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1 Introduction

Supersymmetric quantum field theories are an invaluable tool for probing strong coupling

dynamics. Unbroken supersymmetry permits the use of non renormalization theorems

and supersymmetric localization techniques [1–4] in order to non perturbatively compute

observables such as partition functions and Wilson loops. Supersymmetry is also relevant

for extending the Standard Model to higher energies and plays a pivotal role in holographic

dualities and string theory. A question of paramount importance, therefore, is whether

supersymmetry is anomalous at the quantum level.

Several supersymmetry anomalies have been discussed in the literature and fall into two

broad classes, depending on whether they appear in the gamma trace or in the divergence

of the supercurrent. The gamma trace of the supercurrent is in the same multiplet as the

trace of the stress tensor and the divergence of the R-current [5] and so the corresponding

supersymmetry anomalies are part of the multiplet of superconformal anomalies [6–18].

Anomalies in the gamma trace of the supercurrent arise also in non Abelian supersymmetric

gauge theories if one insists on a gauge invariant supercurrent that is conserved [19–24].

The supersymmetry anomalies we are concerned with here, however, are those arising

in the divergence of the supercurrent. Such anomalies have been less studied and are often

believed to be absent in physical theories. The first examples of supersymmetry anoma-

lies in the divergence of the supercurrent were found in the context of supersymmetric

theories with gauge anomalies. In particular, the fact that the Wess-Zumino consistency

conditions [25] imply the presence of a supersymmetry anomaly whenever the theory has

a gauge anomaly was pointed out in [26] (see also [27–29] and [30] for a review). However,

gauge anomalies must be canceled for the consistency of the theory at the quantum level,

and so the corresponding supersymmetry anomaly is canceled as well. An anomaly in the

divergence of the supercurrent was also found in the presence of a gravitational anomaly

in two-dimensional theories in [31–33]. This anomaly is conceptually closer to the super-

symmetry anomalies we discuss here since it is related to a global anomaly, which need not

be canceled.

Anomalies in the divergence of the supercurrent have also been discussed in the context

of supergravity theories [10, 11, 34]. These works focused on dynamical or on-shell super-

gravity, but some of the supersymmetry anomalies identified there appear as well in off-shell

background supergravity, which is relevant for studying global supersymmetry anomalies in

supersymmetric quantum field theories. Global anomalies are a property of the theory and

do not lead to any inconsistencies. They have physical consequences, such as the violation

of selection rules [35, 36] and the transport properties of the theory [37]. In particular,

global supersymmetry anomalies do not render a quantum field theory inconsistent, but

they imply that supersymmetry cannot be gauged, i.e. the theory cannot be consistently

coupled to dynamical supergravity at the quantum level. Moreover, global supersymmetry

anomalies may violate some of the conditions required in order for non-renormalization

theorems and supersymmetric localization techniques to be applicable.

Classifying global supersymmetry anomalies is therefore particularly relevant following

the recent advances in supersymmetric localization techniques for quantum field theories on
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curved backgrounds [4] (see [38] for a comprehensive review). A systematic way for placing

supersymmetric quantum field theories on curved backgrounds was developed in [39] and

involves coupling the theory to a given off-shell background supergravity. This corresponds

to turning on background fields for the current multiplet operators. Rigid supersymmetry

on purely bosonic backgrounds can then be defined independently of the details of the

microscopic theory through the Killing spinor equations obtained by setting to zero the su-

persymmetry variations of the background supergravity fermions. This procedure leads to

a classification of supersymmetric backgrounds preserving a number of supercharges [40–54]

(see also [55] for earlier work). However, the corresponding rigid supersymmetry may or

may not be preserved at the quantum level.

The fact that rigid supersymmetry defined in this way can be anomalous at the quan-

tum level was first pointed out in the context of theories with a holographic dual [56–58].

The anomaly in rigid supersymmetry refers to a local term in the quantum supersymmetry

transformation of the supercurrent and depends on the bosonic background. This bosonic

term is directly related to the (fermionic) supersymmetry anomalies in the divergence and

(in the case of conformal supergravity backgrounds) the gamma trace of the supercurrent.

The form of these anomalies for any four dimensional superconformal field theory on back-

grounds of N = 1 conformal supergravity was derived in [59] by solving the corresponding

Wess-Zumino consistency conditions. The presence of these supersymmetry anomalies was

also verified through a perturbative calculation of flat space four-point functions involving

two supercurrents and either two R-currents or one R-current and a stress tensor in the

free and massless Wess-Zumino model [60, 61].

In this paper we consider off-shell new minimal supergravity in four dimensions [62–65]

in the presence of an arbitrary number of Abelian vector multiplets. This provides a suitable

set of background fields for the R-multiplet of current operators that exists for supersym-

metric theories with a U(1) R-symmetry [66, 67], as well as for an arbitrary number of

flavor multiplets. We determine the algebra of local symmetry transformations and iden-

tify a specific relation with the symmetry algebra of N = 1 conformal supergravity. This

allows us to derive the supersymmetry anomalies of the new minimal gravity multiplet

from those of N = 1 conformal supergravity obtained in [59]. Six additional candidate

anomalies are found in the presence of vector multiplets by directly solving the Wess-

Zumino consistency conditions for new minimal supergravity to leading non trivial order

in the gravitino and the flavorinos. These results extend our earlier analysis for N = 1

conformal supergravity [59, 60] to non conformal theories with an arbitrary number of

Abelian flavor symmetries. We find that the presence of either an R-symmetry or a flavor

symmetry anomaly necessarily leads to a supersymmetry anomaly, irrespective of whether

the theory is conformal or not. This result is consistent with the observation of [68] that in

theories with an R-multiplet supersymmetry can be non anomalous provided R-symmetry

is non anomalous. The supersymmetry anomaly is cohomologically non trivial and cannot

be removed by a local counterterm without breaking diffeomorphism and/or local Lorentz

symmetry. Moreover, it implies that the fermionic operators in the current and flavor mul-

tiplets acquire an anomalous supersymmetry transformation at the quantum level, even

on purely bosonic backgrounds. The significance of this anomalous transformation for su-
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persymmetric quantum field theory observables on new minimal supergravity backgrounds

that preserve a number of supercharges is discussed.

The paper is organized as follows. In section 2 we review the local symmetry algebra

of off-shell new minimal supergravity in four dimensions and we discuss its relation to the

symmetry algebra of N = 1 conformal supergravity. In section 3 we utilize this relation

in order to derive the Ward identities and anomaly candidates for the gravity multiplet of

new minimal supergravity from those of N = 1 conformal supergravity. These results are

generalized in section 4 to include background fields for an arbitrary number of Abelian

flavor multiplets. In section 5 we derive the anomalous supersymmetry transformations

of the supercurrent and of the fermionic operators in the flavor multiplets as a result of

the anomaly in the conservation of the supercurrent. These are specialized in section 6

to rigid supersymmetry transformations on new minimal supergravity backgrounds that

admit Killing spinors and the implications for supersymmetric observables are discussed.

We conclude with a number of open questions in section 7. Appendix A contains a summary

of the results of [59] for N = 1 conformal supergravity, while in appendix B we provide the

details of the Wess-Zumino consistency conditions calculation for the anomaly cocycles in

the presence of flavor multiplets. Our spinor conventions follow those of [69] and several

useful gamma matrix identities can be found in appendix A of [59].

2 The local symmetry algebra of new minimal supergravity

We begin by reviewing some basic aspects of new minimal supergravity [62–65], including

its local symmetry transformations and the corresponding algebra. As we will see, the

gravity multiplet of new minimal supergravity can be formulated in terms of an effective

gravity multiplet of N = 1 conformal supergravity, allowing one to read off both the local

symmetry algebra and the gravity multiplet anomalies directly from those of conformal

supergravity computed in [59].

The field content of new minimal supergravity consists of the vielbein eaµ, an Abelian

gauge field Aµ, an Abelian 2-form field Bµν and a Majorana gravitino ψµ, comprising 6 + 6

bosonic and 12 fermionic off-shell degrees of freedom. Several properties of new minimal

supergravity simplify when expressed in terms of the composite gauge field

Cµ ≡ Aµ −
3

2
Vµ, Vµ ≡

1

4
εµ
νρσ

(
∂νBρσ −

1

2
ψνγρψσ

)
. (2.1)

Crucially, the composite field Cµ transforms as a gauge field of N = 1 conformal super-

gravity.

2.1 Local symmetry transformations

The local symmetries of new minimal supergravity are diffeomorphisms ξµ(x), local

frame rotations λab(x), 0-form gauge transformations θ(x), 1-form gauge transformations

Λµ(x), and Q-supersymmetry transformations ε(x). Under these the supergravity fields
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transform as1

δeaµ = ξλ∂λe
a
µ + eaλ∂µξ

λ − λabebµ −
1

2
ψµγ

aε,

δψµ = ξλ∂λψµ + ψλ∂µξ
λ − 1

4
λabγ

abψµ +Dµε+
i

2
V νγµγνγ

5ε− iγ5θψµ,

δAµ = ξλ∂λAµ +Aλ∂µξ
λ +

i

4
εγµγ

ρσγ5

(
Dρψσ +

i

2
V νγργνγ

5ψσ

)
+ ∂µθ,

δBµν = ξλ∂λBµν +Bλν∂µξ
λ +Bµλ∂νξ

λ + ψ[µγν]ε+ ∂µΛν − ∂νΛµ, (2.2)

where the covariant derivatives of the gravitino and the spinor parameter ε are as in N = 1

conformal supergravity and are given respectively in (A.2) and (A.8). In new minimal

supergravity, however, the gauge field Cµ in the covariant derivatives is identified with the

composite field (2.1).

Comparing the transformations (2.2) with those in N = 1 conformal supergravity

given in eq. (A.4) in appendix A, one notices that the transformation of the vielbein is

the same in new minimal and conformal supergravity provided the Weyl transformation

parameter σ of conformal supergravity is set to zero. Similarly, the gravitino transforma-

tions coincide provided the Weyl parameter σ and the S-supersymmetry parameter η of

conformal supergravity are set to

σ = 0, η = − i
2
V ργργ

5ε. (2.3)

Using the following transformation of the composite vector field Vµ defined in (2.1)

δVµ = ξλ∂λVµ + Vλ∂µξ
λ − 1

4
εµν

ρσεγνDρψσ +
1

4
V νεγµ

σγνψσ +
1

2
V νεγνψµ, (2.4)

the values (2.3) of the conformal supergravity parameters ensure also that the transforma-

tion of the composite gauge field Cµ defined in (2.1) coincides with that of the gauge field

in conformal supergravity given in (A.4), namely

δCµ = ξλ∂λCµ + Cλ∂µξ
λ +

3i

4
φµγ

5ε− 3i

4
ψµγ

5η + ∂µθ, (2.5)

where φµ is defined in (A.1). In summary, the fields eaµ, ψµ and Cµ in new minimal

supergravity transform exactly as the corresponding fields in N = 1 conformal supergravity,

provided the Weyl and S-supersymmetry parameters of conformal supergravity are set to

the values in (2.3). This observation allows us to deduce the local symmetry algebra of

new minimal supergravity from the algebra of N = 1 conformal supergravity.

1An interesting possibility is to promote the Abelian 0-form and 1-form symmetries of new minimal

supergravity to a 2-group symmetry by modifying the gauge transformation of the 2-form field to include

a term of the form [70–72]

δθBµν =
κ

2π
θFµν ,

where Fµν = ∂µAν − ∂νAµ and κ is a constant. It would be interesting to determine whether the algebra

can be adjusted to close off-shell in the presence of this deformation, and if so how the quantum anomalies

would be modified. However, we will not consider this possibility in the present work.
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2.2 Local symmetry algebra

The relation between new minimal and conformal supergravities discussed above can be

formulated as a map between the so called Ward operators of new minimal supergravity,

δNM, that generate the local symmetry transformations (2.2), and those of conformal super-

gravity, δC . We have shown that the Ward operators of diffeomorphisms, local Lorentz and

U(1) gauge transformations coincide in new minimal and conformal supergravities, namely

δNM
ξ = δC

ξ = δξ, δNM
λ = δC

λ = δλ, δNM
θ = δC

θ = δθ. (2.6)

Moreover, the Ward operator of Weyl transformations is identically zero in new minimal

supergravity, while the Ward operator of Q-supersymmetry in new minimal supergravity

is the sum of the Q- and S-supersymmetry Ward operators in conformal supergravity, i.e.

δNM
σ = 0, δNM

ε = δC
ε + δC

η(ε), (2.7)

with η(ε) given in (2.3). In addition, new minimal supergravity contains the Ward operator

of 1-form gauge transformations δNM
Λ . It follows that all new minimal supergravity commu-

tators that do not involve δNM
Λ can be determined directly from the algebra of conformal

supergravity, up to terms involving δNM
Λ .

Let us first consider the commutator [δNM
ε , δNM

ε′ ]. Up to a possible contribution of δNM
Λ

on the r.h.s. that can be determined separately, this commutator can be read off from

the algebra of conformal supergravity. Using (2.7) and the conformal supergravity algebra

in (A.10) we obtain

[δNM
ε , δNM

ε′ ] = [δC
ε +δC

η , δ
C
ε′ +δ

C
η′ ] = [δC

ε , δ
C
ε′ ]+[δC

ε , δ
C
η′ ]+[δC

η , δ
C
ε′ ] = δξ+δλ+δθ+δC

σ , (2.8)

where the field dependent parameters of the bosonic transformations on the r.h.s. are

given by

ξµ =
1

2
ε′γµε,

σ =
1

2
(εη′ − ε′η) = − i

4
V ν
(
εγνγ

5ε′ − ε′γνγ5ε
)

= 0,

θ = −1

2
(ε′γνε)Cν −

3i

4
εγ5η′ +

3i

4
ε′γ5η = −1

2
(ε′γνε)Aν ,

λab = −1

2
(ε′γνε) ων

a
b −

1

2
εγabη

′ +
1

2
ε′γabη = −1

2
(ε′γµε)

(
ωµ

a
b + εµν

a
bV

ν
)
. (2.9)

Notice that the Weyl parameter σ vanishes as required by the conditions (2.3). In order

to detect the possible presence of δNM
Λ on the r.h.s. of the commutator [δNM

ε , δNM
ε′ ] we need

to evaluate it on Bµν . A straightforward calculation determines that

[δNM
ε , δNM

ε′ ]Bµν = (δξ + δNM
Λ )Bµν , (2.10)

where ξµ is as in (2.9) and

Λµ = −ξµ +Bµνξ
ν . (2.11)

– 5 –



J
H
E
P
0
9
(
2
0
1
9
)
0
3
9

All remaining commutators either follow trivially from the corresponding ones in con-

formal supergravity, or they can be easily evaluated directly. Putting everything together,

one finds that the non-vanishing commutators in new minimal supergravity are [63]2

[δξ, δξ′ ] = δξ′′ , ξ′′µ = ξν∂νξ
′µ − ξ′ν∂νξµ,

[δλ, δλ′ ] = δλ′′ , λ′′ab = λ′acλ
c
b − λacλ′cb,

[δNM
ε , δNM

ε′ ] = δξ + δλ + δθ + δNM
Λ , ξµ =

1

2
ε′γµε, λab = −ξµ

(
ωµ

a
b + εµν

a
bV

ν
)
,

θ = −ξµAµ, Λµ = −ξµ +Bµνξ
ν . (2.12)

The local parameters ξµ, λab, θ and ε transform as those in conformal supergravity with

σ = 0 (see eq. (A.9)), while the 1-form gauge parameter Λµ transforms as

δΛµ = ξν∂νΛµ + Λν∂µξ
ν . (2.13)

The algebra (2.12) is the starting point for computing the candidate anomalies of new

minimal supergravity by solving the corresponding Wess-Zumino consistency conditions.

3 Ward identities and anomalies for the R-multiplet

Supersymmetric theories with a U(1)R symmetry admit an R-multiplet [66], which couples

to new minimal background supergravity [67]. In this section we derive the Ward identities

for the R-multiplet and we determine the corresponding bosonic and fermionic anomaly

candidates. The relation between the local algebra of new minimal and conformal super-

gravity we identified in the previous section allows us to simply read off the R-multiplet

anomalies from those of N = 1 conformal supergravity found in [59], without having to

solve the Wess-Zumino consistency conditions for new minimal supergravity.

3.1 R-multiplet anomalies

In four dimensions there are no genuine gravitational or Lorentz anomalies [73], and 1-

form symmetries are also non anomalous.3 It follows that in a scheme (i.e. a choice of

local counterterms) where the mixed axial-gravitational anomaly enters exclusively in the

divergence of the R-current (see e.g. eq. (2.43) of [74]) the R-multiplet anomalies can be

parameterized as

δΩNM
W =

∫
d4x e

(
− θANM

R − εANM
Q

)
, (3.1)

where W [e,A,B, ψ] is the generating functional of connected correlation functions of the

R-multiplet currents and ΩNM = (ξ, λ, θ,Λ, ε) denotes the set of local transformation pa-

rameters of new minimal supergravity.

2The commutator [δNM
ε , δNM

ε′ ] produces also a supersymmetry transformation with parameter ε′′ ∼
ξµψµ [63, 64]. This term has no effect when working to leading order in the gravitino and so we do

not include it in our analysis.
3A candidate 1-form symmetry anomaly of the form

∫
e Λµε

µνρσ∂νBρσ can be canceled by the local

counterterm
∫
B ∧ B. See [10, 11] for a classification of candidate anomalies in new minimal supergravity

and [71] for a discussion of 1-form symmetry anomalies in connection to 2-group symmetries.
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In the previous section we saw that R-symmetry transformations in new minimal and

conformal supergravity coincide, while Q-supersymmetry transformations in new minimal

supergravity correspond to the sum of a Q-supersymmetry and an S-supersymmetry trans-

formation of an effective N = 1 conformal supergravity, with gauge field as in (2.1) and

effective S-supersymmetry parameter η(ε) as in (2.3). It follows that the new minimal su-

pergravity anomalies ANM
R and ANM

Q can be obtained directly from the anomalies of N = 1

conformal supergravity. Namely, from (A.12) we determine that

ANM
R = AC

R = κ(1)G̃G+ κ(2)P,

ANM
Q = AC

Q −
i

2
V ργ5γρAC

S = κ(1)A(1)
Q + κ(2)A(2)

Q , (3.2)

where κ(1) and κ(2) are undetermined constants that depend on the specific theory that

is placed on a background of new minimal supergravity, Gµν = ∂µCν − ∂νCµ is the field-

strength of the composite gauge field Cµ, and G̃G and the Pontryagin density P are defined

respectively in (A.14) and (A.15). Moreover, the fermionic anomalies A(1)
Q and A(2)

Q are

obtained from the fermionic anomalies AC
Q and AC

S in conformal supergravity through the

identification (3.2) and take the form [59]

A(1)
Q =−3iG̃µνCµγ

5

(
φν−

i

2
V ργργ

5ψν

)
− 9i

4
V κγ5γκ

[
G̃µνDµψν+

i

2
Gµν

(
γµ

[σδρ]
ν −δ[σ

µ δ
ρ]
ν

)
γ5Dρψσ+

9

4
Pµνg

µ[νγρσ]Dρψσ
]

+O(ψ3),

A(2)
Q =−4∇µ

(
CρR̃

ρσµν
)
γ(νψσ)+GµνR̃

µνρσγρψσ−
i

2
V κγ5γκ

[
10iGµν

(
γµ

[σδρ]
ν −δ[σ

µ δ
ρ]
ν

)
γ5Dρψσ

+9Pµνg
µ[νγρσ]Dρψσ−3

(
Rµνρσγµν−

1

2
Rgµνg

µ[νγρσ]

)
Dρψσ

]
+O(ψ3), (3.3)

where the Schouten tensor Pµν is defined in (A.6). At a fixed point the anomaly coefficients

κ(1) and κ(2) are related to the a and c central charges as

κ(1) =
(5a− 3c)

27π2
, κ(2) =

(c− a)

24π2
. (3.4)

The relation between the new minimal and conformal supergravity algebras we highlighted

above ensures that the anomalies (3.2) are the general solution of the Wess-Zumino con-

sistency conditions for the gravity multiplet of new minimal supergravity.

It is possible that the supersymmetry anomalies (3.3) are related to the superspace

anomalies obtained in [7, 15] and [10, 11] (see Type II anomalies in table 9.1 of [11]).

However, candidate anomalies in superspace and in components can differ because the

extra auxiliary fields in the superspace formulation act as symmetry compensators [34].

A known example of this phenomenon occurs in supersymmetric Yang-Mills theory in the

presence of gauge anomalies. The superspace formulation of the theory does not exhibit

a supersymmetry anomaly, but the component formulation in the Wess-Zumino gauge has

a supersymmetry anomaly [26] (see also [27–29]). This can be understood from the fact

that in order to preserve the Wess-Zumino gauge, supersymmetry transformations require

– 7 –
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a compensating gauge transformation. If the theory has a gauge anomaly, this leads to a

supersymmetry anomaly. However, gauge anomalies must be canceled for the consistency

of supersymmetric Yang-Mills theory at the quantum level and so this fact has no physical

significance. However, global symmetries such as R-symmetry or flavor symmetries can be

anomalous and the supersymmetry anomaly they lead to is physical.

3.2 Ward identities

The Ward identities of the R-multiplet follow from the local symmetry transformations of

new minimal supergravity (2.2) and the anomalous transformation (3.1) of the generating

function. The form of the Ward identities is therefore independent of the specific quantum

theory that is placed on a background of new minimal supergravity. All information about

the microscopic theory is contained in the values of the anomaly coefficients κ(1) and κ(2).

The fields of new minimal supergravity act as sources for the R-multiplet current

operators, which are defined through a general variation of the generating function of

connected correlators

δW =

∫
d4x e

(
δeaµ〈T µa 〉s + δAµ〈J µ〉s + δBµν〈Kµν〉s + δψµ〈Sµ〉s

)
, (3.5)

so that

〈T µa 〉s = e−1 δW

δeaµ
, 〈J µ〉s = e−1 δW

δAµ
, 〈Kµν〉s = e−1 δW

δBµν
, 〈Sµ〉s = e−1 δW

δψµ
, (3.6)

where e ≡ det(eaµ) and 〈· · ·〉s denotes a (connected) correlation function in the presence of

arbitrary sources. In particular, any n-point function involving R-multiplet currents can

be obtained by further differentiating these expressions with respect to the corresponding

sources.

A slightly different set of R-multiplet operators is often defined by parameterizing a

general variation of the generating functional as [63] (see also [67])

δW =

∫
d4x e

(
δeaµ〈T̂ µa 〉s + δCµ〈Ĵ µ〉s + δBµν〈K̂µν〉s + δψµ〈Ŝµ〉s

)
, (3.7)

so that the R-current couples to the composite gauge field Cµ rather than to Aµ. The two

sets of operators are related through spectral flow:

〈T̂ µa 〉s = 〈T µa 〉s +
3

2

(
Vag

µν + V µeνa − V νeµa −
1

8
εµνρσψργaψσ

)
〈Jν〉s,

〈K̂µν〉s = 〈Kµν〉s +
3

8
εµνρσ∂ρ〈Jσ〉s,

〈Ŝµ〉s = 〈Sµ〉s +
3

8
εµνρσγρψσ〈Jν〉s,

〈Ĵ µ〉s = 〈J µ〉s. (3.8)

Besides obeying simpler Ward identities, the advantage of the hatted operators is that

they couple also to conformal supergravity and are therefore appropriate for describing

superconformal theories.

– 8 –



J
H
E
P
0
9
(
2
0
1
9
)
0
3
9

In order to derive the Ward identities of the R-multiplet we equate the anomalous

transformation (3.1) of the generating function with either (3.5) or (3.7), evaluated on

the symmetry transformations (2.2) of new minimal supergravity. In terms of the hatted

currents the resulting Ward identities take the form

eaµ∇ν〈T̂ νa 〉s+∇ν(ψµ〈Ŝν〉s)−ψν
←−
Dµ〈Ŝν〉s−Gµν〈Ĵ ν〉s−Hµρσ〈K̂ρσ〉s

+2Bµσ∇ρ〈K̂ρσ〉s+Cµ
(
∇ν〈Ĵ ν〉s+iψνγ5〈Ŝν〉s

)
−ωµab

(
eν[a〈T̂ νb] 〉s+

1

4
ψνγab〈Ŝν〉s

)
= 0,

eµ[a〈T̂
µ
b] 〉s+

1

4
ψµγab〈Ŝµ〉s = 0,

∇µ〈K̂µν〉s = 0,

∇µ〈Ĵ µ〉s+iψµγ5〈Ŝµ〉s =ANM
R ,(

Dµ−
i

2
V ργ5γργµ

)
〈Ŝµ〉s−

1

2
γaψµ〈T̂ µa 〉s

− 3i

4
γ5

(
φµ−

i

2
V ργργ

5ψµ

)
〈Ĵ µ〉s−γ[µψν]〈K̂µν〉s =ANM

Q , (3.9)

where the fieldstrength Hµνρ of the 2-form gauge field Bµν is given by

Hµνρ = ∂µBνρ + ∂ρBµν + ∂νBρµ. (3.10)

The Ward identities are slightly more cumbersome in terms of the currents (3.6),

namely

eaµ∇ν〈T νa 〉s+∇ν(ψµ〈Sν〉s)−ψν
←−
Dµ〈Sν〉s−

3i

2
Vµψνγ

5〈Sν〉s−Fµν〈J ν〉s−Hµρσ〈Kρσ〉s

+2Bµσ∇ρ〈Kρσ〉s+Aµ
(
∇ν〈J ν〉s+iψνγ5〈Sν〉s

)
−ωµab

(
eν[a〈T νb] 〉s+

1

4
ψνγab〈Sν〉s

)
= 0,

eµ[a〈T
µ
b] 〉s+

1

4
ψµγab〈Sµ〉s = 0,

∇µ〈Kµν〉s = 0,

∇µ〈J µ〉s+iψµγ5〈Sµ〉s =ANM
R ,(

Dµ−
i

2
V ργ5γργµ

)
〈Sµ〉s−

1

2
γaψµ〈T µa 〉s+

i

4
γµγ

ρσγ5

(
Dρψσ+

i

2
V νγργνγ

5ψσ

)
〈J µ〉s

−γ[µψν]〈Kµν〉=ANM
Q . (3.11)

These can be deduced by inserting the expressions (3.8) for the hatted currents in the Ward

identities (3.9), but it is technically significantly simpler to obtain them directly from the

variation (3.5) of the generating function.

We emphasize that the Ward identities (3.9) or (3.11) involve one-point functions in the

presence of arbitrary sources, i.e. generic background fields. This means that differentiating

these identities with respect to the background fields and using the definitions of the

current operators above one can derive the Ward identities for any correlation function of

R-multiplet currents, both in flat space and on any new minimal supergravity background.

In particular, the anomalies ANM
R and ANM

Q contribute contact terms in certain flat space

higher-point functions [60, 61].
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4 Ward identities and anomalies in the presence of flavor symmetries

Supersymmetric field theories may possess additional global symmetries beyond those en-

coded in the gravity multiplet. In order to derive the Ward identities and their quantum

anomalies in the presence of such flavor symmetries we need to couple the gravity multiplet

of new minimal supergravity to a number of vector multiplets (gauge multiplets in the ter-

minology of [64]). In this section we will consider an arbitrary number N of Abelian vector

multiplets (aIµ, λ
I , DI), I = 1, . . . , N . The subsequent analysis can be easily generalized to

non Abelian vector multiplets, but we will not address this case here.

The local symmetry transformations of the vector multiplet fields take the from [64]

δaIµ = ξν∂νa
I
µ + aIν∂µξ

ν +
1

2
εγµλ

I + ∂µω
I ,

δλI = ξν∂νλ
I − 1

4
λabγ

abλI − 1

4

(
γρσF I

ρσ + γ5DI
)
ε− iθγ5λI ,

δDI = ξν∂νD
I + εγ5γµ

[
DµλI +

1

4

(
γρσF I

ρσ + γ5DI
)
ψµ

]
, (4.1)

where f Iµν = ∂µa
I
ν − ∂νaIµ is the flavor fieldstrength with

F I
µν = f Iµν − ψ[µγν]λ

I , (4.2)

and the covariant derivative acts on the flavorinos as

DµλI =

(
∂µ +

1

4
ωµabγ

ab + iγ5Cµ

)
λI . (4.3)

A straightforward but tedious calculation shows that these transformations form an-

other off-shell representation of the new minimal supergravity algebra (2.12), except that

the commutator between two supersymmetry transformations has an additional term,

namely

[δε, δε′ ] = δξ + δλ + δθ + δΛ + δω, (4.4)

where the composite parameters ξµ, λab, θ and Λµ are as in (2.12), while the flavor trans-

formation parameter takes the form

ωI = −ξµaIµ. (4.5)

As before, we are neglecting a supersymmetry transformation on the r.h.s. of (4.4) that

plays no role to leading order in the fermions (see footnote 2).

4.1 R-multiplet anomalies with flavors

In the presence of flavors, the anomalous transformation of the generating functional

of connected correlators W [e,A,B, ψ, aI , λI , DI ] under the extended local symmetries

Ω = (ξ, λ, θ,Λ, ε, ωI) can be parameterized as

δΩW =

∫
d4x e

(
− θAR − ωIAI − εAQ

)
, (4.6)
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where the R-symmetry and supersymmetry anomalies now receive additional contributions

relative to the gravity multiplet anomalies (3.2) due to the flavors, and there is a new

anomaly in the flavor gauge transformations.

Turning on background fields for the flavor multiplets leads to several indepen-

dent solutions of the Wess-Zumino consistency conditions, in addition to the two grav-

ity multiplet cocycles κ(1) and κ(2). The R-symmetry and flavor anomalies take the

form [10–12, 17, 75–77]

AR =κ(1)G̃G+κ(2)P+α
(4)
I F̃ f I+

(
κ
(5)
(IJ)−α

(5)
(IJ)

)
f̃ IfJ+κ

(7)
I

(
DI−iεµνρσaIµ∂νBρσ+λ

I
γ5γµψµ

)
,

AI =κ
(3)
I

(
P− 8

3
GG̃

)
+
(
κ
(4)
I −α

(4)
I

)
F̃F+α

(5)
(IJ)F̃ f

J+κ
(6)
(IJK)f̃

JfK

+κ
(7)
I

[
iεµνρσAµ∂νBρσ−

i

2
R−3iVµV

µ− i
2
∇ν(ψ

ν
γµψµ)+

i

2
ψµγ

µρσ

(
Dρψσ+

3i

4
V τγργτγ

5ψσ

)]
+κ

(8)
[IJ]

(
DJ−iεµνρσaJµ∂νBρσ+λ

J
γ5γµψµ

)
, (4.7)

where the notation for f Iµν and Fµν is analogous to that for Gµν in (A.14) and summation

over repeated flavor indices is implicit. Besides the anomaly coefficients κ(1) and κ(2) of

the gravity multiplet, there are six additional anomaly coefficients in the presence flavors

that cannot be eliminated by local counterterms. The goal of this section is to determine

the supersymmetry anomaly AQ corresponding to all flavor anomaly coefficients in (4.7).

Before we turn to the supersymmetry anomaly, several comments are in order regarding

the structure of the flavor anomalies in (4.7). Firstly, the flavor ’t Hooft anomaly coefficients

can be expressed in terms of the R-charges R of the microscopic theory fermions and their

charges FI under the flavor symmetries. In particular, the first flavor coefficient takes the

form κ
(3)
I ∼ Tr FI , while κ

(4)
I ∼ Tr (R2FI) is only independent for massive theories, since at

a superconformal fixed point κ
(4)
I ∼ κ

(3)
I — see eq. (1.5) in [76]. Secondly, the κ

(4)
I cocycle

can alternatively be expressed as

AR|κ(4) =
3

2
κ

(4)
I εµνρσ∂µVνf

I
ρσ, AI |κ(4) = κ

(4)
I G̃G, (4.8)

by means of a local counterterm. Hence, the coefficients of the Pontryagin density, P, and of

GG̃ in AI are independent for non conformal theories.4 The anomaly coefficients κ
(5)
(IJ) and

κ
(6)
(IJK) are totally symmetric in the flavor indices and are proportional to Tr (RF(IFJ)) and

Tr (F(IFJFK)), respectively. These cocycles often appear in the literature together with a

term bilinear in the flavorinos (gauginos) λI — see e.g. eq. (20.71) in [78]. Such expressions

differ from the ones given in (4.7) by local counterterms of the form κ
(5)
(IJ)

∫
d4x e Aµλ

I
γµλJ

and κ
(6)
(IJK)

∫
d4x e aIµλ

J
γµλK , respectively. Another set of local counterterms that is useful

in order to compare with the expressions for the κ(4) and κ(5) cocycles in the literature is

Wct = −α(4)
I

∫
d4x e εµνρσaIµAνFρσ − α

(5)
(IJ)

∫
d4x e εµνρσAµa

I
νf

J
ρσ, (4.9)

4I thank Cyril Closset for pointing this out to me.
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where α
(4)
I and α

(5)
(IJ) are arbitrary constants. These local counterterms can be used to move

the corresponding anomalies between the divergence of the R-current and the divergence

of the flavor currents and have been included in the expressions for the flavor anomalies

in (4.7).

Finally, the Fayet-Iliopoulos type cocycles κ(7) and κ(8) were found in [10] and their

contribution to the supersymmetry anomaly was already given there (in the case of the

κ(7) cocycle only implicitly). It would be interesting to explore the significance of these

cocycles; we are unaware of any computation of these coefficients in specific theories. Notice

that the coefficients κ
(8)
[IJ ] are antisymmetric in the flavor indices and so this cocycle can

only exist in the presence of at least two flavors. Moreover, the total derivative term

bilinear in the gravitino in the κ(7) cocycle can be removed by a local counterterm of the

form κ
(7)
I

∫
d4x e aIνψ

ν
γµψµ. However, this would modify the form of the supersymmetry

anomaly A(7)
Q given in eq. (4.12).

The supersymmetry anomaly is determined by the Wess-Zumino consistency condi-

tions [25]

[δΩ, δΩ′ ]W = δ[Ω,Ω′]W , (4.10)

for any pair of local symmetries Ω = (ξ, λ, θ,Λ, ε, ωI) and Ω′ = (ξ′, λ′, θ′,Λ′, ε′, ω′I). Writing

AQ =

8∑
i=1

κ
(i)
{IJ...}A

(i){IJ...}
Q +ActQ, (4.11)

the Wess-Zumino consistency conditions can be solved independently for each cocycle, i.e.

for each anomaly coefficient. In section 3 we already determined the gravity multiplet

supersymmetry anomalies A(1)
Q and A(2)

Q in eq. (3.3) by embedding the new minimal su-

pergravity algebra in the algebra of N = 1 conformal supergravity and utilizing the results

of [59]. In appendix B we solve the Wess-Zumino consistency conditions for each of the

six flavor cocycles using as input the bosonic anomalies (4.7). The resulting fermionic

anomalies take the form

A(3)I
Q = 8iG̃µνaIµγ

5

(
φν−

i

2
V ργργ

5ψν

)
−4∇µ

(
aIρR̃

ρσµν
)
γ(νψσ)

+f IµνR̃
µνρσγρψσ+4iV ρf̃ Iµνγ5γρDµψν+O({ψ,λ}3),

A(4)I
Q =−iF̃µνaIµγνγρσγ5

(
Dρψσ+

i

2
V τγργτγ

5ψσ

)
+O({ψ,λ}3),

A(5)(IJ)
Q =−2Aµf̃ (I

µνγ
νλJ)+O({ψ,λ}3),

A(6)(IJK)
Q =−2f̃ (IµνaJµγνλ

K)+O({ψ,λ}3),

A(7)I
Q =−Aµ

(
γ5γµλI+iεµνρσaIνγρψσ

)
− i

2
aIµγ

µγρσ
(
Dρψσ+

i

2
V τγργτγ

5ψσ

)
+O({ψ,λ}3),

A(8)[IJ ]
Q =−a[I

µ

(
γ5γµλJ ]+

i

2
εµνρσaJ ]

ν γρψσ

)
+O({ψ,λ}3), (4.12)
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where O({ψ, λ}3) is shorthand for O(ψ3, ψ2λ, ψλ2, λ3). Moreover, the contribution of the

local counterterms (4.9) to the supersymmetry anomaly is

ActQ =α
(4)
I

[
i

2

(
2F̃µνaIµ−f̃ IµνAµ

)
γνγ

ρσγ5

(
Dρψσ+

i

2
V τγργτγ

5ψσ

)
−F̃µνAµγνλI

]
(4.13)

+α
(5)
(IJ)

[
2Aµf̃ (I

µνγ
νλJ)−F̃µνa(I

µ γνλ
J)− i

2
f̃ (IµνaJ)

µ γνγ
ρσγ5

(
Dρψσ+

i

2
V τγργτγ

5ψσ

)]
.

Some of these contributions to the supersymmetry anomaly have been discussed in the

literature before. As we mentioned above, the supersymmetry anomalies A(7)
Q and A(8)

Q

were obtained in [10]. A(5)
Q was pointed out in [34], while A(6)

Q is the Abelian (and global)

analogue of the supersymmetry anomaly in super Yang-Mills theory in the presence of

a gauge anomaly discussed in [26] (see also [27–29]).5 We are not aware of any earlier

work where A(3)
Q or A(4)

Q were obtained. Notice that the anomalies A(3)
Q , A(6)

Q and A(8)
Q are

related only to the flavor anomalies and imply that supersymmetry can be anomalous even

if R-symmetry is not.

Except for the Fayet-Iliopoulos type anomalies κ
(7)
I and κ

(8)
[IJ ], the non covariant part

of the supersymmetry anomalies in (4.12) is directly related to the Chern-Simons forms

of the corresponding R-symmetry and flavor anomalies [26]. Writing these in terms of

Chern-Simons forms we have

δθW = −
∫
θ dQCS =

∫
dθ ∧QCS, (4.14)

and similarly

δωW = −
∫
ωI dQCS

I =

∫
dωI ∧QCS

I . (4.15)

From the Wess-Zumino consistency conditions [δθ, δε]W = 0 and [δω, δε]W = 0 follows that

δθδεW = δεδθW =

∫
dθ ∧ δεQCS, δωδεW = δεδωW =

∫
dωI ∧ δεQCS

I . (4.16)

Hence,

δεW =

∫
(A ∧ δεQCS + aI ∧ δεQCS

I + covariant) ≡ −
∫
d4x e εAQ, (4.17)

where the covariant part of the supersymmetry anomaly is invariant under both

R-symmetry and flavor gauge transformations. The Chern-Simons forms are not sufficient

to characterize the covariant part of the supersymmetry anomaly, but it can be determined

by the Wess-Zumino consistency condition [δε, δε′ ]W = (δθ + δω)W with θ = −1
2(ε′γµε)Aµ,

ωI = −1
2(ε′γµε)aIµ. From the analysis in appendix B we find that the covariant part of

the supersymmetry anomalies A(4)I
Q , A(5)(IJ)

Q and A(6)(IJK)
Q is cubic in the fermions, which

is why only the non covariant part related to the Chern-Simons forms appears in the cor-

responding expressions in (4.12). However, the covariant part of A(3)I
Q , as well as of the

gravity multiplet anomalies A(1)
Q and A(2)

Q , contains terms linear in the fermions.

5An analogous supersymmetry anomaly was found in the presence of a gravitational anomaly in two-

dimensional theories in [31–33].
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4.2 Ward identities

The vector multiplet fields act as sources for the local operators in the flavor multiplets:

〈jµI 〉s = e−1 δW

δaIµ
, 〈OI〉s = e−1 δW

δDI
, 〈χI〉s = e−1 δW

δλ
I
. (4.18)

Using these operators and the local symmetry transformations (4.1) in the anomalous

transformation of the generating functional in (4.6) leads to the general Ward identities

for the R-multiplet in the presence of flavor symmetries, generalizing (3.9):

eaµ∇ν〈T̂ νa 〉s+∇ν(ψµ〈Ŝν〉s)−ψν
←−
Dµ〈Ŝν〉s−Gµν〈Ĵ ν〉s−Hµρσ〈K̂ρσ〉s

−λI
←−
Dµ〈χI〉s−f Iµν〈jνI 〉s−∂µDI〈OI〉s+2Bµσ∇ρ〈K̂ρσ〉s+aIµ∇ν〈jνI 〉s

+Cµ
(
∇ν〈Ĵ ν〉s+iψνγ

5〈Ŝν〉s+iλ
I
γ5〈χI〉s

)
−ωµab

(
eν[a〈T̂ νb] 〉s+

1

4
ψνγab〈Ŝν〉s+

1

4
λ
I
γab〈χI〉s

)
= 0,

eµ[a〈T̂ µb] 〉s+
1

4
ψµγab〈Ŝµ〉s+

1

4
λ
I
γab〈χI〉s = 0,

∇µ〈K̂µν〉s = 0,

∇µ〈Ĵ µ〉s+iψµγ
5〈Ŝµ〉s+iλ

I
γ5〈χI〉s =AR,

∇µ〈jµI 〉s =AI ,(
Dµ−

i

2
V ργ5γργµ

)
〈Ŝµ〉s−

1

2
γaψµ〈T̂ µa 〉s−

3i

4
γ5
(
φµ−

i

2
V ργργ

5ψµ

)
〈Ĵ µ〉s−γ[µψν]〈K̂µν〉s (4.19)

− 1

2
γµλ

I〈jµI 〉s+
1

4

(
−γρσFρσ+γ5DI

)
〈χI〉s−γ5γµ

[
DµλI+

1

4

(
γρσFρσ+γ5DI

)
ψµ

]
〈OI〉s =AQ.

5 Anomalous supersymmetry transformations of the fermionic operators

An important consequence of the supersymmetry anomaly (4.11) is that it leads to an

anomalous supersymmetry transformation for the fermionic operators in the gravity and

flavor multiplets [56–59]. As we review in the next section, when restricted to a specific

background admitting Killing spinors, the anomalous terms in the rigid supersymmetry

transformation of the fermionic operators depend on the bosonic background and have

physical implications. In particular, the anomalous transformation of the supercurrent

leads to a deformed supersymmetry algebra.

The transformations of the R-multiplet currents and of the flavor multiplet operators

under the local symmetries of new minimal supergravity are directly related with the

Ward identities (4.19). These correspond to first class constraints on the symplectic space

of couplings and local operators, generating the local symmetry transformations under

the Poisson bracket [79]. In particular, the quantum transformations of the operators are

encoded in the anomalies of the Ward identities. This method was used in appendix B.1

of [56] in order to obtain the anomalous transformation of the supercurrent under Q- and

S-supersymmetry in conformal supergravity for the case a = c.
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An alternative way to determine the transformation of the quantum operators under

the local symmetries is to use their defining relation in terms of the generating function. For

example, under local supersymmetry transformations the supercurrent and the fermionic

operator in the flavor multiplets transform respectively as

δε〈Ŝµ〉s = e−1δε

(
δ

δψµ

)
W +e−1 δ

δψµ
δεW = e−1δε

(
δ

δψµ

)
W −e−1 δ

δψµ

∫
d4x e εAQ,

δε〈χI〉s = e−1δε

(
δ

δλ
I

)
W +e−1 δ

δλ
I
δεW = e−1δε

(
δ

δλ
I

)
W −e−1 δ

δλ
I

∫
d4x e εAQ. (5.1)

The transformation of the functional derivatives determines the classical transformation

of the operators and follows directly from the classical symmetry transformations of new

minimal supergravity. In particular, from (2.2) and (4.1) we obtain

δε

(
δ

δψµ

)
=

1

2
γaε

δ

δeaµ
+
i

8

(
4δ[µ
ν δ

ρ]
σ +iγ5εµν

ρ
σ

)
γνγ5Dρ

(
ε
δ

δCσ

)
+

3i

4
γ5η(ε)

δ

δCµ
+γνε

δ

δBνµ

+
1

4
γ5γµ

(
γρσfρσ+γ5DI

)
ε
δ

δDI
,

δε

(
δ

δλ
I

)
=

1

2
γµε

δ

δaIµ
−γ5γµDµ

(
ε
δ

δDI

)
, (5.2)

where η(ε) is given in (2.3) and we have neglected terms of the schematic form ψ δ
δψ

, ψ δ

δλ
I

and ψψ δ
δDI

in the transformation of the supercurrent. Notice that the supersymmetry

transformations (5.2) of the functional derivatives are directly related with the l.h.s. of the

supercurrent conservation Ward identity in (4.19).

The full supersymmetry transformations of the fermionic operators in the quantum

theory are

δε〈Ŝµ〉s =
1

2
γaε〈T̂ µa 〉s+

i

8

(
4δ[µ
ν δ

ρ]
σ +iγ5εµν

ρ
σ

)
γνγ5Dρ

(
ε〈Ĵ σ〉s

)
+

3i

4
γ5η(ε)〈Ĵ µ〉s+γνε〈K̂νµ〉

+
1

4
γ5γµ

(
γρσfρσ+γ5DI

)
ε〈OI〉s+

8∑
i=1

κ
(i)
{IJ...}Σ

(i){IJ...}µ(ε)+Σµ
ct(ε),

δε〈χI〉s =
1

2
γµε〈jµI 〉s−γ

5γµDµ
(
ε〈OI〉s

)
+

8∑
i=3

κ
(i)
{IJ...}Ξ

(i){J...}(ε)+ΞctI (ε), (5.3)

where again we have neglected terms of the schematic form ψ〈Ŝ〉s, ψ〈χI〉s and ψψ〈OI〉s
in the transformation of the supercurrent. The anomalous contributions Σ(i){IJ...}µ(ε) and

Ξ(i){J...}(ε) to these transformations, as well as the contributions Σµ
ct(ε) and ΞctI (ε) due

to the counterterms (4.9), are obtained by evaluating the derivatives of the supersym-

metry anomaly (4.11) with respect to the gravitino and the flavorinos using the expres-
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sions (3.3), (4.12) and (4.13):

Σ(1)µ(ε) =
i

2

(
4δ[µ
ν δ

ρ]
σ +iγ5εµν

ρ
σ

)
γνγ5Dρ

(
ε G̃σκCκ

)
+3iγ5η(ε)G̃µνCν+

9

2
Dν
(
G̃µνη(ε)

)
− 9i

4

(
γ[µ

ρδ
ν]
σ −δ[µ

ρ δ
ν]
σ

)
γ5Dν

(
Gρση(ε)

)
− 81

8
Dν
(
Pρσg

ρ[σγµν]η(ε)
)
+O(ψ2),

Σ(2)µ(ε) =−4∇ρ
(
CσR̃

σλρκ
)
δµ(κγλ)ε−GρσR̃ρσµνγνε−10i

(
γ[µ

ρδ
ν]
σ −δ[µ

ρ δ
ν]
σ

)
γ5Dν

(
Gρση(ε)

)
−9Dν

(
Pρσg

ρ[σγµν]η(ε)
)
+3Dν

[(
Rµνρσγρσ−

1

2
Rgρσg

ρ[σγµν]

)
η(ε)

]
+O(ψ2),

Σ(3)Iµ(ε) =−4i

3

(
4δ[µ
ν δ

ρ]
σ +iγ5εµν

ρ
σ

)
γνγ5Dρ

(
ε G̃σκaIκ

)
−8iγ5η(ε)G̃µνaIν−8Dν

(
f̃ Iµνη(ε)

)
−4∇ρ

(
aIσR̃

σλρκ
)
δµ(κγλ)ε−f IρσR̃ρσµνγνε+O(ψ2,ψλ,λ2),

Σ(4)Iµ(ε) = i

(
Dν−

i

2
V τγ5γτγν

)(
F̃ ρσaIργ

5γµνγσε
)
+O(ψ2,ψλ,λ2),

Σ(5)(IJ)µ(ε) =O(ψ2,ψλ,λ2),

Σ(6)(IJK)µ(ε) =O(ψ2,ψλ,λ2),

Σ(7)Iµ(ε) = iεµνρσAρa
I
σγνε+

i

2

(
Dν−

i

2
V τγ5γτγν

)(
aIσγ

µνγσε
)
+O(ψ2,ψλ,λ2),

Σ(8)[IJ ]µ(ε) =
i

2
εµνρσaIρa

J
σγνε+O(ψ2,ψλ,λ2), (5.4)

Σµ
ct(ε) =

i

2
α

(4)
I

(
Dν−

i

2
V τγ5γτγν

)[(
f̃ IρσAρ−2F̃ ρσaIρ

)
γ5γµνγσε

]
+
i

2
α

(5)
(IJ)

(
Dν−

i

2
V τγ5γτγν

)(
f̃ (IρσaJ)

ρ γ
5γµνγσε

)
+O(ψ2,ψλ,λ2), (5.5)

Ξ(3)(ε) =O(ψ2,ψλ,λ2),

Ξ(4)(ε) =O(ψ2,ψλ,λ2),

Ξ(5)I(ε) =−2Aµf̃ Iµνγ
νε+O(ψ2,ψλ,λ2),

Ξ(6)(IJ)(ε) =−2f̃ (IµνaJ)
µ γνε+O(ψ2,ψλ,λ2),

Ξ(7)(ε) =Aµγ
5γµε+O(ψ2,ψλ,λ2),

Ξ(8)I(ε) =−aIµγ5γµε+O(ψ2,ψλ,λ2), (5.6)

ΞctI (ε) =−α(4)
I F̃µνAµγνε+α

(5)
(IJ)

(
2Aµf̃Jµνγ

νε−F̃µνaJµγνε
)
+O(ψ2,ψλ,λ2). (5.7)

Notice that most of these terms are to leading order independent of the fermionic fields

and therefore lead to an anomalous transformation for the fermionic operators on purely

bosonic backgrounds. This has important implications for supersymmetric theories on

purely bosonic backgrounds that admit new minimal Killing spinors, as we briefly discuss

in the next section.
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6 Supersymmetric backgrounds and rigid supersymmetry anomalies

A notion of rigid supersymmetry exits on purely bosonic backgrounds of new minimal

supergravity for which the Killing spinor equations

δψµ = Dµεo +
i

2
V νγµγνγ

5εo = 0,

δλI = −1

4

(
γµνf Iµν + γ5DI

)
εo = 0, (6.1)

admit non trivial solutions εo. Note that in the Killing spinor equations ε0 is taken to be a

c-number commuting spinor that transforms trivially under the symmetries of new minimal

supergravity, in contrast to the local supersymmetry parameter ε that is Grassmann-valued

and transforms according to (A.9). Moreover, the fact that the supersymmetry transfor-

mation of the gravitino in new minimal supergravity coincides with a combined Q- and

S-supersymmetry transformation in N = 1 conformal supergravity with composite gauge

field Cµ = Aµ − 3
2Vµ and S-supersymmetry parameter as in (2.3) implies that locally, su-

persymmetric backgrounds of new minimal and conformal supergravity coincide. However,

non trivial solutions of the new minimal Killing spinor equations (6.1) are nowhere van-

ishing, while those of conformal supergravity may have zeros [42]. Hence, globally, new

minimal Killing spinors are also Killing spinors of conformal supergravity, but only a sub-

set of conformal supergravity Killing spinors correspond to global Killing spinors of new

minimal supergravity.

Supersymmetric backgrounds of various off-shell supergravities and in different dimen-

sions (including new minimal and conformal supergravity backgrounds in four dimensions)

have been studied extensively [40–54] (see also [55] for earlier work). The notion of rigid

supersymmetry such backgrounds admit enables the non perturbative calculation of cer-

tain quantum field theory observables using supersymmetric localization techniques [4]

(see [38] for a comprehensive review). These techniques rely on the existence of a bosonic

“localizing” operator that is Q-exact, i.e. it can be expressed as the supersymmetry vari-

ation of a fermionic operator. However, in order for the localization argument to hold,

the Q-exactness of the localizing operator must be preserved at the quantum level. Super-

symmetry anomalies can potentially spoil this property, thus invalidating the localization

argument.

As a concrete example, let us consider the transformation of the fermionic operators

in the R-multiplet and flavor multiplets under the rigid supersymmetry associated with a

new minimal Killing spinor εo. The local supersymmetry transformations (5.3) imply that

the corresponding rigid supersymmetry transformations take the form

δεo〈Ŝµ〉=
1

2
γaεo〈T̂ µa 〉+

i

8

(
4δ[µ
ν δ

ρ]
σ +iγ5εµν

ρ
σ

)
γνγ5Dρ

(
εo〈Ĵ σ〉

)
+

3i

4
γ5η(εo)〈Ĵ µ〉+γνεo〈K̂νµ〉

+
8∑
i=1

κ
(i)
{IJ...}Σ

(i){IJ...}µ(εo)+Σµ
ct(εo),

δεo〈χI〉=
1

2
γµεo〈jµI 〉−γ

5γµDµ
(
εo〈OI〉

)
+

8∑
i=3

κ
(i)
{IJ...}Ξ

(i){J...}(εo)+ΞctI (εo), (6.2)
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where we have removed the subscript s from the one-point functions to indicate that these

are now expectations values on a specific background. Notice that the term proportional to

the expectation value of the scalar operators OI in the rigid supersymmetry transformation

of the supercurrent vanishes due to the Killing spinor equations. The terms Σ(i){IJ...}µ(εo),

Σµ
ct(εo), Ξ(i){J...}(εo) and ΞctI (εo) that originate in the supersymmetry anomaly (4.11) are

local functions of the bosonic background and they are non vanishing on generic back-

grounds that admit new minimal Killing spinors. In fact, the term Σ(1)µ(εo) corresponding

to the κ(1) cocycle has been evaluated explicitly on a class of backgrounds that admit two

real supercharges of opposite R-charge and was shown to be non zero [56]. The presence of

these terms in the rigid supersymmetry transformation of the fermionic operators implies

that the linear combination of bosonic operators on the r.h.s. of the transformations (6.2)

are not Q-exact, as one would expect based on the classical supersymmetry algebra.

The rigid supersymmetry algebra deformation due to the supersymmetry anomaly has

implications for supersymmetric observables on such backgrounds. An immediate con-

sequence is that the BPS relation that the conserved charges of supersymmetric states

satisfy is modified [56]. The dependence of supersymmetric partition functions on the

background is also affected. The classical Q-exactness of the linear combination of bosonic

currents on the r.h.s. of the supercurrent transformation in (6.2) implies that supersym-

metric partition functions do not depend on certain deformations of the supersymmetric

background [80–82]. This result was contradicted by a holographic computation in [83] that

explicitly examined the dependence of the holographic partition function on deformations

of the supersymmetric background (see also [84, 85]). The resolution to this contradiction

was provided in [56], where it was shown that the dependence of the partition function on

the supersymmetric background is entirely due to the deformation of the supersymmetry

algebra by the term Σ(1)µ(εo) coming from the supersymmetry anomaly.

An interesting question in this context is whether the anomalous terms in the rigid

supersymmetry transformation of the supercurrent can be removed by a local countert-

erm. To answer this question one should keep in mind that in the presence of an R-

symmetry and/or flavor anomaly the commutator (4.4) implies that the supersymmetry

anomaly (4.11) cannot be removed by a local counterterm without breaking diffeomorphism

and/or local Lorentz symmetry. It follows that any local counterterm that can potentially

remove the anomaly from the rigid supersymmetry transformation of the supercurrent will

necessarily break diffeomorphism and/or local Lorentz invariance. However, an interesting

scenario is that the required local counterterm only breaks the subset of diffeomorphisms

that would break the classical supersymmetry invariance of the background. This scenario

is realized in an analogous situation for supersymmetric Chern-Simons theories on Seifert

manifolds in connection with the framing anomaly [86]. For supersymmetric backgrounds

of the form S1×M3 with M3 a Seifert manifold, the local counterterm that eliminates the

term Σ(1)µ(εo) in the transformation of the supercurrent should coincide with the coun-

terterm used in [83]. It would be interesting to generalize this counterterm to the other

anomaly cocycles that contribute to the supersymmetry anomaly (4.11).
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7 Discussion

In this paper we have extended our earlier results for N = 1 conformal supergravity [59, 60]

to non conformal theories with an arbitrary number of Abelian flavor symmetries. As

anticipated, both R-symmetry and flavor symmetry anomalies lead to a supersymmetry

anomaly, even in non conformal theories. This anomaly is cohomologically non trivial and

cannot be removed by a local counterterm without breaking diffeomorphism and/or local

Lorentz symmetry.

It would be very interesting to generalize these results to non Abelian R-symmetry

anomalies in theories with extended supersymmetry, as well as non Abelian flavor symme-

tries. Moreover, in 2, 6 and 10 dimensions one could consider the effect of gravitational

anomalies that are also known to generate a supersymmetry anomaly [31–33].

Another question to address is if and how supersymmetry anomalies are manifest in

superspace. As we briefly discussed in section 3, the auxiliary fields in the superspace

formulation of background supergravity act as symmetry compensators [34], which implies

that the non trivial solutions of the Wess-Zumino consistency conditions in superspace and

in components may not coincide. It is therefore desirable to clarify if there is any connection

between the supersymmetry anomalies we found here and the superspace cocycles found

in [7, 15] and [10, 11].

In section 5 we saw that the supersymmetry anomaly in the conservation of the super-

current implies that both the supercurrent and the fermionic operators in the flavor mul-

tiplets acquire an anomalous supersymmetry transformation. When restricted to bosonic

backgrounds that admit Killing spinors, this implies that these operators transform anoma-

lously under rigid supersymmetry, which has implications for supersymmetric quantum

field theory observables on such backgrounds. Specifically, the supersymmetry algebra

gets deformed, the BPS relation that the bosonic conserved charges characterizing super-

symmetric states satisfy is modified, and the Q-exactness of localizing operators used in

supersymmetric localization computations may not hold at the quantum level. It is there-

fore important to further understand the consequences of the supersymmetry anomaly in

this context. In particular, it would be very interesting to understand to what extend the

rigid supersymmetry anomaly can be eliminated by a local non covariant counterterm. This

question should be addressed separately for each of the eight non trivial cocycles that con-

tribute to the supersymmetry anomaly and for each class of supersymmetric backgrounds

preserving a given number of supercharges. We hope to address some of these questions in

future work.
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A Review of supersymmetry anomalies in N = 1 conformal supergravity

In this appendix we summarize the local symmetry algebra and quantum anomalies of N =

1 off-shell conformal supergravity in four dimensions obtained in [59]. The field content of

N = 1 conformal supergravity [87–90] (see [91–94] and chapter 16 of [69] for pedagogical

reviews) consists of the vielbein eaµ, an Abelian gauge field Cµ, and a Majorana gravitino

ψµ, comprising 5+3 bosonic and 8 fermionic off-shell degrees of freedom. Throughout this

paper we denote the gauge field of conformal supergravity by Cµ and its fieldstrength by

Gµν = ∂µCν − ∂νCµ, reserving Aµ and Fµν = ∂µAν − ∂νAµ for the gauge field of new

minimal supergravity.

N = 1 conformal supergravity can be constructed as a gauge theory of the supercon-

formal algebra. In this construction Q- and S-supersymmetry are on the same footing

with corresponding gauge fields ψµ and φµ. The curvature constraints of N = 1 conformal

supergravity, however, imply that φµ is not an independent field and is locally expressed

in terms of the gravitino as

φµ ≡
1

3
γν
(
Dνψµ −Dµψν −

i

2
γ5ενµ

ρσDρψσ
)

= −1

6

(
4δ[ρ
µ δ

σ]
ν + iγ5εµν

ρσ
)
γνDρψσ, (A.1)

where the covariant derivative acts on ψµ and φµ as

Dµψν ≡
(
∂µ +

1

4
ωµ

ab(e, ψ)γab + iγ5Cµ

)
ψν − Γρµνψρ ≡

(
Dµ + iγ5Cµ

)
ψν ,

Dµφν =

(
∂µ +

1

4
ωµ

ab(e, ψ)γab − iγ5Cµ

)
φν − Γρµνφρ =

(
Dµ − iγ5Cµ

)
φν , (A.2)

with the spin connection given by

ωµ
ab(e, ψ) ≡ ωµab(e) +

1

4

(
ψaγµψb + ψµγaψb − ψµγbψa

)
. (A.3)

ωµ
ab(e) denotes the unique torsion-free spin connection.

A.1 Local symmetry transformations

Besides diffeomorphisms ξµ(x), local frame rotations λab(x), U(1)R gauge transformations

θ(x), and Q-supersymmetry transformations ε(x), the local algebra of N = 1 conformal

supergravity contains also Weyl and S-supersymmetry transformations, parameterized re-

spectively by σ(x) and η(x). The corresponding transformations of the N = 1 conformal

supergravity fields are

δeaµ = ξλ∂λe
a
µ + eaλ∂µξ

λ − λabebµ + σeaµ −
1

2
ψµγ

aε,

δψµ = ξλ∂λψµ + ψλ∂µξ
λ − 1

4
λabγ

abψµ +
1

2
σψµ +Dµε− γµη − iγ5θψµ,

δCµ = ξλ∂λCµ + Cλ∂µξ
λ +

3i

4
φµγ

5ε− 3i

4
ψµγ

5η + ∂µθ. (A.4)

– 20 –



J
H
E
P
0
9
(
2
0
1
9
)
0
3
9

Moreover, the quantity φµ transforms as

δφµ = ξλ∂λφµ+φλ∂µξ
λ− 1

4
λabγ

abφµ−
1

2
σφµ+

1

2

(
Pµν+

2i

3
Gµνγ

5− 1

3
G̃µν

)
γνε+Dµη+iγ5θφµ,

(A.5)

where

Pµν ≡
1

2

(
Rµν −

1

6
Rgµν

)
, (A.6)

denotes the Schouten tensor in four dimensions and the dual fieldstrength G̃µν is defined as

G̃µν ≡
1

2
εµν

ρσGρσ. (A.7)

The covariant derivatives of the spinor parameters ε and η are given respectively by

Dµε ≡
(
∂µ +

1

4
ωµ

ab(e, ψ)γab + iγ5Cµ

)
ε ≡

(
Dµ + iγ5Cµ

)
ε,

Dµη ≡
(
∂µ +

1

4
ωµ

ab(e, ψ)γab − iγ5Cµ

)
η ≡

(
Dµ − iγ5Cµ

)
η. (A.8)

A.2 Local symmetry algebra

The symmetry algebra is determined by the commutators [δΩC
, δΩ′

C
] between any two of the

transformations (A.4) with the local parameters ΩC = (σ, ξ, λ, θ, ε, η) of N = 1 conformal

supergravity. In order for the algebra to close off-shell the local parameters should also

transform under the local symmetries according to

δξµ = ξ′ν∂νξ
µ−ξν∂νξ′µ, δλab = ξµ∂µλ

a
b, δσ= ξµ∂µσ, δθ= ξµ∂µθ,

δε= ξµ∂µε+
1

2
σε− 1

4
λabγ

abε−iθγ5ε, δη= ξµ∂µη−
1

2
ση− 1

4
λabγ

abη+iθγ5η. (A.9)

The only non vanishing commutators of the resulting local symmetry algebra are the

following:

[δξ, δξ′ ] = δξ′′ , ξ′′µ = ξν∂νξ
′µ − ξ′ν∂νξµ,

[δλ, δλ′ ] = δλ′′ , λ′′ab = λ′acλ
c
b − λacλ′cb,

[δε, δη] = δσ + δλ + δθ, σ =
1

2
εη, λab = −1

2
εγabη, θ = −3i

4
εγ5η,

[δε, δε′ ] = δξ + δλ + δθ, ξµ =
1

2
ε′γµε, λab = −1

2
(ε′γνε)ων

a
b, θ = −1

2
(ε′γνε)Cν .

(A.10)

As for the new minimal supergravity algebra (see footnote 2), we have dropped a super-

symmetry transformation on the r.h.s. of the commutator [δε, δε′ ] that plays no role to

leading order in the fermions.
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A.3 Ward identities and anomalies

The current multiplet of a supersymmetric quantum field theory coupled to background

N = 1 conformal supergravity consists of the stress tensor T µa , the R-symmetry current

J µ, and the supercurrent Sµ. These are the local operators sourced respectively by the

vielbein eaµ, the gauge field Cµ, and the gravitino ψµ. The local symmetry transformations

of N = 1 conformal supergravity (A.4) lead to the superconformal Ward identities

eaµ∇ν〈T νa 〉s +∇ν(ψµ〈Sν〉s)− ψν
←−
Dµ〈Sν〉s −Gµν〈J ν〉s

+ Cµ
(
∇ν〈J ν〉s + iψνγ

5〈Sν〉s
)
− ωµab

(
eν[a〈T νb] 〉s +

1

4
ψνγab〈Sν〉s

)
= 0,

eµ[a〈T
µ
b] 〉s +

1

4
ψµγab〈Sµ〉s = 0,

eaµ〈T µa 〉s +
1

2
ψµ〈Sµ〉s = AW ,

∇µ〈J µ〉s + iψµγ
5〈Sµ〉s = AR,

Dµ〈Sµ〉s −
1

2
γaψµ〈T µa 〉s −

3i

4
γ5φµ〈J µ〉s = AQ,

γµ〈Sµ〉s −
3i

4
γ5ψµ〈J µ〉s = AS , (A.11)

where 〈· · ·〉s denotes a correlation function in the presence of arbitrary sources and AW ,

AR, AQ and AS are quantum anomalies.

In a scheme where the mixed axial-gravitational anomaly enters only in the conserva-

tion of the R-current (see e.g. eq. (2.43) of [74]), the Wess-Zumino consistency conditions

determine the general form of the superconformal anomalies to be [59]

AW =
c

16π2

(
W 2− 8

3
G2

)
− a

16π2
E+O(ψ2),

AR =
(5a−3c)

27π2
G̃G+

(c−a)

24π2
P,

AQ =−(5a−3c)i

9π2
G̃µνCµγ

5φν+
(a−c)
6π2

∇µ
(
CρR̃

ρσµν
)
γ(νψσ)−

(a−c)
24π2

GµνR̃
µνρσγρψσ+O(ψ3),

AS =
(5a−3c)

6π2
G̃µν

(
Dµ−

2i

3
Cµγ

5

)
ψν+

ic

6π2
Gµν

(
γµ

[σδρ]
ν −δ[σ

µ δ
ρ]
ν

)
γ5Dρψσ

+
3(2a−c)

4π2
Pµνg

µ[νγρσ]Dρψσ+
(a−c)
8π2

(
Rµνρσγµν−

1

2
Rgµνg

µ[νγρσ]

)
Dρψσ+O(ψ3),

(A.12)

where a and c are the central charges of the superconformal algebra, normalized so that

for free chiral and vector multiplets they are given respectively by [12]

a =
1

48
(Nχ + 9Nv), c =

1

24
(Nχ + 3Nv). (A.13)

Besides the Schouten tensor Pµν defined in (A.6) and the gauge field curvatures

G2 ≡ GµνGµν , GG̃ ≡ 1

2
εµνρσGµνGρσ, (A.14)
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the superconformal anomalies are expressed in terms of the square of the Weyl tensor W 2,

the Euler density E and the Pontryagin density P. In terms of the Riemann tensor these

take the form

W 2 ≡WµνρσW
µνρσ = RµνρσR

µνρσ − 2RµνR
µν +

1

3
R2,

E = RµνρσR
µνρσ − 4RµνR

µν +R2,

P ≡ 1

2
εκλµνRκλρσRµν

ρσ = R̃µνρσRµνρσ, (A.15)

where the dual Riemann tensor is defined as

R̃µνρσ ≡
1

2
εµν

κλRκλρσ. (A.16)

Notice that R̃µνρσ is not symmetric under exchange of the first and second pair of indices.

B Solving the Wess-Zumino conditions in the presence of flavor

symmetries

In this appendix we demonstrate that for each of the six flavor anomaly coefficients κ
(3)
I ,

κ
(4)
I , κ

(5)
(IJ), κ

(6)
(IJK), κ

(7)
I and κ

(8)
[IJ ] the bosonic anomalies in (4.7) and the corresponding

fermionic anomalies in (4.12) form a consistent solution (i.e. non trivial cocycle) of the

Wess-Zumino conditions (4.10) for new minimal supergravity coupled to Abelian flavor

multiplets. The only non trivial consistency conditions that need to be checked in each

case are [δε, δθ]W = 0, [δε, δω]W = 0, and [δε, δε′ ]W = (δθ + δω)W with θ = −1
2(ε′γµε)Aµ,

ωI = −1
2(ε′γµε)aIµ. We will explicitly compute these commutators, keeping only the leading

non trivial order in the fermionic background ψµ and λI . Moreover, we assume that total

derivative terms can be dropped.

B.1 κ
(3)
I cocycle

[δε, δθ]W = 0. The R-symmetry anomaly does not contain any term proportional to the

anomaly coefficient κ
(3)
I , while the corresponding term in the supersymmetry anomaly is

invariant under R-symmetry gauge transformations. Consequently, we trivially have

δεδθW = −δε
∫
d4x e θAR|κ(3)I

= 0, (B.1)

δθδεW = −κ(3)
I δθ

∫
d4x e εA(3)I

Q = 0, (B.2)

which indeed give

[δε, δθ]W = 0. (B.3)
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[δε, δω]W = 0. This commutator is similar to the commutator [δε, δθ]W = 0 for the

gravity multiplet cocycles κ(1) and κ(2). We have,

δεδωW = −κ(3)
I δε

∫
d4x e ωI

(
P − 8

3
GG̃

)
(B.4)

= −κ(3)
I

∫
d4x e ωIεµνρσ

(
1

2
δε(RµνκλR

κλ
ρσ)− 4

3
δε(GµνGρσ)

)
= 2κ

(3)
I

∫
d4x e ∇ρ

(
∂µω

I εκλµνRρσκλ
)
εγ(σψν)

− 4iκ
(3)
I

∫
d4x e ∂ρω

I εµνρσGµνεγ
5φσ + 4iκ

(3)
I

∫
d4x e ∂ρω

I εµνρσGµνη(ε)γ5ψσ,

δωδεW = −κ(3)
I δω

∫
d4x e εA(3)I

Q

= 2κ
(3)
I

∫
d4x e ∇µ

(
∂ρω

IερσκλRκλ
µν
)
εγ(νψσ)

− 4iκ
(3)
I

∫
d4x e εµνρσGρσ∂µω

Iεγ5

(
φν −

i

2
V κγκγ

5ψν

)
, (B.5)

where η(ε) is given in (2.3). Subtracting the two expressions gives

[δε, δω]W = 0. (B.6)

[δε, δε′]W = δωW with ωI = −1
2
(ε′γµε)aIµ. This commutator is more involved, but

it is closely related to the corresponding commutator for the gravity multiplet cocycles

κ(1) and κ(2) upon replacing the flavor symmetry with R-symmetry. Two consecutive

supersymmetry transformations give

δε′δεW =−κ(3)
I δε′

∫
d4x e εA(3)I

Q

=−4iκ
(3)
I

∫
d4x e εµνρσGµνa

I
ρεγ

5δε′φσ+4iκ
(3)
I

∫
d4x e εµνρσGµνa

I
ρηγ

5δε′ψσ

−4κ
(3)
I

∫
d4x e εµνρσf IρσηDµδε′ψν

+2κ
(3)
I

∫
d4x e εµνρσ∇κ

(
aIρR

κλ
µν

)
εγ(λδε′ψσ)−

1

2
κ

(3)
I

∫
d4x e εµνρσf IρσR

κλ
µνεγκδε′ψλ

=−4iκ
(3)
I

∫
d4x e εµνρσGµνa

I
ρεγ

5

(
1

2
Pσλ+

i

3
Gσλγ

5− 1

12
εσλ

κτGκτ

)
γλε′

−4iκ
(3)
I

∫
d4xe εµνρσGµνa

I
ρεγ

5Dση′

+4iκ
(3)
I

∫
d4x e εµνρσGµνa

I
ρηγ

5Dσε′−4iκ
(3)
I

∫
d4x e εµνρσGµνa

I
ρηγ

5γση
′

−4κ
(3)
I

∫
d4x e εµνρσf IµνηDρDσε′+4κ

(3)
I

∫
d4x e εµν

ρσf IµνηγσDρη′

−2κ
(3)
I

∫
d4x e εµνρσaIρR

κλ
µν∇κ(εγ(λDσ)ε

′)−2κ
(3)
I

∫
d4x e

���
���

���
�:0

εµνρσ∇κ
(
aIρR

κ
σµν

)
εη′

− 1

2
κ

(3)
I

∫
d4x e εµνρσf IρσR

κλ
µνεγκDλε′+

1

2
κ

(3)
I

∫
d4x e εµνρσf IρσR

κλ
µνεγκλη

′, (B.7)

where again η(ε) is given in (2.3).

– 24 –



J
H
E
P
0
9
(
2
0
1
9
)
0
3
9

We will first show that all terms involving η or η′ sum to zero in the commutator

[δε, δε′ ]. The term proportional to ηγ5γση
′ does not contribute to the commutator since

ηγ5γση
′ = η′γ5γση. (B.8)

Moreover,

ηγσDρη′ − η′γσDρη = ∇ρ(ηγση′). (B.9)

Integrating by parts and using the Bianchi identity εµνρσ∂ρf
I
µν = 0 we therefore find that

the term proportional to ηγσDρη′ does not contribute to the commutator either. Using the

relations

− εγ5Dση′ + ηγ5Dσε′ − (−ε′γ5Dση + η′γ5Dσε) = ∇σ(ηγ5ε′ − εγ5η′), (B.10)

and

2D[µDν]ε =

(
1

4
Rµνρσγ

ρσ + iγ5Gµν

)
ε, (B.11)

as well as the Bianchi identity εµνρσ∂ρGµν = 0, the remaining terms involving η or η′

combine into:

2iκ
(3)
I

∫
d4xe εµνρσGµνf

I
ρσ(ηγ5ε′−εγ5η′)+

1

2
κ

(3)
I

∫
d4x e εµνρσf IρσR

κλ
µν(εγκλη

′−ε′γκλη)

−2κ
(3)
I

∫
d4x e εµνρσf Iµν

(
1

4
Rρσ

κλ(εγκλη
′−ε′γκλη)+iGρσ(ηγ5ε′−εγ5η′)

)
= 0. (B.12)

Therefore, all terms involving η or η′ sum to zero in the commutator [δε, δε′ ].

From the remaining terms we get

[δε, δε′ ]W =
8

3
κ

(3)
I

∫
d4x e εµνρσGµνa

I
ρGσλε

′γλε

− 1

2
κ

(3)
I

∫
d4x e εµνρσaIρR

κλ
µνRκλστ (ε′γτε)

− κ(3)
I

∫
d4x e εµνρσaIρR

κλ
µν∇κ∇σ(ε′γλε)

− 1

2
κ

(3)
I

∫
d4x e εµνρσf IρσR

κλ
µν∇λ(ε′γκε). (B.13)

The last two terms can be rearranged as

εµνρσaIρR
κλ
µν∇κ∇σ(ε′γλε)−

1

2
εµνρσf IρσR

κλ
µν∇κ(ε′γλε)

= εµνρσaIρR
κ
λµν [∇κ,∇σ](ε′γλε) +∇σ

(
εµνρσaIρR

κλ
µν∇κ(ε′γλε)

)
= ∇σ

(
εµνρσaIρR

κλ
µν∇κ(ε′γλε)

)
+ εµνρσaIρR

κλ
µνRκσλτ (ε′γτε)

= ∇σ
(
εµνρσaIρR

κλ
µν∇κ(ε′γλε)

)
+

1

2
εµνρσaIρR

κλ
µνRκλστ (ε′γτε), (B.14)
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so that

[δε, δε′ ]W =
8

3
κ

(3)
I

∫
d4x e εµνρσGµνa

I
ρGσλε

′γλε

− κ(3)
I

∫
d4x e εµνρσaIρR

κλ
µνRκλστ (ε′γτε). (B.15)

In order to simplify these expressions we notice that for any antisymmetric tensor Θµν and

vector Ψµ in four dimensions we have Θ[λσΘµνΨρ] = 0, which leads to the identity

εµνρσΘµνΘσλΨρ = −1

4
εµνρσΘµνΘρσΨλ. (B.16)

In particular,

εµνρσGµνGσλa
I
ρ = −1

4
εµνρσGµνGρσa

I
λ,

εµνρσRµνκλRστ
κλaIρ = −1

4
εµνρσRµνκλRρσ

κλaIτ , (B.17)

and so we finally get

[δε, δε′ ]W =−2

3
κ

(3)
I

∫
d4x e εµνρσGµνGρσ(aIλε

′γλε)+
1

4
κ

(3)
I

∫
d4x e εµνρσRκλµνRκλρσ(aIτε

′γτε)

=−κ(3)
I

∫
d4x eωIAI , (B.18)

with

ωI = −1

2
(ε′γλε)aIλ, (B.19)

as required by the Wess-Zumino consistency conditions.

B.2 κ
(4)
I cocycle

[δε, δθ]W = 0. As for the κ
(3)
I cocycle, this commutator is trivially satisfied since

δεδθW = −δε
∫
d4x e θAR|κ(4)I

= 0, (B.20)

δθδεW = −κ(4)
I δθ

∫
d4x e εA(4)I

Q = 0. (B.21)

[δε, δω]W = 0. This commutator is an example of the connection between the Chern-

Simons forms and the supersymmetry anomaly discussed in subsection 4.1. We have,

δεδωW = −1

2
κ

(4)
I

∫
d4x e ωIεµνρσδε(FµνFρσ)

= −2κ
(4)
I

∫
d4x e ωIεµνρσFµν∂ρδεAσ

=
i

2
κ

(4)
I

∫
d4x e ∂ρω

IεµνρσFµνεγσγ
κλγ5

(
Dκψλ +

i

2
V τγκγτγ

5ψλ

)
, (B.22)

δωδεW = −κ(4)
I δω

∫
d4x e εA(4)I

Q

=
i

2
κ

(4)
I

∫
d4x e ∂ρω

IεµνρσFµνεγσγ
κλγ5

(
Dκψλ +

i

2
V τγκγτγ

5ψλ

)
. (B.23)

Hence,

[δε, δω]W = 0. (B.24)
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[δε, δε′]W = δωW with ωI = −1
2
(ε′γµε)aIµ. This commutator can be evaluated most

efficiently by noticing that two successive supersymmetry transformations of the generating

function can be expressed in terms of two successive supersymmetry transformations of the

R-symmetry gauge field. Namely,

δε′δεW = −κ(4)
I δε′

∫
d4x e εA(4)I

Q

= κ
(4)
I

∫
d4x e εµνρσ2Fµνa

I
ρδε′δεAσ. (B.25)

Using the local symmetry algebra (4.4) we therefore obtain

[δε, δε′ ]W = κ
(4)
I

∫
d4x e εµνρσ2Fµνa

I
ρ[δε, δε′ ]Aσ

= κ
(4)
I

∫
d4x e εµνρσ2Fµνa

I
ρ(δξ + δθ)Aσ

= κ
(4)
I

∫
d4x e εµνρσ2Fµνa

I
ρ(ξ

λ∂λAσ +Aκ∂σξ
κ + ∂σθ)

= κ
(4)
I

∫
d4x e εµνρσ2Fµνa

I
ρξ
λFλσ

= −
∫
d4x e ωI AR|κ(4)

(IJ)

, (B.26)

where

ξµ =
1

2
(ε′γµε), θ = −1

2
(ε′γµε)Aµ, ωI = −1

2
(ε′γµε)aIµ, (B.27)

and in the last step we have used the identity (B.16).

B.3 κ
(5)
(IJ) cocycle

[δε, δθ]W = 0. The Wess-Zumino commutation relations for the κ
(5)
(IJ) cocycle are analo-

gous to those of the κ
(4)
(IJ) cocycle upon replacing the R-symmetry with the flavor symmetry

gauge fields. We have,

δεδθW = −1

2
κ

(5)
(IJ)

∫
d4x e θ εµνρσδε(f

I
µνf

J
ρσ)

= −2κ
(5)
(IJ)

∫
d4x e θ εµνρσf Iµν∂ρδεa

J
σ

= κ
(5)
(IJ)

∫
d4x e ∂ρθ ε

µνρσf Iµνεγσλ
J , (B.28)

δθδεW = −κ(5)
(IJ)δθ

∫
d4x e εA(5)(IJ)

Q

= κ
(5)
(IJ)

∫
d4x e ∂ρθ ε

µνρσf Iµνεγσλ
J . (B.29)

Hence,

[δε, δθ]W = 0. (B.30)
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[δε, δω]W = 0. This commutator is again trivially satisfied since

δεδωW = −δε
∫
d4x e ωIAI

∣∣
κ
(5)
(IJ)

= 0, (B.31)

δωδεW = −κ(5)
(IJ)δω

∫
d4x e εA(5)(IJ)

Q = 0. (B.32)

[δε, δε′]W = δθW with θ = −1
2
(ε′γµε)Aµ. As for the κ

(4)
(IJ) cocycle we evaluate this

commutator by expressing two successive supersymmetry transformations of the generating

function in terms of two successive supersymmetry transformations of the flavor gauge

fields. Namely,

δε′δεW = −κ(5)
(IJ)δε′

∫
d4x e εA(5)(IJ)

Q

= κ
(5)
(IJ)

∫
d4x e εµνρσ2Aµf

I
ρσδε′δεa

J
ν . (B.33)

Using the local symmetry algebra (4.4) this gives

[δε, δε′ ]W = κ
(5)
(IJ)

∫
d4x e εµνρσ2Aµf

I
ρσ[δε, δε′ ]a

J
ν

= κ
(5)
(IJ)

∫
d4x e εµνρσ2Aµf

I
ρσ(δξ + δω)aJν

= κ
(5)
(IJ)

∫
d4x e εµνρσ2Aµf

I
ρσ(ξκ∂κa

J
ν + aJκ∂νξ

κ + ∂νω
I)

= κ
(5)
(IJ)

∫
d4x e εµνρσ2Aµf

I
ρσξ

κfJκν

=
1

2
κ

(5)
(IJ)

∫
d4x e εµνρσf Iµνf

J
ρσξ

κAκ

= −
∫
d4x e θ AR|κ(5)

(IJ)

, (B.34)

where

ξµ =
1

2
(ε′γµε), θ = −1

2
(ε′γµε)Aµ, ωI = −1

2
(ε′γµε)aIµ, (B.35)

and in the last step we have used again the identity (B.16).

B.4 κ
(6)
(IJK) cocycle

[δε, δθ]W = 0. This commutator is trivially satisfied since

δεδθW = −δε
∫
d4x e θAR|κ(6)

(IJK)

= 0, (B.36)

δθδεW = −κ(6)
(IJK)δθ

∫
d4x e εA(6)(IJK)

Q = 0. (B.37)
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[δε, δω]W = 0. This commutator is also straightforward to evaluate:

δεδωW = −1

2
κ

(6)
(IJK)

∫
d4x e ωIεµνρσδε(f

J
µνf

K
ρσ)

= 2κ
(6)
(IJK)

∫
d4x e ∂ρω

IεµνρσfJµνδεa
K
σ

= κ
(6)
(IJK)

∫
d4x e ∂ρω

IεµνρσfJµνεγσλ
K , (B.38)

δωδεW = −κ(6)
(IJK)δω

∫
d4x e εA(6)(IJK)

Q

= κ
(6)
(IJK)

∫
d4x e ∂ρω

IεµνρσfJµνεγσλ
K . (B.39)

Hence,

[δε, δω]W = 0. (B.40)

[δε, δε′]W = δωW with ωI = −1
2
(ε′γµε)aIµ. As for the κ

(4)
(IJ) and κ

(5)
(IJ) cocycles, this

commutator can be evaluated by expressing two successive supersymmetry transformations

of the generating function in terms of two successive supersymmetry transformations of the

flavor gauge fields:

δε′δεW = −κ(6)
(IJK)δε′

∫
d4x e εA(6)(IJK)

Q

= 2κ
(6)
(IJK)

∫
d4x e εµνρσaIρf

J
µνδε′δεa

K
σ . (B.41)

Hence,

[δε, δε′ ]W = 2κ
(6)
(IJK)

∫
d4x e εµνρσaIρf

J
µν [δε, δε′ ]a

K
σ

= 2κ
(6)
(IJK)

∫
d4x e εµνρσaIρf

J
µν(δξ + δω)aKσ

= 2κ
(6)
(IJK)

∫
d4x e εµνρσaIρf

J
µνξ

κfKκσ

=
1

2
κ

(6)
(IJK)

∫
d4x e ξκaIκ ε

µνρσfJµνf
K
ρσ

= −
∫
d4x e ωI AI |κ(6)

(IJK)

, (B.42)

where again

ξµ =
1

2
(ε′γµε), ωI = −1

2
(ε′γµε)aIµ, (B.43)

and we have once more made use of the identity (B.16).

B.5 κ
(7)
I cocycle

[δε, δθ]W = 0. Solving the Wess-Zumino conditions for the Fayet-Iliopoulos type cocycles

κ
(7)
I and κ

(8)
[IJ ] is somewhat more involved because their contribution to the R-symmetry and

flavor anomalies contains terms quadratic in the fermions. We only outline the essential

steps of this calculation here.
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Checking the commutation relation [δε, δθ]W = 0 involves computing the supersym-

metry transformation of the R-symmetry anomaly term proportional to κ
(7)
I . This requires

a bit of algebra, but a sketch of the calculation is as follows:

δεδθW = −δε
∫
d4x e θAR|κ(7)I

= −κ(7)
I δε

∫
d4x e θ

(
DI − iεµνρσaIµ∂νBρσ + λ

I
γ5γµψµ

)
= −κ(7)

I

∫
d4x e θ

[
εγ5γµ

(
DµλI +

1

4
(γρσf Iρσ + γ5DI)ψµ

)
− i

2
εµνρσ∂νBρσεγµλ

I − iεµνρσ∂ν(εγρψσ)aIµ +
1

2
εγµψµD

I

+ λ
I
γ5γµ

(
Dµε+

i

2
V κγµγκγ

5ε

)
− 1

4
ψµγ

5γµ
(
γρσfρσ + γ5DI

)
ε

]
= κ

(7)
I

∫
d4x e ∂µθ ε

(
γ5γµλI + iεµνρσaIνγρψσ

)
, (B.44)

δθδεW = −κ(7)
I δθ

∫
d4x e εA(7)I

Q

= κ
(7)
I

∫
d4x e ∂µθ ε

(
γ5γµλI + iεµνρσaIνγρψσ

)
. (B.45)

Hence, we arrive at the correct Wess-Zumino condition

[δε, δθ]W = 0. (B.46)

[δε, δω]W = 0. In order to verify this commutation relation we need to make use of the

identity

δε

[
e

(
εµνρσAµ∂νBρσ−

1

2
R−3VµV

µ− 1

2
∇ν(ψ

ν
γµψµ)+

1

2
ψµγ

µρσ

(
Dρψσ+

3i

4
V τγργτγ

5ψσ

))]
= ∂ν

[
e εµνρσAµεγρψσ+

1

2
e εγνγρσ

(
Dρψσ+

i

2
V τγργτγ

5ψσ

)]
. (B.47)

The derivation of this identity is rather lengthy and we will not present it here. Given this

identity, however, the commutation relation [δε, δω]W = 0 follows trivially:

δεδωW =−δε
∫
d4x e ωIAI

∣∣
κ
(7)
I

=−κ(7)
I δε

∫
d4x eωI

[
iεµνρσAµ∂νBρσ−

i

2
R−3iVµV

µ− i
2
∇ν(ψ

ν
γµψµ)

+
i

2
ψµγ

µρσ

(
Dρψσ+

3i

4
V τγργτγ

5ψσ

)]
=κ

(7)
I

∫
d4x e ∂νω

I

[
iεµνρσAµεγρψσ+

i

2
εγνγρσ

(
Dρψσ+

i

2
V τγργτγ

5ψσ

)]
, (B.48)

δωδεW =−κ(7)
I δω

∫
d4x e εA(7)I

Q

=κ
(7)
I

∫
d4x e ∂νω

I

[
iεµνρσAµεγρψσ+

i

2
εγνγρσ

(
Dρψσ+

i

2
V τγργτγ

5ψσ

)]
, (B.49)

so that

[δε, δω]W = 0. (B.50)
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[δε, δε′]W = (δθ + δω)W with θ = −1
2
(ε′γµε)Aµ, ωI = −1

2
(ε′γµε)aIµ. Acting with

two successive supersymmetry transformations on the generating functional gives

δε′δεW =κ
(7)
I

∫
d4x e

[
Aµε

(
γ5γµδε′λ

I+iεµνρσaIνγρδε′ψσ
)

+
i

2
aIµεγ

µγρσ
(
Dρδε′ψσ+

i

2
V τγργτγ

5δε′ψσ

)]
=κ

(7)
I

∫
d4x eAµε

[
− 1

4
γ5γµ

(
γρσf Iρσ+γ5DI

)
ε′+iεµνρσaIνγρ

(
Dσε′+

i

2
V κγσγκγ

5ε′
)]

+
i

2
κ

(7)
I

∫
d4x e aIµεγ

µγρσ
(
Dρ+

i

2
V τγργτγ

5

)(
Dσ+

i

2
V κγσγκγ

5

)
ε′. (B.51)

Using the identities[(
Dρ+

i

2
V κγργκγ

5

)
,

(
Dσ+

i

2
V λγσγλγ

5

)]
ε (B.52)

=

(
1

4
Rρσκλγ

κλ+iγ5Gρσ

)
ε+

i

2

(
∇ρVκγσ−∇σVκγρ

)
γκγ5ε− 1

4
V κV λ(γργκγσγλ−γσγκγργλ)ε,

and

ε′γµγρσγ5ε− εγµγρσγ5ε′ = ε′{γµ, γρσ}γ5ε = 2iεµνρσε′γνε,

ε′γρDσε− εγρDσε′ = ∇σ(ε′γρε),

ε′γµγργσγ5ε− εγµγργσγ5ε′ = 2iεµνρσε′γνε, (B.53)

we therefore obtain

[δε, δε′ ]W = κ
(7)
I

∫
d4x e Aµ

(
iεµνρσf Iρσξν +DIξµ + 2iεµνρσaIν∇σξρ + 8iV κδ[µ

κ δ
ν]
λ a

I
νξ
λ
)

+
i

2
κ

(7)
I

∫
d4x e aIµ

(
−Rξµ − 6V 2ξµ − 2εµνρσξνGρσ − 6εµνρσξν∂ρVσ

)
= −κ(7)

I

∫
d4x e θ

(
DI − iεµνρσ∂νBρσaIµ +O(λψ)

)
− κ(7)

I

∫
d4x e ωI

(
− i

2
R− 3iVµV

µ + iεµνρσ∂νBρσAµ +O(ψ2)
)
, (B.54)

where again

ξµ =
1

2
(ε′γµε), θ = −1

2
(ε′γµε)Aµ, ωI = −1

2
(ε′γµε)aIµ. (B.55)

B.6 κ
(8)
[IJ] cocycle

[δε, δθ]W = 0. This commutator is trivially satisfied for the cocycle κ
(8)
[IJ ]:

δεδθW = −δε
∫
d4x e θAR|κ(8)

[IJ]

= 0, (B.56)

δθδεW = −κ(8)
[IJ ]δθ

∫
d4x e εA(8)[IJ ]

Q = 0. (B.57)

Hence,

[δε, δθ]W = 0. (B.58)
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[δε, δω]W = 0. The calculation in this case is identical to that for the commutator

[δε, δθ]W = 0 of the κ
(7)
I cocycle above. Following the same steps we have

δεδωW = −κ(8)
[IJ ]δε

∫
d4x e ωI

(
DJ − iεµνρσaJµ∂νBρσ + λ

J
γ5γµψµ

)
= −κ(8)

[IJ ]

∫
d4x e ωI

[
εγ5γµ

(
DµλJ +

1

4
(γρσfJρσ + γ5DJ)ψµ

)
− i

2
εµνρσ∂νBρσεγµλ

J − iεµνρσ∂ν(εγρψσ)aJµ +
1

2
εγµψµD

J

+ λ
J
γ5γµ

(
Dµε+

i

2
V κγµγκγ

5ε

)
− 1

4
ψµγ

5γµ
(
γρσfρσ + γ5DJ

)
ε

]
= κ

(8)
[IJ ]

∫
d4x e ∂µω

Iε
(
γ5γµλJ + iεµνρσaJν γρψσ

)
, (B.59)

δωδεW = −κ(8)
[IJ ]δω

∫
d4x e εA(8)[IJ ]

Q

= κ
(8)
[IJ ]

∫
d4x e ∂µω

Iε
(
γ5γµλJ + iεµνρσaJν γρψσ

)
, (B.60)

and so

[δε, δω]W = 0. (B.61)

[δε, δε′]W = (δθ + δω)W with θ = −1
2
(ε′γµε)Aµ, ωI = −1

2
(ε′γµε)aIµ. This com-

mutator is also a special case of the corresponding one for the κ
(7)
I cocycle:

δε′δεW =κ
(8)
[IJ ]

∫
d4x e aIµε

(
γ5γµδε′λ

J+
i

2
εµνρσaJν γρδε′ψσ

)
(B.62)

=κ
(8)
[IJ ]

∫
d4x e aIµε

[
− 1

4
γ5γµ

(
γρσfJρσ+γ5DJ

)
ε′+

i

2
εµνρσaJν γρ

(
Dσε′+

i

2
V κγσγκγ

5ε′
)]
.

Using the identities (B.53) we obtain

[δε, δε′ ]W = κ
(8)
[IJ ]

∫
d4x e aIµ

(
iεµνρσfJρσξν +DJξµ + iεµνρσaJν∇σξρ + 4iV κδ[µ

κ δ
ν]
λ a

J
ν ξ

λ
)

= −κ(8)
[IJ ]

∫
d4x e ωI

(
DJ − iεµνρσ∂νBρσaJµ +O(λψ)

)
, (B.63)

as required by the Wess-Zumino consistency conditions.
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