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1 Introduction

The discovery of the Higgs boson [1, 2] jumpstarted the comprehensive program of precision

measurements of all Higgs couplings. While the Higgs boson couplings to fermions and

gauge bosons are in good agreement with the Standard Model (SM) predictions [3], the

Higgs self-couplings are difficult to measure experimentally [4–12]. Yet, the knowledge of

those couplings is crucial for understanding the exact mechanism of electroweak symmetry

breaking and the origin of mass in our universe. It is also a guaranteed physics target

which can be probed at the upgraded Large Hadron Collider (LHC) or at future colliders.

The resulting experimental constraints on the Higgs self-couplings will have an immediate

and long-lasting impact on model-building efforts beyond the SM.

We parameterize the Higgs self-interaction as follows:

V =
m2
h

2
h2 + κ3λ

SM
3 vh3 +

1

4
κ4λ

SM
4 h4 , (1.1)

where mh is the mass of the SM Higgs boson (h), v ≈ 256 GeV is the Higgs vacuum

expectation value,

λSM
3 = λSM

4 =
m2
h

2v2

are the SM values for the Higgs self-couplings, while κ3 and κ4 parametrize the correspond-

ing deviations from them. In order to access κ3 (κ4), one has to measure the process of
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double (triple) Higgs boson production at the LHC, possibly with high luminosity (HL),

or at future colliders.

Double Higgs (hh) production has been studied in many channels, including

bb̄bb̄ [13–18], bb̄γγ [6, 10, 19–31], bb̄ττ [6, 21, 32–36], bb̄W+W−/ZZ [8, 9, 37–41],

W+W−W+W− [42], etc. Among the different possible final states, here we focus on hh

production at the HL-LHC in the final state with two b-tagged jets, two leptons and missing

transverse momentum. The signal process is (h→ bb̄)(h→ W±W ∗∓ → `+ν``
′−ν̄`′) and it

suffers from large SM backgrounds, primarily due to top quark pair production (tt̄). The

few existing studies in this channel therefore employ sophisticated algorithms (neutral net-

work (NN) [8], deep neutral network (DNN) [11], boosted decision tree (BDT) [9, 43], etc.)

to increase the signal sensitivity, but show somewhat pessimistic results, with a significance

no better than 1σ at the HL-LHC with 3 ab−1 luminosity.

The recent study in ref. [39] introduced some new ideas for reducing the SM back-

grounds in this channel. For example, the new variables Topness and Higgsness were

designed to test whether the event kinematics is consistent with tt̄ or hh, respectively. The

use of Topness and Higgsness already effectively reduced the tt̄ background to a manageable

level, and additional variables were then employed to handle the remaining SM background

processes — e.g., the subsystem variable M
(`)
T2 is effective in eliminating background arising

from τ decays. In this paper, we supplement the novel kinematic method from ref. [39]

with the analysis of the jet image in the h → bb̄ decay, where the basic idea is to treat

the detector as a camera and the streams of jets as an image [44–51]. In our case, the

collimated nature of the Higgs decay will hopefully differ from the patterns obtained in

SM production processes. In addition, we adopt a deep learning framework in our main

analysis, since it is known that modern deep learning algorithms trained on jet images

provide improved signal-to-background discrimination [45–50, 52–54].

The analysis presented in this paper contains a number of improvements in comparison

to previous studies:

• Unlike the customized detector simulation performed in ref. [39], here we employ

Delphes [55] to simulate detector effects such as detector resolution, reconstruction

efficiency, etc., and Fastjet [56] for jet-reconstruction.

• We use deep learning framework to optimize the cuts, which further increases the

significance compared to the conventional cut-and-count as performed in ref. [39].

• We exploit an enlarged set of relevant variables which consists of the 10 variables

originally considered in ref. [43]: pT`1 , pT`2 , /PT , m``, mbb, ∆R``, ∆Rbb, pTbb, pT``, and

∆φbb,``, supplemented with the six recent variables from ref. [39]: Topness, Higgsness,

M
(b)
T2 , M

(`)
T2 , ŝ

(``)
min and ŝ

(bb``)
min .

• We include a SM background process, tW production, which was missing from all

previous discussions of this channel, yet it turns out to be the next dominant back-

ground once the tt̄ background is under control.

– 2 –



J
H
E
P
0
9
(
2
0
1
9
)
0
4
7

• The fact that the Higgs boson h is a color-singlet allows us to use the jet image of

the h→ bb̄ decay for further background suppression [45–48, 50].

• We examine the effect of pile-up, which was missing from previous studies. The

expected average number of pile-up 〈µ〉 at the HL-LHC is O(200) collisions per bunch

crossing [57]. Thus for any precision measurements, it is crucial to have a strategy

in place to ensure that pile-up effects do not jeopardize the analysis. Here we choose

to apply the Soft Drop algorithm [58] for QCD analyses, which is a powerful pile-up

mitigation technique. In order to reduce pile-up effects on the relevant kinematic

variables, we adopt the definition for a missing transverse momentum from ATLAS,

which excludes contributions from soft neutral particles [59].

Our results show that the dominant tt̄ background can be significantly reduced until

it is comparable to the other subdominant backgrounds, i.e., after all cuts, we find that all

SM backgrounds contribute at similar levels. This reduction can be accomplished without

sacrificing too much of the signal rate, which leads to an improved signal significance. Our

study indicates that the dilepton channel from hh → bb̄W+W− could contribute to the

combined significance for hh discovery on par with the other final states, making double

Higgs production sooner accessible at the HL-LHC.

This paper is structured as follows. We begin our discussion of the SM backgrounds

and present the details of our simulation in section 2. In the following two sections 3 and 4,

we provide some basic information on the kinematic variables used later in the analysis

and on jet images, respectively. Then in section 5 we discuss how we set up our analysis

in a deep learning framework. Section 6 presents our results, while section 7 is reserved

for the discussion and conclusions. We include a brief review on deep neural networks in

appendix A.

2 Event generation and detector simulation

Parton-level signal and background events were generated using MadGraph5 aMC@NLO

v2.6 [60] with the default NNPDF2.3QED parton distribution functions [61] at leading

order QCD accuracy at the
√
s = 14 TeV LHC. The default dynamical renormalization

and factorization scales were used. We assume 3ab−1 of luminosity throughout this paper.

Parton-level events were generated with the following cuts: pTj > 20 GeV, pTb > 20 GeV,

pTγ > 10 GeV, pT` > 10 GeV, ηj < 5, ηb < 5, ηγ < 2.5, η` < 2.5, ∆Rbb < 1.8, ∆R`` <

1.3, 70 GeV < mjj ,mbb < 160 GeV and m`` < 75 GeV. For jj``νν̄, ``bj and tW + j

backgrounds, we impose 5 GeV < m`` < 75 GeV additionally. Here the angular distance

∆Rij is defined by

∆Rij =
√

(∆φij)2 + (∆ηij)2, (2.1)

where ∆φij = φi − φj and ∆ηij = ηi − ηj are respectively the differences of the azimuthal

angles and rapidities between particles i and j.

The double Higgs production cross-section is normalized to σhh = 40.7 fb, the next-to-

next-to-leading order (NNLO) accuracy in QCD [62]. Considering all relevant branching
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fractions, we obtain signal cross section σhh · 2 ·BR(h→ bb) ·BR(h→WW ∗ → `+`−νν̄) =

0.648 fb, where ` denotes an electron or a muon, including leptons from tau decays. The

major background is tt production, whose cross section is normalized to the NNLO QCD

cross-section 953.6 pb [63]. Another important background is tth, which is normalized to

the next-to-leading order (NLO) QCD cross-section of 611.3 fb [64]. For the ttV (V =

W±, Z) background, we apply an NLO k-factor of 1.54, resulting in a cross-section of 1.71

pb [65]. We apply an NLO k-factor of 1.0 for the Drell-Yan type backgrounds ``bj and

ττbb, where j denotes partons in the five-flavor scheme. Note that a recent study indicates

that kNNLO,DYQCD⊗QED ≈ 1 [66]. The irreducible jj``νν background from the mixed QCD+EW

process is included with kNLO = 2. Finally, we generate tW + j events with up to one

additional matched jet (in the five-flavor scheme), whose cross-section turns out to be 0.51

pb (after the cuts) including all relevant branching fractions. As we try to reconstruct

events, off-shell effects for the top quark and W boson need to be taken care of properly.

We generate parton level events with MadGraph5, which includes the proper treatment of

the off-shell effects for the top quark and the W boson for both signal and all backgrounds.

Events are further processed for parton-shower/hadronization using Pythia8235 [67].

We use Delphes 3.4.1 [55] for simulating the detector effects and Fastjet 3.3.1 [56] for

jet-reconstruction, with modified ATLAS settings as follows.

• Jets are clustered with the anti-kT algorithm [68] with cone-size ∆R = 0.4, where

∆R is the distance (2.1) in the (φ, η) space. For the analysis, we consider jets with

pTj > 20 GeV and |ηj | < 2.5.

• We use the a flat b-tagging efficiency, εb→b = 0.75, and flat mis-tagging rates for non-b

jets of εc→b = 0.1 and εj→b = 0.01 [57].

• For lepton isolation, we require pT`
pT`+

∑
i pTi

> 0.7, where the sum is taken over the

transverse momenta pT i of all final states particles i, i 6= `, with pT i > 0.5 GeV

and within ∆Ri` < 0.3 of the lepton candidate `. Leptons are also required to have

pT` > 10 GeV and |η`| < 2.5.

• For photon isolation, we analogously require
∑
i pTi
pTγ

< 0.12 for particles within ∆Riγ <

0.3 of the photon candidate γ. Photons are also required to have pTγ > 25 GeV and

|ηγ | < 2.5.

• The missing transverse momentum /~PT is defined as the negative vector sum of the

transverse momenta of the accepted leptons, photons, jets and soft tracks as fol-

lows [59];

/~PT = −
(∑

~pT` +
∑

~pTγ +
∑

~pTj +
∑

~pT (track)

)
. (2.2)

Here the last term is added to consider unused soft tracks. These tracks are required

to have pT > 0.4 GeV, |η| < 2.5 and transverse (longitudinal) impact parameter

|d0| < 1.5 mm (|z0 sin θ| < 1.5 mm). To reduce effects from pile-up, we only use

particles which have track information.
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After particle reconstruction, we employ the following baseline selection cuts1 from

ref. [39]:

• the two leading jets must be b-tagged, each with pT > 30 GeV,

• exactly two isolated leptons of opposite sign, each with pT` > 20 GeV,

• /PT = | /~PT | > 20 GeV for the reconstructed missing transverse momentum,

• proximity cut of ∆R`` < 1.0 for the two leptons,

• proximity cut of ∆Rbb < 1.3 for the two b-tagged jets,

• m`` < 65 GeV for the two leptons,

• 95 GeV < mbb < 140 GeV for the two b-tagged jets.

For those events which passed the baseline cuts, we form 16 kinematic variables, as

well as jet images. As we will see later, the jet images can capture additional features

which are not already contained in the 16 standard kinematic variables. Therefore one can

obtain better performance by combining kinematics and jet images, which is one of the

main ideas of this paper.

3 Kinematics in signal and backgrounds

In this section we introduce the 16 kinematic variables used in this analysis. Their kinematic

distributions (for signal and all relevant backgrounds) are shown in figure 1 and will be

discussed shortly.

We begin with ten standard kinematic variables, which were previously considered in

refs. [9, 43] (their distributions are shown in the first ten panels of figure 1):

• mbb, the invariant mass of the two b-tagged jets (1st plot in the 1st row). This is

expected to be a good variable, since for signal events, the two b-jets originate from

the decay of a narrow resonance (the Higgs boson) and would therefore reconstruct

to the Higgs mass, up to resolution effects: mbb ∼ mh. This justifies the baseline cut

of 95 GeV < mbb < 140 GeV, as indicated with the vertical dotted lines. In contrast,

no such correlations exists for backgrounds events: the two b-jets either originate

from different decay chains and are uncorrelated (as in the case of tt̄, for example),

or they reconstruct to the mass of a Z-boson or an off-shell gluon, with a mass lower

than mh. The plot in figure 1, while confirming those expectations, also shows that

the total background happens to peak at a value of mbb which, unfortunately, is not

too far away from mh, providing the motivation to explore other variables.

1For the motivation behind these cuts, see figure 1 (in which the cut values are indicated with vertical

dotted lines) and the related discussion in section 3 below.
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Figure 1. Distributions of the 16 kinematic variables for signal (hh) and different types of

backgrounds (tt̄, tW̄ , tt̄V , tt̄h, ττbb, ��bj and jj��νν) before baseline cuts. The y-axis represents the

number of events for each process and all individual distributions are normalized properly according

to their respective cross-sections assuming 3 ab−1 at the 14TeV LHC. The dotted vertical lines

indicate the baseline cuts introduced in section 2.

• m��, the invariant mass of the two leptons (2nd plot in the 1st row). For the case

of the signal, the two leptons ultimately originate from the Higgs boson decay, and

therefore their invariant mass m�� is bounded from above, hence the baseline cut of

m�� < 65GeV. Note that the m�� distribution (which is observable) should be the

same as the distribution of mνν (which is unobservable).
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• ∆Rbb, the angular separation (2.1) between the two b-tagged jets (3rd plot in the 1st

row). Given the relatively low Higgs mass, the two Higgs particles in hh production

have sizable transverse momentum and their respective decay products (e.g., the two

b-quarks) tend to go in the same direction. This and the next four variables try to

exploit this kinematic property of the signal. For example, the Higgs boost implies

that ∆Rbb is relatively small for signal events, and this motivates the proximity cut

of ∆Rbb < 1.3.

• ∆R``, the angular separation (2.1) between the two leptons (4th plot in the 1st

row). Here the same arguments apply as in the case of ∆Rbb just discussed. The

corresponding plot in figure 1 confirms that the signal ∆R`` distribution peaks well

below most of the background processes, prompting the baseline cut of ∆R`` < 1.0.

• ∆φbb,``, the azimuthal angle in the transverse plane between the two b-jet system and

the two lepton system (1st plot in the 2nd row). This is yet another way to capture

the back-to-back boost of the two Higgs bosons in double Higgs production. Figure 1

shows that the signal peaks at ∆φbb,`` = ±π more sharply than the background,

which could be exploited later in the neural network analysis. However, no baseline

cut was applied in this case, since ∆φbb,`` is expected to be largely correlated with

∆Rbb and ∆R``.

• pTbb, the transverse momentum of the two b-jet system (2nd plot in the 2nd row).

Like the previous three variables, this variable is motivated by the significant boost

of the Higgs bosons in the signal, but no baseline cut was applied.

• pT``, the transverse momentum of the two lepton system (3rd plot in the 2nd row).

This variable behaves similarly to pTbb, but to a lesser extent, since the two leptons

come from separate W s, while the two b-quarks are direct decay products of the

Higgs boson.

• /PT = | /~PT |, the magnitude of the missing transverse momentum (4th plot in the 2nd

row). A /PT cut is routinely applied in order to fight the QCD backgrounds (not

shown in figure 1). Following ref. [9], here we use a baseline cut of /PT > 20 GeV.

• pT`1 , the transverse momentum of the hardest lepton (1st plot in the 3rd row).

• pT`2 , transverse momentum of the next-hardest lepton (2nd plot in the 3rd row). As

shown in figure 1, the individual transverse momenta of the two leptons are similar for

both signal and backgrounds. Therefore, the lepton pT ’s may be good for triggering

purposes, but not for background rejection.

We note that for the signal, many of these 10 variables are strongly correlated to each

other.2 This implies that cutting on one variable significantly reduces the power of other

2The strong correlation arises due to the very nature of double Higgs production — the two Higgs

particles are produced with a sizable transverse momentum, which restricts the kinematics of their de-

cay products.
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variables. At the same time, while these 10 variables are among the most commonly used in

high energy physics, it is not guaranteed that they fully capture all kinematic differences

between signal and background. This is why we introduce six additional variables [39]:

Topness, Higgsness,
√
ŝ

(bb``)
min ,

√
ŝ

(``)
min, M

(b)
T2 and M

(`)
T2 , shown in the last six panels of figure 1,

which are meant to take full advantage of the kinematic differences between the signal and

background event topologies.

The Topness variable measures the degree of consistency of a given event with the

kinematics of dilepton tt̄ production, where there are 6 unknowns (the three-momenta of

the two neutrinos, ~pν and ~pν̄) and four on-shell constraints, mt, mt̄, mW+ and mW− . Here

mt = mt̄ is the mass of top or antitop quark, and mW± = mW is the mass of the W boson.

Then the neutrino momenta can be fixed by minimizing the following quantity

χ2
ij ≡ min

/~PT=~pTν+~pT ν̄

[(
m2
bi`+ν

−m2
t

)2
σ4
t

+

(
m2
`+ν −m

2
W

)2
σ4
W

+

(
m2
bj`−ν̄

−m2
t

)2
σ4
t

+

(
m2
`−ν̄ −m

2
W

)2
σ4
W

 , (3.1)

subject to the missing transverse momentum constraint, /~PT = ~pTν + ~pT ν̄ . The parameters

σt and σW are indicative of the corresponding experimental resolutions and intrinsic particle

widths. In principle, they can be treated as free parameters and one can tune them using

NN, BDT, etc. In our numerical study, we shall use σt = 5 GeV and σW = 5 GeV. Since

there is a twofold ambiguity in the paring of a b-quark and a lepton, Topness is defined as

the smaller of the two χ2s [39],

T ≡ min
(
χ2

12 , χ
2
21

)
. (3.2)

The Topness distributions for both signal and backgrounds before baseline cuts are shown

in figure 1 (3rd plot in the 3rd row). We observe that, as expected, T tends to have smaller

values for the main background (tt̄) than for signal.

In our signal of hh production, the two b-quarks arise from a Higgs decay (h → bb̄),

and therefore their invariant mass mbb can be used as a first cut to enhance the signal

sensitivity. For the decay of the other Higgs boson, h→ W±W ∗∓, Higgsness is defined as

follows [39]

H ≡ min /~PT=~pTν+~pT ν̄

[(
m2
`+`−νν̄ −m

2
h

)2
σ4
h`

+

(
m2
νν̄ − (mpeak

νν̄ )2
)2

σ4
ν

+ min

((
m2
`+ν −m

2
W

)2
σ4
W

+

(
m2
`−ν̄ − (mpeak

W ∗ )2
)2

σ4
W ∗

,(
m2
`−ν̄ −m

2
W

)2
σ4
W

+

(
m2
`+ν − (mpeak

W ∗ )2
)2

σ4
W ∗

)]
. (3.3)

It tests whether the neutrino kinematics can be compatible with having the Higgs boson and

one of the W -bosons on-shell, while at the same time being consistent with the invariant

– 8 –
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Figure 2. Unit-normalized invariant mass distribution of the the lepton-neutrino (m�ν , left) and

the two neutrinos (mνν̄ , right).

mass distributions expected for the off-shell W -boson, W ∗, and the neutrino pair, νν̄. The

invariant mass mW ∗ is bounded by 0 ≤ mW ∗ ≤ mh −mW and the peak of its distribution

is at

mpeak
W ∗ =

1√
3

√
2
(
m2

h +m2
W

)
−
√
m4

h + 14m2
hm

2
W +m4

W . (3.4)

The left panel of figure 2 shows the unit-normalized invariant mass distribution of

the proper lepton-neutrino system (m�ν). The distribution has a bimodal shape — the

narrow peak on the right near 80GeV corresponds to the on-shell W -boson resonance,

while the broader hump to the left is due to the off-shell W ∗, with a clear end-point at

mh −mW = 45GeV and a maximum near mpeak
W ∗ = 40GeV in accordance with (3.4).

The definition of Higgsness (3.3) also includes a term which tests for consistency with

the expected invariant mass distribution dσ
dmνν̄

for the neutrino pair,3 which is shown in the

right panel of figure 2. The red solid curve gives the pure phase space prediction

dσ

dmνν̄
∝

∫
dm2

W ∗λ1/2(m2
h,m

2
W ,m2

W ∗)f(mνν̄) , (3.5)

where λ(x, y, z) = x2+ y2+ z2− 2xy− 2yz− 2zx is the two-body phase space function and

f(m) is the invariant mass distribution of the antler topology with h → WW ∗ → �+�−νν̄:

f(m) ∼

{
ηm , 0 ≤ m ≤ e−ηE,

m ln(E/m) , e−ηE ≤ m ≤ E,
(3.6)

where the endpoint E and the parameter η are defined in terms of the particle masses as

E =
√
mWmW ∗ eη , (3.7)

cosh η =

(
m2

h −m2
W −m2

W ∗

2mWmW ∗

)
. (3.8)

3In the limit of massless leptons, the distribution dσ
dmνν̄

is the same as the dilepton mass distribution
dσ

dm
�+�−

, which is directly observable and therefore more commonly discussed in the literature [69–72].

– 9 –
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Figure 3. Two-dimensional correlation plots for Higgsness and Topness for signal (left) and back-

grounds (right) before (top) and after (bottom) baseline cuts.

Note that by allowing one of the W -bosons to be on-shell, eqs. (3.5)–(3.8) generalize the

results previously derived in refs. [69–72] for the purely on-shell case. The blue histogram

in the right panel of figure 2 shows the actual mνν̄ distribution, whose shape is slightly

different from the pure phase space result (3.5), due a helicity suppression in the W -�-ν

vertex. In particular, we observe that the actual peak is at mpeak
νν̄ ≈ 30GeV, which is the

value that we shall use in the definition of Higgsness (3.3).4

The definition of Higgsness (3.3) contains some additional resolution parameters: σh
for the reconstructed mass of the Higgs boson, σW ∗ for the reconstructed mass of the off-

shell W boson, and σν for the mνν̄ resolution. In what follows, we shall take σW ∗ = 5GeV,

σh�
= 2GeV, and σν = 10GeV.5

The Higgsness distributions for both signal and backgrounds before baseline cuts are

shown in figure 1 (4th plot in the 3rd line). The two dimensional map of (Higgsness,

Topness) on a log-log scale is depicted in figure 3. The Higgsness and Topness distributions

in figure 1 are projections of this two dimensional scatter plot onto the x-axis and y-

axis, respectively. Although the signal and the backgrounds do not exhibit a very clean

4We note that other variants of Higgsness are also possible — for example, instead of penalizing the

function H by the distances to the peaks in the corresponding distributions, one can introduce penalty

terms which take advantage of the knowledge of the exact probability distributions (the blue histograms in

figure 2).
5We have checked that our results are not very sensitive to these choices.
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separation in the individual one-dimensional projections in figure 1, their two dimensional

correlation plots show some visible differences. We note that even after employing the

baseline cuts, one can still see a difference in the two dimensional correlation of Higgsness

and Topness (bottom row plots).

Along with Higgsness and Topness, we also consider two versions of the ŝmin vari-

able [73, 74], which is defined as

ŝ
(v)
min = m2

v + 2

(√
|~P v
T |2 +m2

v | /~PT | − ~P v
T · /~PT

)
, (3.9)

where (v) represents a set of visible particles under consideration, while mv and ~P v
T are their

invariant mass and transverse momentum, respectively. The variable (3.9) characterizes

the system comprising of the visible particles (v) and the invisible particles (here assumed

to be massless) which are responsible for the measured missing transverse momentum

/~PT . It provides the minimum value of the Mandelstam invariant mass ŝ for the system

which is consistent with the observed visible 4-momentum vector. We shall apply (3.9)

to the whole event, where v = {bb``}, or to the subsystem resulting from the decay h →
W±W ∗∓ → `+`−νν̄, where v = {``}. The distributions of the resulting variables ŝ

(bb``)
min

and ŝ
(``)
min are shown in the left two panels on the fourth row of figure 1. The ŝ

(bb``)
min variable

represents the minimum energy required to produce the two original parent particles (the

two Higgs bosons in the case of the signal and the two top quarks in the case of the major

tt̄ background). This is why one would expect the distribution to peak around the parent

mass threshold, 2mh for the signal and 2mt for the background [73]. However, the first

panel in the fourth row of figure 1 shows that while the background ŝ
(bb``)
min distribution

peaks near 2mt, which is expected, the signal ŝ
(bb``)
min distribution peaks around 400 GeV,

which is substantially higher than 2mh. This implies that the two top quarks are produced

more or less at rest, while the two Higgs bosons have a sizable boost. Similarly, the variable

ŝ
(``)
min is the minimum energy required to produce the two W bosons. For the tt̄ background,

where both W bosons are on-shell, the peak is expected to occur around 2mW . On the

other hand, the signal distribution should be softer, since one of the W bosons is off-shell,

and furthermore, the peak should be located slightly below the Higgs boson mass. These

kinematic differences are illustrated in the second plot on the fourth row of figure 1, and

motivate the use of ŝ
(``)
min as an analysis variable.

The last two panels in the fourth row of figure 1 show distributions of the subsystem

MT2 variable [75] — first when it is applied to the bb̄ visible system resulting from the

t → bW decays (M
(b)
T2 ), and then when it is applied to the `+`− visible system resulting

from the W → `ν decays (M
(`)
T2 ). In principle, MT2 is defined as [76]

MT2(m̃) ≡ min {max [MTP1(~pTν , m̃), MTP2(~pT ν̄ , m̃)]} , (3.10)

where the minimization over the transverse masses of the parent particles MTPi (i =

1, 2) is performed over the transverse neutrino momenta ~pνT and ~pν̄T , subject to the /~PT
constraint.6 The parameter m̃ in (3.10) is the test mass for the daughter particle: in

6See refs. [77–85] for more information and other variants of MT2.
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Figure 4. Color flow diagrams for a color-singlet particle (left) and a color-octet particle (right).

The colored dotted lines represent QCD color-connection and arrows denote the direction of hadron

concentration.

the case of M
(`)
T2 one should use m̃ = mν = 0, while in the case of M

(b)
T2 , the daughter

particles are the W bosons, and m̃ = mW = 80 GeV, which leads to the lower bound

mW ≤ M
(b)
T2 visible in the plot. By construction, the MT2 variables are bounded by the

mass of the corresponding parent particle. Indeed, the M
(b)
T2 distribution for tt̄ production

shows a sharp drop around M
(b)
T2 = mt, while the signal distribution extends well above

mt. Similarly, the M
(`)
T2 distribution for tt̄ drops around mW , as expected. In addition, it

exhibits a peak structure in the first bin, which is due to leptonic tau decays. This suggests

that M
(`)
T2 can be effective in eliminating backgrounds with τs.

This concludes our discussion of the 16 kinematic variables depicted in figure 1. The

newly introduced 6 variables (Topness, Higgsness, ŝ
(bb``)
min , ŝ

(``)
min, M

(b)
T2 and M

(`)
T2 ) typically re-

quire a few extra steps to compute them, thus we shall refer to them as high-level kinematic

variables, while the remaining 10 traditional variables will be called low-level kinematic

variables. We will perform two independent analyses — one with and one without the

high-level kinematic variables, in order to estimate the performance benefit from adding

the additional 6 variables.

4 Color flow in signal and backgrounds

We note that the two b-quarks in the signal result from the decay of a single non-colored

object, the Higgs boson. In contrast, the two b-quarks in tt̄ production (which is the

dominant background) arise from the decays of top quarks, which in turn are produced

via the strong interactions from a gluon-gluon initial state. This distinction is pictorially

illustrated in figure 4. The different color-flow [86] will lead to different hadronization

patterns, which can be used to discriminate a color singlet particle from a color octet (or

triplet) at hadron colliders such as the LHC. Since the quarks which originate from a color

singlet particle are color-connected to each other, their hadronization will not involve the

initial state partons. On the contrary, the quarks which originate from a color octet particle

are color-connected to the annihilating partons in the initial state, and consequently their

hadronization is correlated with these initial state partons, see figure 4.
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Figure 5. Cumulative pT distributions resulting from showering 10,000 times a single partonic

event for the signal (left) and tt̄ production (right). The two b quarks from h → bb̄ are color-

connected to each other and the soft radiation tends to fill in the region between them (left panel),

while the two b quarks from tt̄ production are not color-connected and the two clusters from their

hadronization tend to be more isolated (right panel).

The difference in color flow will be reflected in the resulting hadron distributions.

Hadrons coming from a color-singlet object will tend to be closer to the direction of the

original mother particle, and as a result, the soft radiation will tend to populate the region

between the two b quarks. On the other hand, hadrons from the decay of a color-octet

particle will not be so narrowly focused, due to the influence of the initial state partons.

These features are illustrated in figure 5, where we show the cumulative pT distributions

in the (η, φ) plane after showering the same partonic event 10,000 times. In the left panel

we used a signal event, while in the right panel we used an event from tt̄ production. We

see that the b-jet clusters in the right panel tend to be better defined and more isolated,

since they are not color-correlated among themselves. On the other hand, in the left panel

we observe quite a bit of soft radiation in the region between the two b jets, due to the

existing color connection between them.

Of course, the results in figure 5 are only valid in the statistical sense, since we took

the same parton-level event and hadronized it multiple times. In reality, only one instance

of this hadronization will be realized, as illustrated in figure 6. The top row of plots shows

the hadronization patterns for charged particles (left panel) and neutral particles (right

panel) in the case of one signal event, while the bottom row shows the same, but for one

tt̄ event. The parton-level event information is quoted (in GeV) to the right of each row

of panels, and then each event is translated in the (η, φ) plane until the origin is aligned

with the direction of the b-quark pair. The color scheme indicates the total pT in each

pixel, while the dotted circles represent the ∆R = 0.4 cones for reconstruction of the

corresponding b jets.

As an alternative to figure 5, in figures 7 and 8, we illustrate the effects of color-

connection by showing the average of the jet images for the signal and the different back-

ground processes before and after the baseline cuts, respectively (some basic generation-

– 13 –
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Figure 6. Transverse momentum distribution of charged particles (left) and neutral particles

(right) for one chosen signal event (top row) and one chosen tt̄ event (bottom row), where the

origin is taken to be the center of the b-quark pair. The dotted circles represent the ∆R=0.4 cones

for reconstructing the corresponding b jets. The four-momentum information of each event is given

to the right of each panel row.

level cuts were imposed on the events in figure 7). The origin of the (η, φ) plane plane is

taken to be the center of the b quark pair and the color scheme indicates the total pT in

each pixel. The black dotted line delineates the region 1.6 ≤ η ≤ 1.6 and −2.01 ≤ φ ≤ 2.01

used in the analysis. One can observe a striking difference in density between signal and

background events in figure 7 — the two b quarks tend to be more collimated in the signal

and more spread out in the background.

Unfortunately, after imposing the baseline cuts introduced in section 2, this distinction

tends to be washed out and the backgrounds start mimicking the signal: one can see

a similar structure emerging in all panels in figure 8, albeit with some subtle differences.

Although one may find it difficult to discriminate signal from backgrounds simply by looking

at a particular event, the patterns in the average jet images are different, and have been

used actively for signal versus background separation [45, 47, 87]. In this paper, instead of

quantifying the difference (e.g., with a pull vector [45]) we will use the images themselves

on deep neural networks (DNNs), along with the 16 kinematic variables introduced in the

previous section.
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Figure 7. The cumulative average of the jet images for the signal and the different background

processes before the baseline cuts (basic cuts at the event generation stage were still imposed).

The origin of the (η, φ) plane is taken to be the center of the b quark pair and the color scheme

indicates the total pT in each pixel. The black dotted line delineates the region 1.6 ≤ η ≤ 1.6 and

−2.01 ≤ φ ≤ 2.01 used in the analysis.

Figure 8. The same as Figure 7, but after imposing the baseline cuts introduced in section 2.
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5 Analysis using deep learning

DNN is known to be very efficient and powerful in image recognition [88, 89] and the

particle physics community has used it for various applications.7 For instance, one can

map the information about the direction and the energy (or transverse momentum) of

a particle onto a pixel in an image. DNN then provides excellent classification between

signal and background in the jet image [48, 50, 53, 54]. It also shows performance gains

in multrivariate analyses over traditional cut-and-count analyses or BDTs [52, 93]. In this

section, we describe how we organize our analysis in a DNN framework. In the following

three subsections, we address the issues of data pre-processing, DNN architecture and

training of the NN.

5.1 Data pre-processing

In order to achieve the improved DNN learning performance and to minimize the error, it

is important to properly process signal and backgrounds events before feeding them into

a DNN framework. For each event passing the baseline cuts, the jet images are processed

as follows.

1. Input data: we use the particle flow for our input data [94].

2. Particle classification: we divide the particle flow into two groups: neutral particles

and charged particles. Neutral particles include photons and neutral hadrons, while

charged particles include charged hadrons.

3. Lepton removal: if there is a lepton, we remove it.

4. Shift: we shift all particle coordinates in the (η, φ) plane with respect to the center

of the reconstructed b-quark pair, i.e., we set (
ηb+ηb̄

2 ,
φb+φb̄

2 ) as the new origin, (0,0).

5. Pixelization: we discretize the rectangular region in the (η, φ) plane defined by −2.5 ≤
η ≤ 2.5 and −π ≤ φ ≤ π into a grid of 50 × 50 pixels for each particle classification

(charged particle set and neutral particle set). In each pixel, we record the total

transverse momentum as the pixel’s intensity (in case of more than one particle, we

add the transverse momenta and record the total sum). We refer to this 50 × 50

discrete image as the jet image [48].

6. Normalization: we rescale each jet image intensity as Iij → Iij/Imax, where i, j =

1, 2, . . . , 50, and Iij represents the intensity value in the (i, j) pixel. Imax is defined

to be the largest value of pixel intensity found in the two 50 × 50 pixel images.

7. Cropping: we crop the jet image to 32× 32 pixels, by further restricting to the (η, φ)

rectangular range of −1.6 ≤ η ≤ 1.6 and −2.01 ≤ φ ≤ 2.01.

7The use of neural networks for data analysis in high energy physics can be traced back to the pioneering

work by R. Field and his students in the mid-nineties [90–92].
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<latexit sha1_base64="d0V5evoYDAA7B5mJ1GbVvJiBDqQ=">AAAB7nicbVA9TwJBEJ3DL8Qv1NLmIphYkTsaLYk2lpgImMCF7C0DbNjbu+zOmZALP8LGQmNs/T12/hsXuELBl0zy8t5MZuaFiRSGPO/bKWxsbm3vFHdLe/sHh0fl45O2iVPNscVjGevHkBmUQmGLBEl8TDSyKJTYCSe3c7/zhNqIWD3QNMEgYiMlhoIzslKn2guRWLVfrng1bwF3nfg5qUCOZr/81RvEPI1QEZfMmK7vJRRkTJPgEmelXmowYXzCRti1VLEITZAtzp25F1YZuMNY21LkLtTfExmLjJlGoe2MGI3NqjcX//O6KQ2vg0yoJCVUfLlomEqXYnf+uzsQGjnJqSWMa2FvdfmYacbJJlSyIfirL6+Tdr3mezX/vl5p3ORxFOEMzuESfLiCBtxBE1rAYQLP8ApvTuK8OO/Ox7K14OQzp/AHzucPfQ+O/g==</latexit><latexit sha1_base64="d0V5evoYDAA7B5mJ1GbVvJiBDqQ=">AAAB7nicbVA9TwJBEJ3DL8Qv1NLmIphYkTsaLYk2lpgImMCF7C0DbNjbu+zOmZALP8LGQmNs/T12/hsXuELBl0zy8t5MZuaFiRSGPO/bKWxsbm3vFHdLe/sHh0fl45O2iVPNscVjGevHkBmUQmGLBEl8TDSyKJTYCSe3c7/zhNqIWD3QNMEgYiMlhoIzslKn2guRWLVfrng1bwF3nfg5qUCOZr/81RvEPI1QEZfMmK7vJRRkTJPgEmelXmowYXzCRti1VLEITZAtzp25F1YZuMNY21LkLtTfExmLjJlGoe2MGI3NqjcX//O6KQ2vg0yoJCVUfLlomEqXYnf+uzsQGjnJqSWMa2FvdfmYacbJJlSyIfirL6+Tdr3mezX/vl5p3ORxFOEMzuESfLiCBtxBE1rAYQLP8ApvTuK8OO/Ox7K14OQzp/AHzucPfQ+O/g==</latexit><latexit sha1_base64="d0V5evoYDAA7B5mJ1GbVvJiBDqQ=">AAAB7nicbVA9TwJBEJ3DL8Qv1NLmIphYkTsaLYk2lpgImMCF7C0DbNjbu+zOmZALP8LGQmNs/T12/hsXuELBl0zy8t5MZuaFiRSGPO/bKWxsbm3vFHdLe/sHh0fl45O2iVPNscVjGevHkBmUQmGLBEl8TDSyKJTYCSe3c7/zhNqIWD3QNMEgYiMlhoIzslKn2guRWLVfrng1bwF3nfg5qUCOZr/81RvEPI1QEZfMmK7vJRRkTJPgEmelXmowYXzCRti1VLEITZAtzp25F1YZuMNY21LkLtTfExmLjJlGoe2MGI3NqjcX//O6KQ2vg0yoJCVUfLlomEqXYnf+uzsQGjnJqSWMa2FvdfmYacbJJlSyIfirL6+Tdr3mezX/vl5p3ORxFOEMzuESfLiCBtxBE1rAYQLP8ApvTuK8OO/Ox7K14OQzp/AHzucPfQ+O/g==</latexit><latexit sha1_base64="d0V5evoYDAA7B5mJ1GbVvJiBDqQ=">AAAB7nicbVA9TwJBEJ3DL8Qv1NLmIphYkTsaLYk2lpgImMCF7C0DbNjbu+zOmZALP8LGQmNs/T12/hsXuELBl0zy8t5MZuaFiRSGPO/bKWxsbm3vFHdLe/sHh0fl45O2iVPNscVjGevHkBmUQmGLBEl8TDSyKJTYCSe3c7/zhNqIWD3QNMEgYiMlhoIzslKn2guRWLVfrng1bwF3nfg5qUCOZr/81RvEPI1QEZfMmK7vJRRkTJPgEmelXmowYXzCRti1VLEITZAtzp25F1YZuMNY21LkLtTfExmLjJlGoe2MGI3NqjcX//O6KQ2vg0yoJCVUfLlomEqXYnf+uzsQGjnJqSWMa2FvdfmYacbJJlSyIfirL6+Tdr3mezX/vl5p3ORxFOEMzuESfLiCBtxBE1rAYQLP8ApvTuK8OO/Ox7K14OQzp/AHzucPfQ+O/g==</latexit>
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<latexit sha1_base64="zhdTqOj/oekiOpmGDA34fUV5ii8=">AAAB73icbVA9TwJBEJ3DL8Qv1NJmI5hYkTsaLYk2lpjIRwIXMrfswYbdu3N3z4Rc+BM2Fhpj69+x89+4wBUKvmSSl/dmMjMvSATXxnW/ncLG5tb2TnG3tLd/cHhUPj5p6zhVlLVoLGLVDVAzwSPWMtwI1k0UQxkI1gkmt3O/88SU5nH0YKYJ8yWOIh5yisZK3Wp/hFJidVCuuDV3AbJOvJxUIEdzUP7qD2OaShYZKlDrnucmxs9QGU4Fm5X6qWYJ0gmOWM/SCCXTfra4d0YurDIkYaxsRYYs1N8TGUqtpzKwnRLNWK96c/E/r5ea8NrPeJSkhkV0uShMBTExmT9PhlwxasTUEqSK21sJHaNCamxEJRuCt/ryOmnXa55b8+7rlcZNHkcRzuAcLsGDK2jAHTShBRQEPMMrvDmPzovz7nwsWwtOPnMKf+B8/gBAs49v</latexit><latexit sha1_base64="zhdTqOj/oekiOpmGDA34fUV5ii8=">AAAB73icbVA9TwJBEJ3DL8Qv1NJmI5hYkTsaLYk2lpjIRwIXMrfswYbdu3N3z4Rc+BM2Fhpj69+x89+4wBUKvmSSl/dmMjMvSATXxnW/ncLG5tb2TnG3tLd/cHhUPj5p6zhVlLVoLGLVDVAzwSPWMtwI1k0UQxkI1gkmt3O/88SU5nH0YKYJ8yWOIh5yisZK3Wp/hFJidVCuuDV3AbJOvJxUIEdzUP7qD2OaShYZKlDrnucmxs9QGU4Fm5X6qWYJ0gmOWM/SCCXTfra4d0YurDIkYaxsRYYs1N8TGUqtpzKwnRLNWK96c/E/r5ea8NrPeJSkhkV0uShMBTExmT9PhlwxasTUEqSK21sJHaNCamxEJRuCt/ryOmnXa55b8+7rlcZNHkcRzuAcLsGDK2jAHTShBRQEPMMrvDmPzovz7nwsWwtOPnMKf+B8/gBAs49v</latexit><latexit sha1_base64="zhdTqOj/oekiOpmGDA34fUV5ii8=">AAAB73icbVA9TwJBEJ3DL8Qv1NJmI5hYkTsaLYk2lpjIRwIXMrfswYbdu3N3z4Rc+BM2Fhpj69+x89+4wBUKvmSSl/dmMjMvSATXxnW/ncLG5tb2TnG3tLd/cHhUPj5p6zhVlLVoLGLVDVAzwSPWMtwI1k0UQxkI1gkmt3O/88SU5nH0YKYJ8yWOIh5yisZK3Wp/hFJidVCuuDV3AbJOvJxUIEdzUP7qD2OaShYZKlDrnucmxs9QGU4Fm5X6qWYJ0gmOWM/SCCXTfra4d0YurDIkYaxsRYYs1N8TGUqtpzKwnRLNWK96c/E/r5ea8NrPeJSkhkV0uShMBTExmT9PhlwxasTUEqSK21sJHaNCamxEJRuCt/ryOmnXa55b8+7rlcZNHkcRzuAcLsGDK2jAHTShBRQEPMMrvDmPzovz7nwsWwtOPnMKf+B8/gBAs49v</latexit><latexit sha1_base64="zhdTqOj/oekiOpmGDA34fUV5ii8=">AAAB73icbVA9TwJBEJ3DL8Qv1NJmI5hYkTsaLYk2lpjIRwIXMrfswYbdu3N3z4Rc+BM2Fhpj69+x89+4wBUKvmSSl/dmMjMvSATXxnW/ncLG5tb2TnG3tLd/cHhUPj5p6zhVlLVoLGLVDVAzwSPWMtwI1k0UQxkI1gkmt3O/88SU5nH0YKYJ8yWOIh5yisZK3Wp/hFJidVCuuDV3AbJOvJxUIEdzUP7qD2OaShYZKlDrnucmxs9QGU4Fm5X6qWYJ0gmOWM/SCCXTfra4d0YurDIkYaxsRYYs1N8TGUqtpzKwnRLNWK96c/E/r5ea8NrPeJSkhkV0uShMBTExmT9PhlwxasTUEqSK21sJHaNCamxEJRuCt/ryOmnXa55b8+7rlcZNHkcRzuAcLsGDK2jAHTShBRQEPMMrvDmPzovz7nwsWwtOPnMKf+B8/gBAs49v</latexit>
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<latexit sha1_base64="3cuH/msNH5GL8ZP1kaOEpuPH6OM=">AAAB73icbVA9TwJBEJ3DL8Qv1NJmI5hYkTsaLYk2lpjIRwIXMrfswYa9vXN3z4Rc+BM2Fhpj69+x89+4wBUKvmSSl/dmMjMvSATXxnW/ncLG5tb2TnG3tLd/cHhUPj5p6zhVlLVoLGLVDVAzwSVrGW4E6yaKYRQI1gkmt3O/88SU5rF8MNOE+RGOJA85RWOlbrWPIhljdVCuuDV3AbJOvJxUIEdzUP7qD2OaRkwaKlDrnucmxs9QGU4Fm5X6qWYJ0gmOWM9SiRHTfra4d0YurDIkYaxsSUMW6u+JDCOtp1FgOyM0Y73qzcX/vF5qwms/4zJJDZN0uShMBTExmT9PhlwxasTUEqSK21sJHaNCamxEJRuCt/ryOmnXa55b8+7rlcZNHkcRzuAcLsGDK2jAHTShBRQEPMMrvDmPzovz7nwsWwtOPnMKf+B8/gBFTI9y</latexit><latexit sha1_base64="3cuH/msNH5GL8ZP1kaOEpuPH6OM=">AAAB73icbVA9TwJBEJ3DL8Qv1NJmI5hYkTsaLYk2lpjIRwIXMrfswYa9vXN3z4Rc+BM2Fhpj69+x89+4wBUKvmSSl/dmMjMvSATXxnW/ncLG5tb2TnG3tLd/cHhUPj5p6zhVlLVoLGLVDVAzwSVrGW4E6yaKYRQI1gkmt3O/88SU5rF8MNOE+RGOJA85RWOlbrWPIhljdVCuuDV3AbJOvJxUIEdzUP7qD2OaRkwaKlDrnucmxs9QGU4Fm5X6qWYJ0gmOWM9SiRHTfra4d0YurDIkYaxsSUMW6u+JDCOtp1FgOyM0Y73qzcX/vF5qwms/4zJJDZN0uShMBTExmT9PhlwxasTUEqSK21sJHaNCamxEJRuCt/ryOmnXa55b8+7rlcZNHkcRzuAcLsGDK2jAHTShBRQEPMMrvDmPzovz7nwsWwtOPnMKf+B8/gBFTI9y</latexit><latexit sha1_base64="3cuH/msNH5GL8ZP1kaOEpuPH6OM=">AAAB73icbVA9TwJBEJ3DL8Qv1NJmI5hYkTsaLYk2lpjIRwIXMrfswYa9vXN3z4Rc+BM2Fhpj69+x89+4wBUKvmSSl/dmMjMvSATXxnW/ncLG5tb2TnG3tLd/cHhUPj5p6zhVlLVoLGLVDVAzwSVrGW4E6yaKYRQI1gkmt3O/88SU5rF8MNOE+RGOJA85RWOlbrWPIhljdVCuuDV3AbJOvJxUIEdzUP7qD2OaRkwaKlDrnucmxs9QGU4Fm5X6qWYJ0gmOWM9SiRHTfra4d0YurDIkYaxsSUMW6u+JDCOtp1FgOyM0Y73qzcX/vF5qwms/4zJJDZN0uShMBTExmT9PhlwxasTUEqSK21sJHaNCamxEJRuCt/ryOmnXa55b8+7rlcZNHkcRzuAcLsGDK2jAHTShBRQEPMMrvDmPzovz7nwsWwtOPnMKf+B8/gBFTI9y</latexit><latexit sha1_base64="3cuH/msNH5GL8ZP1kaOEpuPH6OM=">AAAB73icbVA9TwJBEJ3DL8Qv1NJmI5hYkTsaLYk2lpjIRwIXMrfswYa9vXN3z4Rc+BM2Fhpj69+x89+4wBUKvmSSl/dmMjMvSATXxnW/ncLG5tb2TnG3tLd/cHhUPj5p6zhVlLVoLGLVDVAzwSVrGW4E6yaKYRQI1gkmt3O/88SU5rF8MNOE+RGOJA85RWOlbrWPIhljdVCuuDV3AbJOvJxUIEdzUP7qD2OaRkwaKlDrnucmxs9QGU4Fm5X6qWYJ0gmOWM9SiRHTfra4d0YurDIkYaxsSUMW6u+JDCOtp1FgOyM0Y73qzcX/vF5qwms/4zJJDZN0uShMBTExmT9PhlwxasTUEqSK21sJHaNCamxEJRuCt/ryOmnXa55b8+7rlcZNHkcRzuAcLsGDK2jAHTShBRQEPMMrvDmPzovz7nwsWwtOPnMKf+B8/gBFTI9y</latexit>
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Figure 9. Illustration of the concept of combined Deep Learning.8

The final jet image has dimension 2 × 32 × 32 and is comprised of one charged particle

channel with dimension 1×32×32 and a neutral particle channel with dimension 1×32×32.

This pre-processed jet-image is the input to the DNN. We note that Figures 7 and 8 showed

the combined 1 × 50 × 50 jet-image obtained by adding the neutral and charged particle

layers. The black dotted rectangular area in those figures showed the restricted 1×32×32

pixel area.

5.2 DNN architecture

Our DNN architecture consists of three sub-architectures, which will merge later, as illus-

trated in figure 9. Combined deep learning (DL) is not yet very common,9 but recently

there have been several studies in particle physics [50], as well as in other areas [96, 97],

which showed improved results over simple DL. In this subsection, we provide some details

of our DNN layer architecture as follows:

0. Initialization. Since DNN has a lot of parameters, it is important to give non-biased

initial values for the (weight, bias) before running DNN with all input data. We use

the He uniform initialization method as in ref. [98], among several other algorithms

for parameter initialization [98–100].

8Parts of figure 9 are generated using the Python script in https://github.com/gwding/draw convnet.
9Combined DL is similar to ensemble learning [95].
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1. Jet images. They are represented by the top panel in figure 9.

(a) Input data: we use pre-processed jet images as inputs.

(b) Convolutional neural networks layers: we use three layers of convolutional neural

networks (CNN). Each layer has a 32×2×2 filter with no stride and no padding.

We proceed with the batch normalization process after filtering [101], using the

ReLU function as our activation function [102]. After activation, we introduce

the max pooling layer which has a 2 × 2 shape with 2× 2 strides and padding.

(c) Dense layers: we feed the output of the CNN into two fully connected 1 × 64

dense layers, using ReLU as the activation function.

2. The 6 high level variables. Those are illustrated by the middle panel in figure 9.

(a) Input data:
√
ŝ

(bb``)
min ,

√
ŝ

(``)
min, M

(b)
T2 , M

(`)
T2 , Higgsness and Topness.

(b) Dense layers: we introduce four fully connected 1 × 64 dense layers with the

ReLU activation function. All four layers have the batch normalization process

before activation.

3. The 10 low level variables : those are illustrated by the bottom panel in figure 9.

(a) Input data: pT`1 , pT`2 , /PT , m``, mbb, ∆R``, ∆Rbb, pTbb, pT``, ∆φbb,``.

(b) Dense layers: we follow the same procedure as in the case with the 6 high level

variables above.

4. Combination

(a) Merge: we apply three single (1×1) dense layers to the jet image, the 6 high level

variables and the 10 low level variables. These layers are denoted as α, β, and

γ, respectively, as shown in figure 9. To merge the three sub-architectures, we

introduce the final dense layer of dimension 1×3 without an activation function.

(b) Final output: to distinguish signal from backgrounds, we apply a layer of di-

mension 1× 2 without an activation function.

5.3 DNN training

We now proceed with deep learning on the DNN architecture described in section 5.2, using

the pre-processed input data. We use Microsoft CNTK [103] as the main DNN library on

GPU with an Nvidia CUDA platform. We use the Adam optimizer [104] with cross entropy

with SoftMax loss function and classification error function. The sizes of the training data

set and the testing data set are about 40k and 17k, respectively. The size of the mini-batch

is 128 and that of the epoch is 30.

For each event, we prepare the jet images and the 16 variables. The dimension of the

final output is 1× 2, (Psig, Pbknd = 1− Psig). If the deep learning score is equal to 1, i.e.,

Psig = 1 (Pbknd = 0), the corresponding event is taken to be a signal event. If Psig = 0

(Pbknd = 1), the event is considered to be background.
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Figure 10. Deep learning score for the signal and the individual backgrounds.

6 Results

In this section we present our results. First we validate our framework by repeating the

analysis performed in ref. [39] under similar assumptions.10 We obtained consistent results

for the conventional cut-and-count method with Delphes detector simulation. When we

added deep learning, the signal significance improved slightly by 5-10%.

Now considering all relevant backgrounds and using all 16 variables and jet images,

we show the deep learning score for the signal and the individual background processes

in figure 10. The signal should peak near Psig = 1 by construction, and indeed this is

what is observed in the figure. Note that the tt̄ and tW processes are well separated from

the signal and both peak near Psig = 0. This is direct consequence of the improvements

made in our analysis — introducing the proper kinematic variables and jet images, which

were meant to target the dominant background (tt̄ production), as evidenced in figures 1, 3

and 8. Although the subdominant backgrounds are also reduced in this process, they

remain rather flat in figure 10.

The deep learning score shown in in figure 10 can now be used as a signal-to-background

discriminator. By placing a lower cut and counting the number of surviving signal and

10Our current analysis has several notable improvements over the one carried out in ref. [39]. First, the

detector simulation is different — in the current study, we use Delphes, which assumes (on average) ∼ 90%

(∼ 80%) reconstruction efficiency for leptons (b-jets), while ref. [39] assumed 100% reconstruction efficiency

for both. In addition, the Delphes detector resolution itself is slightly different from one used in ref. [39].

In particular we find that the resolution of the missing transverse momentum is worse in Delphes and

hence our current results are more conservative (if not more realistic). Finally, as mentioned earlier, we are

now including tW + j production, which turned out to be the next dominant background, yet was missing

from all previous studies. These effects should be kept in mind when comparing our results here to previous

results in the literature.
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Figure 11. A ROC curve (left panel) and signal significance as a function of the number of

signal events (right panel). The vertical lines mark N = 20 signal events, which corresponds to

εsignal = 0.64.

background events, one obtains the efficiency curve (also known as a receiver operating

characteristic (ROC)) shown in the left panel of figure 11. The curve contains several

independent runs of deep learning and shows the signal efficiency (εsignal) versus the frac-

tion of rejected background events, i.e., 1− εbknd, where εbknd is the background efficiency.

The efficiency corresponding to the results in figure 10 is shown with the red solid curve

labeled “with jetimage DNN”. The other two solid lines show the efficiencies which would

be obtained if we were to remove the jet images from the analysis: the purple solid curve

(labelled “10var only DNN”) is obtained with the help of the 10 low-level kinematic vari-

ables, while the blue solid curve (labelled “16var only DNN”) shows the improvement when

we add the 6 high-level variables and use the full set of 16 variables from section 3, but

still without jet images. The black dotted curve (labeled “jet image only DNN”) shows

the result when we use jet images alone, with no help from any of the 16 kinematic vari-

ables. Finally, the blue dashed line (labelled “10var with jetimage DNN”) shows the result

from an analysis combining jet images with the 10 low-level kinematic variables only. The

corresponding signal significances are shown as a function of the number of events in the

right panel of figure 11. Note that the right panel contains an additional curve (the purple

dashed line labeled “10var only BDT”) where we use the 10 low-level variables and adopt a

BDT algorithm using the TMVA tool kit [105]. The comparison of the latter line against

the “10var only DNN” result (purple solid line) reveals the relative performance of DNN

versus BDT.

In order to examine the effects of pile-up, we use several methods as follows. In the

first method, we use the Soft Drop algorithm [58] to remove soft jet activity which is

exacerbated by pile-up. We set β = 0 and zcut = 0.1 with R = 1.2 anti-kT clustered fatjets.

Then we select the closest fatjet to the bb̄ momentum in the η-φ plane and replace the

particle flow data with the charged and neutral jet constituents of the selected fatjet. Soft

Drop does not affect the jet images and retains the same shapes as in figure 8. In second
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Signal tt̄ tt̄h tt̄V ``bj ττbb tw + j jj``νν σ S/B

Baseline cuts : /PT > 20 GeV,

0.01046 1.8855 0.0269 0.0179 0.0697 0.0250 0.2209 0.0113 0.38 0.0046
pT,` > 20 GeV, ∆R`` < 1.0,

pT,b > 30 GeV, ∆Rbb < 1.3,

m`` < 65 GeV, 95 < mbb < 140 GeV

jet-image DL 0.00667 0.1855 0.0147 0.00731 0.0243 0.0128 0.0626 0.00786 0.65 0.021

10 low-level variables DL 0.00668 0.0738 0.0132 0.00529 0.0184 0.00842 0.0424 0.00516 0.89 0.040

16 variables DL 0.00668 0.0676 0.0109 0.00454 0.0163 0.00689 0.0376 0.00418 0.94 0.045

10 variables + jet-image DL 0.00667 0.0630 0.00964 0.00429 0.0194 0.00791 0.0343 0.00393 0.96 0.047

16 variables + jet-image DL 0.00668 0.0602 0.00914 0.00252 0.0133 0.00689 0.0299 0.00344 1.0 0.053

Table 1. Signal and background cross sections in fb after baseline cuts (first row) and at different

stages of analysis, using a combination of kinematic variables and jet images while requiring N = 20

signal events. The significance σ is calculated using the log-likelihood ratio for a luminosity of 3 ab−1

at the 14 TeV LHC.

method, we remove the neutral jet image layer in the analysis. Unlike charged particles,

which can be cleaned up from pile-up relatively easily by checking the longitudinal vertex

information [106], neutral particles cannot be treated the same way and suffer from non-

removable pile-up effects. The corresponding results with these two pile-up mitigation

methods are also shown in figure 11 with the red dotted line labelled “16var with jetimage

DNN, SoftDrop” and the red, dashed line labelled “16var with jetimage DNN, no neutral

layer”, respectively.

We also examine the performance of the DNN with four momentum information as in-

put. The corresponding results are shown in figure 11, where the green-dashed (green-solid)

curve represents the significance with four momentum information only (four momentum

information plus jet images). The inputs are 18 real numbers, i.e. the four momenta of

the two leptons and the two b-tagged jets and the missing transverse momentum. For this

exercise, we use a 4 × 128 dense layer instead of a 4 × 64 dense layer. We notice that

the DNN performance with kinematic variables is better. This is because, in general, the

use of four momenta requires a large training sample in order to be effective, while the

kinematic variables already perform efficiently with a smaller data set. If the architecture

is deep enough with a large amount of data, the DNN performance with four momentum

information would be comparable (or better) to that with kinematic variables only. This

exercise illustrates the importance of the appropriate use of kinematic variables.

In summary, figure 11 demonstrates that jet images (which capture the effects of color

flow) can improve performance over the baseline selection cuts. At the same time, DL

with jet image substructure alone does not show the best performance, and becomes fully

effective (and still stable under pile-up) only when it is combined with the full set of 16

variables, including the high-level ones.

Table 1 summarizes the signal and background cross sections in fb at different stages

of the analysis for the case of N = 20 signal events. The last two columns show the signal

significance σ and the signal-to-background ratio S/B. The significance is calculated using

the log-likelihood ratio for a luminosity of 3 ab−1 at the 14 TeV LHC.
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Figure 12. Correlation of the deep learning scores obtained in independent DL analyses using

the 16 kinematic variables only (x-axis) and jet images only (y-axis) for signal (left panel) and

background (right panel).

In order to understand the correlation between jet images and the 16 kinematic vari-

ables, we performed two independent runs with “jet images only; no kinematic variables”

and “16 kinematic variables; no jet images”. The corresponding results are shown in fig-

ure 12. Since the two DLs are trained separately, both the x-axis and the y-axis are

normalized to unity. As expected, figure 12 reveals a degree of correlation between the jet

images and the 16 kinematic variables, which is somewhat stronger for the signal and less

so for the background.

In our main analysis, we performed simultaneous runs as shown in the deep learning

architecture in figure 9. Before calculating our final deep learning score, we obtain three

intermediate values, α, β, and γ, which represent the DL scores for the respective sub-

structure corresponding to the jet images, the 6 high level variables and the 10 low level

variables. The first 6 panels in figure 13 show the pair-wise correlations between these three

intermediate scores for the signal (top row) and the background (middle row). The bottom

three panels in the figure show the one-dimensional distributions of the intermediate scores

for signal (blue histograms) and background (red histograms). We observe that the score

from jet images (α) is relatively uncorrelated to the kinematic variables scores β and γ,

which motivates the simultaneous training on jet images and kinematic variables together.

Finally, in figure 14 we scan over different values of the triple Higgs coupling κ3 and

show the discovery significance (left panel) and precision (middle panel) as a function of

κ3. Both the significance σ and the precision ∆χ2 are calculated fixing DL cuts that would

give a certain number of signal events (N = 15, 20, 25, 30) for the SM at κ3 = 1 (marked

with the dotted vertical line). For the significance, we used the log-likelihood-ratio

σdis ≡

√
−2 ln

(
L(B|S+B)

L(S+B|S+B)

)
with L(x|n) = xn

n!
e−x , (6.1)

where S and B are the expected number of signal and background events, respectively. We
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Figure 13. Correlations among the intermediate DL substructure scores for jet images, the 6 high

level variables and the 10 low level variables. The top (middle) row shows the correlations for signal

(background) events and the bottom row shows the corresponding distributions for each individual

substructure score.

define ∆χ2 as

∆χ2 =


(
S(κ3) +B

)
−
(
S(κ3 = 1) +B

)
√
S(κ3 = 1) +B

2

. (6.2)

The shape of the significance roughly follows the cross section ratios between the case

of κ3 6= 1 to the case of κ3 = 1. This is illustrated in the rightmost panel of figure 14,

which shows the cross section scaled as σ(κ3)/min
(
σ(κ3)

)
, i.e., normalized with respect

to the minimum cross section for each curve. The blue curve represents the double Higgs

production cross section before cuts, and in this case we find the minimum of the cross

section somewhere between κ3 = 2 and κ3 = 3. After baseline cuts (the red solid line), the

minimum shifts to around κ3 ∼ 4, and after DL cuts (the green solid line), the minimum

shifts even further out to around κ3 ∼ 5. In the latter case, we observe that the signal

cross sections for κ3 = 1 and κ3 = 8 are numerically very close, as indicated by the two

vertical dotted lines in the right panel. This provides an explanation for the double dip

structure seen in the middle panel of figure 14.
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Figure 14. The discovery significance (left panel) and precision (middle panel) as a function of

κ3. Both the significance and the precision are calculated fixing DL cuts that would give a certain

number of signal events (N = 15, 20, 25, 30) for the SM at κ3 = 1 (marked with the dotted vertical

line). The shape of the significance roughly follows the cross section ratios between the case of

κ3 �= 1 to the case of κ3 = 1. This is illustrated in the right panel, which shows the scaled cross

section, computed as σ(κ3)/min
(
σ(κ3)

)
for each curve.

As demonstrated in the rightmost panel of figure 14, the analysis cuts modify the signal

cross section so that the location of its minimum shifts to higher values of κ3. This can be

understood as follows. At leading order, the Higgs pair production cross section is given by

σgg→hh(ŝ) =
α2
s

215v4π2ŝ2

∫
dt̂(|F1|2 + |F2|2) ≈ c� κ23 + c�,� κ3 + c� , (6.3)

before convoluting with the parton distribution functions [107, 108]. Here F1 represents a

parity-even triangle and box diagram contribution, while F2 is a parity-odd box diagram

contribution. Now F1 can be rewritten as F1 = κ3F� + F�, where F� is the triangle

diagram contribution and F� is the box diagram contribution. Therefore the cross section

can be parameterized as a quadratic function of κ3, where the c coefficients are related to

contributions from � and � diagrams.

The observation that the baseline cuts and the DL cut shift the minimum cross section

to a larger κ3 value implies that the effects of the cuts are stronger on c� than c�,�. In

other words, our cuts are more likely to affect the triangle diagram which contains the

triple Higgs coupling. Unlike the box diagram, the triangle diagram includes an off-shell

Higgs in the s-channel. Since it is harder to produce a Higgs pair from an s-channel off-shell

Higgs, the Higgs pair generated from the triangle diagram is not as energetic as the one

coming from the box diagram, and will therefore tend to have lower transverse momentum.

As discussed in section 4, several of the cuts on our kinematic variables, namely, ∆Rbb,

∆R��, ∆φbb,��, pTbb and pT��, rely on the fact that the Higgs bosons are produced with a

significant boost. Consequently, the effect of the cuts will be to suppress the c� term and

enhance the box diagram contribution, which in turn shifts the location of the minimum

to a larger value of κ3.

Note that the results for the significance and the precision in figure 14 do not change

dramatically when we require a different number of signal events at the SM point. This
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Figure 15. Cross section σDL(pp → hh → bb�+�−νν̄) in pb after cutting on the DL score (left

panel) and the ratio σDL/σbaseline between the cross section σDL after the DL cut and the cross

section σbaseline after baseline cuts (right panel).

means that the dependence on the DL cut is relatively mild, since the kinematics remains

similar when we vary κ3, so that the dependence on the cross section is more important.

This is illustrated in figure 15, which shows the cross section (in pb) after cutting on the

DL score, σDL(pp → hh → bb�+�−νν̄), (left panel) and the ratio σDL/σbaseline between

the cross section σDL after the DL cut and the cross section σbaseline after baseline cuts

(right panel).

7 Discussion

In this paper, we investigated double Higgs production in the hh → bbWW ∗ → bb��+ /�PT

final state. It is known to be one of the difficult channels due to the large backgrounds,

σbknd/σhh ∼ 105. We performed a detailed analysis by adopting a deep learning framework

and successfully combining new kinematic variables and jet image information. As a result,

we obtained a sizable increase in signal sensitivity and an improved signal-to-background

ratio compared to the existing analyses.

Our results showed that the dominant tt̄ background can be brought down to the

level of the other remaining backgrounds, without sacrificing too much in the signal rate.

This is mostly due to the use of Higgsness, Topness and the subsystem variable M
(b)
T2 .

Other backgrounds like bbττ can be reduced further by the use of M
(�)
T2 . Finally, additional

improvements are possible with the use of jet images. After all cuts, we find that all

backgrounds contribute at similar levels.

We find from recent CMS and ATLAS analyses with 36 fb−1 of LHC data at 13TeV

that the 95% confidence level observed (expected) upper limit on the production cross

section is 22.2 (12.8) times the standard model value [7] for CMS and 6.7 (10.4) times the

predicted Standard Model cross-section [109] for ATLAS. The leading channel in CMS is

bbγγ followed by bbττ , while the leading channels in ATLAS are bbττ and bbbb, followed
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by bbγγ. The main difference arises due to the superior b-tagging efficiency for the ATLAS

detector [14]. In both studies, the bbWW ∗ channel was largely overlooked due to the

expected poor significance. However, our study suggests that double Higgs production

may be probed in the dilepton bbWW ∗ channel as well, and would contribute to the

combined analysis on par with the other final states, increasing the overall significance. For

example, in ref. [13], the ATLAS collaboration showed that the combined significance of

hh→ bbbb, hh→ bbττ , and hh→ bbγγ is 3.5 (3.0) without (with) systematic uncertainties

at the 14 TeV LHC with 3 ab−1. Their individual significance is 1.4, 2.5 and 2.1 (0.61,

2.1 and 2.0), respectively without (with) systematics. They did not combine with the

hh → bbWW ∗ channel but a naive estimate shows that when including our channel, the

combined significance would be about 3.7.

We urge the experimental collaborations to consider the ideas presented in this paper

and test them in the LHC data. We would also like to mention that the proposed method

can be easily generalized to the semi-leptonic channel from hh → bbWW ∗ production, as

well as to other processes with similar final states.
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A Deep Neural Network

The artificial neural network (ANN) is one of the most popular approaches to pattern

recognition in machine learning algorithms. The structure of an ANN is defined by a

succession of non-linear and linear transformations between nodes or artificial neurons,

which are located on input, output or hidden layers. A hidden layer which uses an ordinary

one-dimensional layer is called a dense layer or a fully connected layer.

The linear operation consists of weights and bias:

O[i] =

nI−1∑
j=0

(W[i, j]I[j] + B[i]) , i = 0, · · · , nO − 1 , (A.1)

where I[j] is the value of the j-th neuron (input) in the prior layer, O[i] the value of the

i-th neuron (output) in the subsequent layer, W[i, j] are the weights, and B[i] the bias. The

index i (j) takes the values 0, · · · , nO−1 (0, · · · , nI−1) and nO (nI) is the dimension of the

output (input). The input initially can be given in more than one dimension. For example,

if the input results from a convolution and has dimension n × n, it may be rearranged as

– 26 –



J
H
E
P
0
9
(
2
0
1
9
)
0
4
7

follows:

I[j] = (I[1, 1] · · · I[1, n] · · · I[n, 1] · · · I[n, n]) , (A.2)

where the corresponding dimension of the input would be nI = n2.

The non-linear transformation is often called activation function, which imitates the

action potential of biological neurons. Similar to how each neuron adjusts how much signal

it needs to deliver to the next neuron using an electric action potential, the activation

function determines the output of a particular neuron for a set of given inputs from neurons

on the previous layer, and the output is then used as input for the next artificial neuron.

The commonly used activation functions are

ReLU(x[i]) = max(0, x[i]) , (A.3)

Sigmoid(x[i]) =
1

1 + e−x[i]
, (A.4)

SoftMax(x[i]) =
ex[i]∑
i e
x[i]

, (A.5)

where x[i] represents the value of the i-th neuron.

If the neural network has sufficiently many hidden layers, the network is called deep

neural network (DNN). DNN can learn from the input data to obtain the desirable output

by adjusting the parameters in the hidden layers. We note that the proper normalization

of the input data helps improve convergence during training. The goal of the training is

to determine the parameters (weights and biases) by minimizing the loss, which represents

the difference between the target output and the actual DNN output. There are vari-

ous algorithms for optimization of the parameters [104, 110, 111]. Some well known loss

functions are

Mean Square Error =
1

n

n∑
i=1

(x[i]− t[i])2 , (A.6)

Cross Entropy = −
n∑
i=1

t[i]log(x[i]) , (A.7)

Cross Entropy with SoftMax = −
n∑
i=1

t[i]log(SoftMax(x[i])) , (A.8)

where {t[i]} is the true answer (either 1 or 0 in our current study), {x[i]} is the DNN final

output, and n is the number of neurons in the output layer.

Instead of feeding the entire data into the DNN all at once, one splits the input data

into several subsets with random selection and takes one subset, called mini-batch, for

a given iteration, which helps avoid the over-fitting problem [112, 113]. When the full

training set is used, the cycle is called epoch, and one uses several epochs to obtain a well-

trained DNN. When training DNN with a mini-batch, the corresponding loss is defined by

the sum of all losses over the mini-batch or by their average.

Once the training is over, for testing one uses a different data set from the one used in

the DNN training, in order to avoid the over-fitting problem. In order to test the trained
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DNN model one can use either the loss function or the classification error function. If the

number of test events is n, the classification error function is defined by

Classification Error =
1

n

n∑
j=1

δ[ArgMax({t[i]}j),ArgMax({x[i]}j)], (A.9)

where ArgMax({y[i]}) gives the position imax where the value of {y[i]} is maximized. j

represents the j-th test event, the δ is Kronecker delta function.

Often one takes additional steps such as dropout for reducing over-fitting in neural

networks [114] and batch normalization for improving the performance and stability of

artificial neural networks [101]. Dropout makes a random drop of units (both hidden

and visible) in a neural network and is considered an efficient way of performing model

averaging. The batch normalization procedure normalizes the input layer by adjusting and

scaling the activations:

O[i] = γÎ[i] + β , (A.10)

Î[i] =
I[i]− µ[i]√
(σ[i])2 + ε

, (A.11)

µ[i] =
1

n

n∑
α=1

I[i]α , (A.12)

(
σ[i]
)2

=
1

n

n∑
α=1

(
I[i]α − µ[i]

)2
, (A.13)

where α represents the α-th input in a mini-batch and n is the size of the mini-batch. The

dimensions of input and output are the same. Note that (γ, β) are the learned parameters

during the training and ε is a parameter added to avoid a divergence in the denominator.

The batch normalization allows each layer of a network to learn by itself independently of

the other layers.

A convolutional neural network (CNN) is a class of DNN, most commonly used to

analyze images. CNN utilizes filters made of a set of neurons with a fixed size. The value

of parameters in each filter is learned during the training process. By varying the position

of the filters on the input and learning the values of different filters, CNN can find local

features of the input data. This process is called convolution and a hidden layer which uses

convolution is called a convolutional layer. With n′f filters whose size is (nfs × nfs), the

convolution is defined as follows

O[i, j, k] =

nf−1∑
γ=0

∑
α,β

(
W[α, β, γ, k]I[α, β, γ] + B[k]

)
, (A.14)

where the dimension of the input is nf×(n×n) and the dimension of output is n′f×(n′×n′).
The corresponding ranges of the parameters are k = {0, · · · , n′f − 1}, α = {i, · · · , i+ nfs},
β = {j, · · · , j + nfs}, i, j = {0, ns, 2ns, · · · , n′}, n′ = n/ns − nfs + ns, and ns is called

the stride.
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Since each filter has a finite size, the output size decreases, after applying the convo-

lution (A.14) on the input or on the output from a previous layer. In order to prevent the

size reduction, CNN incorporates the padding process:

I =

(
α β

γ δ

)
→ O =


0 0 0 0

0 α β 0

0 γ δ 0

0 0 0 0

 , (A.15)

which increases the size of the original input by adding zeros around it. Usually the padding

is used before applying convolution or pooling.

CNN may include local or global pooling layers (often called sub-sampling), which

combine the output of several neurons at one layer to a single neuron in the next layer. For

example, max (average) pooling takes the maximum (average) value from a set of neurons

at the previous layer and passes it to next layer. For a pooling dimension np, the relation

between the output with dimension nf×(n′×n′) and the input with dimension nf×(n×n)

is given by

O[i, j, k] = Max (Average)({I[α, β, k]}) , (A.16)

where α = {i, · · · , i + np}, β = {j, · · · , j + np}, k = {0, · · · , nf − 1}, i, j =

{0, ns, 2ns, · · · , n′}, n′ = n/ns − np + ns, and ns is the stride.

Another beneficial feature of a CNN is the reduction of the number of parameters

via convolution and pooling, which effectively increases the learning speed in deep neutral

networks. A typical DNN architecture consists of a combination of convolutional layers

and dense layers, which provides better performance compared to a NN with only one type

of layers [115].

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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