
G
H . So, we need to confirm that the numbers of scalars remains equal to the number of

physical scalars, coordinates of a coset space GH , and moreover, they must transform in the

representations of the H group as to represent the coordinates of the coset space G
H . It

means, we need to recover after doubling of vectors, the required number of scalars is: 70

in SU(8), 15 and 15 in SU(6) and 5 and 5 in SU(5) for N = 8, 6, 5 respectively.

Using notation of [27, 28] we introduce a 2nv-dimensional real symplectic vector of

field strengths F and a symplectic section VAB describing the scalars of the theory

F ≡

(
FΛ

GΛ

)
, VAB ≡

(
fΛ

AB

hΛAB

)
= −VBA . (2.1)

F transforms in the 56,32,20 of the corresponding duality groups of type E7, namely,

E7(7), SO∗(12) and SU(1, 5) for N = 8, 6, 5 respectively [41, 42]. The scalars of the theory

are coordinates of the GH coset space where G is type E7 group and H is an isotropy group,

SU(8), SU(6)×U(1), SU(5)×U(1) for N = 8, 6, 5 respectively and where the pair of indices

A,B = 1, · · · ,N are raised and lowered by complex conjugation. The period matrix is

hΛAB = NΛΣf
Σ
AB. The graviphoton field strengths are given by the symplectic invariant,

TAB ≡ 〈VAB | F〉 ≡ FΛVΛAB −FΛVΛ
AB = −TBA . (2.2)
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Graviphotons are invariants of the global U-duality group and transform covariantly under

compensating SU(N ) transformations. In classical N ≥ 5 supergravity, in the absence of

fermions, there is a linear twisted self-duality constraint:

TAB
+ = hΛAB F

+Λ
µν − fΛ

AB G
+
µν Λ = 0 . (2.3)

Here self- and anti-selfdual parts of T are TAB
± ≡ 〈VAB | F±〉, T ∗±AB ≡ 〈V

AB | F±〉.
The constraint (2.3) results in the relation between G and F , so that only one of them is

independent

G+ = NF+ , G− = NF− . (2.4)

This gives a correct amount of the physical degrees of freedom for vector fields, 28,16,10

and is one-half of the symplectic representation of the E7-type symmetry for E7(7), SO∗(12)

and SU(1, 5) duality, respectively.

When the candidate UV divergences are added to the classical action, bosonic linear

twisted self-duality constraint (2.3) is deformed, following [3]. The new constraint can be

given in an H-covariant form as proposed in [18–20]

TAB
+def ≡ TAB+ − λδI(T−, T ∗+)

δT ∗+AB
= 0 . (2.5)

Here the source of deformation

I(T−, T ∗+) (2.6)

depends on a doublet of vector fields F shown in eq. (2.1) where there is no relation between

the upper and lower components of a doublet, F and G as given for example in the classical

case in eq. (2.4). H covariance of the constraint in (2.5) means covariance in an isotropy

group, SU(8),U(6),U(5) for N = 8, 6, 5 respectively.

The doubling of independent vectors versus physical ones is a cornerstone in the E7(7)

duality covariant form of the deformation in N = 8 theory proposed in [3]. In their notation

a duality doublet Fm consists of two sets of 28 Maxwell field strengths

Fm ≡ (F a, F ā) , a = 1, . . . , 28 ā = 1, . . . , 28 (2.7)

In case of N = 8 this equation is manifestly E7(7) invariant if the SoD is a duality invari-

ant functional depending on a duality doublet (2.7) where the two sets of 28 vectors are

independent. The vector part of SoD is

I(Fm) = I[F a, F ā] . (2.8)

The proposal for the vector part of the deformed twisted self-duality constraint in notation

of [3] is given by

Fm + JmnF̃
n = Gmn

δI
δFn

+ Ωmn δI
δF̃n

, m = 1, . . . , 56 (2.9)

Here for N = 8 supergravity Gmn is a scalar dependent symmetric metric Gmn ∈ E7(7) ⊂
Sp(56,R). Jmn is a ‘complex structure’, Ωmn is a symplectic form and F̃µν = 1

2
√
−g εµν

ρσFρσ

– 5 –
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is dual to F . The classical twisted self-duality constraint, in the absence of deformation, is

Fm+JmnF̃
n = 0, which is a relation expressing one of the 28 via the other, so that the the-

ory has only one set of 28 vectors in agreement with unitarity. This is an analog of eq. (2.3)

where the constraint is SU(8) covariant, E7(7) invariant. To deform it according to (2.9)

the SoD action I[F a, F ā] has to be differentiated over the set of 56 independent vectors.

The proposal in [3] requires that the number of vectors is doubled but the number

of scalars remains the same, in general, since the coset space GH is the same. However, in

practice when the proof of consistency of the proposal is given order by order in deformation

in appendix of [3], it is given only for vanishing scalars.

3 Off-shell N ≥ 5 supersymmetry?

It is generally believed that any off-shell formulation of N ≥ 5 supergravity, if it exists,

requires an infinite number of auxiliary fields. Assuming that an off-shell formulation of

N ≥ 5 supergravity exists one may then pose the question whether the second set of vector

fields required by the BN proposal, which form a symplectic doublet, could be identified

with some of the auxiliary vector fields. If that were the case, when counting physical

degrees of freedom in on shell multiplets, we would not have to double the set of dynamical

vector fields in agreement with supersymmetry. We will now present arguments against

such a possibility, based on all known supersymmetry constructions.

N = 8 supergravity can be truncated consistently to an N = 2 Maxwell-Einstein su-

pergravity theory describing the coupling of 15 vector multiplets which is known as the

quaternionic magical supergravity theory [43, 44]. The quaternionic magical supergravity

has the same bosonic field content as the N = 6 supergravity but with a different fermionic

spectrum. It has SO∗(12) as its U-duality group under which 16 vector field strengths, in-

cluding the graviphoton, and their magnetic duals transform in the 32 dimensional spinor

representation. Therefore the BN analysis applied to the bosonic sector of N = 6 super-

gravity would yield identical results as the BN scheme applied to the purely bosonic sector

of N = 2 quaternionic magical supergravity theory. We do not know the auxiliary fields

of N = 6 supergravity. However the off-shell formulation of N = 2 supergravity and its

couplings to vector multiplets are known.

If a supersymmetric deformation of maximal supergravity existed sourced by the aux-

iliary fields in an off-shell formulation, that preserves E7 duality, one can truncate it to the

deformed quaternionic magical supergravity theory that preserves both N = 2 supersym-

metry and SO∗(12) duality symmetry. However off-shell formulation of N = 2 quaternionic

magical supergravity can not have auxiliary vector fields transforming in the 15 + 1 dimen-

sional representation of the isotropy group U(6) of its scalar manifold SO∗(12)/U(6). This

follows from the fact that the Weyl multiplet of N = 2 supersymmetry has auxiliary vec-

tor fields transforming in the adjoint representation 3 + 1 of the R-symmetry group U(2)

and the N = 2 vector supermultiplets do not have any auxiliary vector fields and contain

only auxiliary scalar fields.2 The only other massless N = 2 supermultiplet that con-

2Off-shell formulation of N = 2 supergravity has a long history. We refer the reader to relatively recent

papers [45, 46] and the references therein.
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tains vector fields is the s = 3/2 gravitino multiplet. It has recently been shown that the

s = 3/2 Rarita-Schwinger field can be coupled to vector fields consistently only as part

of a graviton supermultiplet and that the N = 2 pure supergravity is unique [47]. These

results show clearly that it is impossible to deform the maximal supergravity consistent

with supersymmetry sourced by auxiliary vector fields along the lines of BN proposal.

In [48] the N = 2 supergravity was studied in the off-shell superconformal framework

with all auxiliary fields present. Consistent with earlier results in [45, 46] the only auxiliary

vector fields appear in the adjoint of the R-symmetry group U(2). Furthermore the authors

of [48] show that the supersymmetry rules of a classical supersymmetric off-shell theory

are inconsistent with the UV divergences and have to be deformed. Such a deformation

of a superspace was never performed and it is not known if a consistent version of it is

even possible. Therefore the analysis in [48] raises serious issues, independent of the BN

proposal, about the compatibility of candidate counterterms in higher N supergravities

with off-shell supersymmetry at the non-linear level.

We stress here that the possibility to build the symplectic multiplet from one half phys-

ical vectors and one half auxiliary vectors vanishing on shell, is not attractive since duality

symmetry mixes them, and equations of motion get mixed with Bianchi identities. In fact

an independent argument as to why the extra field strength Gµν in (2.1), independent of

Fµν , required in BN SoD, can not be auxiliary, not propagating, can be given as follows.

Once the (bosonic) deformation of N ≥ 5 supergravity is achieved, for example in the case

studied in [27] and the relation between the F and G component of the symplectic doublet

in (2.1) is established, one finds that

G+ = −iF+ + · · · (3.1)

Here terms with · · · include higher order terms in gravitational coupling κ and in parameter

of deformation λ, as one can see from eq. (3.9) in [27]. These terms are non-linear in fields.

Thus in approximation that κ = λ = 0, Gµν is proportional to Fµν and if Gµν would be

an auxiliary field it would be impossible for it also to be proportional to a physical field,

up to non-linear terms. This argument, by itself, appears to be sufficient to rule out an

attempt to use auxiliary field for the G part of the doublet. In any case, here we have

shown technically, using a consistent truncation to N = 2 Maxwell-Einstein supergravity,

that there are no auxiliary vector fields with required transformation properties in these

theories which can be used for the BN type deformation.

Therefore we will study below all options to realize linear supersymmetry with the

doubled number of dynamical vectors in the multiplets.

4 Source of deformation and supersymmetry

The BN proposal for maximal supergravity and its extensions to N = 6 and N = 5 super-

gravity with a source depending on vectors and scalars, as shown in eq. (2.6) was assumed

to have a supersymmetric extension with N supersymmetries. The candidate countert-

erms for these supergravity theories were constructed starting with [14–16] using linearized

superfields corresponding to physical states of the theory. In particular, such superfields

– 7 –
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SL(2,C) E0 SU(8) U(1) Fields

(0, 0) 1 70 0 φ[ijkl]

(1
2 , 0) 3

2 56 1 λ
[ijk]
+ ⇔ λ

[ijk]
α

(0, 1
2) 3

2 56 -1 λ−[ijk] ⇔ λα̇[ijk]

(1,0) 2 28 2 F
+[ij]
µν ⇔ F

[ij]
(αβ)

(0,1) 2 28 -2 F−µν[ij] ⇔ F(α̇β̇)[ij]

(3
2 , 0) 5

2 8 3 ∂[µψ
+i
ν] ⇔ ψi(αβγ)

(0, 3
2) 5

2 8̄ -3 ∂[µψ
−
ν]i ⇔ ψ(α̇β̇γ̇)i

(2, 0) 3 1 4 R(αβγδ)

(0, 2) 3 1 -4 R(α̇β̇γ̇δ̇)

Table 1. The fields of linearized N = 8 supergravity in four dimensions, which satisfy massless

free field equations and massless representations of Poincare group. They lift uniquely to those of

the conformal group. It is a CPT self-conjugate doubleton supermultiplet of SU(2, 2|8).

depend on vector field strengths in 28,16,10 and 28,16,10 in SU(8), SU(6), SU(5) repre-

sentations in N = 8, 6, 5 respectively.

In general, the classification of the massless unitary supermultiplets of extended

Poincaré superalgebras is well known [49, 50]. The minimum spin range for the mass-

less unitary supermultiplets of N -extended Poincaré superalgebras is N4 for even N and

the maximum number of Poincare supersymmetry generators is 32. It was shown in [36]

that the fields of maximal supergravity in d = 4 can be fitted into an ultra short CPT-

self-conjugate unitary supermultiplet (doubleton) of the conformal superalgebra SU(2, 2|8)

with 64 supercharges. Even though the fields of N = 8 supergravity form a representation

of the N = 8 conformal superalgebra interactions of the maximal supergravity break the

conformal supersymmetry down to its Poincare subsuperalgebra. The corresponding super-

multiplet can be written as a linear constrained superfield [37]. These superfields have been

used in the analysis of counterterms in maximal supergravity [10–12]. Since the superfields

used in writing down linearized counterterms in N ≥ 5 supergravity correspond to confor-

mal supermultiplets we will perform our analysis of conformal superalgebras SU(2, 2|N )

in four dimensions using the oscillator method [36, 51–53]. However, as different from

the standard superfields that enter in the counterterms, we will be looking for different

supermultiplets that can couple to and extend the maximal supergravity with the total

number of vector fields doubled. We will also check if it is possible to find the suitable

supermultiplets by embedding them into larger SU(2, 2|N + n) conformal superalgebras

with the consequent consistent truncation to SU(2, 2|8), SU(2, 2|6) and SU(2, 2|5).

The standard supersymmetry multiplets of N ≥ 5 supergravity correspond to massless

doubleton representations of conformal superalgebras SU(2, 2|N ) with highest spin 2. They

are given in table 1, table 2, table 3 for N = 8, 6, 5 respectively.
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SL(2,C) E0 SU(6) U(1) Fields

(0, 2) 3 1 -2 R(α̇β̇γ̇δ̇)

(0, 3/2) 5/2 6̄ -3/2 ψ(α̇β̇γ̇)i

(0, 1) 2 1̄5 -1 F−µν[ij] ⇔ F(α̇β̇)[ij]

(0,1/2) 3/2 20 -1/2 λ
[ijk]
α̇

(0, 0) 1 15 0 φ[ijkl]

(1/2, 0) 3/2 6 1/2 λiα

(1, 0) 2 1 1 F(αβ)

SL(2,C) E0 SU(6) U(1) Fields

(0, 1) 2 1 -1 F(α̇β̇)

(0, 1/2) 3/2 6̄ -1/2 λα̇i

(0, 0) 1 1̄5 0 φ[ijkl]

(1/2, 0) 3/2 20 1/2 λ
[ijk]
α

(1,0) 2 15 1 F
+[ij]
µν ⇔ F

[ij]
(αβ)

(3/2, 0) 5/2 6 3/2 ψi(αβγ)

(2, 0) 3 1 2 R(αβγδ)

Table 2. The irreducible chiral doubleton supermultiplet of SU(2, 2|6) and its conjugate, with the

highest spin 2 corresponding to the fields of N = 6 supergravity.

All these standard multiplets have vectors and scalars of classical supergravity. Ta-

bles 1, table 2, table 3 for N = 8, 6, 5 respectively are in one-to-one correspondence with

the linearized conformal superfields presented in [38]. The linearized candidate countert-

erms [14–16, 38] are constructed using these supermultiplets.

One way to double the set of vector fields is simply to take two sets of the graviton

supermultiplets above. However, this is not satisfactory for the BN proposal since the

numbers of scalars is doubled and one would have to couple the graviton supermultiplets to

themselves which is known not to be possible. We need to study all possible supermultiplets

in SU(2, 2|N ) with vectors in the same representations as in the classical case. To make

sure that we check all options we proceed with the superoscillator construction.

5 All SU(2, 2|N ) supermultiplets with vectors in anti-symmetric

tensor representations of SU(N ) for N = 5, 6, 8

The oscillator construction of the unitary supermultiplets of extended superconformal al-

gebras in four dimensions were studied in [36, 51–53]. As has been proven recently the

oscillator method yields all the unitary representations of the Lie superalgebras of the form
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SL(2,C) E0 SU(5) U(1) Fields

(0, 2) 3 1 -2 R(α̇β̇γ̇δ̇)

(0, 3/2) 5/2 5̄ -3/2 ψ(α̇β̇γ̇)i

(0, 1) 2 1̄0 -1 F−µν[ij] ⇔ F(α̇β̇)[ij]

(0,1/2) 3/2 10 -1/2 ψα̇[ijk]

(0, 0) 1 5 0 φ[ijkl]

(1/2, 0) 3/2 1 1/2 ψα

SL(2,C) E0 SU(5) U(1) Fields

(0, 1/2) 3/2 1 -1/2 ψα̇

(0, 0) 1 5̄ 0 φ[ijkl]

(1/2, 0) 3/2 1̄0 1/2 ψ
[ijk]
α

(1,0) 2 10 1 F
+[ij]
µν ⇔ F

[ij]
(αβ)

(3/2, 0) 5/2 5 3/2 ψi(αβγ)

(2, 0) 3 1 2 R(αβγδ)

Table 3. The irreducible chiral doubleton supermultiplet of SU(2, 2|5) and its conjugate corre-

sponding to the N = 5 supergravity multiplet.

SU(m,n|p + q) [54]. The superalgebra SU(2, 2|p + q) has a three graded decomposition

with respect to its compact subsuperalgebra SU(2|p)× SU(2|q)×U(1)

g = L+ ⊕ L0 ⊕ L− , (5.1)

[L0, L±] = L± , [L+, L−] = L0 , [L+, L+] = 0 = [L−, L−] . (5.2)

Here L0 represents the generators of SU(2|p) × SU(2|q) × U(1). The Lie superalgebra

SU(2, 2|p + q) can be realized in terms of bilinear combinations of bosonic and fermionic

annihilation and creation operators ξA (ξA = ξA
†) and ηM (ηM = ηM

†) which trans-

form covariantly and contravariantly under the SU(2|p) and SU(2|q) subsuperalgebras of

SU(2, 2|p+ q)

ξA =

(
aα
αx

)
, ξA =

(
aα

αx

)
, (5.3)

ηM =

(
bα̇
βi

)
, ηM =

(
bα̇

βi

)
, (5.4)

with α, β = 1, 2; x, y = 1, 2, . . . , p; α̇, β̇ = 1, 2; i, j = 1, 2, . . . , q and

[aα, a
β ] = δβα, {αx, αy} = δyx , (5.5)

[bα̇, b
β̇ ] = δβ̇α̇, {βi, βj} = δji . (5.6)

– 10 –



J
H
E
P
0
9
(
2
0
1
9
)
1
0
5

The generators of SU(2, 2|p+ q) are given in terms of the above superoscillators as

L− = ~ξA · ~ηM
L0 = ~ξA · ~ξB ⊕ ~ηM · ~ηN
L+ = ~ξA · ~ηM (5.7)

and we refer to [36, 51–53] for details. Massless conformal supermultiplets are obtained by

taking one set (color) of super-oscillators which are referred to as doubleton supermultiplets.

The unitary irreducible representations of SU(2, 2|p+ q) algebra are constructed over

the super Fock space of these oscillators. One chooses a set of states |Ω〉,3 that are an-

nihilated by the “lowering” operators L− and transform irreducibly under the grade zero

subalgebra SU(2|p) ⊕ SU(2|q) ⊕ U(1). Then by repeated application of the raising opera-

tors L+ one generates an infinite set of states that form the basis of a unitary irreducible

representation of SU(2, 2|p+ q):

|Ω〉, L+1|Ω〉, L+1L+1|Ω〉, . . . (5.8)

Possible lowest weight vectors of massless conformal supermultiplets in d = 4 are either of

the form

|Ω〉 = ξA1ξA2 . . . ξAP |0〉 = | ������ · · · ��︸ ︷︷ ︸
P

, 1〉 (5.9)

or the form

|Ω〉 = ηA1ηA2 . . . ηAQ |0〉 = |1, ������ · · · ��︸ ︷︷ ︸
Q

〉 (5.10)

Here we use boxes with slashes for the super-Young-tableaux and P and Q are arbitrary

integers. We should note that one obtains the same set of representations of SU(2, 2|N )

irrespective of the choice of p and q so long as p+ q = N .4

We find it convenient for our purpose to use the basis where p = 0 and q = N with

α, β = 1, 2; α̇, β̇ = 1, 2; i, j = 1, 2, . . . ,N ,5

ξA =

(
aα
0

)
, ξA =

(
aα

0

)
, (5.11)

ηM =

(
bα̇
βi

)
, ηM =

(
bα̇

βi

)
. (5.12)

Just looking at eq. (5.9) we deduce that scalars must be U(N ) singlets. In (5.10) where

for scalars we need an anti-symmetric set of N operators βi, which for all N form a singlet.

3By an abuse of notation this set of states will be referred to as the “ground state” or as the “lowest

weight vector”. They correspond simply to the lowest “energy” irrep of the compact subsuperalgebra

SU(2|p)⊕SU(2|q) if one identifies the energy operator with the generator of U(1) that defines the 3-grading.
4This is true not only for the massless conformal supermultiplets but for all the unitary supermultiplets

of SU(2, 2|p + q) [54].
5Equivalently one can choose a basis with q = 0 and p = N .
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SL(2,C) SU(5) U(1)

(0, 0) 1 0

(1/2, 0) 5 1/2

(1, 0) 10 1

(3/2, 0) 1̄0 3/2

(2, 0) 5̄ 2

(5/2, 0) 1̄ 5/2

SL(2,C) SU(5) U(1)

(0, 5/2) 1 -5/2

(0, 2) 5 -2

(0, 3/2) 10 -3/2

(0,1) 1̄0 -1

(0, 1/2) 5̄ -1/2

(0, 0) 1̄ 0

Table 4. The irreducible chiral doubleton supermultiplets of SU(2, 2|5) and its conjugate, with the

highest spin 5/2. The scalars here are singlets of SU(5). The vector field strengths and their duals

transform in 10 and 1̄0 of SU(5).

SL(2,C) SU(6) U(1)

(0, 0) 1 0

(1/2, 0) 6 1/2

(1, 0) 15 1

(3/2, 0) 20 3/2

(2, 0) 15 2

(5/2, 0) 6 5/2

(3,0) 1 3

SL(2,C) SU(6) U(1)

(0, 3) 1 -3

(0, 5/2) 6 -5/2

(0, 2) 15 -2

(0, 3/2) 20 -3/2

(0,1) 15 -1

(0,1/2) 6 -1/2

(0, 0) 1 0

Table 5. The irreducible chiral doubleton supermultiplets of SU(2, 2|6) and its conjugate, with

the highest spin 3. Scalars here are singlets of SU(6). The vector field strengths and their duals

transform in 15 and 1̄5 of SU(6).

This gives us a prediction that all supermultiplets for N ≥ 5 with required vectors, other

than the graviton supermultiplets, have scalars that are singlets of SU(N ), according to the

formulas (5.9) and (5.10). We confirm this prediction by constructing the corresponding

supermultiplets explicitly.

Below we present detailed form of the supermultiplets for each N with vectors in anti-

symmetric tensor representation of SU(N ). N = 6 case is special in that the graviton

supermultiplet has, in addition, a vector that is a singlet of SU(6).

In N = 5 we have a vector in 10 and 1̄0 of SU(5), whereas the scalar is a singlet in

SU(5). In table 4 we give the supermultiplets whose lowest weight vectors are |1, 1〉 = |0〉
and, |1, ������ · · · ��︸ ︷︷ ︸

5

〉, respectively.

In N = 6 we have a vector in 15 and 1̄5 of SU(6), whereas the scalar is a singlet in

SU(6). In table 5 we give the supermultiplets of SU(2, 2|6) whose lowest weight vectors are

|1, 1〉 = |0〉 and, |1, ������ · · · ��︸ ︷︷ ︸
6

〉, respectively.
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SL(2,C) SU(8) U(1)

(0, 0) 1 0

(1/2, 0) 8 1/2

(1, 0) 28 1

(3/2, 0) 56 3/2

(2, 0) 70 2

(5/2, 0) 56 5/2

(3,0) 28 3

(7/2,0) 8 7/2

(4, 0) 1 4

SL(2,C) SU(8) U(1)

(0, 4) 1 -4

(0, 7/2) 8 -7/2

(0, 3) 28 -3

(0, 5/2) 56 -5/2

0, 2) 70 -2

(0, 3/2) 56 -3/2

(0,1) 28 -1

(0,1/2) 8 -1/2

(0, 0) 1 0

Table 6. The irreducible chiral doubleton supermultiplets of SU(2, 2|8) and its conjugate, with

the highest spin 4. Scalars here are singlets of SU(8). The vector field strengths and their duals

transform in 28 and 2̄8 of SU(8).

SL(2,C) SU(6) U(1)

(1, 0) 1 1

(3/2, 0) 6 3/2

(2, 0) 15 2

(5/2, 0) 20 5/2

(3,0) 15 3

(7/2,0) 6 7/2

(4, 0) 1 4

SL(2,C) SU(8) U(1)

(0, 4) 1 -4

(0, 7/2) 6 -7/2

(0, 3) 15 -3

(0, 5/2) 20 -5/2

0, 2) 15 -2

(0, 3/2) 6 -3/2

(0,1) 1 -1

Table 7. The irreducible chiral doubleton supermultiplets of SU(2, 2|6) and its conjugate, with the

highest spin 4. Vectors here are singlets of SU(6) and scalars are absent.

In N = 8 we have vector field strengths and their duals in 28 and 2̄8 of SU(8), whereas

the scalar is a singlet in SU(8). In table 6 we give the supermultiplets of SU(2, 2|8) whose

lowest weight vectors are |1, 1〉 = |0〉 and, |1, ������ · · · ��︸ ︷︷ ︸
8

〉, respectively.

Finally, in table 7 we show the N = 6 multiplets with an SU(6) singlet vector, without

scalars. Their lowest weight vectors are aαaβ |0〉 and |1, ������ · · · ��︸ ︷︷ ︸
8

〉, respectively.

This is a special property of N = 6 supergravity where 16 vector field strengths transform

in 15 of SU(6) plus a singlet. This is not given by the general formulas (5.9), (5.10).

Note that in tables 4–7 the supermultiplets break the spin 2 barrier, s > 2, maximum

spin is 4, and contain multiple gravitons. Therefore we see that, in addition to the fact that

the scalars in these supermultiplets are not consistent with E7 type duality, they all contain

higher spin fields and multiple gravitons which add further support to the arguments that

the source of deformation with properties required by the proposal of [3] are not available.
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SL(2,C) E0 SU(10) U(1) Fields SU(8)× SU(2)

(0, 0) 1 252 0 φ[ijklm] (56, 1) + (56, 1) + (70, 2)

(1
2 , 0) 3

2 210 1 λ
[ijkl]
+ ≡ λ[ijkl]

α (70, 1) + (28, 1) + (56, 2)

(0, 1
2) 3

2 210 -1 λ−[ijkl] ≡ λα̇[ijkl] (70, 1) + (28, 1) + (56, 2)

(1,0) 2 120 2 F
+[ijk]
µν ≡ F [ijk]

(αβ) (56, 1) + (8, 1) + (28, 2)

(0,1) 2 120 -2 F−µν[ijk] ≡ F(α̇β̇)[ijk] (56, 1) + (8, 1) + (28, 2)

(3
2 , 0) 5

2 45 3 ∂[µψ
+[ij]
ν] ≡ ψ[ij]

(αβγ) (28, 1) + (1, 1) + (8, 2)

(0, 3
2) 5

2 4̄5 -3 ∂[µψ
−
ν][ij] ≡ ψ(α̇β̇γ̇)[ij] (28, 1) + (1, 1) + (8, 2)

(2, 0) 3 10 4 Ri(αβγδ) (8, 1) + (1, 2)

(0, 2) 3 10 -4 R(α̇β̇γ̇δ̇)i (8, 1) + (1, 2)

(5
2 , 0) 7

2 1 5 R(αβγδε) (1, 1)

(0, 5
2) 7

2 1 5 R(α̇β̇γ̇δ̇ε̇) (1, 1)

Table 8. An example of the CPT-self-conjugate doubleton supermultiplet of SU(2, 2|10).

i, j, k, . . . = 1, 2, . . . , 10 are the SU(10) R-symmetry indices.

6 SU(2, 2|N + n) supermultiplets containing vectors in anti-symmetric

tensor representations of SU(N ) for N = 5, 6, 8

The minimal CPT self-conjugate unitary supermultiplet that contains two sets of vector

fields transforming in the 28 of SU(8) is the doubleton supermultiplet of SU(2, 2|10) which

we already discussed in [35]. Here we show it in table 8. We consider a decomposition of

SU(10) under the SU(8)×SU(2). In the last column of table 8 we show this decomposition.

We have here the double set of 28 vectors, we have (28, 2) and (28, 2). Note, however, that

the scalars here are also in (70, 2), i.e. twice the amount we need. This is not accidental,

if one truncates this unitary supermultiplet of SU(2, 2|10) by throwing out all the SU(2)

singlet states one gets two copies of the CPT self-conjugate supermultiplet of SU(2, 2|8).

Therefore it is not valid for a source of deformation.

The CPT self-conjugate unitary supermultiplet of SU(2, 2|8 + 2n) for n > 0 contains
(2n)!
n! pairs of vector field strength multiplets transforming in (28 + 28) of SU(8) subgroup.

But also the number of scalars is increased, so all these models are not working.

To proceed with a more general case and to incorporate into our analysis both N = 5

and N = 6 we would like to take into account the subtlety with N = 6 case, which we

already discussed before. Namely, in all N ≥ 5 supergravities the vector field strength

transform as an antisymmetric tensor F
+[ij]
µν , F−[ij]µν . In N = 6 case we also have singlets

of the R-symmetry group. One way to get a doublet of vector fields is to increase the

R-symmetry from SU(N ) to SU(N + 2) and choose supermultiplets in which the vector
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field strengths transform as

F+[IJK]
µν , F−[IJK]µν , I, J = 1, · · · N + 2 . (6.1)

Under restriction to SU(N ) we then have SU(N + 2) ⊃ SU(N )× SU(2)×U(1) and we get

the following decomposition

(N + 2)(N + 1)(N )

3!
=
((N )(N − 1)(N − 1)

3!
, 1
)

+
((N )(N − 1)

2!
, 2
)

+ (N , 1)

F+[IJK]
µν = F+[ijk]

µν + F+[ij]a
µν + F+i[ab]

µν (6.2)

In the case of N = 8 SU(2, 2|10) which we show in the table 8, we see that indeed, we

have a doublet of required vectors. However, the scalars in 252 decompose as (56, 1) +

(56, 1) + (70, 2) under SU(8)× SU(2)! So we have a double amount of scalars compared to

the required ones.

In general, to obtain the states corresponding to fields strengths F
+[IJK]
µν , transforming

in the (1, 0) representation of the Lorentz group, one needs specific supermultiplets. Its

highest helicity state must either be (0, 5/2) in a singlet of SU(N + 2) or its lowest helicity

state must be (1/2, 0) in a singlet of SU(N +2). The first one leads to scalars transforming

as an anti-symmetric tensor of rank 5 under SU(N + 2).

SU(N + 2) ⊃ SU(N )× SU(2)×U(1)

φ[IJKLM ] = φ[ijklm] + φ[ijkl]a + φ[ijk][ab] (6.3)

252 = (56, 1) + (70, 2) + (56, 1) N = 8

126 = (21, 1) + (35, 2) + (35, 1) N = 7

56 = (6, 1) + (15, 2) + (20, 1) N = 6

21 = (1, 1) + (5, 2) + (10, 1) N = 5 (6.4)

In the second case for the supermultiplet with the lowest helicity state (1/2, 0) in a

singlet of SU(N + 2) we find that the scalars transform in the fundamental representation

of SU(N + 2) which decomposes as

SU(N + 2) ⊃ SU(N )× SU(2)

10 = (8, 1) + (70, 2) N = 8

9 = (7, 1) + (1, 2) N = 7

8 = (6, 1) + (1, 2) N = 6

7 = (5, 1) + (1, 2) N = 5 (6.5)

Only for N = 5 the scalars in (5, 1) are in the right representation. However, in all cases

above we have unwanted doublets of scalars. Thus, here again, we checked all possibilities

of a supersymmetric doubling of vectors. We always see that it is impossible to keep the

required scalars.
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Besides, all new supermultiplets involved have higher spins with s > 2 and all issues

discussed in [35] for N = 8 persist for N = 5, 6, namely the presence of a finite number of

states with higher spins s > 2 and presence of many fields with s = 2. No known interacting

theories exist that describe the coupling of a finite number of higher spin fields to gravity.

Furthermore the question of consistent coupling between a finite number of massless s = 2

fields has been investigated in [40] where the inconsistency of interacting multi-graviton

theories was established. In addition as we have emphasized above possible sources of

deformation introduce additional scalar fields beyond the original coset. Therefore we

conclude that BN proposal is incompatible with linearized on-shell supersymmetry.

7 Superfields

We have discussed candidate supermultiplets including vector duality doublet so far. Su-

perfield expression of such multiplets makes the structure more transparent, and therefore,

we show such superfields corresponding to multiplets in tables 4–6 and one originating

from a larger supermultiplet in table 8. We are using the notation of [38, 39]. On-shell

supermultiplets we have studied above can be simply expressed as chiral superfields. For

N = 5, the supermultiplet in table 4 is given simply by the superfield

Φ(y, θ) = φ+ θαi χ
i
α + θαi θ

β
j F

ij
αβ + θαi θ

β
j θ

γ
kε
ijklmψlmαβγ

+ θαi θ
β
j θ

γ
kθ
δ
l ε
ijklmCmαβγδ + θαi θ

β
j θ

γ
kθ
δ
l θ
ε
mε

ijklmEαβγδε . (7.1)

For the supermultiplet of N = 6 in table 5, we find

Φ(y, θ) = φ+ θαi χ
i
α + θαi θ

β
j F

ij
αβ + θαi θ

β
j θ

γ
kε
ijklmnψlmnαβγ + θαi θ

β
j θ

γ
kθ
δ
l ε
ijklmnCmnαβγδ

+ θαi θ
β
j θ

γ
kθ
δ
l θ
ε
mε

ijklmnEnαβγδε + θαi θ
β
j θ

γ
kθ
δ
l θ
ε
mθ

θ
nε
ijklmnGαβγδεθ . (7.2)

For N = 8, we found two candidate supermultiplets: the first one corresponds to the scalar

superfield:

Φ(y, θ) = φ+ θαi χ
i
α + θαi θ

β
j F

ij
αβ + θαi θ

β
j θ

γ
kε
ijklmnpqψlmnpqαβγ + θαi θ

β
j θ

γ
kθ
δ
l ε
ijklmnpqCmnαβγδ

+ θαi θ
β
j θ

γ
kθ
δ
l θ
ε
mε

ijklmnpqEnpqαβγδε + θαi θ
β
j θ

γ
kθ
δ
l θ
ε
mθ

θ
nε
ijklmnpqGpqαβγδεθ

+ θαi θ
β
j θ

γ
kθ
δ
l θ
ε
mθ

θ
nθ
ζ
pε
ijklmnpqHqαβγδεθζ + θαi θ

β
j θ

γ
kθ
δ
l θ
ε
mθ

θ
nθ
ζ
pθ
η
q ε
ijklmnpqJαβγδεθζη

(7.3)

Note that, for each component field, the Lorentz indices α, β, · · · , η are completely sym-

metrized, e.g. Jαβγδεθζη = J(αβγδεθζη). These scalar superfields inN ≥ 5 could be candidates

for supermultiplets providing extra (dual) vector fields. As we see, however, each of the

superfields contains scalar fields which are duality singlets, and also has fields with spin

s ≥ 2. Therefore, we can not use such superfields to implement the deformation.
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There is also another possibility to have vector doublet, which originates from a trun-

cation of N = 10 multiplet for N = 8 case,

C̄a
α̇β̇γ̇δ̇

(y,θ) = C̄a
α̇β̇γ̇δ̇

(y)+θαi ∂α(α̇ψ̄
ia
β̇γ̇δ̇)

+
1

2
θαi θ

β
j ∂α(α̇∂ββ̇M̄

jia

γ̇δ̇)
+

1

3!
θαi θ

β
j θ

γ
k∂α(α̇∂ββ̇∂γγ̇χ̄

kjia

δ̇)

+
1

4!
θαi θ

β
j θ

γ
kθ
δ
`∂αα̇∂ββ̇∂γγ̇∂δδ̇φ

`kjia+
1

5!3!
θαi θ

β
j θ

γ
kθ
δ
`θ
ε
m∂αα̇∂ββ̇∂γγ̇∂δδ̇χ

a
εnpqε

ijk`mnpq

+
1

6!2
θαi θ

β
j θ

γ
kθ
δ
`θ
ε
mθ

ζ
n∂αα̇∂ββ̇∂γγ̇∂δδ̇M

a
εζpqε

ijk`mnpq

+
1

7!
θαi θ

β
j θ

γ
kθ
δ
`θ
κ1
m θ

κ2
n θ

κ3
p ∂αα̇∂ββ̇∂γγ̇∂δδ̇ψ

a
κ1κ2κ3qε

ijk`mnpq

+
1

8!
θαi θ

β
j θ

γ
kθ
δ
`θ
κ1
m θ

κ2
n θ

κ3
p θ

κ4
q ∂αα̇∂ββ̇∂γγ̇∂δδ̇C

a
κ1κ2κ3κ4ε

ijk`mnpq , (7.4)

where a = 1, 2 is an extra SU(2) index. In this case, the vector is doubled, but also all other

components are. This leads e.g. to two 70 for scalars, two gravitons, etc. and therefore, we

cannot use this superfield for deformation either. One finds analogous results with N = 8

supermultiplet truncation to N = 6 and N = 7 supermultiplet truncation to N = 5.

8 Discussion

The complicated situation with UV divergences in perturbative N ≥ 5 supergravity6 orig-

inates from the existence of the on-shell Lorentz covariant and supersymmetric candidate

counterterms, see for example [13–16, 38]. They are often presented as some integrals over

the superspace, or sub-superspace based on Lorentz covariant superfields associated with

supermultiplets shown in table 1, table 2, table 3 for N = 8, 6, 5 respectively.

Let us look, for example, at the 3-loop supersymmetric linearized R4 counterterm in

the form given in [55]. It has 51 different terms for the 4-point candidate UV divergence.

One of them is a 2-vector-2-graviton 4-point candidate for an UV divergence

LCT = CαβγδC̄α̇β̇γ̇δ̇∇αδ̇FβγAB∇δα̇F̄
AB
β̇γ̇

. (8.1)

It depends on 28 and 28 of SU(8) vector field strengths and their conjugates and 70

scalars. The counterterm is manifestly supersymmetric at the linearized level [14–16], all

51 terms are packaged in a superspace expression
∫
d4xd16θ[W ]4 in a particular basis in

superspace, where the superfield W (x, θ) represents the graviton supermultiplet in table 1.

If the relevant UV infinity were to occur, it would mean that E7(7) symmetry current

conservation must be broken [1, 2]. The BN proposal is to promote the counterterm to the

status of the manifestly E7(7) invariant SoD. For this purpose one should promote each

of the 28 and 28 of SU(8) to a graviphoton Tαβ AB and T̄AB
α̇β̇

, which makes the expression

6It was argued in [8, 9] that the supersymmetric counterterms of N = 8 supergravity are absent in

the light-cone formalism. The corresponding counterterms in the light-cone formalism were never con-

structed during the last decade, in agreement with the arguments in [8, 9]. By a consistent reduction of

supersymmetry, one would expect also the absence of the light-cone candidate counterterms in N = 6, 5.
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in (8.1) a functional of the double set of 28 and 28 of SU(8):

LCT ⇒ SoD = CαβγδC̄α̇β̇γ̇δ̇∇αδ̇TβγAB∇δα̇T̄
AB
β̇γ̇

, (8.2)

28 & 28 ⇒ 2× (28 & 28) . (8.3)

Note that the graviphoton

TβγAB = hΛAB F
Λβγ − fΛ

AB GβγΛ (8.4)

in SoD depends on both FΛβγ and GβγΛ which are independent of each other, as required

by E7 invariance, this is why we have to deal with the doubling of vector fields. This is

different from the expression in (8.1) for the candidate UV divergence, where G+ = NF+

and G− = NF− and it is SU(8) invariant and there is a supersymmetric extension of the

expression in (8.1), as given explicitly at the linear level in [55].

Moreover, note that in the BN proposal the symplectic section, (hΛAB, f
Λ
AB) which is

used to build the SoD according to eqs. (8.2), (8.4), does not change from the classical

case, scalars must remain the same to preserve the classical coset structure.

To find out if the supersymmetric extension of the bosonic SoD is available for all

N ≥ 5 theories, we have studied all supermultiplets with a double set of dynamical vector

fields7 as we need in the bosonic SoD in eq. (2.8). The results follow simply from the

unitary representations of the conformal Lie superalgebra SU(2, 2|N ). We presented all

possible supermultiplets which could be used in supersymmetrization of the SoD given

in (2.8). We proved that it is not possible to double the vectors without changing the basic

underlying premises of the theory such as the number and representations of SU(N ) for

the scalars, and to avoid higher spins, in all available supermultiplets of the corresponding

superconformal algebra.

The authors of [31] studied the perturbative quantization of N = 8 supergravity in a

formulation in which the full U-duality group E7(7) is realized off-shell and which is not

manifestly Lorentz invariant. They showed that E7(7) anomalies cancel as a consequence

of the vanishing SU(8) anomalies [60] to all orders in perturbation theory. We expect

these results to extend to N = 6 and N = 5 supergravities as well. Therefore our results

suggest that simple E7 type duality symmetry in N ≥ 5 supergravity theories together

with supersymmetry might protect N ≥ 5 supergravity from UV divergences assuming

supersymmetry does not become anomalous at higher loops and the results of [31] hold for

manifestly Lorentz invariant formulations. This reasoning is supported by the established

UV finiteness of N = 8 and N = 5 at 3 and 4 loops. Particularly important here is the

case of N = 5 at 4 loops. Until the recent paper [30], not a single explanation of N = 5

UV finiteness in 4 loops was proposed. Here, we find that the situation with candidate

counterterms which break duality [1, 2] is as follows. The proposal suggested in [3] to

restore duality was based on the assumption that also supersymmetry is unbroken in the

deformation process. Our study of this issue led us to the conclusion that BN deformation

7We have explained in section 3 why, based on all known constructions of supersymmetric theories, it

is not possible to realize the BN deformation proposal [3], using auxiliary vector fields within the standard

framework of extended supergravity theories.
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procedure can not be consistent with supersymmetry within the standard framework of

supergravity theories. From this perspective the UV finiteness of N = 8 and N = 5 at

3 and 4 loops is a consequence of the fact that both supersymmetry and duality are not

anomalous. In such case, together, they predict UV finiteness of N ≥ 5 supergravity, as

we argue here on the basis of the absence of a consistent deformation preserving duality

and supersymmetry in presence of UV divergences. Thus our analysis, based on all known

constructions in supergravity, suggests the following: unbroken duality and supersymmetry

forbid UV divergences, and in case of N = 8 and N = 5 at 3 and 4 loops the computations

in [4, 5, 29] support our interpretation that both of these symmetries are respected in these

perturbative computations.

The argument about absence of SoD which we gave here, based on unbroken duality

and supersymmetry and within the standard assumptions about extended supergravity, is

valid at any loop order in N ≥ 5 supergravity. Whether these symmetries continue to be

respected in higher loops, i.e. whether N ≥ 5 supergravity theories remain fully duality

invariant, supersymmetric and anomaly-free, remains to be seen.
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A N = 2 supergravities interacting with matter

Above we have studied N ≥ 5 supergravity models, which have no matter multiplets, only

gravitational ones. In section 3 we considered a truncation of N = 8 supergravity to N = 2

Maxwell-Einstein supergravity theory describing the coupling of 15 vector multiplets, the

quaternionic magical supergravity theory [43, 44]. This was done with the purpose to study

the issue of auxiliary fields in N = 8 by looking at its truncated version.

Here we would like also to add few more comments about the general case of N = 2 su-

pergravity coupled to vector multiplets. Matter-coupled supergravities are expected to have

one-loop UV divergences depending on the matter energy-momentum tensor Rµν− 1
2gµνR =

Tmat
µν . The relevant one-loop UV divergence is (Tmat

µν )2 + · · · . In pure supergravities N ≥ 5

this one-loop gauge-invariant UV divergence is absent since Rµν − 1
2gµνR = 0 on shell for

all N ≥ 5 supergravities.

The magical supergravity theories were discovered long time ago [43, 44]. They are

defined by the four simple Jordan algebras of degree three realized by 3 × 3 Hermitian

matrices over the four division algebras. Their global symmetry groups in five, four and

three dimensions correspond to the groups that appear in the Magic Square of Freudenthal,

Rozenfeld and Tits. Hence the name. The d = 4 quaternionic magical supergravity can

be truncated to the complex and real magical N = 2 supergravity theories with 10 and

7 vector fields. The octonionic magical N = 2 supergravity theory with 28 vector fields
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can not be embedded in N = 8 supergravity. The U-duality groups of the four magical

supergravity theories in 4d are all groups of type E7, namely E7(−25), SO∗(12), SU(3, 3) and

Sp(6,R) under which the vector field strengths and their magnetic duals transform in 56,

32, 20 and 14 dimensional representations, respectively. Among all the N = 2 Maxwell-

Einstein supergravity theories with homogeneous scalar manifolds they are distinguished

by the fact that their U-duality groups are simple and the vector field strengths and their

magnetic duals form a single irreducible symplectic representation. This is a property they

share with N ≥ 5 supergravity theories.

However unlike N ≥ 5 supergravities generic N=2 Maxwell-Einstein supergravity the-

ories with homogeneous scalar manifolds have one loop divergences [56–59]. As was pointed

out in [59] these divergences correspond to two independent linearized counterterms and

the divergences associated with one of these counterterms are absent only for the magical

supergravity theories [43, 44], which have simple U-duality symmetry groups of type E7.

The first UV divergence in [59] corresponds to the term (Tmat
µν )2 + · · · which we discussed

above. It is duality invariant since the energy momentum tensor is duality invariant. The

fact that in magical supergravities the second type of UV divergence vanishes might be a

consequence of E7 type duality, but this requires a separate investigation, especially if it

persists at higher loops.

N = 2 theories have axial and conformal anomalies which are absent for N ≥ 5

supergravities [60–62] whose one-loop amplitudes are also anomaly-free [38]. This implies

that the U-duality groups of type E7 of the magical N = 2 supergravity theories might be

broken at the quantum level. Hence the argument that the finiteness of N = 6 supergravity

may be understood as a consequence of exact SO∗(12) U-duality symmetry at a given loop

order can not be extended to the magical quaternionic N = 2 supergravity with the same

bosonic content since the anomalies tend to break U-duality symmetry at the quantum level

already at one loop level. This is suggested by the studies of N = 4 supergravity with and

without matter at the one-loop level where there are anomalies, as shown in [63], and at

the four-loop level, where there are related UV divergences, as shown in [64]. More recent

developments in N = 4 supergravity in [65] and in [66] suggest that the relation between

anomalies and UV divergences in extended supergravities might be more interesting, and

new insights can be expected.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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