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aDipartimento di Fisica e Geologia, Università degli studi di Perugia and INFN Sezione di Perugia,

Via A. Pascoli, I-06123 Perugia, Italy
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1 Introduction

A proper description of the event structure in hadronic collisions requires the inclusion

of the so called multiple parton interactions (MPI) which affect both the multiplicity and

structure of the hadronic final state [1–3]. The Large Hadron Collider operation renewed

the interest in MPI given the continuous demand for an increasingly detailed description

of the hadronic final state which is crucial in many New Physics searches. In this rapidly

evolving context, these type of studies have also received attention for their own sake since

they might be sensitive to double partonic correlations in the colliding hadrons, see recent

review in ref. [4]. The simplest MPI process is the double parton scattering (DPS) [5, 6]. In

such a process, a large momentum transfer is involved in both scatterings which enables the

use of perturbative techniques to calculate the corresponding cross section. The latter de-

pends on two-body quantities, the so called double Parton Distribution Functions (dPDFs),

which are interpreted as the number densities of parton pair at a given transverse distance,

b⊥, and carrying longitudinal momentum fractions (x1, x2) of the parent proton [1, 7–9].

Double PDFs are not perturbatively calculable from first principles, a feature shared with

usual PDFs and other quantities in QCD. Moreover, due to their dependence upon the

partonic interdistance [9], they contain information on the hadronic structure complemen-

tary to those obtained from one-body distributions such as generalized parton distribution
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functions (GPDs) and transverse momentum dependent PDFs (TMDs). Unfortunately the

DPS cross section is obtained by integrating dPDFs over b⊥ so that such a dependence is

not directly measurable [1]. In this scenario, hadronic models have been used to obtain

basic information on dPDFs and to gauge the phenomenological impact of longitudinal

and transverse correlations, see refs. [10–15], along with spin correlations [13, 16–19]. We

mention that quantities related to dPDFs, and encoding double parton correlations, have

been recently calculated for pion by means of Lattice techniques [20]. Despite the wealth

of information encoded in dPDFs, present experimental knowledge on DPS cross section

is accumulated, up to now, into the so called effective cross section, σeff , for recent results

see e.g. refs. [21–26]. The latter is defined through the ratio of the product of two single

parton scattering cross sections to the DPS cross section with the same final states. In the

present paper, we continue the investigation of the relationship between σeff and the mean

interpartonic distance pursued in ref. [27]. We study its modification induced by includ-

ing the so called splitting 2v1 term contribution in DPS processes [28–39] and, separately,

the effects of longitudinal correlations in dPDFs. Numerical estimates will be shown and

discussed in the kinematics of DPS processes initiated by digluon distributions, see e.g.

refs. [40–44] on this topic, which are perhaps the most interesting distributions in the DPS

context. Such distributions are radiatively generated by pQCD evolution [7, 8, 28–32, 36–

39, 45–49] starting from valence dPDF model calculation at the hadronic scale, Q0. The

digluon distrubution, in principle, is likely to have a non perturbative contribution at Q0.

In the present work, we make use of a pure radiative evolution scheme, and therefore it is

our precise choice to neglect such an additional input which requires the modelization of

the non perturbative sea quarks and gluons distributions, such those proposed in ref. [50].

On the other hand it must be emphasized that in case of ordinary DIS structure func-

tions measurements, predictions based on parton distributions evolved in such a scheme

are not able to reproduce the small x behaviour of the data and a non perturbative sea

quarks and gluon PDFs input are required. Moreover, in such a radiative scheme and given

the structure of dPDFs evolution equations, digluon interdistance follows the pattern of

that of valence quarks obtained from the underlying hadronic model used for the dPDF

calculations. DPS measurements, sensitive to gluon initiated processes, will then provide

a test of our approach. In the last part of the paper, we focus on relativistic effects in

dPDF model calculations, in the relevant kinematic conditions of collider experiments, and

already addressed in ref. [14] for valence quarks at the hadronic scale. The aim of this

part of the analysis is to offer insight to unfactorized ansatz for dPDFs as induced by the

implementation of relativistic effects in dPDFs calculation via Melosh operators.

The paper is organized as follows. In section 2 we will discuss processes and corre-

sponding kinematic conditions which we will focus upon in this analysis. In section 3 we

describe the formalism which allows to obtain physical information on the proton structure

from dPDFs. In section 4 we introduce the so called σeff , relevant quantity in DPS analyses

and show how the latter is related to the geometrical properties of the proton. In section 5

we discuss relativistic effects in dPDF calculations and then present our Conclusions.
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2 Analysis strategy and calculation details

In the present analysis we will focus on the digluon distributions and therefore we consider

DPS prototype processes:

pp→ J/ΨJ/ΨX, pp→ HHX , (2.1)

for which the production mechanism is dominated by gluons and where each final state

particle is produced in a distinct parton-parton scattering. Double J/Ψ production has

been already measured both at Tevatron and LHC [22, 25, 26, 51, 52]. Double Higgs

production via DPS has been studied in the literature [34], but not yet measured given its

rather low cross section. We mention here that it would be also interesting to consider the

mixed process pp→ HJ/ΨX with final state produced via DPS which, to the best of our

knowledge, has never been considered in the literature. We also mention that interesting

information could be gained from the comparison of the double J/Ψ production with the

double open charm one in the same kinematics. The combined measurements of these DPS

processes, among many others with a less pure gluonic initial state but larger cross sections,

give a wide coverage of digluon distribution both in hard scale and fractional momenta.

We define the partonic subprocess in the two scatterings in eq. (2.1) as

pi(k1) + pk(k3)→ A(kA)X and pj(k2) + pl(k4)→ B(kB)X, with A,B = J/Ψ, H , (2.2)

where p’s and k’s are the relevant parton flavour and momenta, respectively. Since heavy

particles appearing in eq. (2.1) are produced by partonic annihilation in lowest order of

perturbation theory, the fractional momenta of the incident gluons can be reconstructed

from the mass m, transverse momentum kT and rapidity y of final state particles as

x1,3 =

√
m2
A + k2

T,A
√
s

e±yA , x2,4 =

√
m2
B + k2

T,B
√
s

e±yB . (2.3)

In our calculations we set the centre-of-mass energy to its nominal value at the LHC,√
s=13 TeV, and consider two rapidity region: the central one covered by ATLAS and CMS,

|y| < 1.2 and the forward one covered by LHCb, 2 < y < 4.5. Neglecting transverse mo-

mentum, J/Ψ production gives access to fractional momenta in the range 10−6 . x . 10−2

while Higgs production in the range 10−4 . x . 1. The factorization scale in each process

is set equal to the mass of the particle, either the J/Ψ or Higgs boson, produced in the final

state, µF,A = mA and µF,B = mB with mJ/Ψ = 2mc. The differential DPS cross section,

assuming that the two hard scatterings can be factorized [7, 8, 30–32, 45, 53–55], involves

dPDFs through an integral over the transverse partonic distance b⊥ and reads [1, 7, 8]:

dσA+B
DPS =

m

2

∫
d2b⊥dσ̂

A
ik dσ̂

B
jl F̃ij(x1, x2, b⊥)F̃kl(x3, x4, b⊥) . (2.4)

In eq. (2.4) dσ̂ are the differential partonic cross sections for processes with final state A or

B respectively and the symmetry factor reads m = 1 if A = B and m = 2 otherwise. Double

PDFs appearing in eq. (2.4), are multidimensional distributions encoding non perturbative
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features of the proton structure and are therefore complicated to model. Some guidance in

building appropriate initial conditions is offered by physical intuition at small x [7, 8, 30–

33, 45, 48, 56] and by sum rules [33, 41, 42, 57]. Nevertheless, a large freedom is left in the

gluon transverse spectrum, which is perhaps one of the most intriguing aspect for hadronic

studies. In order to investigate some of these features, in the present paper we make use of

dPDF calculations within constituent quark models (CQMs), e.g. refs. [10–13]. Following

the line of ref. [14], we have adopted the hypercentral quark model (HP), in its relativistic

version [58] and, in order to highlight model independent effects on dPDFs, the harmonic os-

cillator model (HO) [59]. In particular, for the latter, we considered the version described in

ref. [14], where the model parameter α, representing the width of the Gaussian, is set to be

α2 = 25 fm−2 in order to mimic a relativistic structure. These models differ from each other

in many dynamical aspects and offer a parametrization of the only non-vanishing valence-

valance dPDF at the hadronic scale, Q0. All other distributions are then radiatively ob-

tained at higher scales by performing pQCD evolution in its homogeneous form, which is ap-

propriate at fixed b⊥ [7, 8, 48, 60]. The value of the hadronic scale Q0 has been fixed accord-

ing to the procedure outlined in ref. [61], i.e. by tuning its value in order to reproduce known

SPS cross sections by using single PDFs obtained by the same hadronic model and evolved

starting from Q0. The obtained value is given by Q2
0 = 0.26 GeV2. Since both single and

double PDFs are built upon the same hadronic model, Q0 is used also as starting scale for

dPDFs evolution. Since Q0 is located in the infrared region, both distributions show a large

sensitivity to its precise value. In order to reduce the impact of this choice on our results,

we will often consider appropriate ratios involving single and double PDFs which decrease,

and in many cases almost cancel, this dependence. This feature is particularly relevant for

the calculation of the effective cross section which we will be introduced in the next section.

3 Proton transverse structure from dPDFs

In this section we present the general formalism necessary to extract physical information

on the proton structure from dPDFs, i.e. the mean partonic distance between two partons

in the transverse plane. These results are completely general and do not require any

specific assumption on dPDFs. Since the latter represent the number density of two parton

with longitudinal momentum fractions x1 and x2 at a given transverse distance b⊥ [1],

they provide a new tool to access the 3D structure of the proton, complementary to that

obtained from generalized parton distribution functions (GPDs). In particular, these two-

body functions are sensitive to double parton correlations [4, 10–16, 20, 39, 40, 48–50] that

can not be accessed by means of one-body distributions such as GPDs. To this aim we first

introduce the effective form factor (EFF) [27, 62] as discussed in ref. [27], i.e. by means of

the hadron wave function Ψ in the non relativistic limit:

fij(k⊥) =

∫
d~k1d~k2 Ψ†(~k1 + ~k⊥,~k2)τiτjΨ(~k1,~k2 + ~k⊥) , (3.1)

where ~ki is the total momentum of the parton i and τi the standard flavor projector. As

discussed in ref. [27], k⊥ represents a transverse momentum imbalance between two partons
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in the amplitude and its conjugate [30–32]. The EFF represents the Fourier Transform of

the number distribution of two partons at a given transverse distance [27, 62]:

fij(k⊥) =

∫
d2b⊥ e

~k⊥·~b⊥ f̃ij(b⊥). (3.2)

This distribution can be written in terms of dPDFs in coordinate space, i.e. F̃ij(x1, x2, b⊥):

f̃ij(b⊥) =

∫
dx1 dx2 F̃ij(x1, x2, b⊥) . (3.3)

F̃ij(x1, x2, b⊥) encode information on the proton structure such as correlations between the

longitudinal momentum fractions of two partons and their partonic distance. The latter,

for a pair of partons with flavour i and j and fractional momenta x1 and x2, is defined as

〈b2⊥〉ijx1,x2
=

∫
d2b⊥ b

2
⊥F̃ij(x1, x2, b⊥, Q

2)∫
d2b⊥ F̃ij(x1, x2, b⊥, Q2)

, (3.4)

where Q2 is a generic hard scale at which dPDFs are evaluated and we have denoted

b⊥ ≡ |~b⊥|. It is easy then to show that the mean partonic distance averaged over parton

fractional momenta is given by

〈b2⊥〉ij =

∫
d2b⊥ b

2
⊥f̃ij(b⊥)∫

d2b⊥ f̃ij(b⊥)
. (3.5)

The above quantities can be related to each other as follows:

〈b2⊥〉ij =

∫
dx1 dx2 〈b2⊥〉ijx1,x2

Pij(x1, x2) , (3.6)

where Pij(x1, x2) represents the probability of finding a pair of partons with flavours i, j

and longitudinal momentum fractions x1, x2:

Pij(x1, x2) =

∫
d2b⊥ F̃ij(x1, x2, b⊥)∫

dx1 dx2

∫
d2b⊥ F̃ij(x1, x2, b⊥)

. (3.7)

As for the standard electro-magnetic nucleon form factor, such a relation can be equiva-

lently obtained from dPDFs in momentum space, i.e. Fij(x1, x2, k⊥), the Fourier transform

(FT) of the dPDF F̃ij(x1, x2, b⊥) in coordinate space. Likewise, as for GPDs, Fij(x1, x2, k⊥)

does not admit a probabilistic interpretation in k⊥-space, which holds instead in b⊥-space.

Since

Fij(x1, x2, k⊥;Q2) =

∫
d2b⊥e

i~b⊥·~k⊥F̃ij(x1, x2, b⊥, Q
2)

∼
∫
d2b⊥

(
1− 1

4
k2
⊥b

2
⊥

)
F̃ij(x1, x2, b⊥;Q2) , (3.8)

it follows that∫
d2b⊥b

2
⊥F̃ij(x1, x2, b⊥;Q2) = −4

d

dk2
⊥
Fij(x1, x2, k⊥;Q2)

∣∣∣
k⊥=0

. (3.9)
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Figure 1. The digluon distribution F̃gg(x1 = 10−4, x2 = 10−2, b⊥, Q
2 = m2

H). Left panel: cal-

culation within the HO model. Right panel: calculation within the HP model. Partonic distance

expressed in [GeV−1].

From the above relation, eq. (3.4) can be equivalently written in terms of dPDFs in mo-

mentum space, in analogy with the standard electro-magnetic form factor:

〈b2〉ijx1,x2
= −4

d

dk2
⊥

[
Fij(x1, x2, k⊥;Q2)

Fij(x1, x2, k⊥ = 0;Q2)

]
k⊥=0

. (3.10)

Given the really limited knowledge on dPDFs driven by data, one can explore this approach

by using dPDFs obtained from hadronic model calculations. In figure 1 we present the

digluon dPDFs, evaluated within the HO (left panel) and HP (right panel) models at

Q2 = m2
H in ~b⊥-space. Since we consider unpolarized partons in an unpolarized proton,

circular symmetry in ~b⊥ is obtained, as apparent from the plot. Furthermore, the shape of

the distributions are qualitatively similar to those shown in ref. [14], where valence quark

dPDFs have been evaluated within the same models but at the hadronic scale. By using

these quantities, we have also evaluated the mean gluonic distance via eqs. (3.4), (3.10).

The results, reported in table 1, show that partonic correlations induce a dependence of the

mean partonic distance upon the longitudinal momentum fractions carried by two partons.

We recall that if correlations between xi and k⊥ were absent, as in the non relativistic

limit of dPDFs evaluated within the HO model (see ref. [11]), the mean partonic distance

would not depend on x’s and reads
√
〈b2〉 = 0.283 fm. This discussion, however, is rather

academic since the present accuracy of DPS measurements is far from being sensitive to

this kind of effects. Nevertheless we have shown in ref. [27] that physical information on the

proton structure can still be directly obtained from σeff , a quantity which is often used in

experimental analyses. In next sections we review the formalism that allows one to relate

σeff to 〈b2〉, and generalize it to more complicated cases.

– 6 –
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Kinematics HO model HP model

x1, x2

√
〈b2〉x1,x2 [fm]

√
〈b2〉x1,x2 [fm]

10−4, 10−4 0.393 0.391

10−4, 10−2 0.382 0.408

10−4, 0.4 0.393 0.405

10−3, 10−3 0.383 0.407

10−2, 10−2 0.365 0.404

10−2, 0.4 0.377 0.377

Table 1. Mean intergluon distance evaluated via dPDFs calculated at the scale Q2 = m2
H with the

HO and HP models in different x1, x2 configuration.

4 Transverse proton structure from effective cross section

Double PDFs, the main non-perturbative ingredients appearing in the cross section formula

in eq. (2.4), are basically unknown, so that the direct application of the methods outlined

in the previous section can not be presently used. In this section we discuss an alternative

method that allows us to obtain information on the proton structure starting from exper-

imental extracted quantities such as σeff . We proceed in the analysis with an increasing

degree of complexity: in the first part of the section, we find useful to summarize the strat-

egy of the evaluation for the most simple case, i.e. a fully factorized ansatz of dPDFs [27].

In the second part, we generalize the results to include the so called splitting contribution

to dPDFs which embodies correlations of perturbative origin. In the third part we gen-

eralize these results to unfactorized ansatz for dPDFs. In the last part of the section all

these results have been combined in a fully general relation between σeff and 〈b2〉x1,x2 .

4.1 The factorized case

In ref. [27] we have derived a relation between σeff and the mean transverse partonic

distance within the most simple assumptions on dPDFs, the fully factorized ansatz:

Fij(x1, x2, k⊥) ∼ qi(x1)qj(x2)f(k⊥) , (4.1)

where qi(x) are ordinary single PDFs and f(k⊥) is the effective form factor defined in

eq. (3.1). Usually, in such a simplified approach, f(k⊥) does not depend on the parton

flavors nor on fractional momenta [6, 34]. These assumptions allows to rewrite the DPS

cross section as [9, 63]

dσA+B
DPS =

m

2

dσASPS dσ
B
SPS

σeff
, (4.2)

being dσ
A(B)
SPS the single parton scattering cross sections with final state A(B). In this

scenario σeff simply reads:

σ−1
eff =

∫
d2k⊥
(2π)2

f(k⊥)2 =

∫
dk⊥
2π

k⊥f(k⊥)2, (4.3)
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where the last expression follows from rotational invariance. Eq. (4.2) shows that, in such

an approximations, σeff enters the DPS cross section as an overall normalization factor.

We remark that the EFF entering in the above is defined similarly to that in eq. (3.1) but

without the partonic flavor dependence, as often assumed in the experimental analyses in

which σeff is extracted. In ref. [27], we have shown that, by using the formal definition of

the EFF in eq. (3.1) and appearing in eq. (4.3), one can relate σeff to the mean partonic

distance of two partons active in a DPS process. We will briefly review this procedure in

the following. As discussed in e.g. refs. [14, 27, 34, 62], the EFF is the FT of the probability

distribution of finding two parton at a given transverse distance, i.e. f̃(b⊥), in a confined

quantum mechanical system:

f(k⊥) =

∫
d2b⊥ e

~k⊥·~b⊥ f̃(b⊥). (4.4)

In terms of the latter, σeff eq. (4.3) is simply given by:

σ−1
eff =

∫
d2b⊥ f̃(b⊥)2 , (4.5)

see e.g. refs. [33, 34, 63]. The latter expression relies on the probabilistic interpretation of

f̃(b⊥): this quantity represents the probability of finding a pair of partons at transverse

distance b⊥ [33, 34, 63]. This condition imposes the following normalization:∫
d2b⊥ f̃(b⊥) = 1 . (4.6)

This is a common assumption used in many phenomenological analyses of σeff , see e.g.

ref. [34]. The probabilistic interpretation of f̃(b⊥) is transparent, for example, in the non

relativistic limit. In fact, by considering eq. (3.1), one gets:

f̃(b⊥) =

∫
d2k⊥
(2π)2

e−i
~k⊥·~b⊥f(k⊥) (4.7)

=

∫
d2k⊥
(2π)2

e−i
~k⊥·~b⊥

∫
d~k1d~k2 Ψ†(~k1 + ~k⊥,~k2)Ψ(~k1, ~k2 + ~k⊥)

∝
∫
d~b1d~b2 |Ψ̃(~b1,~b2)|2δ(2)(~b2⊥ −~b1⊥ −~b⊥) ,

where here Ψ̃(~b1,~b2) is the proton wave function in coordinate space and bi is the position

of the parton i in center mass frame. In terms of the EFF, two asymptotic conditions,

related to the above features, can be obtained similarly to the standard form factors:

f(k⊥ = 0) = 1 and f(k⊥ →∞) = 0 . (4.8)

As discussed in ref. [14], due to rotational invariance in the unpolarized case, eq. (4.4)

reduce to:

f(k⊥) = 2π

∫
db⊥ b⊥J0(b⊥k⊥)f̃(b⊥) . (4.9)

– 8 –
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The above can be expanded as follows [27]:

f(k⊥) =
∞∑
n=0

k2n
⊥ 〈b2n⊥ 〉P J0

n , (4.10)

where the P J0
n are the expansion coefficients of the Bessel function and 〈b2n〉 are weighted

moments containing the dynamical information on the partonic proton structure. Let

us remind that then mean partonic distance can be defined by means of the probability

distribution in a standard way:

〈b2⊥〉 =

∫
d2b⊥ b

2
⊥f̃(b⊥) . (4.11)

In the following subsections we discuss the main steps to get a lower and upper bounds for

〈b2⊥〉 given a measured σeff once the scenario eq. (4.3) is assumed.

4.1.1 The minimum

Let us start with the minimum. By using the properties previously discussed (4.8) one can

show that: ∫ ∞
0

dk⊥ f(k⊥)s−1 d

dk⊥
f(k⊥) = −1

s
, (4.12)

with s > 0. In ref. [27], in order to evaluate the minimum of the mean transverse distance,

a useful relation between the integral eq. (4.3) and 〈b2⊥〉 has been found. To this aim let us

define the following function:

d2(k⊥) = −2
f ′(k⊥)

k⊥
= −4

∑
n=1

k2n−2
⊥ 〈b2n〉 P J0

n n . (4.13)

For simplicity we use the notation 〈b2⊥〉 ≡ 〈b2〉. One may notice that 〈b2〉 = d2(k⊥ = 0),

similarly to the case of the standard form factors and the charge radius of the proton. The

above function is normalized as follows:∫ ∞
0

dk⊥ k⊥d2(k⊥) = 2 . (4.14)

By using the identity eq. (4.12) with s = 3 one gets

−1

3
=

∫ ∞
0

dk⊥ f(k⊥)2f ′(k⊥) = −1

2

∫ ∞
0

dk⊥ k⊥f(k⊥)2d2(k⊥) = (4.15)

= 2

∫ ∞
0

dk⊥ f(k⊥)2
∑
n=1

k2n−1
⊥ 〈b2n〉Pnn =

=

∫ ∞
0

dk⊥ f(k⊥)2

[
−〈b

2〉k⊥
2

+ 2
∑
n=2

k2n−1
⊥ 〈b2n〉Pnn

]
=

= −
∫ ∞

0
dk⊥ f(k⊥)2 〈b2〉k⊥

2
+ 2

∑
n=2

〈b2n〉Pnn
∫ ∞

0
dk⊥ k

2n−1
⊥ f(k⊥)2 ,
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where the expansion in eq. (4.13) has been used. The above expression can be rearranged

to obtain:∫ ∞
0

dk⊥ k⊥f(k⊥)2 =
2

3〈b2〉
+ 4

∑
n=2

Pnn
〈b2n〉
〈b2〉

∫ ∞
0

dk⊥ f(k⊥)2k2n−1
⊥ . (4.16)

In the above equations we set Pn = P J0
n for the sake of brevity. By using variance property,

i.e. 〈bn〉 ≥ 〈b〉n, one can show that the second term on the right hand side of eq. (4.16) is

positive defined, thus leading to the condition:∫ ∞
0

dk⊥ k⊥f(k⊥)2 ≥ 2

3〈b2〉
. (4.17)

The above condition, combined with the definition in eq. (4.3), allows one to find a minimum

for 〈b2〉, i.e.:

〈b2〉 ≥ σeff

2π
. (4.18)

4.1.2 The maximum

Let us now discuss the procedure, given a value of σeff , to obtain a maximum for 〈b2〉 in

the approximation of eq. (4.3). In this, more involved, case one should solve the following

inequality
2π

σeff
=

∫ ∞
0

dk⊥ k⊥f(k⊥)2 ≤ 1

N〈b2〉
, (4.19)

with N a generic real number. The above expression is equivalent to the following:∫ ∞
0

dk⊥ k⊥f(k⊥)
[
Nf(k⊥)〈b2〉 − d2(k⊥)

]
≤ 0 . (4.20)

The sufficient, but not necessary, condition to solve the above inequality is:

N〈b2〉f(k⊥) ≤ d2(k⊥) . (4.21)

By using the series expansion of f(k⊥) and d2(k⊥), eqs. (4.10)–(4.13) respectively, and by

using the variance property, one gets:

N
∑
n=0

Pnk
2n
⊥ 〈b2n+2〉 ≤

∑
n=0

Pn
n+ 1

k2n
⊥ 〈b2n+2〉 . (4.22)

By shifting from n to n = ñ− 1, one then obtains:

N
∑
ñ=1

Pñ−1k
2ñ−2
⊥ 〈b2ñ〉 ≤

∑
ñ=1

Pñ−1

ñ
k2ñ−2
⊥ 〈b2ñ〉 . (4.23)

In principle one can solve the above inequality by comparing equal powers of k⊥, i.e.:

Pñ−1N ≤ Pñ−1/ñ. Since the function Pn changes sign with n, one finds:

N ≤ 1

ñ
for ñ odd

N ≥ 1

ñ
for ñ even

(4.24)

– 10 –
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Therefore Pñ−1 is positive for ñ odd and negative for ñ even. Analytically one finds a chain

of solutions:
1

2︸︷︷︸
ñ=2

≤ N ≤ 1

1︸︷︷︸
ñ=1

;
1

4︸︷︷︸
ñ=4

≤ N ≤ 1

3︸︷︷︸
ñ=3

; . . . (4.25)

One can generalize the above result in the following form:

1

ñ
≤ N ≤ 1

ñ− 1
, with ñ even , (4.26)

or, in terms of the original n (ñ = n+ 1):

1

n+ 1
≤ N ≤ 1

n
, with n odd . (4.27)

As discussed in ref. [27], in order to find a truncation on the above chain, some conditions

on the behaviour of the EFF must be imposed even if the EFF, defined through eq. (3.1),

is essentially unknown. To this aim, we found that a comparison between the EFF and the

standard one could guide toward a solution of the problem. In fact, similarly to standard

case [70], at large k⊥, i.e. in the pQCD domain, dynamical correlations between partons

tend to decrease. In this case, it reasonable to expect that the EFF would be close to the

product of standard form factors [65] whose asymptotic behaviours are 1/Q4 (Dirac) and

1/Q6 (Pauli). These conditions could be not true in all domain of k⊥ but they are expected

in the large k⊥ limit, allowing to cut the chain in eq. (4.25). On a more quantitative level,

the condition required to solve the inequality (4.19) is that, at large k⊥, the function f(k⊥)

should fall to zero at least as k−2r
⊥ with r > 1. As discussed in ref. [27], this conjecture is

supported by all model calculations of dPDF (even those not built up to calculate dPDFs).

In particular let us mention that one of the most used dPDF ansatz makes use of EFF

which is the product of the gluon form factor which satisfies the asymptotic condition

mentioned above. Under the hypothesis that the EFF falls off at large k⊥ as k−2r
⊥ with

r > 1, then the n = 1 contribution to the chain (4.25) is the dominant one, thus:

1

2
≤ N ≤ 1 . (4.28)

In particular, since in eq. (4.19) we are interested in 1/N , we found that 1 ≤ 1/N ≤ 2.

Collecting these results one finds:

2π

σeff
=

∫ ∞
0

dk⊥ k⊥f(k⊥)2 ≤ 2

〈b2〉
, (4.29)

which is the desidered result. Combining all results, one gets:
σeff

3π
≤ 〈b2〉 ≤ σeff

π
, (4.30)

which is the main result of ref. [27]. The above relation has been checked within all models

of the EFF in the literature. Let us remark that in order to make contact with experimen-

tal extraction of σeff , this result has been obtained under the approximation of eq. (4.3).

Thanks to this feature, data on σeff have been converted in the range of 〈b2〉 [27]. In the

following sections we will describe how σeff can be generalized to include partonic perturba-

tive and non perturbative correlations, thus breaking the factorized ansatz in eq. (4.3), and

discuss how these correlations modify the relationship between 〈b2〉 and σeff in eq. (4.30).
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4.2 Generalization to 2v1 case

As discussed in refs. [19, 30–36, 39, 64], the DPS cross section might receive a contribution

from the so called 2v1 mechanism. In this case, one parton pair active in the processes is

perturbatively produced from the splitting of a single parton, e.g. g → gg, see the right

panel of figure 2. Given the large gluon flux at LHC energies, such a contribution can

be non-negligible [39] for double quarkonia and/or Higgs production [34] with respect to

the standard 2v2 mechanism shown in the left panel of figure 2. This contribution breaks

the simple ansatz in eq. (4.3) and it is of pure perturbative origin. Its presence in dPDF

evolution equation and in DPS cross sections has been carefully investigated [30–32, 35, 36,

54, 60, 64]. Within this mechanism, the separation of the parton pair is set by the hard scale

in the splitting, 1/Q� b� 1/Λ. Since one typically assumes that the non-perturbative b-

profile has a width of order 1/Λ, one can approximate b = 0 in the 2v1 term [7, 8, 34, 47, 64].

In this section we consider the formalism developed in refs. [34], where the σeff definition

is generalized to include the 2v1 contribution. As discussed in ref. [34], one can decompose

the total DPS cross section in terms of the two leading 2v2 and 2v1 contributions as follows

σDPS =
Ω2v2

σeff,2v2
+

Ω2v1

σeff,2v1
, (4.31)

where here Ω2v2 and Ω2v1 represent the DPS cross sections calculated with longitudinal

double PDFs for both mechanisms, and weighted by their corresponding σeff . In particular

the Ω2v1 term is calculated with dPDFs whose initial condition is given by the splitting

term alone at the initial scale [34]. As discussed in ref. [34], in experimental analyses it is

usually assumed that σDPS = Ω2v2/σeff . Within this approach, one can incorporate the

2v1 contribution in σDPS by using the following generalization of σeff :

1

σeff
=

1

σeff,2v2
+

1

σeff,2v1

Ω2v1

Ω2v2
. (4.32)

Under the assumption that the longitudinal dependence of dPDFs factorizes from the

transverse one, the effective cross sections for the two mechanisms read:

1

σeff,2v2
=

∫
d2k⊥
(2π)2

f(k⊥)2 , (4.33)

1

σeff,2v1
=

∫
d2k⊥
(2π)2

f(k⊥) = f̃(b⊥ = 0) , (4.34)

where it is worth noticing that both the above expression depends on the same effective

form factor, f(k⊥), so that they are not independent quantities. The first equation is the

standard one, see eq. (4.3). The second one reflects the perturbative production of the

couple of partons, occurring approximately at zero relative distance in transverse plane. In

terms of the present notation, the main result of ref. [27] reads:

1

3π〈b2〉
≤ 1

σeff,2v2
≤ 1

π〈b2〉
, (4.35)
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P2

P1

x1x2

x3

x4

P2

P1

x1
x2

x3

x4

Figure 2. Diagrammatic representation of the two contributions to a DPS process: the so called

2v2 mechanisms is shown in the left panel and the 2v1 mechanism in the right panel. Small grey

blobs represent the hard scattering processes.

where, by following ref. [34], σeff,2v2 represents the usual definition of σeff if only the 2v2

mechanism is considered, see eq. (4.33). In the case where also the 2v1 mechanism is in-

cluded in the analysis, in order to relate 〈b2〉 to the experimentally extracted σeff eq. (4.32),

we need first to find a relation between the mean partonic distance and σeff,2v1, defined

in eq. (4.34) and appearing in the full definition of σeff in eq. (4.32). To this aim, we can

derive a new expression of the relevant integral with a procedure similar to the one already

described in the first part of this section for the 2v2 mechanism:∫ ∞
0

dk⊥ k⊥f(k⊥) =
1

〈b2〉
+ 4

∑
n=2

〈b2n〉P J0
n n

〈b2〉

∫ ∞
0

dk⊥ k
2n−1
⊥ f(k⊥) . (4.36)

Due to variance properties, the overall sign of the second term of the above equation is

positive and consequently:
1

σeff,2v1
≥ 1

2π〈b2〉
. (4.37)

Furthermore, similarly to the 2v2 case , in order to estimate a reasonable maximum, one

needs solve the following inequality:∫ ∞
0

dk⊥ k⊥

[
N̄f(k⊥)− d2(k⊥)

2

]
≤ 0 , (4.38)

where N̄ is an arbitrary unknown number. Under the additional assumption that the EFF

falls to zero at large k⊥ at least as fast as k−2r
⊥ with r ≥ 1, one finds the desired condition:

1

σeff,2v1
≤ 2

π〈b2〉
. (4.39)

Linking eq. (4.37) and eq. (4.39), the following result is found:

σeff,2v1

2π
≤ 〈b2〉 ≤

2 σeff,2v1

π
. (4.40)
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Combining eq. (4.35) and eq. (4.40) in eq. (4.32) one obtains the final inequality:

σeff

3π

(
1 +

3

2
rv

)
≤ 〈b2〉 ≤ σeff

π
(1 + 2rv) , (4.41)

where here we have defined the ratio rv = Ω2v1/Ω2v2 , with rv ≥ 0. Let us remark that, in

principle, the ratio rv could depend on the rapidities of particles produced in the final state

and hence on parton fractional momenta in the initial state [34]. Such a dependence is not

explored in the present analysis. The difference between the maximum and the minimum

in eq. (4.41) gives an estimate of the theoretical error on the transverse distance of the two

active partons:

∆ =
σeff

π

2

3

(
1 +

9

4
rv

)
. (4.42)

The main effect of the inclusion of the 2v1 mechanism is to shift the 〈b2〉 range towards

higher values and to increase its theoretical error with respect to the case where rv = 0. In

particular, the comparison between the rv 6= 0 and rv = 0 cases, makes sense only if σeff

is assumed to be equal in both scenarios. In principle, as observed in refs. [30–32, 34], in

order to observe σeff ∼ 15 mb, one should expect σeff,2v2 ∼ 30 mb. In general, if rv 6=1,

from eq. (4.32) one gets σeff ≤ σeff,2v2.

We find interesting to check the validity of eq. (4.41) by using two phenomenological

models for EFF, such as those described in refs. [30–32, 34, 65]. The first one is Gaussian

EFF of the type:

f(k⊥) = e−k
2
⊥a . (4.43)

In this case the mean partonic distance can be obtained in term of the width parameter a

as:

〈b2〉 = −2
d

k⊥dk⊥
f(k⊥)

∣∣∣∣∣
k⊥=0

= 4a , (4.44)

so that, according to eqs. (4.33), (4.34),

σeff,2v2 = 2〈b2〉π , σeff,2v1 = 〈b2〉π . (4.45)

By using the above expressions in eq. (4.32), one gets the following result:

〈b2〉 =
σeff

π

(
1

2
+ rv

)
, (4.46)

which is included in the range eq. (4.41). As a second example we consider an EFF which

is the square of the gluon form factor [65], i.e.:

f(k⊥) =

(
k2
⊥
m2
g

+ 1

)−4

, (4.47)

with the parameter mg has been fixed by fitting HERA data, i.e. m2
g ∼ 1.1 GeV2 [65]. In

this case one obtains:

〈b2〉 = −2
d

k⊥dk⊥
f(k⊥)

∣∣∣∣∣
k⊥=0

=
16

m2
g

, (4.48)
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Figure 3. The averaged partonic interdistance as a function of σeff . Dashed lines represent the

minimum of eq. (4.51). Dot-dashed lines stand for the maximum of eq. (4.51). Dotted lines are

for the maximum of eq. (4.30). Vertical lines represent the full range of allowed partonic distances

between two partons if the 2v2 and the 2v1 mechanism effects on the total σeff are not disentangled.

The shadow between lines represents the additional theoretical error w.r.t. the case where only the

2v2 mechanism is considered, i.e. eq. (4.30). The areas outside lines represent the exclusion region

of the allowed transverse distance between two partons active in a DPS process. The red line stands

for twice the transverse proton radius.

and, according to eqs. (4.33), (4.34),

σeff,2v2 =
7

4
〈b2〉π , σeff,2v1 =

3

4
〈b2〉π . (4.49)

By using the above expressions in eq. (4.32), one gets the following result:

〈b2〉 = σeff
π

(
4

7
+

4

3
rv

)
, (4.50)

which again lies in the range indicated in eq. (4.41).

Such a generalization of the inequality in eq. (4.30) is however process dependent, in

fact, as discussed in refs. [30–32, 34], rv is related to the kinematic conditions and to the type

of the considered DPS process. Without a precise knowledge on rv, a determination of the

range of the allowed mean partonic transverse distance is therefore prevented. Nonetheless,

we note that rv ≥ 0 since it is a ratio of cross sections which is positive definite. Furthermore

one expects that rv ≤ 1, at least for processes involving small parton fractional momenta,

as those typically considered in the present analysis. Additionally, in this regime, one

expects the 2v1 mechanism to be subdominant in the pQCD evolution of dPDFs w.r.t. the

2v2 one, being the former proportional to the gluon density and the latter proportional to

its square. Thanks to these features, for rv = 0 one finds the minimum in eq. (4.41) while

for rv = 1 one finds its maximum:

σeff
3π

≤ 〈b2〉 ≤ 3σeff
π

. (4.51)
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ref. Process σeff [mb]
√

σeff
3π [fm]

√
3σeff
π [fm]

[76] D0 (J/Ψ + Υ),
√
s = 1.96 TeV ∼ 2.2 0.15 0.46

[77] (J/Ψ + Z),
√
s = 8 TeV ∼ 4.7 0.22 0.67

[51] D0 (J/Ψ + J/Ψ),
√
s = 1.96 TeV ∼ 4.8 0.23 0.68

[78] (W + J/Ψ),
√
s = 7 TeV ∼ 6.1 0.25 0.76

[25] ATLAS (J/Ψ + J/Ψ),
√
s = 8 TeV ∼ 6.3 0.26 0.78

[26] (J/Ψ + J/Ψ),
√
s = 7 TeV ∼ 8.2 0.29 0.88

[22] LHCb (J/Ψ + J/Ψ),
√
s = 13 TeV ∼ 8.8 0.31 0.92

[21] ATLAS (4-jets)
√
s = 7 TeV ∼ 14.9 0.40 1.19

[79] LHCb (Υ + cc̄),
√
s = 7− 8 TeV ∼ 18.0 0.44 1.31

[23] CMS (W+2-jets)
√
s = 7 TeV ∼ 20.7 0.47 1.41

Table 2. Ranges of mean transverse distance evaluated by means of eq. (4.51) sorted by increasing

values of σeff as extracted from the quoted experimental analyses.

This result allows one to obtain information on the interpartonic distance of two active

partons in a DPS process without knowing details on the relative size of the two mecha-

nisms, 2v1 and 2v2, i.e. the exact knowledge of rv. This, of course, comes at the expense

of an increased theoretical error. In order to quantify such an effect, we have plotted in

figure 3 the two extremes of eq. (4.51) with dashed and dot-dashed lines respectively, to-

gether with the maximum of eq. (4.41) evaluated with rv = 0 (dotted lines), as function

of different values of σeff . The white area between the curves represents the theoretical

error associated to the 2v2 mechanism alone. The shaded area represents the additional

uncertainty induced by the particular choice on rv leading to eq. (4.51). In addition, in

table 2, we report the interpartonic distances, calculated according to eq. (4.41), for σeff

values extracted from a selection of experimental analyses. It should be noted that, in

all cases,
√
〈b2〉 < 2R⊥ = 1.42 fm, where R⊥ ∼ 0.71 fm is the transverse electro-magnetic

proton radius. We close this section by observing that eq. (4.41) can be inverted to give:

π〈b2〉
(1 + 2rv)

≤ σeff ≤
π〈b2〉3(
1 + 3

2rv
) . (4.52)

In such a form, given the value of 〈b2〉 associated to a particular f(k⊥), the inequality

in eq. (4.52) predicts the expected range in σeff associated to that specific model. Most

importantly, eq. (4.52) shows that, given an EFF, characterized by 〈b2〉, the σeff value does

depend on the relative size of the 2v1 contribution. In particular, if rv is significantly larger

than zero, the corresponding σeff will be lower than the one obtained if the 2v2 mechanism

alone were considered (rv = 0).

4.3 Generalization to the unfactorized ansatz

As shown in several constituent quark model calculations of dPDFs, double parton cor-

relations may survive at high momentum transfer, which are relevant for experimentally
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measurable processes [10, 11, 13, 14, 50, 61]. In this section we investigate how eq. (4.30) is

generalized to the case in which the factorized ansatz is not assumed thus allowing the pres-

ence of longitudinal and mixed longitudinal-transverse partonic correlations. We consider

an unapproximated scenario in which σeff depends on the longitudinal momentum fractions

of the active partons, as suggested in refs. [62, 66]. Within this improved framework, the

relationship between σeff and the mean partonic distance will be sensitive to x1 − x2 cor-

relations. For this purpose we consider the simplest generalization of the results presented

in section 3, namely we consider non-factorizable dPDFs, in the zero rapidity case, i.e.

xi = x′i. For processes whose production is dominated by gluons, as those discussed in this

paper, the expression for σeff can be simplified to [62]:

σeff(x1, x2) = 2π

[
F (x1)F (x2)

]2∫
dk⊥ k⊥F (x1, x2, k⊥)2

, (4.53)

where F (x) and F (x1, x2) represent single and double gluon PDFs, respectively. We assume

that the k⊥ dependence of dPDFs has the same behaviour and asymptotics as the ones

discussed for the EFF in section 3. This feature is inspired by the GPDs behavior, whose

dependence on the transverse momentum basically follows the one of the related form

factor. In the present case the inequality is obtained following the same steps outlined in

section 4, but retaining the full (x1, x2) dependence via dPDFs. To this aim we expand

the form factor as:

F (x1, x2, k⊥) = 2π

∫
db⊥ b⊥J0(k⊥b⊥)F̃ (x1, x2, b⊥) = (4.54)

=

∞∑
n=0

k2n
⊥ P J0

n

∫
d2b⊥ b

2n
⊥ F̃ (x1, x2, b⊥) .

By using the definition in eq. (3.4) one can derive the following expression:

F (x1, x2, k⊥)

F (x1, x2, 0)
=

∞∑
n=0

k2n
⊥ 〈b2n⊥ 〉x1,x2P

J0
n . (4.55)

4.3.1 The minimum

The strategy to get a relation between σeff and 〈b2⊥〉x1,x2 is then very similar to the one we

discussed in section 4.1.1. Eqs. (4.12), (4.13) can be generalized to∫ ∞
0

dk⊥ F (x1, x2, k⊥)s−1 d

dk⊥
F (x1, x2, k⊥) = −F (x1, x2, 0)s

s
, (4.56)

and the derivative function to:

dx1,x2
2 (k⊥) = − 2

F (x1, x2, 0)

F ′(x1, x2, k⊥)

k⊥
= −4

∞∑
n=1

k2n−2
⊥ 〈b2n⊥ 〉x1,x2Pnn . (4.57)

In this case, 〈b2⊥〉x1,x2 = dx1,x2
2 (k⊥ = 0). Within these settings we generalize eq. (4.16) to

obtain the first relation between σeff(x1, x2) and 〈b2⊥〉x1,x2 . As in section 4.1.1, we start
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with eq. (4.56) for s = 3:

− F (x1, x2, 0)3

3
=

∫ ∞
0

dk⊥ F (x1, x2, k⊥)2F ′(x1, x2, k⊥) (4.58)

= −F (x1, x2, 0)

2

∫ ∞
0

dk⊥ k⊥F (x1, x2, k⊥)2dx1,x2
2 (k⊥)

= F (x1, x2, 0)2

∫ ∞
0

dk⊥ F (x1, x2, k⊥)2
∞∑
n=1

k2n−1
⊥ 〈b2n⊥ 〉x1,x2Pnn

= F (x1, x2, 0)

∫ ∞
0

dk⊥ F (x1, x2, k⊥)2

[
−
〈b2⊥〉x1,x2k⊥

2
+ 2

∞∑
n=2

k2n−1
⊥ 〈b2n⊥ 〉x1,x2Pnn

]

= −F (x1, x2, 0)

∫ ∞
0

dk⊥ k⊥F (x1, x2, k⊥)2 〈b2⊥〉x1,x2

2

+ 2F (x1, x2, 0)
∞∑
n=2

〈b2n⊥ 〉x1,x2Pnn

∫ ∞
0

dk⊥ k
2n−1
⊥ F (x1, x2, k⊥)2 .

Finally one gets:∫ ∞
0

dk⊥ k⊥F (x1, x2, k⊥)2 =
2

3

F (x1, x2, 0)2

〈b2⊥〉x1,x2

(4.59)

+ 4
∞∑
n=2

〈b2n⊥ 〉x1,x2

〈b2⊥〉x1,x2

∫ ∞
0

dk⊥ F (x1, x2, k⊥)2k2n−1
⊥ .

By noticing that the second term is positive definite, one obtains the following inequality:∫ ∞
0

dk⊥ k⊥F (x1, x2, k⊥)2 ≥ 2

3

F (x1, x2, 0)2

〈b2⊥〉x1,x2

. (4.60)

In terms of σeff(x1, x2) defined in eq. (4.53) the result is recast into:

〈b2⊥〉x1,x2

rgg(x1, x2)2
≥ σeff(x1, x2)

3π
, (4.61)

where we defined:

rgg(x1, x2) =
F (x1, x2, k⊥ = 0)

F (x1)F (x2)
. (4.62)

4.3.2 The maximum

In this last part we derive the maximum of the mean transverse distance for a unfactorized

dPDFs ansatz. Also in this case we consider a general realistic condition, i.e. the k⊥
dependence of dPDFs is dominated by that of the EFF. In this scenario, the only difference

between this case and the previous one, see section 4.1, is that for fixed values of x1, x2 and

the energy scale, the dPDF at k⊥ = 0 can be different from 1. In this case it is necessary

to find a value of N such that:

2π

σeff(x1, x2)
=

∫∞
0 dk⊥ k⊥F (x1, x2, k⊥)2[

F (x1)F (x2)
]2 ≤ 1

N〈b2⊥〉x1,x2

. (4.63)
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The above expression can be rearranged as follows:∫ ∞
0

dk⊥ k⊥F (x1, x2, k⊥)

[
F (x1, x2, k⊥)N

rgg(x1, x2)2

F (x1, x2, 0)2
− 1

]
≤ 0 . (4.64)

In order to find a sufficient condition to solve the above inequality, we make use of the

following identity: ∫ ∞
0

dk⊥ k⊥F (x1, x2, k⊥)dx1,x2
2 (k⊥) = F (x1, x2, 0) . (4.65)

By using the above expression, eq. (4.64) becomes:∫ ∞
0

dk⊥ k⊥
F (x1, x2, k⊥)

F (x1, x2, 0)

[
F (x1, x2, k⊥)

F (x1, x2, 0)
Nrgg(x1, x2)2〈b2⊥〉x1,x2 − d

x1,x2
2 (k⊥)

]
≤ 0 , (4.66)

and a sufficient condition to solve the inequality reads:

F (x1, x2, k⊥)

F (x1, x2, 0)
Nrgg(x1, x2)2〈b2⊥〉x1,x2 ≤ d

x1,x2
2 (k⊥) . (4.67)

By using eqs. (4.55)–(4.56) the latter can be rewritten as:

N(x1, x2)
∑
ñ=1

Pñ−1k
2ñ−2
⊥ 〈b2ñ⊥ 〉x1,x2 ≤

∑
ñ=1

Pñ−1

ñ
k2ñ−2
⊥ 〈b2ñ⊥ 〉x1,x2 , (4.68)

where we define N(x1, x2) ≡ Nrgg(x1, x2)2. The same chain of solutions shown in

eqs. (4.24)–(4.27) is obtained, the main difference being now that these solutions corre-

spond to N(x1, x2). Therefore one gets:

1 ≤ 1

N(x1, x2)
≤ 2 , (4.69)

which corresponds to:

rgg(x1, x2)2 ≤ 1

N
≤ 2 rgg(x1, x2)2 . (4.70)

By using this relation in eq. (4.63) one finds:

〈b2⊥〉x1,x2

rgg(x1, x2)2
≤ σeff

π
(4.71)

Combining eq. (4.61) and eq. (4.71) one finally obtains:

σeff(x1, x2)

3π
≤ 〈b2〉x1,x2

rgg(x1, x2)2
≤ σeff(x1, x2)

π
, (4.72)

which, with respect to eq. (4.30), additionally depends on the ratio rgg. Such a ratio encodes

longitudinal correlations in the proton structure, and therefore so does 〈b2〉x1,x2 . In order

to test the inequality, we have evaluated the terms appearing in eq. (4.72), i.e. σeff(x1, x2),

rgg(x1, x2) and 〈b2〉x1,x2 , by using quark model calculations of dPDFs and PDFs, see figure 4

for rgg(x1, x2). Since we are interested in kinematic regions close to those experimentally
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Kinematics HO model HP model
σeff(x1,x2)

3π
〈b2〉x1,x2
r2
gg(x1,x2)

σeff(x1,x2)
π

σeff(x1,x2)
3π

〈b2〉x1,x2
r2
gg(x1,x2)

σeff(x1,x2)
π

x1 = 10−4,x2 = 10−4 0.263 0.429 0.790 0.235 0.425 0.704

x1 = 10−2,x2 = 10−4 0.256 0.405 0.767 0.227 0.462 0.680

x1 = 10−2,x2 = 10−2 0.268 0.370 0.805 0.226 0.453 0.678

Table 3. Numerical test of the validity of eq. (4.72) by using the HO and HP models. Double gluon

distributions have been evolved at Q2 = m2
H . The various entries in the table are expressed in [fm2].

accessed, we have calculated the above quantities by using the digluon dPDF obtained

through pQCD evolution at high momentum scales, Q2 = m2
H , and test eq. (4.72) in three

couples of fractional momenta, x1 = x2 = 10−4, x1 = 10−4, x2 = 10−2 and x1 = x2 = 10−2.

In addition, in order to assess the hadronic model dependence of the results, eq. (4.72)

has been calculated with digluon distribution obtained within two different CQMs. The

results are reported table 3 and, as one may notice, the inequality eq. (4.72) is verified in

all kinematic conditions. One should also notice that, at variance with the case where the

factorization ansatz in eq. (4.1) is assumed, in this new scenario the effects of correlations

in dPDFs, embodied in the rgg(x1, x2) factor, play a crucial role in verifying the identity.

This generalized inequality effectively allows one to estimate the impact of double parton

correlations on the range of allowed parton transverse distances.

4.4 The full relation

In this final part we collect all previous results to obtain a full relation between σeff and

〈b2⊥〉x1,x2 in the zero rapidity region including also the splitting contribution. In this case

the full demonstration consists in a combination of the previous ones. From section 4.1,

we discussed the following system of relations if the splitting contribution is included:

1

σeff
=

1

σeff,2v2
+

rv
σeff,2v1

σeff,2v2

3π
≤ 〈b2〉 ≤

σeff,2v2

π

σeff,2v1

2π
≤ 〈b2〉 ≤

2σeff,2v1

π

(4.73)

As shown in section 4.2, on the other hand side, if the x1 − x2 and k⊥ correlations are not

neglected:

σeff,2v2(x1, x2)r2v2
gg (x1, x2)2

3π
≤ 〈b2〉x1,x2 ≤

σeff,2v2(x1, x2)r2v2
gg (x1, x2)2

π
(4.74)

where by definition r2v2
gg (x1, x2) = rgg(x1, x2) = F (x1, x2, 0;Q2)/[F (x1;Q2)F (x2;Q2)]. Let

us remark here that within this notation, F (x1, x2, 0;Q2) is the radiative digluon PDF as

obtained from homogeneous evolution. In order to include correlations between x1 − x2
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Figure 4. The ratio rgg(x1, x2), eq. (4.62), evaluated at x2 = 10−1 (upper-left panel), x2 = 10−2

(upper-right panel), x2 = 10−3 (lower-left panel) and x2 = 10−4 (lower-right panel). The HO

model predictions are indicated by full line (Q2 = 4m2
c) and dashed line (Q2 = m2

H). The HP

model predictions are indicated by dotted line (Q2 = 4m2
c) and dot-dashed line (Q2 = m2

H). The

band stands for the difference between the calculations performed in the two scales.

and k⊥ also in the case where the splitting contribution in the pQCD evolution is included,

one may introduce a new ratio:

r2v1gg (x1, x2) =
F splitting
gg (x1, x2, 0;Q

2)

F (x1;Q2)F (x2;Q2)
, (4.75)

where F splitting
gg (x1, x2, 0;Q

2) is the pure splitting contribution to digluon dPDF where the

non dPDFs are evolved with inhomogeneous evolution equations with the non peturbative

digluon distribution set to zero at the intial scale. By performing the same steps previously

discussed, one obtains

σeff,2v1(x1, x2)r
2v1
gg (x1, x2)

2

2π
≤ 〈b2〉x1,x2 ≤

2σeff,2v1(x1, x2)r
2v1
gg (x1, x2)

2

π
(4.76)
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Combining all terms one gets:

σeff(x1, x2)

3π

(
r2v2
gg (x1, x2)2 +

3

2
r2v1
gg (x1, x2)2rv

)
≤ 〈b2〉x1x2 ≤

σeff(x1, x2)

π

(
r2v2
gg (x1, x2)2 + 2r2v1

gg (x1, x2)2rv

)
. (4.77)

This last expression represents the most general inequality between the mean transverse

partonic distance and σeff(x1, x2). In order to avoid to model rv, we may consider the

maximum range by setting rv = 0 and rv = 1 in the minimum and maximum bounds

respectively:

σeff(x1, x2)

3π

[
r2v2
gg (x1, x2)2

]
≤ 〈b2〉x1x2 ≤

σeff(x1, x2)

π

[
r2v2
gg (x1, x2)2 +2r2v1

gg (x1, x2)2
]
. (4.78)

In ref. [34], authors introduced a ratio between the splitting contribution term to dPDFs

versus the dPDF evolved only with the homogeneous one:

rga(x1, x2) =
F splitting
gg (x1, x2, 0;Q2)

Fgg(x1, x2, 0;Q2)
≥ 0 . (4.79)

In their analysis, by considering different models and kinematic conditions, authors of

ref. [34] estimated that rga(x1, x2) ≤ 0.2. One should notice that this quantity appear in

eqs. (4.77), (4.78) by rewriting r2v1
gg (x1, x2) as follows:

r2v1
gg (x1, x2) =

F splitting
gg (x1, x2, 0;Q2)

Fg(x1;Q2)Fg(x2;Q2)
(4.80)

=
F splitting
gg (x1, x2, 0;Q2)

Fgg(x1, x2, 0;Q2)

Fgg(x1, x2, 0;Q2)

Fg(x1;Q2)Fg(x2;Q2)

= rga(x1, x2) · r2v2
gg (x1, x2) .

With this notation eq. (4.78) becomes:

σeff(x1,x2)

3π

[
r2v2
gg (x1,x2)2

]
≤〈b2〉x1x2 ≤

σeff(x1,x2)

π
r2v2
gg (x1,x2)2

[
1+2 rga(x1,x2)2

]
. (4.81)

To date there are no published data on σeff with an explicit evaluation of its dependence

on x1 and x2. Therefore we can give an estimate of eq. (4.81) with a costant σeff . In

table 4 we report numerical estimates of the allowed range of 〈b⊥〉x1,x2 , obtained by using

eq. (4.81) in the worst scenario, i.e. rga ∼ 0.2 and rgg(x1, x2) ∼ 0.6. We note that in

this last inequality the theoretical errors are reduced and the range of mean distance is

shifted towards smaller values with respect to the ranges reported in table 2 for the simple

factorized case studied in section 3. We also remark that the physical information accessible

relies upon the approximations with which σeff is extracted.

5 Relativistic effects in dPDFs

In this section we consider relativistic effects on dPDFs, already addressed in ref. [14], and

study their relevance when propagated at high momentum transfer in typical LHC kinemat-

ics, with a special emphasis on the digluon distribution. Relativistic effects, in fact, induce
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ref. Process σeff [mb]
√

σeff
3π 0.6 [fm]

√
0.4σeff
π [fm]

[76] D0 (J/Ψ + Υ),
√
s = 1.96 TeV ∼ 2.2 0.09 0.17

[51] D0 (J/Ψ + J/Ψ),
√
s = 1.96 TeV ∼ 4.8 0.13 0.25

[25] ATLAS (J/Ψ + J/Ψ),
√
s = 8 TeV ∼ 6.3 0.16 0.28

[26] (J/Ψ + J/Ψ),
√
s = 7 TeV ∼ 8.2 0.18 0.32

[22] LHCb (J/Ψ + J/Ψ),
√
s = 13 TeV ∼ 8.8 0.18 0.33

[79] LHCb (Υ + cc̄),
√
s = 7− 8 TeV ∼ 18.0 0.26 0.48

Table 4. Ranges of mean transverse distance evaluated from eq. (4.81) setting rga ∼ 0.2, rgg ∼ 0.6

and by pretending that the experimental σeff is extracted by the non factorized dPDF.

model independent correlations between x1−x2 and k⊥ on dPDFs [14]. Their study there-

fore is relevant since these kind of correlations are almost unknown, at variance with those

between x1 and x2 for which there are indications from pQCD evolution and dPDF sum

rules. Within this context, relativistc effects are embodied via Light-Front boosts which are

kinematical operators. The associated Light-Front wave function is then frame indepen-

dent and encodes additional kinematical correlations between x and k⊥ induced by these

kinematical operators. Among the three forms of relativistic dynamics [67], the Light-Front

(LF) one has the maximum number of kinematical generators, such as LF boosts [67]. This

feature makes the LF approach suitable to implement special relativity for strongly inter-

acting systems [68–70] and therefore it has been extensively used to evaluate other kind of

parton distributions [71–74]. We consider the dPDFs expression presented in ref. [13], i.e.:

Fij(x1,x2,~k⊥)∝
∫
d~k1d~k2 Ψ

(
~k1 +~k⊥,~k2

)
τiτjΨ

†
(
~k1,~k2 +~k⊥

)
δ

(
x1−

k+
1

M0

)
δ

(
x1−

k+
1

M0

)
×〈S⊗F |D̂†1D̂1D̂

†
2D̂2|S⊗F 〉 , (5.1)

where ~ki is the intrinsic three-momentum of the i parton whose flavor is determined by

τi, k⊥ is the relative transverse momentum unbalance in the parton pair, Ψ is the proton

canonical (instant form) wave function in momentum space and |S ⊗ F 〉 is a generic

spin-flavor state. M0 is the proton mass with constituent quarks treated as free particles

and whose dependence on xi and ~ki⊥ is given by:

M2
0 =

3∑
i=1

m2
i + ~k2

i⊥
xi

, (5.2)

being mi and xi the constituent quark mass and longitudinal momentum fraction carried

by the i quark, respectively. Here, as in ref. [13], we consider for simplicity a factorized

dependence between the spin-flavor and the spatial part of the proton wave function. For

the sake of completeness, let us point out that the above condition can be broken by,

e.g. spin-orbit effects, see ref. [11]. However, as will be discussed later on, since we focus

on model independent features of dPDFs, we consider ratios that minimize these effects.

To this aim, the HO is particularly suitable since, by construction, such contributions
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Figure 5. The distribution F̃gg(x1, x2, b⊥, Q
2 = m2

H) evaluated for three pairs of x1 and x2 and

depending on b⊥. Double PDF calculations are displayed with (full lines) and without (dashed

lines) Melosh operators. Upper panels for the HP model and lower panel for the HO one.

are neglected. Thanks to the LF approach, momentum conservation is preserved, i.e.

dPDFs vanish in the unphysical region x1 + x2 > 1. The canonical proton wave function

appearing in eq. (5.1) can be calculated within constituent quark models, see e.g. refs. [11,

13]. Nevertheless, the price for the use of the canonical proton wave function is the inclusion

of boosts from the Light-Front centre of mass frame to the instant form one, i.e. the so

called Melosh operators [75], which appear in the second line of eq. (5.1) and are defined as

D̂i =
mi + xiM0 + i(kixσy − kiyσx)√

(mi + xiM0)2 + k2
ix + k2

iy

, (5.3)

where σx and σy are Pauli sigma matrices. In particular, the Melosh operators allow to

rotate Light-Front spin into the canonical one. We emphasize that for unpolarized PDFs,

for which the initial proton state is equal to the final one in the light-cone correlator, the

product of Meloshs reduce to the unity, D̂†D̂ = 1. However, as shown in ref. [13], in the

case of dPDFs, for which in general k⊥ 6= 0, Melosh operators contribute also in the case

of unpolarized partons. In the present analysis, we are interested in (xi − k⊥) correlations

induced by Melosh operators on dPDFs. However, given the complicated structure of

eq. (5.1), it is non trivial to single out their effects, since they mix with the proton wave

function. In order to determine to which extent their effects on dPDFs are independent of

the chosen hadronic model, we compare dPDF calculations performed within the HO and

the HP models and build appropriate ratios in order to highlight relativistic effects alone.

In figure 5 we present the double gluon distribution in coordinate space,

F̃gg(x1, x2, b⊥, Q
2 = m2

H), evaluated in different configurations of x1 and x2, including

(black full lines) and neglecting (orange dashed lines) Melosh operators within different

hadronic models, the HP in the upper panels and the HO in the lower ones. Results are

consistent with those of ref. [14], where only valence quark dPDFs have been evaluated at

the low hadronic scale of the models. We observe in the plots that there exists a value of
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Figure 6. The ratio in eq. (5.4) evaluated for digluon distribution as a function of b⊥ for three

pairs of values of x1 and x2. Black lines stand for dPDF calculations within the HP model, at

Q2 = m2
H (full) and at Q2 = 4m2

c (dot-dashed). Orange lines stand for dPDF computed within the

HO model, at Q2 = m2
H (dashed) and at Q2 = 4m2

c (dotted).

b0 ∼ 1.5 GeV−1, which slightly depends upon the kinematics and the hadronic model used

in the calculations, such that the inclusion of Melosh operators strongly decrease dPDFs for

b⊥ < b0 and slightly increase them for b⊥ > b0. It is worth noticing that Melosh operators

reduce to the identity for k⊥ = 0, so that dPDFs with and without Melosh coincide in this

limit. Since the latter condition corresponds to an integral of dPDFs over d2b⊥, it follows

that dPDFs with and without Melosh are normalized to the same number. The digluon

distributions in figure 5 show a marked dependence on the specific proton wave function

built-in the CQMs. It is therefore instructive to present the ratio:

rb(x1, x2, b⊥, Q
2) =

F̃gg(x1, x,b⊥, Q
2)

F̃NMgg (x1, x2, b⊥, Q2)
, (5.4)

where we indicate with F̃NMgg (x1, x2, b⊥, Q
2) the dPDFs in eq. (5.1) evaluated neglecting

Melosh operators. The ratio in eq. (5.4) is shown in figure 6 with calculations performed

within the HP model at the final scales Q2 = m2
H (full lines) and Q2 = 4m2

c (dot-dashed

lines), and the HO model at the final scales Q2 = m2
H (dashed lines) and Q2 = 4m2

c (dotted

lines) in three configurations of x1 and x2. As one can see, up to b⊥ < b0, Melosh operators

induce a sizeable reduction of dPDFs which is almost a kinematical and scale independent

effect. These conclusions hold for both the considered CQMs, which give rather close re-

sults. It is also interesting to study the impact of Melosh rotations directly on experimental

related observables, such as σeff . We first consider the production of double J/Ψ via DPS

at the LHC. Calculations are performed in the rapidity range |y| < 1.2 for ATLAS and

CMS kinematics and 2 < y < 4.5 for the LHCb one. The calculation of σeff is performed

via digluon distribution evaluated at Q2 = 4m2
c . In both these rapidity ranges, the involved

parton momenta are quite small and we found that σeff is nearly constant. For this reason

we just quote the averaged results in table 5. The inclusion of Melosh operators determines

an increase in σeff by almost 60%, whereas there is only a slight dependence on the chosen

hadronic model. Then we consider double Higgs production via DPS in the same kinematic

range. In this case, the digluon distribution is evaluated at Q2 = m2
H . The results for σeff ,

as a function of final state particle rapidities, are shown in figures 7 and 8. We note that

σeff is almost constant in the central rapidity region, as already observed at Q2 = 4m2
c .

However, for Q2 = m2
H in LHCb kinematics, the involved xi are substantially higher with
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Kinematics HO model HP model

Q2 = 4m2
c σeff [mb] σNMeff [mb] σeff [mb] σNMeff [mb]

|y| < 1.2 23.5 13.7 21.0 12.4

2 < y < 4.5 23.6 13.9 21.1 12.6

Table 5. Calculations of σeff in the relevant experimental rapidity range of the process pp →
J/ΨJ/ΨX. Results are presented for digluon distribution evaluated at Q2 = 4m2

c and obtained

within the HO and HP models, including and neglecting Melosh operators.

Figure 7. Effective cross section for the process pp → HHX as a function of Higgs bosons

rapidities, ya and yb, respectively in the central rapidity region. σeff has been evaluated by using

digluon distributions at the scale Q2 = m2
H . In the upper panels results are shown within the HO

model with (left) and without (right) Melosh operators. In the lower panels results are shown for

the HP model with (left) and without (right) Melosh operators.

respect to those addressed in the Q2 = 4m2
c case and σeff starts to show a non trivial x

dependence. From this plots it is clear that the production of heavy particles in the forward

rapidity region represents a way to access the kinematic region where longitudinal correla-

tion are the strongest. For both the considered final scales, the inclusion of Melosh operators

increase the value of σeff , as they act to reduce the size of dPDFs at small b⊥, as shown in

figure 5. The above results are similar, in quality, to that discussed in ref. [62]. In order
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Figure 8. The same as in figure 7 but in the forward rapidity region.

to further explore the role of Melosh operators in σeff , we consider the following ratio [14]:

rσ(x1, x2) =
σeff(x1, x2)

σNMeff (x1, x2)
, (5.5)

where in the denominator the effective cross section has been evaluated by means of

gluon dPDFs calculated without Melosh rotations. Results of numerical calculations

are presented in figure 9 for three fixed typical values of x1. Such a ratio shows a very

weak dependence on x and the chosen model, and a weak dependence on the hard scale.

Moreover its numerical value is found to be quite close to that obtained with valence

quarks dPDFs evaluated at the hadronic scale of models described in ref. [14]. It is

interesting to note that Melosh’s effects on σeff by far exceed the dependence induced by

using different hadronic models.

As already discussed, Melosh operators encode x−k⊥ correlations which guarantee the

frame independence of the Light-Front wave function, an essential property which dPDFs

must satisfy too. As previously shown above, Melosh effects on dPDF calculations are

rather independent with respect to the adopted CQM, see figure 6 and ref. [14]. Moreover,

by comparing figures 6 and 9 with the corresponding figures 7 and 8 of ref. [14], one may

notice that such effects are also rather independent on the flavor of the active partons. In

addition, as shown in figures 6, 9, Melosh effects mildly depend on typical scales involved

in the hard scatterings, either the J/Ψ or the Higgs mass in the present analysis. These
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Figure 9. The ratio in eq. (5.5) as a function of x2 evaluated at fixed x1 = 10−4 (left panel),

x1 = 10−2 (central panel) and x1 = 10−1 (right panel). This quantity has been calculated via

the digluon distribution computed within the HP (full line) and the HO (dashed line) models at

Q2 = m2
H . The same quantity is shown within the HP (dot-dashed line) and the HO (dotted line)

models at Q2 = 4m2
c .

Figure 10. The ratio Rgg(x1, x2, k⊥) evaluated within the HO model at the final scale Q2 = m2
H .

Left panel for k⊥ = 0.15 GeV. Right panel for k⊥ = 1.97 GeV.

features suggest that one may study the functional form of these x−k⊥ correlations which

can then be used to inspire dPDFs phenomenological models. For this purpose we define

the ratio R between digluon PDFs calculated within CQM in a fully LF calculation and

its approximation obtained neglecting Melosh operators:

R(x1, x2, k⊥) =
Fgg(x1, x2, k⊥, Q

2)

FNMgg (x1, x2, k⊥, Q2)
. (5.6)

Such a ratio is built in order to suppress dynamical effects encoded in the chosen hadronic

wave function. In fact, since we are interested in x − k⊥ correlations induced only by

Melosh operators, we have evaluated the ratio in eq. (5.6) within the only model which

does not include any additional x− k⊥ correlation generated by its wave function, i.e. the

HO model [11, 14]. We display in figure 10 the ratio R(x1, x2, k⊥) for two representative

values of k⊥ as a function of x1 and x2. We found that a suitable parametrization in x1−x2

space, able to describe the ratio R at fixed k⊥, is the following one:

R(x1, x2, k⊥) = w(k⊥)(x1x2)t(k⊥)(1− x1 − x2)|x1−x2|e(k⊥)e−(1−x1−x2)h(k⊥) . (5.7)
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Figure 11. Symbols indicate the values of the parameters w, e, t, h obtained by fitting the ratio

R with eq. (5.7) for fixed values of k⊥. Lines indicate fit to these points obtained by using the

functional form eq. (5.8).

The parameter w controls the overall normalization of R, t its small-x behaviour. The

additional parameter e and h control its behaviour on the x1 + x2 = 1 boundary. Such

a functional form goes beyond the standard factorized ansatz often used for dPDFs. By

using the functional form in eq. (5.7), we perform a series of fit of R(x1, x2, k⊥) at fixed

values of k⊥. This procedure gives us access to the k⊥ dependence of the parameters

which is displayed in figure 11. Then, the k⊥ dependence is interpolated by a fourth order

polynomial of the type:

i(k⊥) = di + aik
2
⊥ + bik

3
⊥ + cik

4
⊥ , i = {w, e, t, h}, (5.8)

involving four parameters for each i. For k⊥ = 0 Melosh operators reduce to unity,

R(x1, x2, k⊥ = 0) = 1, and therefore e(k⊥ = 0) = h(k⊥ = 0) = t(k⊥ = 0) = 0. The

latter condition is fulfilled by setting de = dh = dt = 0 and dw = 1 which are held fixed at

those values during the fit. The corresponding results are displayed as solid lines in figure 11

and the best fit parameters are reported in table 6. It is worth noticing that w is compatible

with unity and that t is compatible with zero: Melosh operators mainly affect the behaviour

of the ratio on the kinematic boundary. The dampening on the boundary is increasingly

pronounced as k⊥ increases. The obtained parametrization reproduces with good accuracy

(at the percent level) the ratio R(x1, x2, k⊥) calculated within the HO model. Additionally,

its investigation at different scales, reveals that is substantially scale independent.

6 Conclusions

In the present analysis we have investigated to which extent information on the partonic

proton structure, complementary to that obtained via other parton distributions, can be

accessed via dPDFs. In particular we have focused our attention on the connection between

the mean transverse partonic distance between two partons and σeff . We have discussed

how this relation is modified when correlation of perturbative and non-perturbative origin

are included in the calculation. In the former we have considered perturbative correlations

induced by the so called splitting term in dPDF evolution. In the latter we have considered
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i ai bi ci di

w -0.202 0.146 -0.019 1

e 0.369 0.019 0.033 0

t 0.021 -0.012 0.002 0

h -0.019 0.202 -0.043 0

Table 6. Values of the coefficients in the parametrizations in eq. (5.8) as returned by the fit to the

k⊥ dependence of the ratio eq. (5.6) evaluated within the HO model. The di values are held fixed

during the fit.

non perturbative correlation beyond the factorized ansatz for dPDFs. We proved that also

in these two cases, the mean value of σeff provides new indications on the structure of the

proton in the non perturbative regime of QCD, again indicating dPDFs as a valuable tool

to investigate partonic longitudinal and transverse correlations. In the last part of this

work we took advantage of CQM calculations of dPDFs within the Light-Front relativistic

approach, to study model independent correlations between x1, x2 and k⊥ induced by

the so called Melosh operators. We have investigated their effects on the digluon dPDF,

perturbatively obtained at high momentum scales relevant for DPS studies at the LHC.

We have shown that Melosh operators produce a non-negligible reduction of dPDFs and

generate, model independent, xi − k⊥ correlations on the kinematic boundary.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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