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1 Introduction

The discovery of the 125GeV scalar boson identified as the Higgs boson in the Standard

Model (SM) [1–4] suggested that the simple Higgs mechanism [5–7] for electroweak sym-

metry breaking proposed by Weinberg [3] and Salam [4] is the choice by nature. Both

Run I and Run II data collected by the two experimental groups ATLAS and CMS at the

Large Hadron Collider (LHC) reveal no significant deviations from the SM predictions.

Alternative models for electroweak symmetry breaking like technicolor or composite Higgs

models are arguably more elegant but necessarily more complicated. Simplicity seems to

be more superior over other criterion like complexity or elegance for model buildings.

Nevertheless experimental observations of neutrino oscillations imply there must be

new physics beyond the SM to account for the minuscule masses of neutrinos. Missing mass

problem and cosmic acceleration of our universe also suggested the introduction of dark
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matter (DM) [8] and dark energy [9]. The standard ΛCDMmodel of cosmology [10] consists

of the SM of particle physics plus two new ingredients, namely the cold dark matter, which

can be the weakly interacting massive particle predicted by many new particle physics

models, and a tiny positive cosmological constant at the present time in the Einstein’s

field equation for gravity, which can be mimicked by numerous models of dark energy.

Many models of dark matter and neutrino masses require extension not only of the simple

Higgs sector but sometimes also the electroweak gauge sector of the SM as well. Moreover,

models of dark energy are often represented by new scalar field with equation of state that

can provide negative pressure in order to explain the cosmic acceleration at late times.

Thus extension of the SM in one way or the other seems necessary if one wants to

solve the above puzzles in the neutrino sector and in cosmology. At the same time, one

should be open-minded that there might be other approaches other than particle physics

to answer some of these questions and remembering that nature is the ultimate arbiter of

all theoretical imaginations.

The gauged two Higgs doublet model (G2HDM) proposed in [11] was motivated partly

by the inert Higgs doublet model (IHDM) [12–15] of dark matter. IHDM is a variant of

the general 2HDM [16] with an imposed discrete Z2 symmetry on the scalar potential and

the Yukawa couplings such that one of the Higgs doublets is odd and become a scalar dark

matter candidate. Dangerous tree level flavor changing neutral current (FCNC) interac-

tions in the Yukawa couplings, generally presence in the general 2HDM, are also eliminated

by this discrete symmetry. Due to its relatively simple extension of the SM, many detailed

analysis of IHDM had been done in the literature [17–26]. In G2HDM, the discrete Z2

symmetry in IHDM was not enforced. Instead the two Higgs doublets H1 and H2 are

grouped into a two-dimensional irreducible representation H = (H1, H2)
T of a new gauge

group SU(2)H . A priori there is no need to impose the discrete Z2 symmetry in G2HDM.

Once we write down all renormalizable interactions for G2HDM, this discrete symmetry

emerges as an accidental symmetry automatically. Tree level flavor changing neutral cur-

rent (FCNC) interaction in the Higgs-Yukawa couplings are also absence naturally for the

SM fermions. As long as one does not break this symmetry spontaneously, which might

lead to the domain wall problem in early universe, the H2 doublet is naturally an inert

Higgs doublet and can play some role in dark matter physics. It is more satisfactory to have

a global discrete symmetry like the Z2 parity that guarantees the stability of dark matter

embedded into a local symmetry. Indeed there exists theoretical arguments showing that

global continuous or discrete symmetries are not compatible with quantum gravity [27, 28].

Detailed analysis of the complex scalar dark matter physics in G2HDM will be presented

in a forthcoming paper [29].

The construction of G2HDM in [11] involves extension of both the Higgs and gauge

sector of the SM which we will discuss shortly in the next section. Several phenomenological

implications of G2HDM had been explored in [30–33]. In particular, we have studied

recently in details the theoretical and phenomenological constraints on the scalar sector [31].

We note that the 2HDM augmented with an extra local abelian U(1)X has been dis-

cussed in the literature [34–39] to address neutrino masses, dark matter and to avoid FCNC

interactions at the tree level.
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As mentioned before, all experimental data are in line with SM predictions. The ex-

tended gauge sector of G2HDM must be challenged by electroweak precision test (EWPT)

data obtained previously at LEP-I and LEP-II as well as current data at the LHC. Con-

straints must be imposed on the new parameters in the extended gauge sector of G2HDM.

The main purpose of this work is to study these constraints on the gauge sector systemat-

ically in analogous to previous analysis [31] done for the scalar sector. It is also interesting

to address the sensitivities of these new parameters at the future colliders.

The contents of this paper is organized as follows: in the next section 2, we review the

G2HDM and highlight some of its crucial features of the gauge sector relevant most to this

work. Section 3 discusses the experimental constraints, including the electroweak precision

test constraints at and off the Z-pole at LEP, Drell-Yan data from on-shell decay of the Z

boson at the LHC, and the full LHC Run II data from the high-mass dilepton resonance

of an extra neutral gauge boson Z ′. The dominant two-body decay widths for the two new

neutral gauge bosons are also discussed in this section. Section 4 contains our numerical

results from the profile likelihood analysis. We also study future sensitivities of the new

parameters in future experiments, in particular for the Circular Electron Positron Collider

(CEPC) [40] proposed/debated to be built in China. Finally, we summarize and conclude

in section 5. In appendix A, we present the formulas for the mixing angles among the three

massive neutral gauge bosons in G2HDM in terms of the fundamental parameters in the

Lagrangian of the model. In appendix B, we collect some useful formulas for the partial

decay widths of the extra neutral gauge bosons in G2HDM.

2 G2HDM set up

In this section, we will start with a brief review for the set-up of G2HDM [11] by specifying

its particle content (section 2.1) and then write down the mass spectrum of the neutral

gauge bosons (section 2.2) and their interactions with the SM fermions (section 2.3) in the

model. Along the way, we will discuss some peculiar effects for nonzero Stueckelberg mass

MY associated with the hypercharge U(1)Y .

2.1 Particle content

The particle content of G2HDM is listed in table 1.1 Besides the two Higgs doublets H1

and H2 combining to form H = (H1, H2)
T in the fundamental representation of an extra

SU(2)H , we introduced a triplet ∆H and a doublet ΦH of this new gauge group. However

∆H and ΦH are singlets under the electroweak SM gauge group SU(2)L ×U(1)Y . Only H

carries both quantum numbers of the SU(2)L and SU(2)H .

There are different ways of introducing new heavy fermions in the model but we choose

a simple realization: the heavy fermions together with the SM right-handed fermions com-

prise SU(2)H doublets, while the SM left-handed doublets are singlets under SU(2)H . We

note that heavy right-handed neutrinos paired up with a mirror charged leptons forming

SU(2)L doublets was suggested before in the mirror fermion model [41]. To render the

1uH
L , dHL , νH

L , eHL in the table were denoted as χu, χd, χν , χe respectively in [11].

– 3 –



J
H
E
P
0
9
(
2
0
1
9
)
0
4
8

Fields Spin SU(3)C SU(2)L SU(2)H U(1)Y U(1)X

H = (H1 H2)
T

0 1 2 2 1
2 1

∆H =
(

∆3/2 ∆p/
√
2

∆m/
√
2 −∆3/2

)

0 1 1 3 0 0

ΦH = (Φ1 Φ2)
T

0 1 1 2 0 1

QL = (uL dL)
T 1

2 3 2 1 1
6 0

UR =
(

uR uH
R

)T 1
2 3 1 2 2

3 1

DR =
(

dHR dR
)T 1

2 3 1 2 − 1
3 −1

uH
L

1
2 3 1 1 2

3 0

dHL
1
2 3 1 1 − 1

3 0

LL = (νL eL)
T 1

2 1 2 1 − 1
2 0

NR =
(

νR νHR
)T 1

2 1 1 2 0 1

ER =
(

eHR eR
)T 1

2 1 1 2 −1 −1

νHL
1
2 1 1 1 0 0

eHL
1
2 1 1 1 −1 0

gaµ(a = 1, · · · , 8) 1 8 1 1 0 0

W i
µ(i = 1, 2, 3) 1 1 3 1 0 0

W ′i
µ (i = 1, 2, 3) 1 1 1 3 0 0

Bµ 1 1 1 1 0 0

Xµ 1 1 1 1 0 0

Table 1. Particle content and their quantum number assignments in G2HDM.

model anomaly-free, four additional chiral (left-handed) fermions for each generation, all

singlets under both SU(2)L and SU(2)H , are included. For the Yukawa interactions that

couple among the fermions and scalars in G2HDM, we refer our readers to [11] for more

details, since they are not relevant to this work.

To avoid some unwanted pieces in the scalar potential and Yukawa couplings, we require

the matter fields to carry extra local U(1)X charges. Thus the complete gauge groups in

G2HDM consist of SU(3)C × SU(2)L × U(1)Y × SU(2)H × U(1)X . Apart from the matter

content of G2HDM, there also exist the gauge bosons corresponding to the SM and the

extra gauge groups.

The salient features of G2HDM are: (i) it is free of gauge and gravitational anoma-

lies; (ii) renormalizable; (iii) without resorting to an ad-hoc Z2 symmetry, an inert Higgs

doublet H2 can be naturally realized, providing a DM candidate; (iv) due to the non-

abelian SU(2)H ×U(1)X gauge symmetry, dangerous FCNC interactions are absent at tree

level for the SM sector; (v) the VEV of the triplet can trigger SU(2)L symmetry breaking

while that of ΦH provides a mass to the new fermions through SU(2)H -invariant Yukawa

couplings; etc.

– 4 –



J
H
E
P
0
9
(
2
0
1
9
)
0
4
8

2.2 Neutral gauge boson masses

Consider the interaction basis {B,W 3,W ′3, X} for the neutral gauge bosons and denote

their mass eigenstates as {A,Z1, Z2, Z3}. After spontaneous symmetry breaking, the 4×4

mass matrix in the interaction basis of {B,W 3,W ′3, X} is given by [11]

M2
gauge =













g′2v2

4 +M2
Y − g′g v2

4
g′gHv2

4
g′gXv2

2 +MXMY

− g′g v2

4
g2v2

4 − ggHv2

4 − ggXv2

2

g′gHv2

4 − ggHv2

4

g2H(v
2+v2Φ)
4

gHgX(v2−v2Φ)
2

g′gXv2

2 +MXMY − ggXv2

2

gHgX(v2−v2Φ)
2 g2X

(

v2 + v2Φ
)

+M2
X













. (2.1)

Here g, g′, gH and gX denote the gauge couplings of SU(2)L, U(1)Y , SU(2)H and U(1)X
respectively; v and vΦ are the vacuum expectation values (VEVs) of H1 and ΦH respec-

tively; MX and MY are the Stueckelberg masses for the two abelian U(1)X and U(1)Y
respectively. We note that v∆ the VEV of the triplet ∆H does not enter into the neutral

gauge boson mass matrix. This is unlike the case of scalar boson mass matrix analyzed

in [31] which involves all three VEVs, v, vH and v∆. The matrix M2
gauge in eq. (2.1) is real

and symmetric and thus can be diagonalized by a 4×4 orthogonal rotation matrix that we

will denote as O4×4

(O4×4)T · M2
gauge · O4×4 = diag(0,M2

Z1
,M2

Z2
,M2

Z3
) , (2.2)

where M2
Z1

< M2
Z2

< M2
Z3
. The zero mass state is naturally identified as the photon.

Some comments on the Stueckelberg masses MX and MY are in order here. It has

been demonstrated in [42] that for the extension of SM with a Stueckelberg mass MY for

the hypercharge U(1)Y , there exists a plethora of new physical effects. Notably, besides the

photon obtaining a mass, neutrinos will couple to the photon and charged leptons will have

axial vector couplings with the photon. Nevertheless, the Stueckelberg extension of the SM

doesn’t spoilt renormalizability of the model. All these new effects are proportional to MY .

Experimentally, the photon mass upper bound deduced from modeling the solar wind in

magnetohydrodynamics is mγ < 1 × 10−18 eV [43], which implies MY must be very tiny

too. If individual Stueckelberg mechanism is introduced for each of the two U(1)s factors

in G2HDM, the photon will in general obtain nonzero mass and many results obtained

in [42] apply as well. In [11], we followed [44–47] in which only one Stueckelberg field was

introduced for the two factors of U(1)s to implement the Stueckelberg mechanism. The

matrix M2
gauge thus obtained given in eq. (2.1) has zero determinant and a massless photon

can always be realized for arbitrary values of the Stueckelberg masses MX and MY .

In the next subsection, we will show that with a nonzero MY the electric charge assign-

ments of the SM fermions and their heavy partners in G2HDM will no longer be standard

but instead receive milli-charge corrections like those discussed in [42]. In particular, neu-

trinos will couple to the photon and all fermions also have axial vector couplings with the

photon at tree level. These peculiar effects depend on MY through the mixing matrix

elements and hence necessarily small. Thus, we have strong theoretical motivation to set

MY = 0 in what follows to avoid these unpleasant features. For an analysis with both

– 5 –
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MX and MY nonzero in a Stueckelberg U(1)X extension of the SM that maintains the

standard QED interaction for the SM fermions, see [48–50]. The main reason why the

photon-fermion couplings in G2HDM are in general different from these previous works

is due to the presence of the extra gauge group SU(2)H whereas there is only one extra

abelian group U(1)X in [48–50].

Setting MY = 0 in G2HDM will simplify M2
gauge and allows us to write the rotation

matrix in the following product form

O4×4
MY =0 =











cW −sW 0 0

sW cW 0 0

0 0 1 0

0 0 0 1











·











1 0 0 0

0

0 O
0











, (2.3)

where cW and sW represent cos θW and sin θW respectively, with θW being the Weinberg

angle defined by

eSM ≡ g sin θW = g′ cos θW =
gg′

√

g2 + g′2
. (2.4)

It is obvious that the matrix O4×4
MY =0 in eq. (2.3) is just the product of the SM gauge

rotation matrix made into a 4 × 4 matrix, called O4×4
SM , times a general 3 × 3 orthogonal

rotation matrix O which was also converted to a 4× 4 matrix. After applying the rotation

O4×4
SM to M2

gauge(MY = 0), the result is

O4×4T
SM · M2

gauge(MY = 0) · O4×4
SM =













0 0 0 0

0 M2
ZSM − gHv

2 MZSM −gXvMZSM

0 − gHv
2 MZSM

g2H(v
2+v2Φ)
4

gXgH(v2−v2Φ)
2

0 −gXvMZSM
gXgH(v2−v2Φ)

2 g2X(v2 + v2Φ) +M2
X













,

(2.5)

where MZSM = v
√

g2 + g′2/2 is the mass of the Z boson in the SM. We can consider the

vanishing (1,1) element to be the mass of the photon eigenstate Aµ. Furthermore, according

to eqs. (2.2) and (2.3), the remaining 3×3 matrix formed by the non-vanishing elements

above is diagonalized by the orthogonal matrix O. In particular, one can parametrize O
in terms of the following Tait-Bryan representation

O =







cψcφ − sθsφsψ −cθsφ sψcφ + sθsφcψ
cψsφ + sθcφsψ cθcφ sψsφ − sθcφcψ

−cθsψ sθ cθcψ






, (2.6)

where sx and cx stand for sine and cosine with the rotation angle x = φ, θ, ψ respectively.

As shown in appendix A, these rotation angles can be represented as

tan(φ) =
−gHvMZSM(M2

X −M2
Z2

+ 2g2Xv2Φ)

2
(

M4
Z2

−
(

M2
ZSM +M2

X + (v2 + v2Φ)g
2
X

)

M2
Z2

+M2
ZSM(M

2
X + g2Xv2Φ)

) , (2.7)

tan(θ) =
−gX(M2

Z2
(v2 − v2Φ) +M2

ZSMv
2
Φ)

vMZSM(M2
X −M2

Z2
+ 2g2Xv2Φ)

sinφ , (2.8)

cot(ψ) =
gH(M2

Z1
−M2

X − 2g2Xv2Φ)

gX(g2Hv2Φ − 2M2
Z1
)

cos θ

sinφ
− sin θ cotφ . (2.9)

– 6 –
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It is easy to see that taking the limits of gH and gX go to 0, the non-vanishing 3×3

block matrix in eq. (2.5) becomes Diag(M2
ZSM , 0,M

2
X). Thus the rotation matrix O must

be identity. This can be realized by setting φ, θ and ψ to be zeros which can be derived

from eqs. (2.7), (2.8) and (2.9).

We note that if one sets MX to zero, the mass matrix in the right-handed side of

eq. (2.5) is symmetric under the interchange of gH/2 ↔ gX .

After the rotation matrix O is found, the Zi mass eigenstates where i runs from 1 to

3 are given by

(Z1, Z2, Z3)
T = OT · (ZSM,W ′3, X)T . (2.10)

The composition ZSM, W ′3 and X of the Zi mass eigenstate is given by O2
1i, O2

2i, and O2
3i,

respectively. In general, the Z-pole can be any one of the Zi depending on which one is

actually closer to the pole by the underlying parameter choices in G2HDM. In our analysis,

we will consider there is always at least one extra neutral gauge boson heavier than the

Z-pole.

2.3 Neutral gauge current interactions

The part of the Lagrangian that contains the interaction of the Zi with visible matter in

G2HDM is

LN = gM
∑

f

3
∑

i=1

f̄γµ

[(

v
(i)
f − γ5a

(i)
f

)

Zµ
i

]

f , (2.11)

where gM =
√

g2 + g′2/2. The v
(i)
f and a

(i)
f factors are given by (MY 6= 0)

v
(i)
f =

(

cWO4×4
2,i+1 − sWO4×4

1,i+1

)

T 3
f + 2QfsWO4×4

1,i+1

+
1

√

g2 + g′2

(

XRgXO4×4
4,i+1 + T 3H

fR
gHO4×4

3,i+1

)

, (2.12)

a
(i)
f =

(

cWO4×4
2,i+1 − sWO4×4

1,i+1

)

T 3
f

− 1
√

g2 + g′2

(

XRgXO4×4
4,i+1 + T 3H

fR
gHO4×4

3,i+1

)

. (2.13)

Here T 3
f is the SU(2)L isospin charge and Qf is the electric charge in units of eSM for the

SM fermion f where eSM is given by eq. (2.4). They are related to the U(1)Y hypercharge

by the standard formula QSM
f = T 3

f + Yf . The charges due to the new gauge symmetries

are XR as the U(1)X charge of the corresponding fR and T 3H
fR

is the SU(2)H analogous

of the SU(2)L isospin T 3 again for the corresponding fR. We simply define T 3H
fR

= ±1/2

depending on fR belongs to the upper or lower component of an SU(2)H doublet.

For the photon-fermion couplings in G2HDM, we obtain

Lγ = −eSM
∑

f

f̄γµ

(

QG2HDM
f − aγfγ5

)

Aµf , (2.14)

– 7 –
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where

QG2HDM
f =

O4×4
1,1

cW
QSM

f +
T 3
f

2

(

O4×4
2,1

sW
−

O4×4
1,1

cW

)

+
1

2eSM

(

gXO4×4
4,1 XR + gHO4×4

3,1 T 3H
fR

)

, (2.15)

aγf =
T 3
f

2

(

O4×4
2,1

sW
−

O4×4
1,1

cW

)

− 1

2eSM

(

gXXRO4×4
4,1 + gHT 3H

fR
O4×4

3,1

)

. (2.16)

Thus, with both nonzero MX and MY , the electromagnetism interaction in G2HDM is in

general different from the SM case. The standard charge assignment for every SM fermion

will suffer from an overall correction factor of O4×4
1,1 /cW plus two correction terms, and

there is also a non-vanishing axial vector coupling.

Next, we can take the limit MY = 0 and write the corresponding expressions. By

replacing the elements of O4×4 by O4×4
1,1 = O4×4

2,2 = cW and −O4×4
1,2 = O4×4

2,1 = sW as in

eq. (2.3), one can find the following new expressions for the vector and axial vector couplings

v
(i)
f(MY =0) = (T 3

f − 2Qfs
2
W )O1i +

1
√

g2 + g′2

(

XRgXO3i + T 3H
fR

gHO2i

)

, (2.17)

a
(i)
f(MY =0) = T 3

f O1i −
1

√

g2 + g′2

(

XRgXO3i + T 3H
fR

gHO2i

)

. (2.18)

Similarly, one can do the same substitutions on eqs. (2.15) and (2.16) together with O4×4
3,1 =

O4×4
4,1 = 0 and check that the photon coupling to the SM fermions goes back to the SM

expression QG2HDM
f = QSM

f = T 3
f + Yf while all the axial vector couplings aγf vanish. This

is the main physical reason why we set MY = 0 so as to reproduce the standard photon-

fermion couplings. For MX , it can be arbitrary and is naturally to consider the light and

heavy scenarios where it is smaller and greater than the Z-boson mass respectively.

Obviously, the formulas obtained in this subsection for the couplings of the neutral

gauge bosons with the SM fermions also hold for the heavy fermions in G2HDM.

3 The constraints

3.1 Constraints from precision electroweak data at LEP-I

The interaction of Z boson with SM fermions is described by the Lagrangian in eq. (2.11).

For the case of MY = 0 limit, the tree-level couplings are shown in eqs. (2.17) and (2.18).

For more precise calculation, we include the radiation corrections from propagator self-

energies and flavor specific vertex corrections to the Z boson and fermions couplings [51, 52],

which now are given by2 (suppressing MY = 0 in the subscripts)

vif =
√
ρf (T

3
f − 2κfQfs

2
W )O1i +

1
√

g2 + g′2

(

XRgXO3i + T 3H
fR

gHO2i

)

, (3.1)

aif =
√
ρf T

3
f O1i −

1
√

g2 + g′2

(

XRgXO3i + T 3H
fR

gHO2i

)

, (3.2)

2We ignore loop corrections related to the new gauge couplings gH and gX .
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where i in this work is either equal to 1 or 2 depending which mass eigenstate is closest

to Z-pole. The parameters ρf and κf are loop corrections quantities. The decay of the

Z boson into fermions and anti-fermions in the on-shell renormalization scheme is given

by [51, 53]

Γ(Z → ff̄) = N c
fΓoRf

√

1− 4µ2
f

[

|vf |2(1 + 2µ2
f ) + |af |2(1− 4µ2

f )

]

, (3.3)

where N c
f is the color factor (1 for leptons and 3 for quarks), Γo = GFM

3
Z/6

√
2π, µf =

mf/MZ and

Rf =
(

1 + δQED
f

)

(

1 +
N c

f − 1

2
δQCD
f

)

, (3.4)

with

δQED
f =

3α

4π
Q2

f , (3.5)

δQCD
f =

αs

π
+ 1.409

(

αs

π

)2

− 12.77

(

αs

π

)3

−Q2
f

ααs

4π2
. (3.6)

Here Qf is the electric charge of the fermion f in unit of eSM, and α and αs are the

fine-structure and strong coupling constants, respectively, evaluated at the MZ scale. It

is understood that the couplings vf and af in eq. (3.3) should be replaced by vif and aif
in eqs. (3.1) and (3.2) respectively with i = 1 or 2 depending which MZi

is closest to the

Z-pole MZ .

We also investigate some Z-pole (
√
s ≈ MZ) observables, including the ratio of partial

decay width of Z boson

Rl =
Γhad

Γl+l−
, Rq =

Γqq̄

Γhad
, (3.7)

the hadronic cross-section

σhad =
12πΓe+e−Γhad

M2
Z Γ2

Z

, (3.8)

the parity violation quantity

Af =
2vfaf
v2f + a2f

, (3.9)

and the forward-backward asymmetry quantity

AFB =
3

4
Af

Ae + Pe

1 + PeAe
, (3.10)

where Pe is the initial e− polarization. Recall that at LEP-I Pe = 0, in this case

A
(0,f)
FB =

3

4
AeAf . (3.11)

A summary of the electroweak observables at Z-pole from various experiments [43] is

presented in table 2.

– 9 –



J
H
E
P
0
9
(
2
0
1
9
)
0
4
8

Observables LEP Data CEPC Precision [40] Standard Model

MZ [GeV] 91.1876 ± 0.0021 5× 10−4 91.1884 ± 0.0020

ΓZ [GeV] 2.4952 ± 0.0023 5.06× 10−4 2.4942 ± 0.0008

Γhad [GeV] 1.7444 ± 0.0020 — 1.7411 ± 0.0008

Γinv [MeV] 499.0 ± 1.5 — 501.44 ± 0.04

Γl+l− [MeV] 83.984 ± 0.086 — 83.959 ± 0.008

σhad[nb] 41.541 ± 0.037 — 41.481 ± 0.008

Re 20.804 ± 0.050 — 20.737 ± 0.010

Rµ 20.785 ± 0.033 0.05% 20.737 ± 0.010

Rτ 20.764 ± 0.045 0.05% 20.782 ± 0.010

Rb 0.21629 ± 0.00066 0.08% 0.21582 ± 0.00002

Rc 0.1721 ± 0.0030 — 0.17221 ± 0.00003

A
(0,e)
FB 0.0145 ± 0.0025 — 0.01618 ± 0.00006

A
(0,µ)
FB 0.0169 ± 0.0013 — 0.01618 ± 0.00006

A
(0,τ)
FB 0.0188 ± 0.0017 — 0.01618 ± 0.00006

A
(0,b)
FB 0.0992 ± 0.0016 0.15% 0.1030 ± 0.0002

A
(0,c)
FB 0.0707 ± 0.0035 — 0.0735 ± 0.0001

A
(0,s)
FB 0.0976 ± 0.0114 — 0.1031 ± 0.0002

Ae 0.15138 ± 0.00216 — 0.1469 ± 0.0003

Aµ 0.142 ± 0.015 — 0.1469 ± 0.0003

Aτ 0.136 ± 0.015 — 0.1469 ± 0.0003

Ab 0.923 ± 0.020 — 0.9347

Ac 0.670 ± 0.027 — 0.6677 ± 0.0001

As 0.0895 ± 0.091 — 0.9356

Table 2. The electroweak observables at the Z-pole. The second, third and last column are the LEP

measurement [43], CEPC preliminary conceptual design report [40], and the SM prediction [43],

respectively.

From the data in table 2, we build the Chi-squared for the electroweak observables at

Z-pole as follows

χ2
Z−pole = χ2

MZ
+ χ2

σhad
+max

[

χ2
ΓZ

, (χ2
Γhad

+ χ2
Γinv

+ χ2
Γ
l+l−

)
]

+
∑

f=(e,µ,τ,b,c)

χ2
Rf

+
∑

f=(e,µ,τ,b,c,s)

(χ2
Af

+ χ2

A
(0,f)
FB

) . (3.12)

In principle, one has to consider the correlations between the total decay width of the Z

boson and its partial decay widths to hadrons, invisibles and dilepton pairs. However, due

to the lack of knowledge of the details of these correlations, we take the maximum χ2 here,

the third term in the right-handed side of eq. (3.12), as an approximation. For each χ2
i on

the right-handed side of eq. (3.12), it is given by the standard expression, namely

χ2
i =

(

Oexp
i −Oth

i

)2

(∆Oexp
i )

2 , (3.13)
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whereO
exp/th
i represents the experimental/theoretical value of any one of the 23 electroweak

observables listed in table 2 and ∆Oexp
i is the corresponding experimental uncertainty.

Although we do not consider the G2HDM systematic uncertainties, which should be added

in the quadrature with ∆Oexp
i , our results would not be significantly altered by their

inclusion. This is because the systematic uncertainties are much smaller when compared

with experimental uncertainties if we assume that the G2HDM has similar uncertainties

as the SM predictions given in table 2.

3.2 Contact interactions at LEP-II

We also include constraints from data above the Z-pole by considering the LEP-II mea-

surements related to contact interactions taking the following form of effective Lagrangian

Leff =
±4π

(1 + δef )(Λ
±f
αβ )

2

(

ēγµPαef̄γµPβf
)

, (3.14)

where Pα,β represent the chirality projection operators with α, β being L or R for left-

handed or right-handed fermions, respectively. The sign of eq. (3.14) depends on whether

the interference between the contact interaction it parametrizes and the SM process is

constructive (+) or destructive (−). There is a total of 6 combinations for the αβ indices

of Λ±f
αβ : αβ = {LL,LR,RL,RR, V V,AA}, which are also called models. The limits on

Λ±f
αβ set by LEP-II are given in table 3.15 of ref. [54]. The strongest constraint is given by

Λ+l
V V > 24.6TeV. By using these Λ±f

αβ values, we are able to reconstruct the cross section

for new physics processes based on the Lagrangian in eq. (3.14).

To improve the analysis of this section, in particular for the cases where the mass of

one of the gauge bosons is below the Z-pole, we calculate the additional Z-like mediator

contribution3 to the e−e+ → Zi → ff̄ scattering cross section. In the case f = e we have

the contribution of both s and t channels while for f 6= e only the s channel contributes.

Note that here we do not need the SM contributions such as the photon and Z exchange

not considered in eq. (3.14). In the massless approximation for all the external fermions,

the amplitudes for the s and t channels and for the interference term between them are

given by:

|Ms|2 =
2g4M

{[

(aif )
4 + (vif )

4
]

(

s2 + 2st+ 2t2
)

− 2(aifv
i
f )

2
(

s2 + 2st− 2t2
)

}

(

M2
Zi

− s
)2 , (3.15)

|Mt|2 =
2g4M

[

(aif )
4
(

s2 + t2
)

− 2(aifv
i
f )

2
(

s2 − 3t2
)

+ (vif )
4
(

s2 + t2
)

]

(

M2
Zi

+ s+ t
)2 , (3.16)

|Mst|2 =
4g4M t2

[

(aif )
4 + 6(aifv

i
f )

2 + (vif )
4
]

(

M2
Zi

− s
)(

M2
Zi

+ s+ t
) , (3.17)

3In what follows, we will denote the extra neutral gauge boson as Z′ or Zi depending on whether we

refer to the experimental data or G2HDM.
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where s is the center of mass energy squared, t = s(cosϕ−1)/2 and ϕ is the angle between

incoming and outgoing particles. This angle ϕ should be integrated to obtain the final cross

section. The resulting cross section has to be compared against the cross section obtained

using the effective Lagrangian in eq. (3.14) with the Λ±f
αβ given by the experimental result.

The couplings vif and aif have i = 1 or 2 depending on whether we are analyzing light

or heavy MX scenario. For i = 3, we assume MZ3 is much heavier than MZ so that its

contributions are negligible. To be able to construct a χ2 from the LEP-II 95% C.L. limit,

we calculate the corresponding 95% C.L. cross section and compare against the theoretical

result. When our theoretical result matches the 95% C.L. with null-signal assumption, the

corresponding χ2 value should be 2.71.4 In this case, we calculate the χ2 value using

χ2
LEP−II = 2.71×





σG2HDM

(

e+e− → Zi → ff̄
)

∑

σeff

(

Λ
±f(95%)
αβ

)





2

, (3.18)

where σeff is the cross section obtained using the effective Lagrangian of eq. (3.14) with the

experimental results for Λ±f
αβ given in ref. [54] for different combinations of the chirality.

The effective cross sections for different combinations of αβ = {LL,RR,LR,RL} from

the data are summed and averaged. We do not consider the combinations of VV and

AA since they are not independent from the other polarizations considered above. Note

that eq. (3.18) goes to zero when the theoretical cross section vanishes (SM limit) as one

would expect.

In the light MX scenario (see section 4.3) in which one of the new neutral gauge boson

is too light and invalidates the effective contact interaction approach, it is mandatory to

recast the LEP-II constraints for the contact interactions into the cross section level to do

the analysis. We checked that for the heavy MX scenario, using either the effective contact

interaction or cross section approach give the same results.

3.3 Drell-Yan constraints at the LHC

In this section we recap the experiments of the Drell-Yan cross section for SM Z-boson and

heavy Z ′ at the LHC.

3.3.1 Z-boson on-shell decay at the LHC

By using the measurement of the Drell-Yan cross section for the Z-boson production,

the properties of the Z are well determined at the LHC. Among all the final states of

the Z-boson decay, the dilepton signature is the most relevant to distinguish signal from

background. It is commonly believed that the Drell-Yan constraint qq̄ → Z → l+l− from

the LHC is weaker than LEP EWPT data because of the uncertainties from the hadronic

background is larger than the QED background. However, to be careful, we first check a

direct Drell-Yan constraints from the LHC [55]. The data of electron-positron pair (ee)

and muon-pair (µµ) final states are given by tables 3 and 4 respectively in ref. [55]. In the

4For a Gaussian distribution, the value of ∆χ2 = 2.71 corresponds to the 90% C.L. of a two-tailed test,

but it also equivalent to the 95% C.L. of a one-tailed test that we are using.
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(a) (b)

Figure 1. The Feynman diagrams of electroweak Drell-Yan process.

signal region located around Z-boson mass (the invariant mass 80 < mll/ GeV < 120), we

found that the systematic uncertainties of Drell-Yan background is larger than the data

statistic uncertainties in both ee or µµ final state. We have also checked that the EWPT

constraints in table 2 are much stronger than LHC Drell-Yan constraint.

On the other hand, Z-boson can be singly produced either by radiation from the

incoming partons (figure 1(a)) or t-channel exchange of a W gauge boson (figure 1(b)). To

constrain the G2HDM modified Zl+l− couplings, the later process is more useful than the

former because QCD processes usually suffer from larger systematical uncertainties than

the electroweak ones. Recently, ATLAS [56] reported a fiducial electroweak cross section

of σZjj
EW = 119 ± 16 ± 20 ± 2 fb and σZjj

EW = 34.2 ± 5.8 ± 5.5 ± 0.7 fb.5 for dijet invariant

massesmjj greater than 250 GeV and 1 TeV, respectively. The SM simulated cross sections

σZjj
EW(SM) are also given in table 5 of ref. [56], where central values and the uncertainties

are given as 125.2± 3.4 fb for mjj > 250 GeV and 38.5± 1.5 fb for mjj > 1 TeV.

Comparing with the SM, except for the Zl+l− couplings, the G2HDM did not modify

much of the cross section. Namely, the electroweak cross section of the G2HDM version

can be simply rescaled as

σZjj
EW(G2HDM) = σZjj

EW(SM)×R , (3.19)

where

R =

[CZWW
G2HDM

CZWW
SM

]2 BRG2HDM
Z→ff̄

BRSM
Z→ff̄

= O2
11

BRG2HDM
Z→ff̄

BRSM
Z→ff̄

, (3.20)

and f = e, µ. However, similar to direct Drell-Yan Z boson search, we found that the value

of R typically does not deviate substantially from unity and the power of constraining the

parameter space in G2HDM is not as strong as LEP EWPT constraints.

Finally, we have numerically verified that the allowed G2HDM parameter space is

hardly changed at all whether the direct and electroweak Drell-Yan Z boson constraints

at the LHC are included or not. Again, this is because both constraints at the LHC are

much weaker than LEP EWPT constraints. Hence, we will not take into account the LHC

Drell-Yan constraints from the on-shell Z decay in our numerical works so as to save some

computer resources.

5Here, the first value is the measured cross-section, the second is statistical uncertainty, the third is

systematic uncertainty and the fourth is luminosity determination uncertainty.
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3.3.2 LHC Z′ boson search at high-mass dilepton resonances

The Drell-Yan constraints can also be powerful for the new gauge bosons in G2HDM once

they can be singly produced [32]. Unlike the study in ref. [32] where only W
′3-like Zi

is considered, we extend it here to any Zi with all the possible composition. Recently,

ATLAS collaboration [57] reported a new result on dilepton resonances with an integrated

luminosity of 139 fb−1 and a center-of-mass energy
√
s = 13 TeV. They indicated that the

lower limit on the mass of Z ′ boson for a simplified model can be raised up to 4–5TeV.

Considering this new measurement, we update the constraints of the heavy neutral gauge

boson masses in G2HDM and the upper limits of gH and gX .

In figure 3 of ref. [57], one can see the upper limits of cross section times branching

ratio BR(Z ′ → l+l−) are based on the ratio of the total width ΓZ′ of Z ′ divided by its

mass MZ′ . Depending on this ratio, the limits can be altered by a factor of ∼ 5. As shown

in appendix B, the ΓZi
/MZi

in the G2HDM is always less than 0.06. Hence, taking a

conservative approach, we can simply apply the ATLAS result by using their upper limit

associated with ΓZ′/MZ′ = 0.06.

Furthermore, the Zi total decay width relies on whether Zi decays to the new particles

in G2HDM. The heavy new fermions in G2HDM are assumed to be very heavy so that

they do not affect the EW-scale physics in any significant way. On the other hand, the Zi

invisible decay to a scalar DM pair can be a more important channel because the upper

limits of various parameters can be weaker than the one without taking into account the

Zi decays to the DM pair. The openings of the scalar channels as well as other channels

with one vector and one scalar particles in the final states of Zi decay makes the parameter

spaces of the gauge and scalar sectors entangle with each other. Thus a complete analysis

becomes quite formidable. In eq. (B.4), one can see that the invisible decay width of Zi

has two different limits, MD ≪ MZi
for maximum invisible decay and MD > MZi

for

zero invisible decay. For the sake of simplicity, we will be contented by presenting the

results based on these two benchmark invisible decay widths. In this study, we adopt

MD = MZi
/10 for maximum invisible decay but we found that the Γ(Zi → DD∗) can

differ within an accepted range of ∼ 6% comparing with the massless MD case.

To calculate the Zi decay widths we set the dark matter mass MD to be 10% of

the new heavy neutral gauge boson Zi (i.e. MD = 0.1 × MZ2 for MX > 100GeV, while

MD = 0.1×MZ3 for MX < 80GeV), the charged Higgs mass MH± is taken equal to 1.5TeV

and the mass of W ′(p,m) is randomly chosen in the range of [MD, 200TeV]. Moreover, we

assume that the masses of new heavy fermions are degenerate and equal to 3TeV. Note that

v∆ can be derived from other parameters according to v∆ = 0.5
√

−(v2 + v2Φ) + 4M2
W ′/g2H .

More details about the Zi total decay widths are given in appendix B.

Using MadGraph5 [58], we compute the cross section σ(pp → Zi). Since we enforce that

the cross section is computed at the resonance, we only used a minimum cut given by the

default parameter card in MadGraph5. It is very CPU time consuming to estimate the cross

section point by point throughout all the parameter space. Nevertheless, the cross section

can be obtained by simply rescaling the vector and axial vector couplings vif and aif using

eqs. (2.17) and (2.18). Hence, by using the same reasoning as before we include the latest
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ATLAS Z ′ limit in our scan by using the following chi-squared function

χ2
ATLAS = 2.71×

[

σG2HDM(pp → Zi)× BRG2HDM(Zi → l+l−)

σ95%
ATLAS(pp → Z ′)× BR95%

ATLAS(Z
′ → l+l−)

]2

, (3.21)

where the branching ratio BRG2HDM(Zi → l+l−) can be found in appendix B and

σ95%
ATLAS(pp → Z ′) × BR95%

ATLAS(Z
′ → l+l−) is 95% C.L. taken from the curve associated

with ΓZ′/MZ′ = 0.06 in figure 3 of ref. [57].

4 Results

4.1 Numerical methodology

Our aim is to determine the 68% and 95% allowed parameter space of the G2HDM which

are favored by all of the experimental data presented in the previous section. In this paper,

we will use the profile-likelihood (PL) method to perform the statistical data analysis. We

recap the PL method in the following. Briefly, the PL method is a well popular statistical

method to deal with the multi-dimensional parameter space which treats the unwanted

parameters as nuisance parameters. In other words, if a proposed model has n-dimensional

parameter space and we are only interested in p of those dimensions, then the PL method

can remove the unwanted n− p dimensions which we are not interested in by maximizing

the likelihood over them.

There are 4 new parameters in the gauge sector of G2HDM. They are the two new

gauge couplings gH and gX and the two new scales vΦ and MX . Our results will be

presented in two-dimensional parameter regions with 68% and 95% confidence levels (C.L.).

Take the plane (gH , gX) as an example. After marginalizing over the other two parameters

vΦ and MX , an integral of the likelihood function L(gH , gX) can be written as
∫

C
L(gH , gX)dgHdgX

normalization
= ̺ , (4.1)

where C is the smallest area bound with a fraction ̺ of the total probability and the

normalization in the denominator is the total probability with C → ∞. For example, in

95% confidence level, ̺ equals to 0.95 and C is the area within the 95% contour.

The total χ2
Total(gH , gX , vΦ,MX) we will use in our analysis is the sum of

eqs. (3.12), (3.18), and (3.21), namely

χ2
Total = χ2

Z−pole + χ2
LEP−II + χ2

ATLAS , (4.2)

where we have suppressed the arguments of all the χ2 functions. We assess the statistical

sensitivity as

∆χ2 = χ2
Total −min (χ2

Total) . (4.3)

Since our likelihood is modeled as a pure Gaussian distribution, i.e. L ∝ exp(−χ2/2), one

can connect the χ2 to the confidence level: the 68% (95%) C.L. in a two dimensional

parameter space corresponding to ∆χ2 = −2 ln(L/Lmax) = 2.30 (5.99) by using Gaussian

likelihoods. Here Lmax is the maximum value of the likelihood in the region C.
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There are two interesting scenarios: (i) heavy MX and (ii) light MX . The heavy MX

scenario will result in two new heavy neutral gauge bosons Z2 ≡ Z ′ and Z3 ≡ Z ′′, and the

measured boson located at Z-pole will be the lightest one, Z1 ≡ Z. However, the light

MX scenario will result in a new boson Z1 lighter than the Z-pole which is usually called

dark Z (ZD) or dark photon (γD). In this case, Z2 corresponds to the Z-pole Z2 ≡ Z and

Z3 ≡ Z ′. Hence, we choose our MX scan ranges for two scenarios,

MX

TeV
:







[0.1 : 10] (heavy MX)

[

10−6 : 0.08
]

(light MX)
. (4.4)

For the other three parameters, we use the same ranges for the two scenarios of MX ,6

10−8 ≤ gH ≤ gSM =
eSM

sin θW
= 0.65 ,

10−8 ≤ gX ≤ g′SM =
eSM

cos θW
= 0.35 , (4.5)

5 TeV ≤ vΦ ≤ 200 TeV .

Here, we restrict a vΦ upper limit by assuming that new heavy fermions with

mass of O(100TeV) could be found inside the future 100TeV collider with Yukawa

couplings ∼ O(1).

We perform random scans by using MultiNest v2.17 [59] with 30000 living points, an

enlargement factor reduction parameter 0.5 and a stop tolerance factor 10−3 . For sampling

coverage, we combined several scans and finally obtained ∼ 105 samples for each scenario.

4.2 Heavy MX scenario

In the heavy MX scenario, the mass of Z1 boson is located at around Z-pole (∼ 91 GeV) so

that Z1 is identified as the SM Z-boson. Note that Z1(Z) boson physics is strongly affected

by the different composition of Z2 (Z ′) but not the heaviest boson Z3 (Z ′′) because Z3 is

heavier than Z2 in our parameter choices and therefore has less impact.

In figure 2, we present the scatter points of the composition of Z2 = O12Z
SM+O22W

′3+

O32X for the 1σ region based on the likelihoods described in section 4.1. The color code

hereafter represents the three different composition of Z2. Recalling eq. (2.10), we define

W ′3-like Z2 with condition O2
22 > 0.8 (red crosses ×), mixed state Z2 with 0.2 < O2

22 < 0.8

(blue triangles ▽), and X-like Z2 with condition O2
22 < 0.2 (green circles ◦).

The 1σ allowed scatter points projected on the (MZ2 , O
2
22) and (MZ2 , O

2
12) planes

are depicted in figures 2(a) and 2(b), respectively. From the density of distribution in

figure 2(a), we can clearly see that the mixed state Z2 (blue triangles) is less evenly dis-

tributed because it needs some trade-off between the two new gauge couplings gH and gX .

In figure 2(b), we projected the same parameter space on the plane (MZ2 , O2
12). Note that

the mixing O2
12 presents how Z2 is consisted of ZSM. Therefore, very small O2

12 implies

6There is also the possibility of both MX and vΦ are light, which may lead to Z3 = Z and both Z1 and

Z2 are lighter than Z. We will reserve this interesting scenario in future work.
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(a) (b)

Figure 2. Scatter plots in 1σ on (a) (MZ2
, O2

22) plane and (b) (MZ2
, O2

12) plane for the heavy MX

scenario. The red cross region with O2
22 between 0.8 and 1.0 represents the points of W ′3-like Z2

boson; the blue triangle region with O2
22 between 0.2 and 0.8 represents the points mixed with W ′3,

and the green circle region with O2
22 between 0.0 and 0.2 represents the points of X-like Z2 boson.

(a) (b)

Figure 3. Scatter plots in 1σ on (a) (MZ2
, gH) plane and (b) (MZ2

, vΦ) plane for the heavy MX

scenario. The color code is the same as figure 2. The 1σ and 2σ contours of the profile likelihood

are also shown.

O2
32 ≈ (1−O2

22) from the orthogonality of O. Furthermore, the upper limit of vΦ sets an

lower limit of the O2
12 for the red cross region. If vΦ goes to infinity, Z2 becomes super heavy

and decouple. The composition of ZSM in Z2 should then be negligible, thus O2
12 vanishes

in this limit. We note that the excluded concave up region of MZ2 between 250GeV and

6TeV on the upper limit of O2
12 is due to the constraint from ATLAS Z ′ search.
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In figure 3, we show the 1σ (dashed) and 2σ (solid) likelihood contours with scatter

points inside the 1σ region on the (a) (MZ2 , gH) and (b) (MZ2 , vΦ) planes. In figure 3(a),

we can see that the W ′3-like red crosses form a band with a tendency proportional to

gH . This is because for a W ′3-like Z2, m
2
Z2

≈ g2H(v2 + v2Φ)/4 ≈ g2Hv2Φ/4 which can be

extracted from the (3,3) element of the mass matrix in eq. (2.5). We can also see that at

the lower bound of this band, the 95% and 68% C.L. contours are overlapped because this

lower bound is due to our choice of vΦ < 200 TeV in its upper scan range, not from the

likelihood results. This implies that in the upper edge of this red band where gH has larger

value, the value of vΦ there is smaller. Therefore, the upper bound of this red cross band

corresponds to the lower values of vΦ, which can be excluded by the χ2 tolerance as we can

see in figure 3(b) where the scatter plot is projected on the (MZ2 , vΦ) plane. Surprisingly,

in figure 3(a), the blue triangle band, corresponding to mixing mostly between W ′3 and X

bosons, matches the red cross band. This can be understood as the mass of Z2 is dominated

by the (3,3) element of eq. (2.5) even for an 80% X boson composition. In the same figure,

we can see the green circles running from below the two red cross and blue triangle bands

up to the upper limit of gH . In other words, we can see how the MZ2 passes from being

dominated by the (3,3) element of eq. (2.5) (red crosses), which is gH -dependent, to being

dominated by the gH -independent (4,4) element (green circles).

One particular feature of figure 3(b) is that the low MZ2 and low vΦ region (lower

left corner) is covered only with X-like points while both W ′3-like and mixed points only

approach this corner down to a curved bound. This curved section in the lower bound

can be related to the curved upper bound for W ′3 and mixed points in figure 3(a) for low

MZ2 < 200GeV and gH . 10−2. These curves in the upper bound (figure 3(a)) and in

the lower bound (figure 3(b)) can be understood as smaller vΦ requiring larger gH to pass

EWPT. In particular, if gH is small, vΦ has to be large in order to have a sizable diagonal

(3,3) element in the mass matrix in eq. (2.5), while the off-diagonal (2,3) and (3,2) elements

remain small. However, the mixing effects from the off-diagonal elements are not negligible

and expected to be stronger when the Z2 mass is getting closer to the ZSM mass. This

gives rise to the upper and lower bounds that we see in figures 3(a) and 3(b), respectively,

for the W ′3-like points. Such behaviour is not displayed for the X-like points since they

do not depend strongly on gH .

The ATLAS Z ′ constraint almost rules out the region 250 GeV < MZ2 < 6 TeV for

W ′3-like and mixed Z2, except the region with vΦ > 100 TeV. However, the X-like Z2 at

the same region has not been affected much by the ATLAS Z ′ constraint.

Similarly, in figure 4, we show the 1σ (dashed) and 2σ (solid) likelihood contours

with scatter points inside the 1σ region on the (a) (MZ3 , gH) and (b) (MZ3 , gX) planes.

From figure 4(a), one can easily see that the X-like Z2 boson (green circles) forms a band

whose tendency is proportional to the gH . This can be understood by the fact that the

composition of the Z3 in this case is mainly from W ′3, which has a mass proportional to

0.5 gH

√

v2 + v2Φ ≈ 0.5 gHvΦ again coming from the (3,3) element of the mass matrix in

eq. (2.5). On the other hand, in the case of the W ′3-like Z2 boson (red crosses), the mass

of the Z3 almost does not depend on gH . Indeed, the composition of Z3 is now mainly

from X and M2
Z3

≈ (g2X(v2 + v2Φ) + M2
X). This is clearly shown in figure 4(b), when gX
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(a) (b)

Figure 4. Scatter plots in 1σ on (a) (MZ3
, gH) plane and (b) (MZ3

, gX) plane for the heavy MX

scenario. The color code is the same as figure 2. The 1σ and 2σ contours of the profile likelihood

are also shown.

is small (gX < 3 × 10−3), the mass of Z3 in the red cross region is dominated by MX

and less than our set-up limit of 104GeV. However, when gX is getting bigger, the mass

of the Z3 can be dominated by the gXvΦ term for sufficiently large value of vΦ. We can

also see that the EWPT data sets upper bounds on gH and gX . The excluded concave up

region of 250 GeV < MZ2 < 6 TeV in figure 4(a) for the W ′3-like and mixed composition

of Z2 is again due to the ATLAS Z ′ search which does not apply for the X-like case. As a

result, the ATLAS Z ′ search cannot constrain on gX for W ′3-like points as clearly shown

in figure 4(b).

4.3 Light MX scenario

In the light MX scenario, we require that the mass of Z2 boson is always at around Z-pole

(∼ 91 GeV). In this scenario, the lightest Z1 with mass less than the Z-boson mass can

be the dark photon or dark Z, while the conventional Z ′ is the heaviest boson Z3. We

note that the composition of Z3 is given by Z3 = O13Z
SM + O23W

′3 + O33X. The 1σ

allowed scatter points projected on the (MZ3 , O
2
23) and (MZ3 , O

2
13) planes are depicted in

figures 5(a) and 5(b), respectively. The color code for the composition of Z3 is the same

as in figure 2 for Z2.

An obvious feature of figure 5(a) is that the mixed state of Z3 (blue triangles) has a

mass upper limit. Intuitively, it requires some trade-off between the gauge couplings gH
and gX which results in MZ3 . 500 GeV. This effect will be discussed with more detail

later in figure 6. In figure 5(b), we can see that the ZSM composition of Z3 is again small.

However, unlike the heavy MX scenario, the X-like Z3 boson has a similar distribution as

W ′3-like Z3 boson. Additionally, the mixed Z3 state at the mass region between 210 GeV
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(a) (b)

Figure 5. Scatter plots in 1σ region on (a) (MZ3
, O2

23) plane and (b) (MZ3
, O2

13) plane for the

light MX scenario. The red cross represents the points of W ′3-like Z3 boson, the blue triangle

represents the points mixed states (ZSM, W ′3 and X) Z3 boson, and the green circles represents

X-like Z3 boson.

(a) (b)

Figure 6. Scatter plots in 1σ on (a) (gH MZ3
) plane and (b) (vΦ, MZ3

) plane for the light MX

scenario. The markers are the same as figure 5. The 1σ and 2σ contours of the profile likelihood

are also shown.

and 700 GeV cannot be excluded by the ATLAS Z ′ constraint which is also different from

the heavy MX scenario.

In analogous to figure 3, we show in figure 6 the 1σ (dashed) and 2σ (solid) likelihood

contours with scatter points in the 1σ region on the (a) (MZ3 , gH) and (b) (MZ3 , vΦ)

planes. Comparing figures 3(a) and 6(a), we have a clear separation between the W ′3-like

(red crosses) and X-like (green circles) regions in this light MX scenario. As before, the
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(a) (b)

Figure 7. Scatter plots in 1σ on (a) (gH MZ1
) plane and (b) (gX , MZ1

) plane for the light MX

scenario. The markers are the same as figure 5. The 1σ and 2σ contours of the profile likelihood

are also shown.

W ′3-like red crosses follow a tendency proportional to gH again because of the dominance of

the (3,3) element of eq. (2.5) in MZ3 , i.e., MZ3 ≈ gHvΦ/2. Other features shared between

W ′3-like points in figures 3(a) and 6(a) are the distribution of vΦ values; the gH lower

bound owes to vΦ upper bound but its upper bound owes to χ2 tolerance. As expected, the

ATLAS Z ′ search can constrain gH and vΦ at the mass region 250 GeV < MZ2 < 6 TeV.

However, the gauge coupling for X-like Z3 is proportional to gX not gH so that the ATLAS

Z ′ search cannot constrain on gH at the X-like region, indicated by green circles. The X-

like region in figure 6(a) has a gH upper bound around 10−2 given by the χ2 of the mass

of the Z boson. In this case (light MX) the X-like region requires gX to be larger to

compensate the smallness of MX . This reduces the upper bound of gH in said region since

its contributions affect the mass of the Z, mZ , together with corrections from larger gX .

The mass of Z3, MZ3 , in this X-like green region can be approximated by
√

g2Xv2Φ +M2
X ,

this is why there is not a clear gH dependence as in the W ′3-like points. In figure 6(a), as

one would expect, the mixed region corresponds approximately to the intersection between

X-like and W ′3-like regions, extending lightly into their exclusive regions. This means

that the upper and lower bound of the mixed region are approximately given by the upper

bound of the X-like region and the lower bound of the W ′3-region, respectively. If we

increase our maximum vΦ value, the lower bound of the W ′3-like region would reach lower

gH and the maximum MZ3 for the mixed region would be increased. This is more clear

after looking at figure 6(b) where the maximum MZ3 value for the three regions grows with

the value of vΦ.

Similarly, in figure 7, we show the 1σ (dashed) and 2σ (solid) likelihood contours with

scatter points in the 1σ region on the (a) (MZ1 , gH) plane and (b) (MZ1 , gX) planes. Again,

the red cross represents the points of W ′3-like Z3 boson, the blue triangle represents the

points of mixed state (ZSM, W ′3 and X) Z3 boson, and the green circle represents X-like
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Z3 boson. We note that in this scenario, Z1 is considered as a dark photon7 and has

mass range from 1MeV to Z-pole. One can easily see that the Z3 composition is clearly

separated on the planes of (MZ1 , gH) and (MZ1 , gX). In particular, while the W ′3-like Z3

boson parameter space is distributed in the region of larger gH and smaller gX , the X-like

Z3 boson, in contrast, prefers to be in the region of smaller gH and larger gX . The mixed

composition of Z3 lies in the range of 7×10−4 < gH < 5×10−3 and 4×10−4 < gX < 3×10−3.

For the X-like Z3 boson region in figure 7(a), there is a lower bound for gH due to our

choice of 200TeV as the upper bound for vΦ. Moreover, in figure 7(b), one can also see

that the χ2 tolerance sets an upper limit on gX as the Z1 boson mass gets heavier.

Finally, we would like to emphasize that the contact interaction exclusion regions

at MZ1 < 200 MeV and 10−4 < gX , gH < 10−3 are owing to two different coupling

components, gHO2i and gXO3i in eqs. (2.17) and (2.18).

4.4 Future prospects

Since current LEP together with other constraints already put a severe limit on the param-

eter space, it will be interesting to see whether the future Z-boson precision experiments

can further probe our model. In the near future, there are three colliders that can improve

Z-boson measurements: CEPC [40], ILC [60], and FCC-ee [61]. Among them, CEPC is

the one that could give the most sensitive limit. Therefore, in this subsection, we make an

estimation of our parameter space with the projected CEPC sensitivity.

In the third column of table 2, we quote the expected CEPC sensitivity [40]. Appar-

ently, some of the error bars are expected to be significantly reduced. Note that the CEPC

preliminary conceptual design report does not provide a full list as the LEP measurements

showed in the 2nd column. Therefore, for those missing rows, we reuse the data from the

2nd column (LEP data).

To start with, we present the ∆χ2 in terms of vΦ in figure 8 for heavy (left) and light

(right) MX scenarios. Importantly, vΦ is the most sensitive parameter in the G2HDM,

determining the theory scale. For the heavy MX scenario, in the present sensitivity case

the 2σ lower bound is around 24 TeV, while in the CEPC case it is around 44TeV. For the

light MX scenario, the 2σ current and CEPC lower limit of vΦ is smaller than the heavier

MX scenario. In particular, vΦ > 15 TeV (36 TeV) at 95% C.L. from current experiments

(CEPC). The difference between these two scenarios is owing to the different sources of

constraints on vΦ. For the heavy MX scenario, the EWPT constraints of the SM Z boson

play an important role in raising the lower limit of vΦ. However, for the light MX scenario,

the main constraint to exclude the lower vΦ region is from Z ′ searches. This also explains

why the future sensitivity does not further push vΦ in the light MX scenario to larger values

as the heavy MX scenario does because the future sensitivities of contact interactions are

not available for CEPC and only the previous limits from LEP II are used.

In figure 9, we compare the present limit and future CEPC sensitivity of the two-

dimensional contours on the (gH , gX) plane. The figure in the left (right) column corre-

sponds to the heavy (light) MX scenario. Because the upper scan limit of gH is set to be

7The lightest boson Z1 can be tested in the dark photon experiments but it is beyond the scope of this

work. We will return to this in the future.
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Figure 8. The ∆χ2 as function of vΦ. The red solid line and blue dashed line are based on present

constraint and future CEPC sensitivity. The left and right panels are corresponding to heavy and

light MX scenarios, respectively.

less than gSM2 , the experimental constraints on gH are not present. In contrast, gX has an

upper limit from the constraints due to gH having a lower limit from the maximum scanned

vΦ value. The upper limit of gH can be further improved by future CEPC sensitivity along

the edge of the contour. However, the light MX scenario is mildly constrained by future

CEPC sensitivity. The two contour plots in figure 9 can be further understood as follows.

We note that, for the case of W ′3-like Z2 in heavy MX scenario (left panel) or W ′3-like Z3

in light MX scenario (right panel), gH has a lower limit at ∼ 2 × 10−3 due to our choices

of the parameter scan ranges. Indeed, in both cases we have MZ2,3 ≈ 0.5gH

√

v2 + v2Φ

which implies that gH ≈ (2MZ2,3)/
√

v2 + v2Φ. Since we require MZ2,3 > 210GeV and

vΦ < 200TeV, this implies gH > 2× 10−3. Similarly, for the case of X-like Z3 in the light

MX scenario (upper right panel), the mass of Z3, is given by MZ3 ≈
√

g2X(v2 + v2Φ) +M2
X

so that we can obtain gX ≈
√

M2
Z3

−M2
X/

√

v2 + v2Φ. This yields a lower limit for gX at

∼ 10−3 when we require MZ3 > 210GeV, MX < 80GeV and vΦ < 200TeV. On the other

hand, gX has no lower limit in the heavy MX scenario (left panel).

The Stueckelberg mass parameter MX is a filter to split the parameter space into two

scenarios but we have not been able to constrain this parameter. The reason is simply

that Z3 in the heavy MX scenario is too heavy to be relevant by current experiments. On

the other hand, in the light MX scenario with MX < 80 GeV, it is again too light to be

presented in the EWPT data. To constrain light MX , just like dark photon, the lightest

Z1 could be detected by those future beam dump experiments such as NA62 [62], Belle

II [63], and SHiP [64]. However, this is beyond the scope of this work and we will return

to it in the future.
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Figure 9. The present and future sensitivity allowed regions projected on the (gH , gX) plane in

both heavy (left) and light (right) MX scenarios. The red solid line is for the present 95% limit

while the blue dashed line is for the CEPC future sensitivity. Scatter points in 1σ region of the

present constraint are also shown. The color codes in the left and right panel are same as in figures 2

and figure 5, respectively.

5 Summary and conclusion

In this paper, we perform an updated profile likelihood analysis for the gauge sector of

G2HDM.

For the two Stueckelberg mass parameters MY and MX associated with the hyper-

charge U(1)Y and the extra U(1)X respectively, we showed that a nonzero MY would

produce non-standard QED couplings for all the fermions in G2HDM, albeit we can al-

ways achieve a massless photon for arbitrary values of MX and MY . We therefore set

MY = 0 in our numerical analysis. The remaining new parameters in the gauge sector of

G2HDM needed to be constrained are gH , gX , vΦ and MX .

We have examined the remaining parameter space with the EWPT LEP data at the

Z-pole, contact interaction constraints from LEP-II and LHC Run II data for the search of

high-mass dilepton resonances. The contact interactions constraints can definitely provide

a lower limit on vΦ, but the EWPT data play a significant role to constrain the parameter

space non-trivially. While the LHC search for the high-mass dilepton resonances also

impose important constraints on the parameter space, the Drell-Yan data from the Z

decay does not impose noticeable impacts yet.

We classify our parameter space based on three different composition (X-like, W ′3-like,

and mixed) of the heavy neutral gauge boson, either Z2 or Z3, which is the next-heavier

Z boson than the SM one, in order to manifest the physics and constraints discussed in

this paper.

In the heavy MX scenario (MX > 100 GeV), the SM-like Z is the lightest Z1 boson and

EWPT constraints exclude the small vΦ region up to 24 TeV at 2σ significance. However,
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the EWPT constraints are not so sensitive to the light MX scenario (MX < 80 GeV)

where SM-like Z is the next-lightest Z2 boson. In particular, the vΦ is required to be

greater than 15 TeV due to the constraints of Z ′ contact interaction search from LEP-II

and high-mass dilepton resonance search from LHC Run II. Furthermore, in both light

and heavy MX scenarios, MX is just a parameter to tweak between two scenarios and it

is totally unbounded in this study. It is likely that the future dark photon searches might

set a limit on the MX in the light MX scenario. On the other hand, it is not so trivial

for the couplings gX and gH because we found it is hard to set an upper bound on them

individually.

Although the SM Z boson is fixed at the Z-pole, the allowed physical masses of the

heavier Zi still depend on the MX and detailed composition. Generally speaking, the Z2

allowed mass range in the heavy MX scenario is same as the range of MX but Z3 mass

can reach up to 70 TeV for X-like composition and 40 TeV for both W ′3-like and mixed

composition. Like the role of MX in the heavy scenario, the MZ1 in the light MX scenario is

dominated by MX and the allowed mass ranges of MZ1 have no difference between different

composition. However, regarding to MZ3 , mixed Z3 is restricted to less than 500 GeV but

the masses of X-like and W ′3-like Z3 are below 70 TeV.

Finally, we also discuss the future sensitivity of the new parameters at the CEPC.

We found that the CEPC can significantly probe the parameter space of the heavy MX

scenario but the sensitivity is not improved much for the light MX scenario. In the latter

case, whenMX is getting very light, Z1 can be much lighter than the Z-boson and it is more

appropriate to identify it as the dark photon or dark ZD. The very rich phenomenology of

light dark photon or dark ZD in G2HDM remains to be explored in the future.
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A The rotation angles φ, θ and ψ

In this appendix, we will show how to obtain the equations of the rotation angles such

as eqs. (2.7), (2.8) and (2.9) from the orthogonal matrix which diagonalizes the mass

matrix M2
gauge(MY = 0) given in eq. (2.5). The orthogonal matrix we choose is eq. (2.6)

because it is rather convenient to find all the Oijs and determine the rotational angles φ,

θ and ψ numerically. However, the computation of the angles in terms of the fundamental

parameters in the Lagrangian are difficult to organize into nice forms using eq. (2.6) for O,

so we apply Cramer’s rule for solving the secular equations and get another form for O as
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follows

O =







|x1|/∆1 x2/∆2 x3/∆3

y1/∆1 |y2|/∆2 y3/∆3

z1/∆1 z2/∆2 |z3|/∆3






, (A.1)

where

∆i =
√

x2i + y2i + z2i , (A.2)

and

x1 =

∣

∣

∣

∣

∣

M2
22 −M2

Z1
M2

23

M2
32 M2

33 −M2
Z1

∣

∣

∣

∣

∣

, y1 = sx1

∣

∣

∣

∣

∣

M2
23 M2

21

M2
33 −M2

Z1
M2

31

∣

∣

∣

∣

∣

, z1 = sx1

∣

∣

∣

∣

∣

M2
21 M2

22 −M2
Z1

M2
31 M2

32

∣

∣

∣

∣

∣

,

x2 = sy2

∣

∣

∣

∣

∣

M2
13 M2

12

M2
33 −M2

Z2
M2

32

∣

∣

∣

∣

∣

, y2 =

∣

∣

∣

∣

∣

M2
11 −M2

Z2
M2

13

M2
31 M2

33 −M2
Z2

∣

∣

∣

∣

∣

, z2 = sy2

∣

∣

∣

∣

∣

M2
12 M2

11 −M2
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31
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∣
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∣

∣

∣

∣
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23
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∣

∣

∣
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∣

∣

∣
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21

∣

∣

∣

∣
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, z3 =

∣

∣

∣

∣

∣
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Z3
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12

M2
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22 −M2
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∣

∣

∣

∣

∣

,

(A.3)

with M2
ij stands for the element of M2

gauge(MY = 0), M2
Zi
(i = 1, 2, 3) are the mass eigen-

values and sxi
= sign(xi). From eq. (2.6), one can obtain the following relations for the

rotational angles φ, θ and ψ,8

φ = arctan

(−O12

O22

)

, θ = arctan

(−O32

O12
sinφ

)

, ψ = arccot

(−O21

O31

cos θ

sinφ
− sin θ cotφ

)

,

(A.4)

with the range for θ covers π radians, and the range for φ and ψ covers 2π radians. Note

that the expressions in eq. (A.4) do not depend on the ∆i given in eq. (A.2). Using

eqs. (A.1) and (A.3) for the various Oij in eq. (A.4), after some algebra, one can obtain

eqs. (2.7), (2.8) and (2.9), which are collected here again for convenience.

tan(φ) =
−gHvMZSM(M2

X −M2
Z2

+ 2g2Xv2Φ)

2
(

M4
Z2

−
(

M2
ZSM +M2

X + (v2 + v2Φ)g
2
X

)

M2
Z2

+M2
ZSM(M

2
X + g2Xv2Φ)

) , (A.5)

tan(θ) =
−gX(M2

Z2
(v2 − v2Φ) +M2

ZSMv
2
Φ)

vMZSM(M2
X −M2

Z2
+ 2g2Xv2Φ)

sinφ , (A.6)

cot(ψ) =
gH(M2

Z1
−M2

X − 2g2Xv2Φ)

gX(g2Hv2Φ − 2M2
Z1
)

cos θ

sinφ
− sin θ cotφ . (A.7)

Thus one can compute the rotation angles in terms of the fundamental parameters of the

model which can provide some useful insights in the vanishing limits of gH and gX as

discussed in section 2.2.

8We note that similar approach had been used in [65] for the scalar boson mass matrix in MSSM with

explicit CP violation.
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B Decay widths of new neutral gauge bosons

In this subsection, we show the decay widths of the two new neutral gauge bosons Zi. We

note that for light MX scenario, i = (1, 3), while for heavy MX scenario, i = (2, 3). We

will define more precisely the heavy and light MX scenarios in section 4.

• The decay width of Zi to a pair of fermions (including both SM and new heavy

fermions) is given as follows

Γ(Zi → ff̄) =
N c

fg
2
MMZi

12π

√

1− 4rif

(

(2rif + 1)|v(i)f |2 + (1− 4rif )|a(i)f |2
)

, (B.1)

where gM =
√

g2 + g′2/2, N c
f is the number of color for fermion f , the coefficients

v
(i)
f and a

(i)
f are the couplings that appear in eqs. (2.17) and (2.18) and rif =

m2
f

M2
Zi

.

• The decay width for Zi → W+W− process is given by [66]

Γ(Zi → W+W−) =
g2ZiWWMZi

192πr2iW
(1− 4riW )3/2

(

1 + 20riW + 12r2iW

)

, (B.2)

where riW =
M2

W

M2
Zi

and the coupling gZiWW = gcWO1i .

• Similarly, one can obtain the decay width for Zi → W ′pW ′m process as

Γ(Zi → W ′pW ′m) =
g2ZiW ′W ′MZi

192πr2iW ′

(1− 4riW ′)3/2
(

1 + 20riW ′ + 12r2iW ′

)

, (B.3)

where riW ′ =
M2

W ′

M2
Zi

and the coupling gZiW ′W ′ = gH O2i .

• The new neutral gauge boson Zi can also decay into pair of scalar dark matter

candidate in this model. The decay width for this process Zi → DD∗ is given by [66]

Γ(Zi → DD∗) =
g2ZiDDMZi

48π
(1− 4riD)

3/2 , (B.4)

where the coupling gZiDD = gHO2i and riD =
M2

D

M2
Zi

. We note that D is a triplet-like

scalar dark matter in this model and we assumed this dark matter doesn’t mix with

other scalars in this calculation.

• The decay width for Zi → H+H− is given by

Γ(Zi → H+H−) =
g2ZiH+H−MZi

48π
(1− 4riH±)3/2 , (B.5)

where riH± =
M2

H±

M2
Zi

and the coupling gZiH+H− is given as follows

gZiH+H− =
1

2
(cW g − sW g′)O1i −

1

2
gHO2i + gXO3i . (B.6)
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(a) (b)

Figure 10. Heavy MX scenario: scatter plots in 1σ region on the (a) (ΓZ2
/MZ2

, MZ2
) and (b)

(ΓZ3
/MZ3

, MZ3
) planes. The markers are the same as figure 2.

• The decay width for Zi → ZjH is given by [66]

Γ(Zi → ZjH) =
g2ZiZjH

MZi

192πM2
Zj

(

1 + (rij − riH)2 − 2(rij + riH)
)1/2

×
(

1 + (rij − riH)2 + 10rij − 2riH

)

, (B.7)

where riH =
M2

H

M2
Zi

, rij =
M2

Zj

M2
Zi

and the coupling gZiZjH is given as follows

gZiZjH =
v

2

(

(cW g + sW g′)O1j − gHO2j − 2gXO3j

)

×
(

(cW g + sW g′)O1i − gHO2i − 2gXO3i

)

, (B.8)

here v is the VEV of the SM Higgs field. Note that we have ignored the mixing of

SM like-Higgs H with other scalar bosons in the above calculations.

• Finally, if not kinematically prohibited, the new neutral gauge bosons can also decay

into W ′ and the dark matter D. The decay width for this process can be computed as

Γ(Zi → W ′pD∗/W ′mD) =
g2ZiW ′DMZi

192πM2
W ′

(

1 + (riW ′ − riD)
2 − 2(riW ′ + riD)

)1/2

×
(

1 + (riW ′ − riD)
2 + 10riW ′ − 2riD

)

, (B.9)

where the coupling gZiW ′D = g2HO2iv∆ with v∆ being the VEV of SU(2)H triplet

Higgs.
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(a) (b)

Figure 11. Light MX scenario: scatter plots in 1σ on the (a) (ΓZ3
/MZ3

, MZ3
) and (b) (ΓZ1

/MZ1
,

MZ1
) planes. The markers are the same as figure 5.

In figures 10 and 11, we show the scatter plots of the ratio of decay width over mass of

the two new gauge bosons in the heavy MX and light MX scenarios respectively. In those

plots, we set the dark matter mass MD to be 10% of the new heavy neutral gauge boson Zi

(i.e. MD = 0.1×MZ2 in the case of heavy MX scenario, while MD = 0.1×MZ3 in the case

of light MX scenario), the charged Higgs mass MH± is taken equal to 1.5TeV and the mass

of W ′(p,m) is randomly chosen in the range of [MD, 200TeV]. Moreover, we assume that

the masses of new heavy fermions are degenerate and equal to 3TeV. We note that v∆ can

be derived from other parameters according to v∆ = 0.5
√

−(v2 + v2Φ) + 4M2
W ′/g2H . From

these scatter plots one can see that for the heavy neutral gauge bosons in both scenarios,

their ratios ΓZi
/MZi

are all below ∼ 1%, until they are heavier than 10TeV the ratios

can then reach ∼ 6%. However for the light Z1 in the light MX scenario, ΓZ1/MZ1 is well

below 10−4.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
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