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1 Introduction

Observational constraints on quantum gravity are hard to come by. Based on a simple

dimensional argument, one typically expects a power-law suppression of quantum-gravity

effects1 with (E/MPl)
#, with E being the energy scale relevant for experiments, MPl being

1In the presence of a second “meso”-scale, as hinted at by some quantum-gravity approaches, e.g., [1],

this situation can change.

– 1 –



J
H
E
P
0
9
(
2
0
1
9
)
1
0
0

the Planck mass and # > 0. Nevertheless, mathematical and internal consistency are not

the only conditions that could allow to constrain candidate quantum-gravity theories while

direct probes of Planck-scale physics remain (mostly) out of reach. Observational consis-

tency tests for quantum gravity arise from the interplay of quantum gravity with matter.

A consistent microscopic description of all degrees of freedom of nature must account

for both gravity and matter. In a quantum-field theoretic setting this can be achieved by

including a metric as well as matter fields in the microscopic description. The key point for

observational consistency tests is that the properties of the microscopic description actually

determine some properties of the matter sector at energy scales far below the Planck mass,

i.e., in the infrared (IR). This allows to restrict the microscopic dynamics by demanding

that the resulting low-energy behavior is consistent with observations.

Such a UV-IR connection appears to contradict the well-established principle of sepa-

ration of scales in nature, which loosely speaking states that physics at macroscopic scales

decouples from microscopic physics. Yet, effective descriptions for physics at macroscopic

scales typically feature finitely many parameters that are sensitive to the microphysics.

In the Standard Model of particle physics the marginal couplings are sensitive to the mi-

crophysics. They exhibit a logarithmic scale-dependence. Accordingly, changes of O(1)

at the Planck scale lead to changes of O(1) at the electroweak scale. This is in contrast

to canonically irrelevant couplings, which are power-law suppressed due to their canonical

dimension: a large interval of UV values is mapped to a rather small interval of IR values

by the RG flow. Accordingly, the information on microscopic physics encoded in those

couplings is “washed out” by the RG flow, and not accessible in the IR.

Therefore, the marginal couplings of the Standard Model are a prime target to set up

observational consistency tests for quantum gravity. Specifically, they provide two tests, un-

der the assumption of no new physics between the electroweak scale and the Planck scale:2

i) The first is a microscopic consistency test: the perturbative Landau poles of the

Standard Model,3 most prominently in the Abelian gauge coupling as well as the

Yukawa sector, must be resolved by quantum-gravity fluctuations. A fundamental

description, i.e., valid up to arbitrarily short distances, of the building blocks of nature

in the quantum field theory framework requires theory to be either asymptotically free

or safe. Both cases provide a framework for an ultraviolet completion of effective field

theories, in which an enhanced symmetry, quantum scale symmetry [17], rules the

microscopic dynamics. Scale-symmetry is a consequence of vanishing interactions in

the case of asymptotic freedom, or a balance between residual interactions in the case

of asymptotic safety, see [18] for an overview of potential mechanisms for asymptotic

safety. Theories which pass this first test can be subjected to the second.

ii) The second test exploits the finite number of free parameters in an asymptoti-

cally safe/free model, and the fact that a UV-IR link can be established based on

marginal couplings. The free parameters of an asymptotically free/safe model are

2Analogous considerations hold in settings beyond the Standard Model.
3Landau-poles in the Abelian gauge and the Higgs-Yukawa sector [2–9] indicate that the non-perturbative

triviality problems from QED [10–13] and φ4 theory [14–16] carry over to the full Standard Model.
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the (marginally) relevant couplings, corresponding to those interactions which can

trigger a departure from scale invariance in the Renormalization Group (RG) flow

to the IR. In the case of asymptotic freedom, they are the powercounting relevant

couplings, i.e., couplings with positive mass dimension, and marginally relevant ones,

i.e., couplings with vanishing mass dimension and a leading-order antiscreening quan-

tum contribution. The presence of residual interactions at the interacting fixed point

underlying asymptotic safety changes the scaling, and relevant couplings no longer

automatically correspond to power-counting relevant ones. Conversely, a coupling

that is irrelevant at a fixed point must automatically assume one specific value in

the IR, since it is not a free parameter, but determined in terms of the finitely many

relevant couplings. Intuitively speaking, the powerful symmetry of scale-invariance

in the ultraviolet (UV) leaves imprints in the IR akin to any other enhanced symme-

try in the UV. The theoretically determined values of irrelevant couplings need not

agree with their measured values. Hence, given a set of fields and symmetries, an

asymptotically free/safe fixed point is not automatically phenomenologically viable.

Here, we use these ideas to make the first steps to differentiate between quantum-

gravity-matter models with regards to their phenomenological viability. We set out to

compare Weyl-squared gravity, asymptotically safe gravity based on the Reuter fixed point,

and unimodular asymptotically safe gravity and concentrate on Standard-Model like matter

sectors. We focus on these three, as they are all based on a formulation purely in terms of

metric degrees of freedom, but differ in the symmetries that are realized. Thus it is of inter-

est to understand the resulting differences in the interplay with matter. For a clear discus-

sion of the relation of various symmetry-restrictions on gravity at the classical level, see [19].

Before focusing on the interplay of these gravity-models with matter, we review the

motivation for them as well as their status as potential candidates for a description of

quantum gravity below.

2 Introduction to (unimodular) asymptotically safe gravity and

Weyl-squared gravity

There are strong indications for the existence [20–46] of the asymptotically safe Reuter

fixed point [47, 48], see, e.g., [18, 49–51] for recent reviews, with promising indications

for a quantum-gravity induced UV completion for the Standard Model with an enhanced

predictive power [52–55] in four dimensions [56].4 The Reuter fixed point is an interacting

fixed point of the Renormalization Group (RG) flow, rendering the model asymptotically

safe. The enhanced scale-symmetry controls the infinitely many operators that are ex-

pected to be present at the Planck scale from effective field theory arguments. While they

are present in an asymptotically safe context, there are infinitely many relations between

the couplings that have to be satisfied as a consequence of scale symmetry. Accordingly,

4By Reuter fixed point we mean the class of fixed points associated with a theory space defined in terms

of the full diffeomorphism symmetry. In this sense, the Reuter fixed point encompasses both the purely

gravitational universality class as well as its deformations that arise when one adds matter.
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the model remains predictive despite the existence of infinitely many higher-order inter-

actions. In particular, there are indications for a near-perturbative nature of the fixed

point [23, 26, 32, 43, 45, 57–61], providing a basis for systematic approximations of the

RG flow. Building on strong indications for the Reuter fixed point, challenging questions

pertaining to the unitarity of theory [62], singularity-resolution [63–66], background in-

dependence [46, 59, 67–69], the relation to a Lorentzian setting [28, 70], as well as the

relation to other quantum-gravity approaches [71, 72] can now be tackled. Most of these

relate to the internal structure and consistency of the model and need to be answered

before an asymptotically safe description of nature can be deemed viable. Yet, there is

another crucial requirement that a viable model has to satisfy, namely the consistency

with observational constraints. Here, it appears to be possible to make progress that could

allow to rule out such a model based on phenomenological consistency in the matter sector,

e.g., [52–56, 73–89].

Unimodular gravity is attractive due to several reasons: it is actually based on the

symmetry group that follows from an analysis of the massless spin-2-representation of the

Poincaré group [90, 91], namely the transverse diffeomorphisms (“TDiff”, the local-volume

preserving diffeomorphisms). Further, it gets rid of unnecessary “baggage” that classical

Einstein gravity carries through the presence of a non-dynamical degree of freedom, namely

the conformal factor. It follows the spirit of the Hawking-King-McCarthy-Malament the-

orem [92, 93] which states that under suitable global causality conditions, the conformal

geometry of a spacetime is encoded in the causal relations. This suggests a more minimal-

istic starting point for quantum gravity which does not allow all components of the metric

to fluctuate, but explicitly removes the conformal factor. At the same time, this solves the

conformal-factor problem in Euclidean gravity based on the Einstein-Hilbert action and

would therefore also constitute an interesting starting point for semi-classical considera-

tions of the gravitational path integral [94]. A further motivation for unimodular gravity

as the starting point for the quantization of gravity is present in a canonical setting, where

the Hamiltonian is nonvanishing in the unimodular case [95, 96]. Moreover, it brings a

different perspective to the fine-tuning-questions surrounding the cosmological constant.

While the observed value of the cosmological constant appears to be compatible with stan-

dard asymptotically safe gravity, its inclusion requires the selection of a very specific RG

trajectory. Instead, in a unimodular setting, the cosmological constant appears at the level

of the equations of motion [95, 97, 98]. These are derived from the full quantum effective

action, where all quantum fluctuations have been integrated out. Therefore, there is no

longer a “typical”, large energy-scale present in the setting. Instead, the most “natural”

scale is k = 0, which motivates the conjecture that the most natural choice for a constant

of integration in this setting should be close to zero in units of the Planck scale. Indeed,

it has been shown explicitly that the cosmological constant is not subject to quantum

corrections [99]. Finally, it has been argued [63, 100] that singularity resolution in simple

asymptotic-safety inspired models of black holes requires a unimodular setting, unless the

microscopic fixed-point value for the cosmological constant accidentally happens to vanish.

While the equivalence to General Relativity at the classical level is undisputed [101, 102]

(and extensions including higher order operators also have been investigated [103–105]),
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the relation of unimodular quantum gravity and “standard” quantum gravity (with full

diffeomorphism (“Diff”) invariance) is under debate see, e.g., [106, 107]. We point out that

a decisive comparison of the quantum theories actually requires some knowledge of the UV

completion. Specifically, theory spaces of TDiff versus Diff invariant gravity differ, as the

former does not contain the cosmological constant. Therefore one would actually expect

unimodular asymptotic safety [103, 108, 109] to differ from the Reuter universality class.

Further, there are different variants of unimodular gravity.

Weyl-squared gravity (see, e.g., [110] for a review) is in some sense the exact opposite

of unimodular gravity: whereas the latter features a fixed, non-dynamical conformal factor,

the former declares conformal/Weyl transformations (i.e., rescaling of the metric by a local

conformal factor, gµν → Ω2(x)gµν) to be gauge transformations. This enhanced symmetry

strongly constrains the viable dynamics. In fact, the only invariant term that can appear

in the action is the Weyl-squared invariant C2 = CµναβCµναβ with

C2 = RµναβR
µναβ − 2RµνR

µν +
1

3
R2 . (2.1)

The Weyl-tensor transforms according to Cµνκλ → Cµνκλ under a Weyl transformation. Thus,

the most general, local gravitational action invariant under Weyl transformations which is

expressed just in terms of the metric is given by

SWG =
1

2w

∫
x

√
g C2, (2.2)

with w being a dimensionless coupling.

Alternatively, conformal invariance can be achieved in any action by means of the in-

troduction of extra fields such as the dilaton, see, e.g., [17, 111–117]. For further discussions

on the role of scale symmetry as a key ingredient of a fundamental theory for quantum

gravity, see, e.g., [118–120].

It is curious to observe that promoting conformal transformations5 to gauge trans-

formations does not require to introduce a new gauge field in order to write a gauge-

invariant action. Nevertheless, one can of course introduce such a gauge field, the so-called

Weyl photon, as part of the gravitational connection, see, e.g., [121, 122] for older work

and [123, 124] and references therein for more recent work. We will not focus on this ver-

sion of Weyl-gravity or conformal gravity here. For clarity we refer to the theory we study

as Weyl-squared gravity.

Weyl-squared gravity is power-counting renormalizable [125], but most importantly

also asymptotically free [126], such that it could potentially be a candidate for a UV

complete description of gravity. Yet, there is a major problem that requires a solution:

around flat spacetime, upon expansion of C2 to second order, a ghost mode, i.e., a mode

with negative kinetic term, propagates, signalling an inconsistency of the theory about flat

spacetime [127, 128]. Upon spontaneous breaking of the conformal symmetry, this mode ac-

quires a mass that might be high enough to render this mode phenomenologically irrelevant.

5Throughout the paper we refer to the local rescaling of the metric by a conformal factor as a conformal

transformation, and caution that this should not be confused with the global action of the conformal group

on flat spacetime.

– 5 –



J
H
E
P
0
9
(
2
0
1
9
)
1
0
0

We will not focus on this question in this paper. For recent discussions how to potentially

evade such unitarity problems in curvature-squared gravity, see, e.g., [62, 129–131].

Vacuum solutions to the Einstein equations, where the Planck mass drops out since

the energy-momentum tensor vanishes, actually turn out to be solutions of Weyl-squared

gravity, including the Schwarzschild solution. Moreover, it has even been argued that Weyl-

squared gravity might reproduce the observed galactic rotation curves [132], although it

is not clear whether further evidence for dark matter, coming, e.g., from the spectrum of

CMB fluctuations, can actually be reproduced.

Invariance under conformal transformations — as expected — precludes the existence

of dimensionful couplings. At a first glance this could appear to be phenomenologically

problematic, as gravity at IR scales clearly contains a mass scale, the Planck mass. In-

troducing a scalar field with a conformal coupling to gravity, i.e., a φ2R-term, conformal

symmetry can be broken spontaneously once the scalar acquires a vacuum expectation

value, thereby generating an Einstein term φ2R → M2
PlR + . . ., see, e.g., [133–135] and

references therein. Clearly, the theory space of Weyl-squared gravity differs significantly

from the ones explored for “standard” and unimodular quantum gravity.

3 Setup

3.1 Functional Renormalization Group for quantum gravity

In this paper we study quantum-gravity matter systems within a quantum-field theoretic

setting. We aim at discovering whether the formal path integral can be defined in a

predictive, UV-complete fashion. To that end, we explore the change of the dynamics for

matter under coarse-graining steps, and search for scale-invariant points in the space of

the dynamics for matter, providing a UV completion. The existence and location of these

points depend on the gravitational couplings which we treat as free parameters in this

work. Accordingly, the microscopic gravitational dynamics is constrained by demanding a

UV complete matter sector, as discussed, e.g., in [80].

The functional renormalization group (FRG) has been extensively employed in

the asymptotic-safety program for quantum gravity, based on the seminal work [48],

see [18, 49, 51, 136] for recent reviews. The key point of the FRG is the introduction

of an IR-cutoff which allows us to capture the scale dependence of the dynamics. As it

should distinguish UV from IR modes in a local coarse-graining scheme, it requires the

introduction of a background metric ḡµν . We will mostly focus on the exponential split

introduced in 2 + ε dimensions in [137] and first used in the context of the functional RG

in [36, 108, 138] which has the form

gµν = ḡµκ [exp(h· ·)]
κ
ν , (3.1)

where gµν is the full metric and hµν is a fluctuation field (of arbitrary amplitude). In

section 7, where we study the parameterization dependence of the results in Weyl-squared

gravity, we also explore more general splits [139–142].

The quantization is performed by integrating over the fluctuation field hµν . This

background field approach allows us to define an IR-suppression term that is added to the

– 6 –
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action appearing in the Euclidean generating functional

Zk[J ] =

∫
DhDC̄DC e−S[gµν ]−Sgauge−fixing−Sghost−∆Sk+

∫
x

√
ḡhµνJµν , (3.2)

where Jµν is an external source and (C̄, C) are the Faddeev-Popov ghosts. The suppression

term takes the form

∆Sk =
1

2

∫
x

√
ḡ hµν [Rk(−D̄2)]µναβ hαβ . (3.3)

It suppresses quantum fluctuations in hµν based on the spectrum of the covariant back-

ground Laplacian −D̄2: modes with eigenvalue λl of −D̄2 lower than the momentum scale

k2 are suppressed, i.e., k acts as an IR cutoff scale. The function Rk(−D̄2) has to satisfy

several requirements: in order for it to act as an IR suppression term, it has to vanish for

λl > k2 and take a finite value for λl < k2. Further, it should diverge in the limit k2 →∞
such that Γk, which we will define just below, approaches S in that limit, see, e.g., [143].

This leaves some freedom in the form of Rk(−D̄2). A popular choice is the so-called Litim

cutoff [144, 145], but, e.g., [20, 146–148] highlight that the use of a different shape function

does not qualitatively alter the results for the Reuter fixed point. This allows to define

the flowing action Γk as a modified Legendre transform of the scale-dependent Schwinger

generating functional Wk(= lnZk), defined as follows

Γk[hµν , ḡµν ] = sup
J

(∫
x

√
ḡJµνhµν − lnZk[J ]

)
−∆Sk. (3.4)

Note that we slightly abuse the notation here, as the arguments of the flowing action are

the expectation values of the fields, which we denote by the same variable as the fields

that are integrated over in the path integral. The flowing action Γk interpolates between a

microscopic (bare) UV action Γk→Λ = SΛ, with Λ being a UV cutoff, and the full quantum

effective action Γk→0 = Γ. As the scale k plays the role of an IR cutoff, Γk contains the

effect of modes with generalized momentum (i.e., λl) higher than k2. The key advantage

of this setting is that Γk obeys an exact flow equation of one-loop structure, the Wetterich

equation [149–151], formally written as

∂tΓk =
1

2
STr

[(
Γ

(2)
k + Rk

)−1
∂tRk

]
, (3.5)

where ∂t = k∂k, Γ
(2)
k = δ2Γk/δΦδΦ is the Hessian and STr denotes the supertrace which

contains a negative sign for Grassmann-valued fields and a factor of 2 for complex fields.

As Rk(−D̄2) vanishes for modes with λl > k2, its scale derivative actually acts as an

ultraviolet cutoff in eq. (3.5). Accordingly, the physical interpretation of the flow equation

is the following: under a change of the momentum scale — intuitively speaking to be

thought of as the “resolution” scale of the theory — the effective dynamics changes. The

main contribution to the right-hand-side of eq. (3.5) comes from modes with momenta close

to the scale k, i.e., the change of the dynamics at k is driven by quantum fluctuations with

momenta close to k. This translates the Wilsonian idea of performing the path integral in

– 7 –
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Figure 1. Diagrams encoding the quantum-gravity contributions to the anomalous dimensions of

the matter fields. Double lines correspond to the metric propagator, the dashed line represents a

scalar field, the wiggly line denotes a gauge field and the single solid line stands for a fermionic

field. The crossed circle denotes the regulator insertion in eq. (3.5).

a momentum-shell-wise fashion into an equation that is structurally one-loop, a fact that

greatly simplifies practical calculations.

While eq. (3.5) is formally exact, in practice it requires an approximation. In other

words, a truncation of the dynamics has to be used. In this work, we will work un-

der the assumption that an asymptotically safe fixed point in four-dimensional Euclidean

quantum gravity is a near-Gaussian one. This implies that the relevant terms in the

dynamics are those with positive, vanishing or only slightly negative canonical scaling di-

mensions. This motivates truncations that follow canonical power-counting and neglect

most higher-order operators. This assumption is corroborated by several recent results,

see [26, 32, 43, 45, 57–61]. For a recent demonstration of the quantitative reliability of

the FRG and the fast convergence of truncations for interacting fixed points in the non-

gravitational context, see [152].

Plugging a given truncation into the flow equation (3.5), we can extract the anomalous

dimensions and the running of dimensionless couplings by taking functional derivatives and

applying appropriate projection rules (see appendix A). Due to the one-loop structure of

the flow equation, the right-hand side of eq. (3.5) can be expressed diagrammatically as in

figures 1 and 2, which should not be confused with Feynman diagrams.

Let us add two cautionary remarks: firstly, we stress that our results are obtained

in Euclidean gravity, and there is no straightforward way to extract implications in a

Lorentzian setting, as the Wick-rotation is in general ill-defined in quantum gravity, see,

e.g., [153, 154].

– 8 –
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Figure 2. Further diagrams contributing to the running of the Yukawa coupling (denoted as Dy y).

In the unimodular gravity framework only the triangle diagrams in the last column are non-zero.

In the Weyl-squared gravity case the only non-vanishing diagram is the tadpole in the first column.

Within the standard asymptotically safe quantum gravity (ASQG) framework all the diagrams

depicted above may lead to non-trivial contributions (depending on the gauge choice).

We further stress that we explore the dependence of couplings on the RG cutoff scale

k, not on physical momenta. A priori, the cutoff scale k is not a physical scale, although

external momenta can of course act similarly, i.e., as an IR cutoff, e.g. in scattering pro-

cesses. We use that in a scaling regime, the dependence of couplings on physical momenta

is expected to mimick the k-dependence simply because a scaling regime by definition does

not feature any characteristic physical scale. Hence, fixed points in k provide indications

whether asymptotic safety is realized in a physical sense.

3.2 Functional Renormalization Group for unimodular gravity

Unimodular quantum gravity (UQG) is characterized by a restriction on the configuration

space such that the metric determinant is non-dynamical, more specifically

det gµν = ω , (3.6)

where ω denotes a fixed scalar density.6 This is not the same as imposing det gµν = ω as a

gauge-condition in a path integral over all components of the metric. The difference lies in

the symmetry group, which is transverse diffeomorphisms, TDiff, in the unimodular case

instead of the full diffeomorphism group. Formally, unimodular quantum gravity is based

on a definition of the functional measure in such a way that the integration is performed

over the space of metrics satisfying the unimodularity condition. In this sense, we are

interested in computing functional integrals of the form

ZUQG =

∫
(Dg)UQG e

iSUQG[g] . (3.7)

6Let us note, as already hinted at in [108], that this could provide an interesting vantage point from

which to develop a more background-independent flow equation: in the implementation of the RG as a local

coarse-graining, one only requires a definition of a local “patch” over which to average fluctuations. The

fixed background density provides this, as it is sufficient to define a local volume. Whether this is sufficient

to derive a flow equation is an intriguing open question.

– 9 –
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The application of functional RG techniques makes it necessary to focus on the Euclidean

version of the path-integral,

ZUQG, k =

∫
(Dg)UQG e

−SUQG[g]−∆Sk[ḡ;h] . (3.8)

We apply the background field method by means of the exponential parameterization,

see eq. (3.1). Since the exponential parameterization allows us to express det(gµν) =

det(ḡµν) eh, one can impose the unimodularity condition on the background metric (namely

det ḡµν = ω). As a consequence, the same condition on the full metric can be achieved by

setting the trace mode to zero, i.e., removing h = ḡµνhµν from the path integral. Therefore,

the functional measure for UQG can be defined in such a way that the integration is

performed over the space of traceless fluctuations [103, 107, 108, 155].

In this work we employ a truncation containing matter fields (scalar, vector and spinor

fields) minimally coupled to gravity in the unimodular setting including all operators com-

patible with the symmetries with positive or vanishing canonical dimension of the corre-

sponding couplings. Our truncation is given by

ΓUG
k =

1

16πGN

∫
x

√
ω
(
−R+ ā R2 + b̄ RµνR

µν
)

+ Γg.f.
k + Γgh.

k

+
1

2

∫
x

√
ω
(
Zφg

µν∂µφ∂νφ+2V (φ2)
)

+

∫
x

√
ω (Zψiψ̄ /∇ψ + i yφψ̄ψ)

+
ZA
4

∫
x

√
ω gµαgνβFµνFαβ . (3.9)

An explicit mass term for fermions is incompatible with the discrete “chiral” symmetry

ψ → eiπ/2γ5ψ, ψ̄ → ψ̄eiπ/2γ5 , under which the scalar transforms as φ → −φ. The fermion

is coupled to gravity by means of the vielbein and the spin-connection, which, for spaces

with vanishing torsion, can be expressed in terms of the fluctuation field (see appendix B

for further details).

In setting up this truncation, we follow a canonical power-counting scheme, as we

expect most canonically irrelevant (i.e., higher-order) interactions to also be irrelevant at

the interacting fixed point since we expect that anomalous scaling dimensions are roughly

O(1). Thus, the canonically least irrelevant operators might be shifted into relevance

at the interacting fixed points, but this ordering principle makes it unlikely that, e.g.,

operators of mass dimension beyond 6 become relevant. Within this scheme, a leading-

order understanding of gravity-matter systems is based on the direct quantum-gravity

contribution to the scale dependence of gauge couplings and Yukawa sectors (as well as the

scalar potential).

We therefore assume that at this leading order, induced higher-order matter interac-

tions and non-minimal couplings can be neglected. A subset of those, selected by their

global symmetries as discussed in [80], is generically nonzero at an interacting fixed point

of the gravity-matter system, as has been studied for standard asymptotically safe grav-

ity [56, 61, 74, 78, 80, 156–159]. More specifically, derivative interactions are induced

in the presence of gravitational interactions. For example, this includes a F 4-term for

– 10 –



J
H
E
P
0
9
(
2
0
1
9
)
1
0
0

gauge fields [56, 159] and interactions of the schematic form ψ̄ /∇ψ∂µφ∂µφ for the Yukawa

sector [80, 157], as well as non-minimal derivative interactions [61, 158]. We expect this

property to persist in the case of unimodular gravity. Given that around a flat background,

the TT propagator at vanishing cosmological constant is the same in unimodular as in stan-

dard gravity in the linear parameterization, the TT-approximation of, e.g., [80] carries over

to the unimodular case and supports the presence of higher-order interactions at the fixed

point. In our context it is important that these higher-order interactions are expected to be

sub-leading compared to the direct quantum-gravity contributions that we calculate here,

see [56, 80, 159] for a study of this in standard gravity. This holds, as long as gravity is

sufficiently weakly coupled such that the induced fixed points in [61, 80, 157–159] remains

at real values. This motivates our choice of truncation which neglects such higher-order

operators.

We work with dimensionless couplings which are given by

G = GN k
2−d, a = ā k2, b = b̄ k2. (3.10)

Further, we introduce the anomalous dimensions

ηφ/ψ/A = −∂t lnZφ/ψ/A. (3.11)

The gauge-fixing part is given by [108]

Γg.f.
k =

1

32παGN

∫
x

√
ω ḡµνF Tµ [h]F Tν [h] +

1

2ζ

∫
x

√
ω (ḡµν∇̄µAν)2 , (3.12)

where F Tµ [h] = PT,µν ḡ
να∇̄βhαβ defines a transverse gauge fixing condition, with

PT,µν = ḡµν − ∇̄µ(∇̄2)−1∇̄ν being the transverse projector. The parameters α and ζ are

gauge parameters for the gravitational and Abelian sectors, respectively. The use of the

transverse part of the usual gauge fixing condition Fµ[h] = ∇̄βhµβ− 1+β
d ∇̄µh is required to

account for the fact that the symmetry underlying UQG corresponds to the TDiff group

instead of the Diff group. For a discussion of BRST quantization of unimodular gravity

see [99, 160].

The explicit form of the ghost sector will not be relevant for the analysis per-

formed in this paper. For further details on the gauge fixing procedure for UQG see,

e.g., [103, 107–109].

In addition, we perform a York decomposition [161] of the fluctuation field (note the

absence of the trace mode due to the unimodularity condition),

hµν = hTT
µν + ∇̄µξν + ∇̄νξµ + ∇̄µ∇̄νσ −

1

d
ḡµν∇̄2σ. (3.13)

It is convenient to adopt the Landau gauge α→ 0 which further removes the ξµ degree of

freedom such that it does not contribute to the flow of matter couplings [162]. Furthermore,

we employ the non-local field redefinition σ 7→
(

(−∇̄2)2 + d
d−1∇̄

µR̄µν∇̄ν
)−1/2

σ in order

to cancel the σ-part of the Jacobian in the generating functional arising from the York

decomposition.
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Let us briefly discuss the structure of the (flat) propagator obtained from the uni-

modular truncation given by eq. (3.9). The propagators for the TT- and σ-modes are,

respectively, given by

GµναβTT (p2) =
1

ZTT

(
p2 + b̄ p4

)PµναβTT , (3.14a)

Gσσ(p2) = − d2

(d− 2)(d− 1)

1

Zσ

(
p2 − 4 ā (d−1)+b̄ d

d−2 p4
) , (3.14b)

with ZTT and Zσ defined by eq. (C.1). The first point to be emphasized is the appearance

of massive poles in both the TT- and σ-sectors, namely

p2 = − b̄−1 and p2 =
d− 2

4 ā (d− 1) + b̄ d
. (3.15)

In the framework of perturbative curvature-squared quantum gravity, the existence of such

poles is problematic. In particular, according to the usual perturbative treatment, the pole

at p2 = − b̄−1 corresponds to either a massive ghost-like particle if b̄ < 0 or a tachyon if

b̄ > 0, therefore leading to unitarity or causality problems. Recent proposals on how to

avoid such ghosts include, e.g., [129, 130, 163–165].

From the FRG perspective, on the other hand, the association of such poles with

ghosts/tachyons cannot directly be made. The presence of instabilities (non-unitarity)

should be analyzed at the level of the full effective action, i.e., Γk→0. On the other hand,

the propagators shown above were obtained within a truncation of the flowing action within

a derivative expansion. Further, we are only focusing on the fixed-point regime at large k.

Accordingly, it is not clear whether such higher-order terms will be present or not in the

full non-perturbative result for the effective action Γk→0. Let us stress that the presence of

higher-order terms in the effective action does not automatically result in instabilities/non-

unitarity. This becomes obvious by considering the effective action in cases like QED or

QCD, where higher-order terms are certainly present, but do not signal any inconsistency.

Moreover, already the analysis of classical instabilities by Ostrogradsky, see [166] for a

pedagogical review, is based on the assumption of a finite number of higher-order terms.

In the case of asymptotic safety one expects infinitely many higher-order terms to be present

that enter the full propagator of the physical theory at k → 0. We stress that even for a

function Γ(2)(p2) which only features a simple zero at p2 = 0, a Taylor expansion to finite

order generically features additional zeros. Therefore truncations of Γk to finite order in

the derivative expansion are not suitable to address the question of instability/unitarity.

Therefore no automatic conclusion can be drawn on unitarity from the presence of higher-

order terms in a truncation for Γk. Analyzing the full propagator is beyond the scope of

this work.

The above propagators results in the presence of the following contributions to the

running of matter couplings and anomalous dimensions

1

(b+ 1)#1
and

1

(d− 2− 4 a (d− 1)− b d )#2
, (3.16)
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with #1,2 ≥ 1. The gravitational parameter space in our truncation therefore features two

pole lines in a and b, namely

b+ 1 = 0 and d− 2− 4 a (d− 1)− b d = 0 . (3.17)

The flow cannot cross these pole lines (or the corresponding generalizations in an enlarged

parameter space.) The current experimental bounds on a and b, see, e.g., [167–169] and

references therein, do not lead to significant restrictions on the parameter space, and do

not provide any guidance as to which side of the poles is of phenomenological interest.

3.3 Functional Renormalization Group for Weyl-squared gravity

We explore, taking into account Weyl-squared gravity along with Standard-Model-like in-

teractions, the viability of a UV completion for the matter sector in the gravitational

parameter space, which here is spanned by the coupling w.

An interesting point about a conformal gravity description of the fixed-point regime is

that if we restrict ourselves to the subspace of local terms, then there is only a finite number

of Weyl-invariant operators. Under this assumption, the most general (local) truncation

for Weyl-squared gravity (WG) coupled to a fermion, a scalar and a gauge field is given by

ΓWG
k =

∫
x

√
g

[
1

2w
C2 +

Zφ
2
gµν∂µφ∂νφ+

λ4

4!
φ4 +

χ

2
φ2R+

+
ZA
4
gµαgνβFµνFαβ + Zψiψ̄ /∇ψ + iy φψ̄ψ

]
+ Γg.f.

k + Γgh.
k . (3.18)

Weyl symmetry requires the renormalized non-minimal coupling χ̃ = χ/Zφ = 1/6. As

we will only explore the Yukawa and gauge sector, the non-minimal coupling and scalar

potential are actually irrelevant for us.

As an alternative to the above, one can introduce a Weyl gauge field that allows

to render the kinetic term for the scalar field Weyl invariant on its own, such that the

coupling of the non-minimal term can be arbitrary, see, e.g., [124]. As a phenomenologically

important consequence, this allows to absorb the dilaton that arises as the Goldstone boson

of spontaneous scale symmetry breaking in the longitudinal mode of the corresponding

massive vector, thereby evading fifth-force constraints.

For our explicit calculation we consider the following gauge-fixing sector

Γg.f.
k =

1

2α

∫
x

√
ḡ Fµ[h]Y µνFν [h] +

µ4
0

2α̃

∫
x

√
ḡ h2 +

ZA
2ζ

∫
x

√
ḡ (ḡµν∇̄µAν)2, (3.19)

where Yµν = γ1 ḡµν∇̄2 + γ2 ∇̄µ∇̄ν and Fµ[h] = ∇̄νhµν − 1+β
4 ∇̄µh. The first term is a

gauge-fixing for the diffeomorphisms. We have chosen a higher-derivative gauge-fixing in

order to avoid the introduction of a mass scale in this sector. The second term is the

gauge-fixing term for the Weyl symmetry. In this case, we introduce an arbitrary mass

parameter µ0. In the Landau gauge, α → 0 and α̃ → 0, the graviton propagator becomes

independent of the parameters γ1, γ2, β and µ0. As in the unimodular case, the ghost

sector is not relevant for the computations performed in this paper. For further details on

the gauge-fixing procedure in the framework of Weyl-squared gravity, see [141, 170].
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We perform a York decomposition [161] of the fluctuation field

hµν = hTT
µν + ∇̄µξν + ∇̄νξµ + ∇̄µ∇̄νσ −

1

4
ḡµν∇̄2σ +

1

4
ḡµνh. (3.20)

In terms of York decomposed variables, the Landau gauge α→ 0 and α̃→ 0 entails an in-

teresting simplification. In this case, the vector and scalar sectors (ξµ, σ and h) do not con-

tribute to the running of the matter couplings. Therefore, all computations can be done by

taking into account only the TT-mode. The Hessian in the gravitational sector is given by[
Γ

(2)

k,hTThTT

]µναβ
= ZTT p

4 PµναβTT . (3.21)

The regulator associated with the TT sector is

[RTT
k (p2)]µναβ = ZTT [Pk(p

2)2 − p4]PµναβTT , (3.22)

where Pk(p
2) = p2 + Rk(p

2), for a generic shape function Rk(p
2). The other relevant ob-

jects for computations within the Weyl-squared gravity framework, such as the Hessians

associated with the matter sector and the gravity-matter vertices, are basically the same

as in the UQG case. These can be obtained from the expressions reported in appendix C

(with the replacement κ→
√

2w.)

Although the model exhibits Weyl invariance, the introduction of the regulator function

in the FRG framework breaks this symmetry. Intuitively, the regulator is a momentum-

dependent mass term and therefore is not invariant under Weyl rescalings.7 Hence, the

flow generates couplings which break the Weyl symmetry and which are controlled by

appropriate modified Ward identities. This falls outside the scope of the present paper

and we restrict the ansatz for the flowing action to be Weyl invariant. The situation is

analogous to that of other local symmetries, reviewed, e.g., in [171, 172].

We also highlight that higher-order matter interactions, as induced by gravity without

Weyl symmetry [56, 61, 74, 78, 80, 156–159], are all dimension-5 or higher operators, which

introduce explicit mass-terms and are accordingly incompatible with Weyl symmetry. In

the flow-equation setup, they are presumably present as a cutoff-artifact, and also subject

to modified Ward-identities.

4 Quantum-gravity induced ultraviolet completion of Standard-Model

like theories

The Abelian hypercharge sector and the Higgs-Yukawa sector of the Standard Model ex-

hibit Landau poles in perturbation theory, most likely rendering the Standard Model UV

incomplete. This is a consequence of the fact that the free fixed point is IR attractive in

these couplings. In this work, we explore the question whether quantum gravity can solve

this problem by inducing a (near-) perturbative ultraviolet completion.

Results obtained in the last few years indicate that asymptotically safe quantum-

gravity effects might induce a UV completion of the Standard Model and might even allow

7This can be dealt with in principle by introducing a dilaton, see [111, 112].
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to predict (or retrodict) the values of several couplings which are free parameters in the

Standard Model without gravity [52–55, 73, 82]. Here, we extend this study to unimodular

as well as Weyl-squared gravity. For the latter, the dimensionless nature of the gravitational

coupling suggests that the leading-order contribution is universal. Our study is the first

implementation of this calculation in the FRG framework, providing an explicit test of

one-loop universality by comparison with previous perturbative results.

The quantum-gravity contribution is generically linear in Standard-Model-like matter

couplings, in accordance with symmetry considerations, see [80] and as follows from the

corresponding diagrammatic expressions. Therefore, the quantum-gravity contribution to

the running matter couplings gi (e.g., gauge and Yukawa), takes the form

βgi |grav = −fgi gi + . . . , (4.1)

where fgi is a function of the gravitational couplings. As gravity is “blind” to internal

symmetries, this direct quantum-gravity contribution to the scale-dependence of gauge

couplings is independent of the gauge group. Similarly, there is no flavor-dependence of

the direct quantum-gravity contribution to the scale-dependence of Yukawa couplings, nor

a dependence of the direct quantum-gravity contribution on the internal symmetries of a

scalar sector. Thus, fg is the same for all gauge couplings and fy is the same for all Yukawa

couplings. To induce an ultraviolet completion for gauge and Yukawa couplings, the gravity

contribution needs to be antiscreening, i.e., fg > 0 and fy > 0. In fact, such a linear term

is also present in d 6= 4 spacetime dimensions, where gauge and Yukawa interactions are

not marginal. The case fgi > 0 is analogous to an effective dimensional reduction (though

not necessarily to an integer spacetime dimension).

For the Higgs self-coupling, the situation is slightly different: a screening quantum-

gravity contribution actually results in a prediction of the Higgs mass close to the experi-

mental value [52]. This is a consequence of the fact that a Higgs mass of about 125 GeV is

connected to a near-vanishing Higgs quartic coupling,8 which in turn follows from a screen-

ing quantum-gravity contribution, as found in [36, 53, 77, 82, 83, 87, 175]. On the other

hand, an antiscreening contribution would result in the Higgs self-coupling being a free pa-

rameter of the theory, such that the model would also be UV complete, albeit less predictive.

In the following, we therefore focus on evaluating the leading-order quantum gravity

contribution (i.e., linear in the respective matter couplings) to the beta functions of a

(non-)Abelian gauge coupling and a Yukawa coupling.

4.1 (Non-)Abelian gauge couplings

The quantum-gravity contribution to the running of a minimal (non-)Abelian gauge cou-

pling, denoted as g, is related to the anomalous dimension ηA,

βg2 = ηA g
2. (4.2)

8The exact value features a delicate dependence on the mass of the top quark [173, 174].
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Figure 3. We illustrate the beta function (left panel) arising from fg < 0 in eq. (4.3) and the

corresponding RG trajectories (right panel). The interaction fixed point at g∗ generates an upper

bound on low-energy values of g: no value above the green line in the right panel can be reached

on a UV complete trajectory.

It receives contributions from the interaction with other matter fields and also from

quantum-gravity fluctuations, namely

ηA = ηA|matter + ηA|grav . (4.3)

The first contribution, i.e., ηA|matter is positive for Abelian gauge fields due to the screening

impact of charged matter fields and starts at quadratic order in g, indicating a single UV

repulsive free fixed point in the absence of gravity. For instance, in the presence of a

single charged fermion, ηA|matter = g2/(6π2). The situation may potentially change if the

quantum-gravity part is taken into account as discussed in [54, 55, 73, 81]. If the latter

admits a region in the space of parameters such that ηA|grav < 0, corresponding to fg > 0,

then two possibilities for a UV completion are generated, illustrated in figure 3:

1. an asymptotically free Abelian gauge coupling;

2. an asymptotically safe Abelian gauge coupling with uniquely calculable IR value.

This fixed-point structure follows from a competition of the two terms in eq. (4.3).

Due to the quantum-gravity contribution, the fixed point at g = 0 is IR repulsive. This

allows to reach finite IR-values of the gauge coupling along UV-complete RG trajectories,

thereby solving the triviality problem. At the same time, the competition between the

antiscreening quantum-gravity contribution and the screening matter contribution results

in an IR attractive fixed point at a finite value g∗. Due to its IR attractive nature it

generates an upper bound on IR values of the gauge coupling: the unique IR value of

g that is reached along the trajectory emanating from the interacting fixed point is the

largest IR-value of g that follows from any UV complete trajectory. Larger IR-values of g

cannot be reached starting from the free fixed point, as the critical trajectory emanating

from g∗ cannot be crossed.

For non-Abelian theories with an appropriate matter content, as, e.g., in the Standard

Model, it holds that ηA|matter < 0, such that a non-Abelian sector is already UV complete

without gravity. As long as ηA|grav < 0, this situation does not change once gravity
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is included. For grand unified theories with a large number of matter fields, such that

asymptotic freedom is lost, ηA|grav < 0 could result in a UV completion, see [81].

4.2 Yukawa terms

Quantum-gravity fluctuations could also play an important role for the Yukawa sector. As

we have mentioned before, an antiscreening contribution coming from graviton fluctuations

may induce a UV completion for the Yukawa coupling. In fact, considering the leading

gravitational contribution,9 the structure of the Yukawa beta function is given by

βy =

(
1

2
ηφ|grav + ηψ|grav +Dy

)
y + β(1)y3 = −fy y + β(1)y3, (4.4)

where β(1) is the universal (i.e., RG-scheme independent) one-loop contribution from mat-

ter, with β(1) > 0. It also includes the matter contributions to the anomalous dimensions.

We distinguish between the gravitational contribution to the anomalous dimensions, and

the direct gravitational contribution to the flow of the vertex, encoded in Dy, where we

adopt the notation from [80]. Both contribute at O(y). Thus, the antiscreening nature of

the gravitational contribution can be characterized by the following inequality

−fy =
1

2
ηφ|grav + ηψ|grav +Dy < 0 . (4.5)

The resulting fixed-point structure is as in the Abelian gauge sector: for fy > 0, the

free fixed point is IR repulsive, rendering the Yukawa coupling asymptotically free. Due

to a competition between antiscreening quantum-gravity fluctuations and screening matter

fluctuations, an IR attractive interacting fixed point exists. It shields the free fixed point

from large values of the Yukawa coupling in the IR, i.e., trajectories emanating from the free

fixed point can only reach a finite range of IR values. That range is bounded from above

by the unique value that is reached along the trajectory emanating from the interacting

fixed point.

Our goal in this paper is the first estimation of fy and fg for unimodular gravity

and Weyl-squared gravity from functional RG techniques. For unimodular gravity, the

gravitational contribution to Yukawa systems in the perturbative setting has been studied

in [176]. We will in particular interpret our results in the context of unimodular asymptotic

safety, whereas the perturbative literature does not assume the existence of a fixed point

for gravity.

For Weyl-squared gravity, the absence of mass-scales in theory implies that the one-

loop results must be universal. It is one of our goals to explicitly test this within the FRG

setup. We will therefore explore the regulator-, gauge- and parameterization-dependence

of the beta functions in the Weyl-squared case to confirm that the FRG, as expected,

reproduces universal results also in a gravitational setting.

9By “leading contribution” we mean that we are not considering contributions coming from induced

fermion-scalar-fermion interactions, see refs. [80, 157] for a discussion of such terms.
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5 Results for unimodular gravity

5.1 Higgs-Yukawa and (non-)Abelian gauge sector in unimodular gravity

In this section, we explore where in the gravitational parameter space a UV completion for

Yukawa and gauge sectors in the framework of unimodular gravity is possible. The relevant

quantities for this analysis are ηφ, ηA, ηψ and Dy (see sections 4.1 and 4.2). Within our

truncation for unimodular gravity, eq. (3.9), we find the following results

ηφ|grav =
G

40π

[
25 (2 + 3 b)

(1 + b)2 +
4(5− 33a− 11b)

(1− 6a− 2b)2

]
, (5.1)

ηA|grav = − G

90π

[
5 (10 + 7b)

(1 + b)2
− 4 (5− 21a− 7b)

(1− 6a− 2b)2

]
, (5.2)

ηψ|grav =
G

160π

[
25 (2 + 3b)

(1 + b)2
− 2 (31− 246a− 82b)

(1− 6a− 2b)2

]
, (5.3)

Dy|grav =
G

20π

5− 39a− 13b

(1− 6a− 2b)2
. (5.4)

In the following, we assume a gravitational fixed-point in G, a, b, and explore for which

values of these couplings it results in fy/g > 0. As all quantities are linear in G, the

sign of fy and fg does not depend on G, as long as gravity is attractive, i.e., G > 0.

Accordingly, these results determine regions in the space of parameters a and b where the

conditions required for a UV completion of Yukawa and gauge sectors, fg > 0 and fy > 0 are

satisfied within our truncation. The shape and location of the boundary of these regions can

additionally depend on higher-order couplings neglected in our truncation. Further, within

a truncation, non-universality of gravitational corrections to matter beta functions implies

that the shape and location of the boundary depends on the regulator function. Therefore,

it is not meaningful to combine a determination of the boundary within one specific choice

of regulator function, with a determination of gravitational fixed-point values within a

different choice. Of course, such unphysical dependences must cancel in physical results,

at least up to the systematic uncertainties arising within an approximation.

In the Yukawa sector, the viability condition for a quantum-gravity induced UV com-

pletion is given by −fy =
(
ηψ + 1

2ηφ +Dy
)

grav
< 0. This results in the following constraint

on the space of curvature-squared couplings (assuming G > 0)

75 (2 + 3b)

(1 + b)2
+

2 (9− 42a− 14b)

(1− 6a− 2b)2
< 0. (5.5)

In figure 4 we plot the region where this inequality holds. A gravitational fixed point in that

region would generate an antiscreening contribution to the Yukawa beta function. There is

a region at negative b, with only a sub-leading dependence on a, satisfying this condition.

Except for the vicinity of the pole 3a+ b = 1/2, the viable region can be approximated by

b . −0.7.
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Figure 4. The red region corresponds to the sub-space of higher curvature parameters, a

and b, where the viability condition for a UV completion of the Yukawa sector, i.e., −fy =(
ηψ + 1

2ηφ +Dy
)
grav

< 0, is satisfied. The dashed lines indicate the poles 1 + b = 0 (TT-mode) and

1− 6a− 2b = 0 (σ-mode). The black dot marks the Einstein-Hilbert truncation.

The point corresponding to the Einstein-Hilbert truncation (a = b = 0) does not

belong to the viable region. One might have expected this result from the analogous

result in the standard gravity case: there, the presence of the cosmological constant is

crucial in the absence of higher-order couplings: at vanishing cosmological constant (and

for a = 0 = b), the transverse traceless contribution to βy dominates, and yields fy < 0.

At sufficiently negative cosmological constant, a reweighing of contributions to βy occurs,

such that the transverse traceless contribution is actually subdominant and fy > 0 can be

realized, see [80] for a comprehensive discussion. In the unimodular case, the cosmological

constant no longer appears in the metric propagators. Accordingly, the results can be

expected to be similar to those in the linear parameterization for standard gravity at

vanishing cosmological constant (of course, the correspondence is not exact). The inclusion

of higher-order terms opens up a larger parameter space, where the nature of gravitational

contributions can change from screening to antiscreening.

The viable region for a UV complete Abelian gauge coupling (−fg = ηA|grav < 0) is

characterized by

5 (10 + 7b)

(1 + b)2
− 4 (5− 21a− 7b)

(1− 6a− 2b)2
> 0 , (5.6)

see figure 5. Similarly to what happens in the Yukawa sector, the sign of the gravitational

contribution to ηA is mostly dictated by the coefficient of R2
µν . This result can be made

plausible by a counting argument: the coefficient of R2
µν enters the propagator of the

transverse traceless graviton (which losely speaking counts like 5 scalars), whereas that of

R2 only appears in the scalar mode. This argument holds in those regions of parameter

space where an enhancement of scalar contributions due to the nontrivial denominators in

the inequality (5.6) is avoided. In the present case, the viable region can be approximated

by b & −1.4, except in the neighborhood of the pole line 3a + b = 1/2. In contrast to

the Yukawa sector, the Einstein-Hilbert point (a = b = 0) belongs to the viable region
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Figure 5. The blue region indicates where the inequality −fg = ηA|grav < 0, is satisfied. The

dashed lines indicate the poles 1 + b = 0 (TT-mode) and 1− 6a− 2b = 0 (σ-mode).

Figure 6. Combined plot showing the regions where the quantum gravitational contribution to

gauge and Yukawa interactions is antiscreening. The red region (with vertical lines) corresponds to

the sub-space of higher-curvature couplings where only fy > 0 can be achieved. The blue region

(with horizontal lines) indicates values of higher-curvature couplings where only fg > 0 holds. In

the green region, fg > 0 and fy > 0 both hold. The dashed lines indicate the poles 1 + b = 0

(TT-mode) and 1− 6a− 2b = 0 (σ-mode).

for a UV completion of the gauge sector. Again, this can be plausibilized by the results

in the standard-gravity case, where fg > 0 holds at vanishing cosmological constant, see,

e.g., [54, 84, 177].

In figure 6 we present the combined constraints on the gravitational parameter space

arising from fg > 0 and fy > 0. Far away from the pole line 3a + b = 1/2, the viable

region can be approximated by −1.4 . b . −0.7. This approximated behavior can be

understood in terms of a dominance of the transverse traceless mode, “TT-dominance”

for short, as discussed above. Figure 7 shows the viable region in the TT-approximation,

which is obtained by neglecting contributions from diagrams containing the σ-modes, i.e.,

by neglecting quantum fluctuations of the scalar mode.
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Figure 7. We show the regions where fy > 0 (red, left panel) and fg > 0 (blue, right panel). In both

panels, the gray strip (with vertical dot-dashed lines) show the region were the TT-approximation

differs from the full result. The horizontal dashed line indicates the pole 1 + b = 0.

So far, we have focused on exploring where in the gravitational parameter space a

UV completion of an Abelian gauge sector and a Yukawa sector could be possible. Yet,

the thus-defined viable region is not automatically phenomenologically viable, given the

measurements of IR values of the corresponding couplings for the Standard Model. If

there was only the free fixed point, then any IR value of the couplings could be reached

by the RG flow. However, for marginally irrelevant couplings, such as the Abelian gauge

and Yukawa coupling, there is automatically a second fixed point of the beta functions in

eq. (4.2) and (4.4). It arises from the competition of the screening one-loop term in the

beta functions with the antiscreening gravity term in the case where fy/g > 0. The larger

fy and fg, the larger the corresponding fixed-point value. This fixed point is necessarily

IR attractive. Accordingly, it acts as an upper bound for trajectories emanating from the

free fixed point, see [53, 54]. Therefore, given a set of values for fy and fg, only IR-values

of gY and y up to an upper bound can be reached. To illustrate this, we supplement βy by

the one-loop contribution for a single Yukawa coupling from the Standard Model, see [178].

We neglect all terms related to the other Yukawa couplings and the non-Abelian gauge

fields, and only keep the Abelian hypercharge contribution, putting in the hypercharge for

an up-type flavor (top, charm, up),

βy = −fy y +
9

32π2
y3 − 1

16π2

17

12
y g2

Y . (5.7)

Similarly, we supplement the one-loop term in the beta function of the Abelian gauge

coupling in the Standard Model (i.e., including all charged fermions) with the gravity

contribution, obtaining

βgY = −fg gY +
41

6

g3
Y

16π2
. (5.8)

This set of beta functions features the following fixed points (we neglect fixed points at
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Figure 8. We show contour lines in the b, G plane for a = 0, where the fixed-point value of y is given

by 0.1 (cyan, dotted), 0.3 (cyan, dot-dashed), 0.5 (cyan, dashed) and 0.7 (cyan, continuous), and

contours where the fixed-point value of gY is given by 0.1 (green, dotted), 0.3 (green, dot-dashed),

0.5 (green, dashed) and 0.7 (green, continuous). Both are evaluated at the fully-interacting fixed

point (5.12), i.e., the values for the y-contours holds for finite values of gY .

negative values)

y∗ = 0, gY ∗ = 0, (5.9)

y∗ = 0, gY ∗ =

√
6 · 16π2

41
fg, (5.10)

y∗ =

√
32π2

9
fy, gY ∗ = 0, (5.11)

y∗ =
4π

3

√
17fg + 82fy

41
, gY ∗ = 4π

√
6fg
41

. (5.12)

The most predictive fixed point is given in (5.12), where both y and gY correspond

to IR attractive directions. For an IR repulsive direction, a deviation from the fixed-point

value can set in at any scale (corresponding to the free parameter linked to a relevant

direction). This is not the case for an IR attractive direction. In the presence of fy > 0,

fg > 0, y and gY must stay at their fixed-point values if eq. (5.12) is chosen as the UV

fixed point. Since fg and fy depend on gravitational couplings and are proportional to the

Newton coupling, a realistic flow will exhibit a sharp decrease of fg and fy below the Planck

scale. There, y and gY start to run as well. Their low-energy values are uniquely fixed

by the initial condition at the Planck scale, where they have to assume their fixed-point

values. Therefore, a specific value for the prediction of y and gY in the IR is tied to a

hypersurface in the gravitational parameter space, cf. figure 8.

Gravitational contributions to the beta functions of Yukawa and quartic scalar cou-

plings were computed in the context of unimodular gravity in the framework of effec-

tive field theory [176, 179, 180]. The gravitational action was taken to be the (leading)

Einstein-Hilbert term.10 For the particular choice of scheme adopted in [179], involving

10The unimodularity condition is imposed differently from the procedure we adopt in this work. It is

unclear if such different prescriptions lead to inequivalent theories at the quantum level.
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a non-multiplicative field redefinition, a vanishing gravitational correction is obtained for

the beta functions of the Yukawa and scalar quartic couplings. We emphasize that, just

as in the Standard Model beyond two loops, non-universality is present in gravitational

contributions starting at one loop. Accordingly one should not expect our functional RG

results to agree with those from [176, 179, 180] at the level of unphysical quantities, such

as, e.g., beta functions. At the level of physical observables, scheme-dependences must

cancel (at least up to the accuracy achievable in a given approximations), and comparisons

could become meaningful.

5.2 The Higgs potential in unimodular gravity

In standard gravity, the gravitational contribution to the beta functional of the scalar po-

tential is towards irrelevance at the free fixed point, V∗ = 0 [52, 77, 82, 83, 87, 175]. This

implies that (with the possible exception of the mass term, which may remain relevant),

all terms in the potential are driven to zero under the impact of quantum-gravity fluctua-

tions,11 i.e., quantum-gravity fluctuations tend to flatten scalar potentials. In unimodular

gravity, the only direct gravitational contribution to the flow of the Higgs potential, or

more generally any scalar potential V , comes through the gravitational contribution to the

anomalous dimension. This is very different from the standard gravity case, where, unless

a particular choice of parameterization and gauge is made, the main contribution comes

from a direct gravitational tadpole contribution, arising from the term
√
gV in the action

(see [36] for a discussion of this point). The quantum-gravity effects on scalar potentials in

unimodular gravity are therefore potentially rather different from those in standard gravity

and it is of interest to compare the two. Our result is given by eq. (5.1). For a potential

with n scalar fields that is Taylor expanded around the origin in terms of the couplings

λi1...in , i.e.,

V [φ1, . . . , φn] =
∑
i1,...,in

λi1...inφ
2i1
1 . . . φ2in

n , (5.13)

there is a gravitational contribution to the beta functions of the form

βλi1...in

∣∣∣
grav

= (i1 + . . .+ in) ηφ

∣∣∣
grav

λi1...in . (5.14)

This expression highlights the “flavor”-independence of gravity: the gravitational contri-

bution to the anomalous dimension is the same for each of the scalar fields, independently

of internal symmetries. In the phase of unbroken symmetry, there is no scalar contribution

to ηφ. Therefore the fixed point at λi1...in = 0, which is guaranteed to exist in the absence

of explicit shift-symmetry-breaking contributions, is infrared attractive for ηφ|grav > 0.

Under the assumption that this fixed-point structure is realized in the corresponding more

involved systems despite the presence of additional fields, this could have potential phe-

nomenological consequences, such as a prediction of the Higgs mass in the vicinity of the

11Note that this can change in the presence of finite fixed-point values for Yukawa and/or gauge couplings,

where a non-trivial fixed-point potential is generated by the same terms in the beta function that regenerate

scalar self-interactions like the Higgs quartic coupling in the Standard Model, even if it is set to zero at

some scale.
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Figure 9. We show the region where ηφ|grav > 0 in cyan as a function of the higher-derivative

couplings a and b. The left panel shows the full result, whereas the right panel shows the TT-

approximation.

observed value [52, 87, 181], the decoupling of the Higgs portal to uncharged scalar dark

matter [82], and in general the vanishing of all quartic scalar couplings which could rule

out certain breaking chains in grand unified theories [182].

In the absence of higher-order terms, ηφ|grav > 0 holds as long asG > 0. Accordingly, as

long as gravity remains attractive, it generates a screening contribution for scalar potentials.

We highlight that although the origin of the gravitational contribution differs between the

“standard” (in linear parameterization) and the unimodular case, the result is actually the

same, i.e., a screening gravitational contribution. In the presence of higher-order curvature

terms, the sign of the gravitational contribution can change, cf. figure 9, and the effect can

become antiscreening.

It is intriguing to understand whether the conditions fg > 0 and fy > 0, necessary for

UV completions of gauge-Yukawa-systems, can be combined with the requirement ηφ > 0,

which results in a flat scalar potential at the Planck scale. Within our approximation, we

find such a region in the gravitational parameter space. The conditions fy > 0, fg > 0,

ηφ > 0 impose very significant restrictions on the space of higher-curvature couplings, see

figure 10. The origin of this severe restriction can already be seen in the TT-approximation

of the beta function for the Yukawa coupling, namely

βy|TT =

(
1

2
ηφ|TT + ηψ|TT

)
y =

15(2 + 3b)

32π(1 + b)2
Gy =

3

4
ηφ|TT y, (5.15)

where the factor 3/4 is a consequence of ηψ|TT = ηφ|TT/4, since both are only generated

by a tadpole diagram. Hence, the viability condition for a UV completion of the Yukawa

coupling becomes ηφ|TT < 0, in conflict with the requirement for a calculable Higgs mass.12

Beyond the TT-approximation, scalar fluctuations generate a region which features fy > 0

and ηφ > 0, showing that scalar fluctuations can play an important role in parts of the

gravitational parameter space, see figure 10.

12The scalar sector is of course consistent for ηφ|TT < 0, as the scalar quartic coupling is then asymp-

totically free. Yet, the scalar mass is then no longer calculable in terms of the scalar vacuum expectation

value, but instead becomes a free parameter of the theory.
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Figure 10. We show the boundaries of the regions for a UV completion and predictive Higgs mass:

fg > 0 above the dashed (thin) line; fy > 0 below the continuous line; ηφ|grav > 0 above the dotted

line. The thick dashed lines indicates the pole lines 1 + b = 0 and 1− 6a− 2b = 0. The right-panel

zooms in on the overlapping region where the three conditions hold simultaneously.

6 Comparison with the Reuter fixed point

We contrast the results on unimodular gravity, presented in section 5, with the correspond-

ing ones obtained in standard asymptotically safe quantum gravity (ASQG), i.e., within

the framework where the theory space is defined by full diffeomorphism invariance.

Below, we recall the gravitational contribution to the beta function of the Yukawa

coupling in standard ASQG (in the Landau gauge) from [80],

βy|grav =

[
15

32π

2 + 3b

(1 + b− 2λ)2
G− fy, scalar(β;λ, a, b)

]
y, (6.1)

where λ is the dimensionless cosmological constant. We use fy, scalar(β;λ, a, b) to represent

the contributions coming from the scalar sector (σ- and h-modes), which depend on the

gauge parameter β (for explicit expressions see appendix D). The possibility of a UV

completion of the Higgs-Yukawa sector was studied in [53, 55, 80, 157]. In figure 11 we

show the viable region for a quantum-gravity induced fixed point for the Yukawa coupling

in the (a, b) plane, for several values of the dimensionless cosmological constant (in all cases

we set β = 0). For vanishing dimensionless cosmological constant (λ = 0), one can observe

that there is a coincidence between the unimodular and the standard setting. This can be

plausibilized as a consequence of the TT-dominance in these results. In fact, if we restrict

ourselves to the TT-approximation (with λ = 0) both cases give the same results, namely

βy|ASQG,TT = βy|UQG,TT =
15

32π

2 + 3b

(1 + b)2
Gy . (6.2)

Note that this result is rather nontrivial, as the various diagrams that contribute to these

results differ in the two settings.

In the region in gravitational parameter space close to the scalar pole line, on the other

hand, the dominant contribution comes from the scalar sector of the fluctuation field hµν .

In the unimodular setup, the scalar sector corresponds to the σ-mode, while in the standard
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Figure 11. Viable region (in red) for a quantum-gravity induced fixed point for the Yukawa

coupling for several values of the dimensionless cosmological constant within the standard ASQG

framework. The dashed lines indicate the poles 1 + b − 2λ (TT-mode) and 1 − 6a − 2b − 4
3 λ = 0

(trace mode).

gravity framework the scalar sector is composed of σ and h.13 Since these different setups

receive contributions from different sectors, we observe a quantitative disagreement in the

neighborhood of the scalar pole.

For non-vanishing cosmological constant, scalar fluctuations can become more relevant.

For positive λ, there is a screening behavior of metric fluctuations for values of a and

b close to the scalar pole. This leads to the absence of viable regions in this regime,

cf. figure 11. For negative values of λ, the situation is the opposite. In this regime, scalar

fluctuations contribute in an anti-screening manner to the Yukawa beta function, resulting

in the enlargement of the viable region. In particular, we note that if λ is sufficiently

negative, the point corresponding to the Einstein-Hilbert truncation, a = b = 0, becomes

part of the viable region.

Regarding the (non-)Abelian gauge field sector, we provide the gravitational contri-

bution to (non-)Abelian gauge couplings g in the framework of standard gravity which

previously had only been computed with vanishing higher-order couplings.

βg2 |grav = −
[

1

18π

10 + 7b− 40λ

(1 + b− 2λ)2
− fg(β;λ, a, b)

]
Gg2 . (6.3)

The first term in the above expression corresponds to the TT contribution to βg2 |grav in

standard ASQG, and can be shown to be exactly the same as in unimodular gravity. The

second part corresponds to the contribution from the scalar sector (σ- and h-modes) and

is characterized by a gauge-dependent function fg(β;λ, a, b), the definition of which can be

extracted from appendix D. Specific gauge choices which deserve further attention include:

13With the gauge choice β = 0, only the trace mode contributes to the results.
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• β = 0: in this case the contributions coming from the scalar sector vanish and, as

consequence, the result is completely determined by the TT approximation.

• β → ±∞: for this gauge choice and for λ = 0, the contribution from the scalar sector

comes exclusively from the σ-mode, resulting in the same expression as obtained in

unimodular gravity. Therefore, there is a complete agreement between the viable

regions in the two settings in the subspace λ = 0 of ASQG.

In order to understand possible effects of a non-vanishing cosmological constant, let

us consider, for simplicity, the case β = 0. In this case the gravitational contribution

comes from the TT-sector and, as consequence, the possibility for a UV fixed point in the

gauge coupling restricts the space of higher-curvature couplings a and b by the inequality

10+7b−40λ > 0. Similar to the Yukawa case, negative values of λ enlarge the viable region.

Finally, let us discuss quantum-gravity contributions to the scalar potential, more

specifically, to the λ4φ
4 coupling. In the framework of standard ASQG, the running of

the scalar quartic coupling receives gravitational contributions coming from the anomalous

dimension ηφ and from the tadpole diagram depicted in figure 14. Below, we present the

result for the gravitational contribution to the beta function of the scalar quartic coupling

in standard ASQG,

βλ4 |grav =

[
5

4π

2 + 3b

(1 + b− 2λ)2
+ fλ4(β;λ, a, b)

]
gλ4 , (6.4)

where fλ4(β;λ, a, b) represents terms coming from the scalar modes of the York decom-

position. In figure 12 we show the region in which the ratio of the Higgs mass to the

electroweak scale is predicted for several values of the dimensionless cosmological constant

(in all cases we consider β = 0). In the case with λ = 0 we observe the same qualitative

behavior as in UQG. Once again, this fact can be explained in terms of TT-dominance.

For non-vanishing λ the results change considerably. In particular, for negative values of

the cosmological constant, the region with a calculable Higgs mass is deformed in such a

way that if we superpose figures 11 and 12, we observe that the overlap with the region

allowing UV fixed points in the Yukawa and (non-)Abelian gauge couplings becomes larger.

Let us finally highlight that within the truncated theory spaces of UQG and stan-

dard ASQG, one can also interpret our results in the unimodular setting as tests of the

parameterization-dependence of the results in standard ASQG at vanishing λ. This is a

consequence of the fact that the difference between the two settings lies in the absence of λ

for UQG and a slight modification of the gauge and Faddeev-Popov ghost sector, to which

our truncation is not sensitive, as we do not include induced matter-ghost interactions

(see [183]). Thus it is rather reassuring to observe that the results at λ = 0 in standard

ASQG and the results in the unimodular setting are qualitatively as well as quantitatively

similar. Such a mild parameterization dependence could be interpreted as a hint for the

robustness of the results.
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Figure 12. Viable region for predictive Higgs mass for several values of the dimensionless cos-

mological constant within the standard ASQG framework. The region with diagonal solid lines

indicate the set of values where gravity-induced fixed points for the Yukawa and (non-)Abelian

gauge coupling can by achieved along with a predictive Higgs mass. The dashed lines indicate the

poles 1 + b− 2λ (TT-mode) and 1− 6a− 2b− 4
3 λ = 0 (trace mode).

7 Results for Weyl-squared gravity

Let us now turn to the discussion of the gravitational contribution to the beta functions of

matter couplings. Our aim is twofold:

• We explore the one-dimensional gravitational parameter space to discover whether

Standard-Model-like theories could be UV complete due to the impact of Weyl-

squared gravity.

• As the Weyl-squared setting only features dimensionless couplings (in particular also

for the gravity sector) the leading-order gravitational contribution to the beta func-

tions should be universal. We show that this holds within the functional RG frame-

work, by showing independence of the choice of regulator shape function, of the

parameterization of metric fluctuations and of the additional gauge parameters in

Landau gauge for the one-loop contribution.

The gravitational contribution to the beta function of Yukawa couplings is encoded in

the gravitational contribution to ηφ, ηψ and Dy. Our truncation for Weyl-squared gravity-

matter systems gives the following results

ηφ =
5w

32π2
, ηψ =

5w

128π2
, and Dy = 0 . (7.1)

Thus, the gravitational contribution to the beta-function for the Yukawa coupling is

βy|WG =
15

128π2
w y. (7.2)
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Within this approximation the beta function for the Yukawa coupling has an IR repulsive

fixed point at y = 0 if w < 0 at the fixed point. In the literature, the only known fixed

point for the Weyl-squared theory lies at vanishing value of w, and is IR repulsive in

w [170, 184, 185].

For the Abelian sector the situation is more subtle. In this case the leading order grav-

itational contribution vanishes, just as it does in the perturbative calculations [126, 186,

187]. Therefore, if we restrict ourselves to this approximation, the screening contribution of

charged matter fields is not compensated by an anti-screening effect coming from the grav-

itational sector. In the non-Abelian case the same result for the gravitational contribution

holds, indicating that asymptotic freedom in that sector is not affected by gravitational

fluctuations.

Beyond the leading-order approximation, a non-universal contribution arises that de-

pends on the anomalous dimension of gravitational fluctuations. We find the following

result for the gravitational contribution to the anomalous dimension of the gauge field by

using a regulator that depends on the wave-function renormalization of the metric and is

constructed using a Litim-type shape function

ηA|WG = − 7w ηTT

576π2 − 5w
, (7.3)

where ηTT = −∂t lnZTT is the anomalous dimension associated with the TT-fluctuation

field. The possibility of an anti-screening gravitational contribution depends on the sign of

ηTT. In the above approximation, a necessary condition for a UV complete Abelian gauge

sector requires ηTT < 0 at the fixed point if w < 0, as required in the Yukawa sector. At

the fixed point that is known in the literature, namely w = 0, ηTT = 0 holds.

Let us now discuss a more technical point, namely the universality of the above re-

sults. The non-universality (i.e., RG-scheme dependence) of gravitational contributions to

beta functions in the matter sector has been noted in the literature, see, e.g., [188–196].

Indeed beta functions are never universal, but the onset of non-universality depends on

the canonical dimension of the couplings of theory. Due to the dimensionful nature of the

Newton coupling, gravitational contributions to beta functions in standard gravity are non-

universal already at leading order. This is different for dimensionless couplings, for which

non-universality only sets in at 3 loops. Accordingly, in Weyl-squared gravity, where the

gravitational coupling is dimensionless, the gravitational contribution to Standard-Model-

like matter couplings, which are also dimensionless, should be universal at leading order.

For clarity of the discussion, let us repeat the corresponding argument for a theory

with a single coupling, see, e.g., [197]: two different RG schemes can be understood as two

ways of defining the coupling, which we will call g and g̃. We explore the perturbative

regime, where the relation between g and g̃ is expressible in terms of a Taylor series,

g(g̃) = g̃ + c2g̃
2 +O(g̃3). (7.4)

To leading order, the two couplings are the same since there are no quantum effects to that

order. We now translate the beta function expressed in terms of g,

βg = β1 g
2 + β2 g

3 +O(g4) (7.5)
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into the corresponding expression in terms of g̃:

β̃g̃ = k∂k g̃ =
∂g̃

∂g
βg = (1− 2c2g̃)

(
β1

(
g̃ + c2g̃

2
)2

+ β2

(
g̃ + c2g̃

2
)3)

+O(g̃4)

= β1 g̃
2 + (−2c2β1 + β1 2c2 + β2) g̃3 +O(g̃4)

= β1 g̃
2 + β2 g̃

3 +O((̃g)4). (7.6)

Clearly, the two leading-order terms agree, while it is also obvious that higher-order terms

do not. In the presence of dimensionful couplings, the relation between g and g̃ can contain

the scale explicitly, such that two-loop universality no longer holds.

The above argument is for different RG schemes. Losely speaking, the choice of reg-

ulator function can be viewed in a similar way. Further, field reparameterizations can be

understood as a different choice of coupling. Accordingly, we expect that the leading-order

gravitational contribution to matter beta functions in the Weyl-squared gravity case is

1. independent of the choice of shape function

2. independent of the choice of field parameterization

3. independent of the choice of gauge parameter (note that we work off-shell).

In fact, a similar result should hold for the gravitational beta functions themselves. In-

deed, [170] shows explicitly that to leading order the beta functions are the same for the

linear and the exponential parameterization. We will now explore the points 1)-3) and

also compare to results obtained within perturbation theory. It is known from pure matter

systems that the leading order, i.e., the universal one-loop result, can be obtained from

FRG results from a truncation that includes the perturbatively renormalizable couplings

as well as a wave-function renormalization Z. Typically, the regulator is then chosen to

be ∼ Z, and the scale-derivative of the regulator on the r.h.s. of the Wetterich equation

generates terms ∼ η. Once η is expressed in terms of the couplings, it becomes obvious

that these terms are higher-order in the couplings. To recover the universal one-loop result,

these terms therefore have to be neglected, see also appendix C of [198].

In Weyl-squared gravity in the exponential parameterization, i.e., gµν = ḡµα[eh
·
· ]αν ,

the gravitational contributions to the running of Yukawa and (non-)Abelian gauge couplings

come exclusively from the anomalous dimension. Our results are given by

ηφ|grav =
5w

16π2
Φ3

2 −
5w ηTT

32π2

(
Φ̃3

2 + 2Φ̃4
3

)
, (7.7a)

ηA|grav =
5w

12π2

(
Φ3

2 − 3Φ4
3

)
− 5w ηTT

24π2

(
Φ̃3

2 − 6Φ̃5
4

)
+

5w ηA
12π2

Φ̃4
3 , (7.7b)

ηψ|grav =
5w

64π2
Φ3

2 −
5w ηTT

128π2

(
Φ̃3

2 + 2Φ̃4
3

)
, (7.7c)

where the threshold integral is defined as

Φp
n =

1

Γ(n)

∫ ∞
0

dy yn−1 r(y)− y r′(y)

(y + r(y))p
, (7.8a)

Φ̃p
n =

1

Γ(n)

∫ ∞
0

dy yn−1 r(y)

(y + r(y))p
, (7.8b)
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with dimensionless shape function r(y) = k−2Rk(k
2y). It not difficult to verify that the spe-

cial case Φn+1
n is independent of the choice of the shape function, namely Φn+1

n =1/Γ(n+1).

Taking this property into account we find

ηφ|grav =
5w

32π2

[
1− ηTT

(
Φ̃3

2 + 2Φ̃4
3

) ]
, (7.9a)

ηA|grav = −5w ηTT

24π2

(
Φ̃3

2 − 6Φ̃5
4

)
+

5w ηA
12π2

Φ̃4
3 , (7.9b)

ηψ|grav =
5w

128π2

[
1− ηTT

(
Φ̃3

2 + 2Φ̃4
3

) ]
. (7.9c)

As expected, the leading order terms in ηφ|grav and ηψ|grav are universal with respect

to the shape function. The contributions coming from cutoff insertions, however, are, as

expected, non-universal and explicit result depend on the choice of the shape function.

To test the universality with respect to the choice of field parameterization, we also

employ the linear metric parameterization, i.e., gµν = ḡµν +hµν . In this case, there are ad-

ditional terms in βy coming from the tadpole diagram represented in figure 2 (contributing

to Dy). Our results in linear parameterization are given by

ηφ|linear
grav = 0 , (7.10a)

ηA|linear
grav =

5w

12π2

(
Φ3

2 − 3Φ4
3

)
− 5w ηTT

24π2

(
Φ̃3

2 − 6Φ̃5
4

)
+

5w ηA
12π2

Φ̃4
3 , (7.10b)

ηψ|linear
grav = − 25w

64π2
Φ3

2 +
25w ηTT

128π2

(
Φ̃3

2 + 2Φ̃4
3

)
, (7.10c)

βy|linear
tadpole ≡ Dy y =

5w y

8π2
Φ3

2 −
5w y ηTT

16π2

(
Φ̃3

2 + 2Φ̃4
3

)
. (7.10d)

We first observe that ηA|linear
grav gives the same expression as the one obtained in the

exponential parameterization, as it should in order to give a universal beta function for

the gauge coupling. Furthermore, we note that the anomalous dimensions of the scalars

and fermions are different from the corresponding expressions obtained in the exponen-

tial parameterization. Despite these differences the gravitational contribution to the beta

function for the Yukawa coupling gives the same result in both parameterizations, namely

βy|WG =
15w y

64π2
Φ3

2 −
15w y ηTT

128π2

(
Φ̃3

2 + 2Φ̃4
3

)
. (7.11)

Using the universality of Φ3
2 we find

βy|WG =
15w y

128π2

[
1− ηTT

(
Φ̃3

2 + 2Φ̃4
3

)]
. (7.12)

It is worth mentioning that we also have checked the universality with respect to

the choice on the field parameterization by means of an interpolating parameteriza-

tion [139–142], namely

gµν = δµν + hµν + ω hµαh
α
ν +O(h3), (7.13)

where our results only depend on the terms up to quadratic order in h. Within this param-

eterization, we can interpolate between the linear (ω = 0) and the exponential (ω = 1/2)
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parameterization, up to order O(h2), by varying the parameter ω. Our computations reveal

that each one of the diagrams discussed above is ω-dependent, however, this dependence

cancels out when we combine them in order to compute the beta functions for the Yukawa

and (non-)Abelian gauge couplings.

We briefly highlight the question of gauge dependence: within our truncation, the

gauge fixing sector has 5 parameters α, α̃ γ1 γ2 and β. By choosing α, α̃ → 0 (Landau

gauge), the results only depend on the gauge-independent TT sector and thus turn out to

be independent of the remaining parameters.

We also compare to the one-loop results from perturbative techniques, and find agree-

ment with our results. The gravity-contribution to the gauge coupling is known to vanish

at one-loop even in the more general case of curvature-squared gravity [126, 186, 187]. The

gravitational contribution to the running of Yukawa couplings at one loop can be extracted

from the results in [199].

8 Concluding remarks

In this paper, we compare three different quantum field theories for the metric with re-

spect to their potential observational viability in terms of their impact on matter, namely

“standard” asymptotically safe gravity, unimodular asymptotic safety and Weyl-squared

gravity. We work within a toy model for the Standard Model, which consists of an Abelian

gauge field and a simple Yukawa system of one Dirac fermion and a real scalar. Quantum-

gravity fluctuations are “blind” to internal symmetries, allowing us to deduce implications

of our results for more general matter models. In particular, the leading quantum-gravity

contribution to the scale-dependence of all gauge couplings is the same, therefore our re-

sults also hold for non-Abelian gauge groups. We explore, where in the parameter space

spanned by the microscopic gravitational couplings14 the gravitational contribution to the

beta function for the Yukawa and the gauge coupling is antiscreening.

Within our truncation that includes all local gravitational couplings up to four orders

in derivatives,15 the following results hold:

i) In the unimodular theory space, there is a restricted range of values for the RµνR
µν

coupling b, in which quantum-gravity contributions to the running of the gauge cou-

pling and the Yukawa coupling are antiscreening. This is the phenomenologically

viable range, where quantum-gravity fluctuations could solve the Landau pole/ triv-

iality problem in the Abelian hypercharge and Yukawa-sector.

These results are very similar to the results for standard gravity based on the Reuter

fixed point at vanishing cosmological constant. We stress that the close agreement

is rather nontrivial, as the diagrams underlying the results in the two different cases

are quite different. For the Reuter fixed point, the cosmological constant can also

14These are not free parameters in the full dynamical matter-gravity theory but are set by demanding

a consistent (asymptotically free or safe) microscopic dynamics. Here we treat them as free parameters to

explore whether there are regions in this space into which a phenomenologically viable gravitational fixed

point could fall.
15We stress that our study is subject to systematic errors due to our choice of truncation for the dynamics.
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be nonzero, opening up a significantly larger viable parameter space region for antis-

creening gravity contributions. The absence of the cosmological constant in unimod-

ular asymptotic safety therefore leads to rather severe constraints on the higher-order

couplings, which need to fall into a rather narrow range in order to achieve antis-

creening gravity contributions.

ii) For the Weyl-squared case, we recover the known universal one-loop gravitational con-

tribution with the functional Renormalization Group, explicitly showing the indepen-

dence from the regulator shape function, as well as the choice of gauge parameters and

parameterization of metric fluctuations. Depending on the sign of the Weyl-squared

coupling, the Yukawa coupling can become asymptotically free. The universal one-

loop contribution to the scale dependence of the gauge coupling vanishes.

This motivates several avenues for the future. Firstly, extensions of the truncation are

of course indicated to explore whether the viable regions we find here open up further as

more directions are added to the space of couplings. Secondly, the calculation of gravi-

tational fixed-point values under the impact of matter fluctuations is of interest, to show

whether the fixed point falls into the viable region or not. Ultimately, the resulting com-

parison of unimodular asymptotic safety with “standard” asymptotically safe gravity could

allow us to disfavor one of the two quantum-gravity models on phenomenological grounds.
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A Conventions

In this appendix we list the conventions and notations used in this paper. Our convention

for the Fourier transform is

Φ(x) =

∫
p

Φ(p)eip·x. (A.1)

Conjugated fields, such as ψ̄, accordingly carry a minus sign in the exponential factor,

namely e−ip·x.

We use a shorthand for d-dimensional integrals in position and Fourier space,

respectively ∫
x
≡
∫
ddx and

∫
p
≡
∫

ddp

(2π)d
. (A.2)
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The transverse and longitudinal projectors (on vector fields) are defined, around the

flat background, in the standard way

PµνT = δµν − PµνL and PµνL =
pµpν

p2
. (A.3)

For symmetric rank-2 tensors we use the transverse and traceless projector

PµναβTT =
1

2
(PµαT P νβT + PµβT P ναT )− 1

d− 1
PµνT PαβT . (A.4)

In addition, it is useful to define a momentum dependent tensor given by

%µν(p) =
pµpν
p2
− 1

d
δµν . (A.5)

In order to compute the anomalous dimensions of the matter fields we employ the

following projection rules to the (functional derivatives of the) flow equation

ηφ = − 1

Zφ

[
∂

∂p2

(∑
Diagrams

)]
p2=0

, (A.6a)

ηA = − 1

ZA

[
∂

∂p2

(
1

d−1
PµνT

∑
(Diagrams)µν

)]
p2=0

, (A.6b)

ηψ =
1

Zψ

[
∂

∂p2

(
1

2[d/2] /p
∑

Diagrams

)]
p2=0

. (A.6c)

For the additional contributions for the beta function of the Yukawa coupling coming from

the diagrams depicted in figure 2, we use the projection rule

Dy y =
kd/2−2

2[d/2]

1

i Z
1/2
φ Zψ

∑
Diagrams

∣∣∣
p=0

. (A.7)

B Fermions and the exponential parameterization

The coupling of fermions to gravity in a setting with vanishing torsion is through the

vielbein and the spin-connection. Since our formulation is based on functional quantization

of the fluctuation field hµν , we have to express both the vielbein and spin-connection in

terms of hµν in accordance with the exponential parameterization.

We start with the vielbein, denoted as eaµ. For our purposes it will be sufficient to

expand the vielbein up to second order around a flat background, namely

eaµ = δaµ + δeaµ +
1

2
δ2eaµ +O(δ3e), (B.1)

where δaµ is the (trivial) flat space vielbein. In order to gauge fix the local O(d) symmetry

associated with the definition of the vielbein, we adopt the Lorentz symmetric gauge-fixing

given by [200, 201]

eµaδ
µ
b − eµbδ

µ
a = 0 . (B.2)
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This condition allows us to obtain the following expressions

δeaµ =
1

2
δνaδgµν , (B.3a)

δ2eaµ =
1

2
δνaδ2gµν −

1

4
δνaδαβδgµαδgνβ . (B.3b)

For the exponential parameterization, we have δgµν = hµν and δ2gµν = hµαh
α
ν , resulting

in the following expansion for the vielbein

eaµ = δaµ +
1

2
δνahµν +

1

8
δνahµαh

α
ν +O(h3). (B.4)

For the spin-connection, which is not an independent field in our setting, we use the

expression

ωµ = [γa, γb]
(
δace

c
ν∂µe

ν
b + δacΓ

λ
µαe

c
λe
α
b

)
, (B.5)

in order to express the spin-connection in terms of the fluctuation field hµν . After some

manipulations we arrive at the following result

ωµ = [γα, γβ ]∂βhµα +
1

2
[γα, γβ ]

(
− 1

2
h λ
α ∂µhβλ +

− h λ
β ∂λhµα − h λ

α ∂βhµλ + ∂βhµρ h
ρ
α + hµρ∂βh

ρ
α

)
+O(h3). (B.6)

With these results we can compute all the fermion-gravity vertices used in this paper. An al-

ternative to the use of vielbein in the description of fermion-systems is the spin-base formal-

ism [202–204]. At the level of our computations both formalisms render the same results.

C Unimodular gravity-matter systems in general dimensions

In this section we report on some additional details and results for unimodular gravity-

matter systems. All the results presented in the main text were restrict to d = 4. Here, we

report results for UQG in d dimensions.

The starting point is the truncation given by eq. (3.9). In order to compute Hessians

and vertices, which are necessary to compute beta functions and anomalous dimensions

associated with matter fields, we adopt the following procedure:

i) Using the exponential parameterization, we expand the flowing action defined in

eq. (3.9) up to second order in the fluctuation field. For simplicity, (and since in our

truncation it yields the same results as technically more complicated choices), we use

a flat background metric ḡµν = δµν . For the fermionic sector we use the vielbein

formalism adapted to the case of exponential parameterization (see appendix B).

ii) Redefine the fluctuation field as hµν →
√

32πGN hµν .

iii) After performing a York decomposition (with α → 0), we introduce the appropri-

ate wave function renormalization for each one of the fields presented in our setup,

namely:

hTT
µν 7→ Z

1/2
TTh

TT
µν , σ 7→ Z1/2

σ σ . (C.1)
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iv) As a last step, we observe that the introduction of gauge-fixing and cut-off terms in the

FRG formulation breaks the original (volume preserving) diffeomorphism invariance

and, as consequence, the RG-flow generates terms which are not manifestly invariant

under the original symmetry. At the level of the flowing action, the aforementioned

symmetry is encoded in modified Slavnov-Taylor identities (mSTIs) [30, 48, 171, 205–

207]. As an example, the presence of an infrared cutoff terms can generate mass-like

terms for the TT and σ modes (for k 6= 0). In order to accommodate such a possibility,

we add the following explicitly symmetry-breaking terms to our truncation

Γk SB =
ZTTm

2
TT

2

∫
x
hTT
µν P

µναβ
TT hTT

αβ −
(d− 2)(d− 1)

d2

Zσm
2
σ

2

∫
x
σ2 . (C.2)

The numerical factors in the second term were chosen in such a way that, in the ab-

sence of higher curvature terms, p2 = −m2
σ becomes a pole in the σ-mode propagator.

Let us comment that in the case of standard gravity such mass-like terms for the fluctua-

tion field arise from the cosmological-constant term. In the unimodular setting, one must

not confuse the generation of such mass-like terms with the generation of a cosmological

constant. Instead, these are to be understood as a purely symmetry-breaking effect, sub-

jected to mSTIs, with no cosmological-constant counterpart in the symmetry-preserving

subspace of theory space.

After these steps, we can extract the necessary Hessians and vertices. Below we present

the list of Hessians employed in our computations[
Γ

(2)

k,hTThTT

]µναβ
= ZTT

[
b̄ p4 + p2 +m2

TT

]
PµναβTT , (C.3)

Γk,σσ = −(d− 2)(d− 1)

d2
Zσ

[
−
(

4 ā (d− 1) + b̄ d

d− 2

)
p4 + p2 +m2

σ

]
, (C.4)

Γk,φφ = Zφ p
2 , (C.5)

Γµνk,AA = ZA p
2

(
PµνT +

1

ζ
PµνL

)
, (C.6)

Γk,ψψ̄ = −Zψ γµpµ . (C.7)

In the gauge field sector we employ the Landau gauge fixing ζ → 0.

Gravity-matter vertices can be computed by taking functional derivatives of the fol-

lowing terms in the expansion of the flowing action in power of hµν . The relevant vertices

for this work are listed below,

Γφφh
TT

k =
1

2
ZφZ

1/2
TT κ

∫
p,q
pµqν φ(p)φ(q)hTT

µν (−p−q) , (C.8)

Γφφσk =−1

2
ZφZ

1/2
σ κ

∫
p,q
pµqν %

µν(−p−q)φ(p)φ(q)σ(−p−q) , (C.9)

Γφφh
TThTT

k =−1

4
ZφZTTκ

2

∫
p,q,l

δνα pµqβ φ(p)φ(q)hTT
µν (l)hTT

αβ (−p−q−l) , (C.10)

Γφφσσk =−1

4
ZφZσ κ

2

∫
p,q,l

δνα pµqβ %
µν(l)%αβ(−p−q−l)φ(p)φ(q)σ(l)σ(−p−q−l) ,

(C.11)
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ΓAAh
TT

k =
1

2
ZAZ

1/2
TT κ

∫
p,q

(
pµqν δλρ−pρqν δµλ

− pµqλ δνρ+p·q δµλδνρ
)
Aλ(p)Aρ(q)h

TT
µν (−p−q) , (C.12)

ΓAAσk =−1

2
ZAZ

1/2
σ κ

∫
p,q

(
pµqν δλρ−pρqν δµλ− pµqλ δνρ

+p·q δµλδνρ
)
%µν(−p−q)Aλ(p)Aρ(q)σ(−p−q) , (C.13)

ΓAAh
TThTT

k =−1

4
ZAZTTκ

2

∫
p,q,l

(
pµqβ δναδλρ−pρqβ δναδµλ

−pµqλ δναδβρ+ p·q δµλδναδβρ+ pµqν δαλδβρ−pαqν δµλδβρ (C.14)

−pµqβ δαλδνρ+pαqβ δµλδνρ
)
Aλ(p)Aρ(q)h

TT
µν (l)hTT

αβ (−p−q−l), (C.15)

ΓAAσσk =−1

4
ZAZσ κ

2

∫
p,q,l

(
pµqβ δναδλρ−pρqβ δναδµλ (C.16)

−pµqλ δναδβρ+ p·q δµλδναδβρ+ pµqν δαλδβρ−pαqν δµλδβρ

−pµqβ δαλδνρ+pαqβ δµλδνρ
)
%µν(l)%αβ(k)Aλ(p)Aρ(q)σ(l)σ(−p−q−l) ,

Γψ̄ψh
TT

k =−1

4
ZψZ

1/2
TT κ

∫
p,q
ψ̄(−p) [(p−q)νγµ]ψ(q)hTT

µν (−p−q) , (C.17)

Γψ̄ψσk =
1

4
ZψZ

1/2
σ κ

∫
p,q
ψ̄(−p) [%µν(−p−q)(p−q)νγµ]ψ(q)σ(−p−q) , (C.18)

Γψ̄ψh
TThTT

k =
1

8
ZψZTTκ

2

∫
p,q,l

ψ̄(−p)
[
qµ δνβγα+

1

4

(
δµβδνρδ

α
λkθ+2δνλδ

α
θ δ

β
ρ (−p−q−l)µ

+2δµβδνρδ
α
θ (−p−q−l)λ−2δµβδνρδ

α
θ kλ+2δναδµθ δ

β
ρ (−p−q−l)λ

)
γθ[γρ,γλ]

]
·

·ψ(q)hTT
µν (l)hTT

αβ (−p−q−l) , (C.19)

Γψ̄ψσσk =
1

8
ZψZσ κ

2

∫
p,q,l

ψ̄(−p)
[
qµ δνβγα+

1

4

(
δµβδνρδ

α
λkθ+2δνλδ

α
θ δ

β
ρ (−p−q−l)µ

+2δµβδνρδ
α
θ (−p−q−l)λ−2δµβδνρδ

α
θ (−p−q−l)λ (C.20)

+2δναδµθ δ
β
ρ (−p−q−l)λ

)
γθ[γρ,γλ]

]
ψ(q)%µν(l)%αβ(−p−q−l)σ(l)σ(−p−q−l).

where we have defined κ =
√

32πGN .

We implement the IR cutoff in terms of the following regulator functions

[RTT
k (p2)]µναβ = ZTT

[
Pk(p

2)− p2 + b̄ (Pk(p
2)2 − p4)

]
PµναβTT , (C.21)

Rσσ
k (p2) = −(d− 2)(d− 1)

d2
Zσ

[
Pk(p

2)− p2

−
(

4ā(d− 1) + b̄ d

d− 2

)
(Pk(p

2)2 − p4)

]
,

Rφφ
k (p2) = Zφ

[
Pk(p

2)− p2
]
, (C.22)

RAA
k (p2)µν = ZA

[
Pk(p

2)− p2
]
PµνT , (C.23)

Rψψ
k (p) = −Zψ

(√
Pk(p2)/p2 − 1

)
/p , (C.24)
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where Pk(p
2) = p2 + (k2 − p2)θ(k2 − p2) for the Litim-type shape function [144]. We

note that the regulator associated with the gauge field is proportional to the transverse

projector, which is consistent with the gauge choice ζ → 0.

In the following we report our findings for the gravitational (non-vanishing) contribu-

tions to the anomalous dimension of matter fields for arbitrary d

ηφ|σ−sunset =− d−1

(d+6)(d−2)2

32πG

(4π)d/2Γ
(
d
2 +2

)
× (12−4d−d2)(2+m̃2

σ)−(56−44d−12d2)a+(14d+3d2)b(
1+m̃2

σ−
4a(d−1)+bd

d−2

)2 , (C.25)

ηφ|TT−tadpole =
(d+1)(d2−4)

4d(d+4)

32πG

(4π)d/2Γ
(
d
2 +2

) d+4+2(d+2)b

(1+m̃2
TT+b)2

, (C.26)

ηφ|σ−tadpole =
d+2

2(d+4)(d−2)2

32πG

(4π)d/2Γ
(
d
2 +2

) 8−2d−d2−(16−8d−8d2)a+(4d+2d2)b(
1+m̃2

σ−
4a(d−1)+bd

d−2

)2 ,

(C.27)

ηA|TT−sunset =
(2−d)(d+1)

(d−1)(d+6)

32πG

(4π)d/2Γ
(
d
2 +2

) (d+6)(2+m̃2
TT)+(14+3d)b

(1+m̃2
TT+b)2

, (C.28)

ηA|σ−sunset =− 2

(d+6)(d−1)

32πG

(4π)d/2Γ
(
d
2 +2

)
× (12−4d−d2)(2+m̃2

σ)−(56−44d−12d2)a+(14d+3d2)b(
1+m̃2

σ−
4a(d−1)+bd

d−2

)2 , (C.29)

ηA|TT−tadpole =
(d+1)(d+2)(d−2)2

2d(d+4)(d−1)

32πG

(4π)d/2Γ
(
d
2 +2

) d+4+2(d+2)b

(1+m̃2
TT+b)2

, (C.30)

ηA|σ−tadpole =
d+2

(d−1)(d−2)(d+4)

32πG

(4π)d/2Γ
(
d
2 +2

)
× 8−2d−d2−(16−8d−8d2)a+(4d+2d2)b(

1+m̃2
σ−

4a(d−1)+bd
d−2

)2 , (C.31)

ηψ|σ−sunset =
(d−1)(d+2)

16(d+1)(d+5)(d−2)2

32πG

(4π)d/2Γ
(
d
2 +2

)
×

{
−10+23d−5d2−2d3+(10d−3d2−d3)m̃2

σ(
1+m̃2

σ−
4a(d−1)+bd

d−2

)2 +

+
12(2−5d+2d2+d3)a−3(2d−3d2−d3)b(

1+m̃2
σ−

4a(d−1)+bd
d−2

)2

}
, (C.32)

ηψ|TT−tadpole =
(d−2)(d+1)(d+2)

16d(d+4)

32πG

(4π)d/2Γ
(
d
2 +2

) d+4+2(d+2)b

(1+m̃2
TT+b)2

, (C.33)

ηψ|σ−tadpole =
d+2

8(d−2)2(d+4)

32πG

(4π)d/2Γ
(
d
2 +2

) 8−2d−d2−(16−8d−8d2)a+(4d+2d2)b(
1+m̃2

σ−
4a(d−1)+bd

d−2

)2 ,

(C.34)
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In addition, since we are interested in the running of Standard Model-like couplings,

the beta function for the Yukawa coupling receives a gravitational contribution coming

from the triangle diagram represented in figure 2,

βy|triangle ≡ Dy y

= − d(d− 1)

16(d+ 6)(d− 2)2

32πGy

(4π)d/2Γ
(
d
2 + 2

)
× (12− 4d− d2)(2 + m̃2

σ)− (56− 44d− 12d2)a+ (14d+ 3d2)b(
1 + m̃2

σ −
4a (d−1)+b d

d−2

)2 . (C.35)

We highlight that in the above set of expressions we have neglected the anomalous dimen-

sion contribution coming from cutoff insertions. This approach is sometimes referred as a

perturbative approximation of the FRG.

In the main text we have restricted our analysis to the symmetric case with m̃2
TT =

m̃2
σ = 0. The introduction of symmetry-breaking masses in the UQG setting allows us

to mimic the behavior of the results obtained in the standard gravity framework (as long

as we do not take into account the symmetry-identities which differ in the two settings).

More precisely, in d = 4, identifying the symmetry-breaking masses with the dimensionless

cosmological constant, namely m̃2
TT = −2λ and m̃2

σ = 4λ, the UQG result coincides with

the expressions obtained within standard gravity with linear metric parameterization and

gauge choice β → −∞. This agreement between exponential and linear parameterization,

despite differences at the level of individual diagrams, can be interpreted as a hint for

the robustness of the results. We highlight that this agreement between standard ASQG

and UQG is only at the level of the present truncation, where no beta functions for the

gravitational couplings are calculated, and where the symmetry-identities are neglected.

Given the number of free parameters the analysis of results including higher curvature

coefficients and symmetric breaking masses can be rather cumbersome. In order to make it

simpler, here we switch off the higher curvature terms and focus on the m̃2
TT×m̃2

σ plane. In

figure 13 we plot the viable region for an asymptotically free UV completion of the Yukawa

and (non-)Abelian gauge couplings, a predicted ratio of the electroweak scale to the Higgs

mass and the intersection of these three conditions. As one can see, even in the absence

of curvature squared terms, the symmetry-breaking mass terms induce regions where all

three conditions can be satisfied, just as in the case of the linear parameterization.

D Explicit results for the Reuter fixed point

For the sake of completeness in this appendix we report some results obtained in the

standard ASQG framework. In order to fix our notation, below we present the truncation

used for these computations

ΓStand.
k =

1

16πGN

∫
x

√
g
(
2Λ−R+ ā R2 + b̄ RµνR

µν
)

+ Γg.f.
k + Γgh.

k + (D.1)

+

∫
x

√
g

(
1

2
gµν∂µφ∂νφ+

λ4

4!
φ4

)
+

1

4

∫
x

√
g gµαgνβFµνFαβ +

∫
x

√
g (iψ̄ /Dψ + i yφψ̄ψ),

– 39 –



J
H
E
P
0
9
(
2
0
1
9
)
1
0
0

Figure 13. Region plots for the sign of the gravitation contribution to SM-like couplings in terms

of the symmetry breaking masses m̃2
TT and m̃2

σ (with vanishing curvature squared couplings). From

left to right and top to down: i) ηφ|grav > 0 (cyan region); ii) −fg = ηA|grav < 0 (blue region); iii)

−fy =
(
ηψ + 1

2ηφ +Dy
)
grav

< 0 (dark red region); iv) combined plot (dark green) with ηφ|grav > 0,

−fg < 0 and −fy < 0.

with the gauge-fixing part given by

Γg.f.
k =

1

32παGN

∫
x

√
g ḡµνFµ[h]Fν [h] +

ZA
2ζ

∫
x

√
g (ḡµν∇̄µAν)2, (D.2)

where Fµ[h] = ∇̄βhµβ − 1+β
4 ∇̄µh (= 0). For the sake of simplicity, we restrict ourselves to

the four-dimensional case. In addition, we adopt the linear parameterization for the metric.

Below we report the results for the gravitational contribution to the anomalous dimen-

sions of scalars and fermions

ηφ|grav =
G

5π

(3− 4β + β2)2 (5− 39a− 13b) + 10(β − 1)2(β2 − 3)λ

((3− β)2 (1− 6a− 2b)− 4(3− β2)λ)2 , (D.3a)

ηψ|grav = −25G

32π

2 + 3b

(1 + b− 2λ)2
+

G

80π

{
(3− β)2 (369− (90− 29β)β)

((3− β)2 (1− 6a− 2b)− 4(3− β2)λ)2 +

− (3− β)2 [(519− 7β(20− 7β))(6a+ 2b)] + 48(27− 12β2 + β4)λ

((3− β)2 (1− 6a− 2b)− 4(3− β2)λ)2

}
. (D.3b)

The running of the Yukawa coupling receives contributions coming from the diagrams
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Figure 14. Tadpole diagram contributing to the running of the quartic scalar coupling within the

standard ASQG framework.

represented in figure 2, resulting in the expression

βy|Fig. 2 =
5Gy

4π

2 + 3b

(1 + b− 2λ)2
− Gy

20π

{
(3− β)2(111− 885a− 295b)

((3− β)2 (1− 6a− 2b)− 4(3− β2)λ)2

+
(3− β)2 β2 (15− 141a− 47b) + 2(β2 − 3)(99− 5β2)λ

((3− β)2 (1− 6a− 2b)− 4(3− β2)λ)2

− 2(63− 537a− 179b)(β − 3)2β + 54β (β2 − 3)λ

((3− β)2 (1− 6a− 2b)− 4(3− β2)λ)2

}
. (D.4)

Finally, for the scalar quartic coupling, the tadpole diagram represented in figure 14 gives

the following result

βλ4 |tadpole =
Gλ4

4π

[
5(2 + 3b)

(1 + b− 2λ)2
− 4(β − 3)2(β2 − 3)(1− 9a− 3b)

((3− β)2 (1− 6a− 2b)− 4(3− β2)λ)2

]
. (D.5)

The complete result for the gravitational contribution to the anomalous dimension of

(non-)Abelian gauge fields, in an approximation containing higher-curvature terms, is

ηA|grav = − G

18π

10 + 7b− 40λ

(1 + b− 2λ)2
+

2G

45π

β2
(
(3− β)2(5− 21a− 7b)− 40(3− β2)λ

)
((3− β)2 (1− 6a− 2b)− 4(3− β2)λ)2 . (D.6)

Although this expression is non-universal, as one could expect due to the dimensionful

nature of the gravitational couplings, we observe that it is possible to find universal con-

tributions (with respect to the cutoff shape function) appearing as the coefficient of di-

mensionless combinations such as ΛGN ≡ λG. In fact, by expanding ηA around Λ = 0

(and setting a = b = 0), it is possible to verify that the contribution associated with the

dimensionless combination ΛGN is given by (for a generic shape function)

ηA|(ΛGN )
grav = Aβ

(
Φ3

2 − 3Φ4
3

)
ΛGN , (D.7)

where Aβ corresponds to some β-dependent coefficient and Φp
n is the threshold integral

defined in (7.8a). Given that Φn+1
n = 1/Γ(n + 1) irrespective of the choice for the shape

function, the above expression turns out to be universally zero. It is worth emphasizing that

such a result depends on the cancellation of universal contributions coming from different

diagrams contributing to ηA.
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