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1 Introduction

It is well known that precision flavour observables put strong constraints on models of
new physics. While these models typically predict new particles which might be found by
LHC experiments or at future colliders, first hints could show up as anomalies in precision
flavour observables. Their examination could then lead to clues towards the nature of new
physics. It is therefore of interest to calculate these observables in a generic extension of
the standard model (SM).

We consider an arbitrary number of additional heavy degrees of freedom: gauge bosons,
fermions and scalars. Perturbative unitarity imposes important constraints on such generic
extensions. The required cancellation of unbounded high-energy growth of scattering am-
plitudes leads to specific relations among the coupling constants that are common to all
models. These relations allow us to understand and perform the renormalisation of the ob-
servables in a general way. The feasibility of this approach is expected on general grounds
since the equations implied by perturbative unitarity uniquely reflect the spontaneously



broken gauge structure [1-3] and thus may as well be derived by means of Slavnov-Taylor
identities (STT). Here we advocate the practical implementation of those simple relations
in the calculation and renormalisation of generic loop amplitudes. This goes beyond the
typical application of perturbative unitarity in which one derives upper bounds on yet
unobserved mass spectra [4-6] and combinations of masses and/or couplings [7-11].

As an example we study the flavour-changing transition between two SM quarks d; and
d; of different generations, induced by a heavy neutral gauge boson at one-loop for vanishing
external momenta. An example is the FCNC s — d transition with the emission of a virtual
Z boson, the so-called Z penguin. It contributes, in combination with flavor-changing box
diagrams, to processes like the rare K — nwvp decays. Just like the SM, many models
of new physics generate this transition first at the one-loop level, since their neutral SM-
fermion currents are flavour-conserving.! In this article we discuss the renormalisation of
the general one-loop result for this process, assuming the absence of tree-level contributions
to the d; — d; transition. Then we provide manifestly finite results for the special case of
charged internal particles. It is then straightforward to obtain the Z penguin in any given
model by just inserting the specific couplings into our generic result. Due to sum rules
derived from the STI, only a reduced set of couplings needs to be specified in practice. We
illustrate this procedure in detail for several examples.

Our method has several interesting applications. It provides explicit and manifestly
finite results for a very general class of extensions of the SM. The strategy is not restricted to
flavour observables, but might also be applicable, for instance, to collider and dark-matter
phenomenology.

This paper is organised as follows. After a definition of the generic Lagrangian in
section 2, we present in section 4 the general analytic result which in many models is as
yet unknown, and elaborate on its renormalisation. In section 5 we explicitly perform the
renormalisation of our result for the case of charged heavy particles. As an illustration, we
(re-)derive the Z penguin in various renormalisable models, to wit, the SM, the two-Higgs-
doublet model, an extension of the SM with vector-like quarks, and the minimal super-
symmetric SM (MSSM). In the appendices we give the results for the box diagrams in our
notation and provide the definitions and explicit expressions of the requisite loop functions.
Moreover, we provide the full list of Slavnov-Taylor identities for four-point couplings.

2 The generic Lagrangian

In this work we consider an extension of the SM by an arbitrary number of heavy scalar,
fermion, and vector fields (in this context, “heavy” means that the particle masses are of
the order of the electroweak scale or larger). As our starting point we define the parts of
the generic Lagrangian which are relevant to the calculation of box and penguin diagrams.
The interaction terms involving massless SM vector fields — photons and gluons — are
fixed by QED and QCD gauge invariance. In particular, the massive-massless interaction

Since this property drastically improves the potential agreement of a model with experimental flavour
constraints, especially from AS = 2 observables, it is sometimes enforced by imposing an additional Z»
parity on the particle content (an example is T parity in little Higgs models [12]).



terms are given in terms of the covariant derivative
(Du)ij = (8u - ieQFAu)(Sij - igsGZTg,ij (2-1)

by the usual kinetic terms of the massive fields F'. Here T i j and Qr generate the action
of the respective gauge group SU(3). and U(1),y, on the field F.
The three-point interactions of massive fields
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involve real physical scalars hs,;, Dirac fermions vf,, and real vector fields V,,, with non-
zero masses My,, my, and M,,, respectively (complex fields are taken into account by also
including the complex conjugated field as an independent degree of freedom in the sum,
which automatically ensures the correct normalisation). These fields are enumerated by
the corresponding indices s;, f;, v;. The index o denotes the two chiralities ¢ = L, R, via
the chiral projectors Pg 1, = (14 5)/2. Square brackets denote antisymmetrisation of the
enclosed Lorentz indices (no symmetry factors are implied). At one-loop level, no quartic
interactions are needed for the calculation of the Z penguin. They enter, however, in the
derivation of the coupling sum rules (see section 3); the requisite Lagrangian terms are
shown in appendix C.

The sums in eq. (2.2) run over all particles in a given multiplet. Consider, for instance,
the last term in eq. (2.2): if v; corresponds to the SM Z boson and the scalar indices to
a charged scalar multiplet, the sum runs of both positively and negatively charged scalar
particles. Alternatively, one could sum over positive particles only and omit the factor 1/2
in front of the sum.

We assume that all vector fields obtain their mass by the spontaneous breakdown
of a local symmetry. The Lagrangian L3 comprises only the model-dependent couplings;
all remaining “unphysical” interactions, for instance of the would-be Goldstone bosons
associated with the spontaneous symmetry breaking, can be inferred from the requirement
of perturbative unitarity, via the STIs which we discuss below.

Due to SU(3) x U(1) gauge invariance non-vanishing couplings may only exist for index

combinations which allow the fields to combine to form an uncharged singlet. For instance,
o,abc

a nonvanishing coefficient Yeifr s
1Jj1J2

implies the charge relation Qg + Qp, = Qy,, and

o,dbc o,abd - o,adc

y81f_1f2 Tsel’d“ t yslflfz ;27‘10 B Tfl’bd yslflfz (2.3)
This last property is important for the calculation of QCD corrections in the spirit of
refs. [13-15]. In the following, we will suppress the colour indices. They can always be
thought of as being subsumed in the field indices v;, s;, and f;, if necessary.



If one of the fermions (e.g., f,) is uncharged, Schur’s lemma implies that even Ty, =
T}, . Hermiticity puts further restrictions on the couplings. For instance, we can express the
couplings of negatively charged Higgs and gauge bosons to fermions through the couplings
of the corresponding positively charged particles. In general we have

y;ﬁfl = (yglf1f2)*a g;flﬁfl = (gglflh)*a Guivasy = (9171172§1)*a

* *
g’l}18152 — _(9515152) ) g’Ul’UQ’U3 — _(9171172173) .

(2.4)

The bars over bosonic indices denote the exchange of indices within a pair of oppositely
charged particles (as in 9T = gw-.) and have no effect for neutral particles. The bars
over the os denote the opposite chirality.

We will calculate the Z penguin using the general Lagrangian eq. (2.2). In practice,
one would then substitute the couplings of a given model into our final results. This
substitution is performed for several examples in section 5. In particular, in this way one
recovers the SM result (see section 5.1.1 for the specific substitutions needed in this case).

3 Slavnov-Taylor identities for Feynman rules

The constraints derived from perturbative unitarity reflect a spontaneously broken gauge
symmetry. To exploit these constraints for our generic Lagrangian we use the STIs of
an arbitrary fundamental spontaneously broken gauge theory. The massive vector fields
of (2.2) are the gauge bosons of the fundamental theory supplemented by a standard R
gauge-fixing term. This has two consequences. First, the couplings of Goldstone bosons
can be linked directly to the couplings of the corresponding vectors in the mass-eigenstate
basis. This use of STIs is well known and summarized in the Goldstone-boson equivalence
theorem [3, 4, 16, 17]. Second, we obtain certain sum rules, i.e. equations that impose
non-trivial constraints on the couplings of physical fields and encode the full spontaneously
broken gauge structure on the level of Feynman rules.? We will use these sum rules later
to renormalise the Z penguin.

From a technical point of view it is easiest to derive the sum rules from the vanishing
Becchi-Rouet-Stora-Tyutin (BRST) [19, 20] transformation of suitable vertex functions.
To start, we note that throughout this work the gauge freedom of (2.2) is fixed with a
standard linear R Lagrangian [21]

Lox ==Y (26)'FoFy,  Fo= 0,V — 0,6 Mooy, (3.1)
v
for every vector field V,, of mass M, and the corresponding pseudo-Goldstone boson field
¢,. The coefficients o, can have the values +i for complex fields and +1 for real fields. For
the SM fields they are given by o+ = £¢ and oz = 1, and we choose this convention in
general for all charged and neutral vector fields.
By applying a BRST transformation s to a Green’s function

G oh = (TG (.. )pn ) (3.2)

2The couplings in (2.2) are defined such that the Feynman rules are given, after multiplication by a

factor of ¢, in terms of the usual Lorentz structures in the conventions of FeynArts [18].



which involves an anti-ghost field @,, and using the transformation property s, = —F), /&,,

we obtain a linear relation between the connected, truncated Green’s functions GZVJ("')"}’

and G2el-en.

on-shell fields, whose BRST variations vanish. The underlining of a field indicates that

Here, the dots (...)pn stand for any combination of physical, asymptotic

the corresponding external leg has been amputated. In our convention, labels on vertex
functions denote outgoing fields, whereas all momenta are incoming.® Angle brackets
denote a vacuum expectation value, and T'{...} the time-ordered product of fields.

The ST1Is lead to the following relation in momentum space:

T
Kt 5 (50 Jpne) _
<’i0vaMU> (v) (<d) ( : ')ph)c) =0 (33)

G?W) denotes the propagator for a vector boson or its Goldstone boson, and is given by

the inverse of the two-point vertex function I'V #**). These functions can be decomposed as

P VoV 1.2 Vs (1.2
gP TV Vo (k2 ke, TV (k ) v
Fq(}uu)(k"’_k) = P:Z‘:F’L Ha PO R ’ Gq(}uA)FU(AV) =1 o - (34)
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where gED = Qv — % and gﬁy = G — g:‘fy. It follows [23] that the STIs are given by
FVUV'TJ + ﬁ
<T{kﬂvi - iangAU(k‘Q)@}(. ) =0, A, = L & (3.5)

M, (M, — io,L}%)

In principle, one would have to account for the mixing of different bosons; consider, for
instance, Z — A mixing in the SM. However, this only affects eq. (3.5) at loop level, while
we use the equation to evaluate Feynman rules and tree-level sum rules, where, in fact,
A,(k*) = 1. Evaluating this identity at tree level shows that the three-point couplings
involving Goldstone bosons ¢, are related to the couplings involving the corresponding
gauge bosons V,, as follows:

g = 0,0 M32+M33_M319 g = —0y,0 7M521 g
V19203 v2Ovs 2]\402]\4”3 V1V203 > P1¢251 v19v2 2Mv1 ]\4@2 V1V281 9
2 2 2 2
_ . M'Ul B M’U2 - M81 - M82

Guivagps — —10yg T Guvivavsz » 9p1s152 — 100, T Gvys159 5
Mos o (3.6)

Guidasy = — 10w, m Guivasy s 916063 = 05
1

o _ ; o o
Yo fpr = 7100 M,, (mflgmflfz N gv1f1f2mf2) :

Here the subscripts ¢; correspond to Goldstone-boson indices and are used in distinction
to the subscripts s; corresponding to physical scalars (for instance, Higgs bosons).

3The momentum configuration of the vectors and Goldstone bosons appearing in the gauge-fixing func-
tion is not restricted any further, in contrast to the procedure used, for instance, in applications of the
Goldstone-boson equivalence theorem [22].



The STIs for four-point diagrams have two consequences. If the diagram contains a
four-point coupling, the resulting relation allows to express this coupling in terms of three-
point couplings. In this way, all four-point couplings with at least one Goldstone or vector
boson can be derived; they are summarized in appendix C. If the diagram does not contain
a four-point coupling, the STIs yield sum rules which imply additional relations among
three-point couplings. For instance, the Lie-algebra structure of the vector and fermion
couplings is reflected by the two sum rules

Z (gvlvzvsgvsv@s + Gurvzvs Gurvavs + gv3v1v5g’v2v455) = 07 (3'7)
Vs

o _ o o _ 0 o
D Teass = D (90 79 urs — Gunips 9o o) (3.8)
v3 f3

Eq. (3.7) is simply the Jacobi identity, and eq. (3.8) relates the structure constants of
fermion and vector representations. It is interesting to note that eq. (3.8) implies the
unitarity of the Cabibbo-Kobayashi-Maskawa (CKM) matrix for an universal, diagonal Z-
boson coupling to fermions. The remaining sum rules provide non-trivial constraints on
the unitarization properties of the given couplings. Here we show only the two sum rules
needed for the renormalisation of the Z penguin:
2 2
Z Guivas; yglflfQ = Z W Guivavs <mflg:3f1f2 - gg3f1f2 mfz)
v3

S1

v3
g ag g ag
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I3

G o G G
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We refer to appendix C for the remaining rules.

4 Result for the Z penguin

We present our result for the renormalised Z penguin in the form of an effective vertex. The
penguin function ng 4,z describing the transition between two light SM fermions d; — d;
is defined in terms of the amputated vertex function as

d;diZ Gp e oCy 4 Vo Ao
| Y =~,P, X —— —C5 ., = Cc9. .. 4.1
wo Tulo V2 2 st d;jd;Z (47)2 d;d;Z (4.1)

The function C’gj d;z» OF C’fjj diZ respectively, depends on all masses and couplings that
appear; o = L, R stands for the chiral projection. It is obtained by calculating the Feynman



Figure 1. Representative Feynman diagrams contributing to the one-loop amputated d; — d; — Z

Green’s function.

Straight lines denote fermions, wavy lines denotes vectors, and dashed lines

denote scalar particles.

diagrams shown in figure 1, using the Feynman rules derived from the Lagrangian eq. (2.2).

In the physical meson decay process, the momentum transfer is much smaller than any of

the internal particle masses. Accordingly, setting the external momenta and light fermion
masses to zero in the matching calculation, the result in the 't Hooft-Feynman gauge is

égjdiz = { Z Z
fiv1 f2§Z SM

>

fifev1 -
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The functions Cy and Cj can be found in egs. (B.2) and (B
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.3), respectively. The couplings

are contained in the s and k factors that are defined as follows:
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The sums in (4.2) run over all components of the fields (e.g., explicitly over W and W~
in the SM). Note that the scalar-index sums in (4.2) run only over physical fields; the
contributions of would-be Goldstone bosons have been accounted for via the replacement
of the Goldstone couplings in terms of couplings to physical particles, using eq. (3.6). The
contribution of the Z penguin to processes like rare B and K decays is not separately
gauge-invariant without including the box contributions. We present the explicit generic
results for completeness in appendix A.
Our result (4.1) consists of several contributions. In general, we can write (i # j)

djdiZ _ pdidiZ(1) : w bot 1 v
Tyio'™ =Tyio' { Zyaa,t5 Z(gm 102501025795 54, >+225Z2v1931didj}130~
V1

(4.9)
Here I‘ 44:(1) Jenotes the sum of all contributing one-loop diagrams, and the rest are
the vertex, fermion field, and gauge-boson field renormalisation constants, respectively.
Note that in this work we assume the absence of tree-level FCNC transitions between light
quarks, i.e. gglgidj = 0. In this case, we can use the STIs (3.8), (3.9) and (3.10) to show that
the fermion field renormalisation constants are sufficient to cancel all divergences in (4.9)
(in other words, 5Z§5 4; can be chosen to vanish). This is done explicitly in section 5.
The two-point functions in the full theory lead to mixing among the fermions beyond

tree level. We perform an off-diagonal field renormalisation for all fermions fields, with



Figure 2. One-heavy-particle reducible contribution to the Z penguin.

finite terms chosen to restore a diagonal and canonically normalised kinetic and mass term.
As one consequence, diagrams with a reducible heavy-fermion line (of the form shown in
figure 2) are exactly cancelled by corresponding counterterm diagrams.

The one-loop corrections to the renormalised fermion two-point function can be written
as

fifi | pyito b0 po 1 b0 bt )
sTifi — {(EV,MJF(;ZH,M)pqLESMi—2(mfjézfjfi+5zm mfi)—éﬂémfi]PU. (4.10)

The finite parts of the field renormalisation constants for j # ¢ are obtained from the

requirement that the off-diagonal parts of the self energy (4.10) vanish. They are given by
2 _ _

= ﬁ(mizd}’a + ijmfizw’a + mszw’a + mfl.Ew’U f~) ‘ﬁn' (4.11)

fin = 2 gy Vififi Vififi S.fifi S, fj
fi fi

P,0
5ijfi

They enter our generic result after having been expanded in small mass ratios. The diag-
onal field renormalisation constants are not necessary in our case. If we had allowed for
the presence of tree-level d; — d; transitions, one would have to fix these constants by
renormalisation conditions. Note that, in this case, the one-loop result would correspond
to a tiny correction of an already suppressed tree-level amplitude. These consideration can
be important, however, in an analogous treatment of charged current couplings [24].

We will show in the next section that all divergences in our generic result completely
cancel against the divergent terms in the field rotation, without introducing additional
counterterms. In order to make this cancellation manifest, it is necessary to use the conse-
quences of tree-level perturbative unitarity derived in section 2 in form of the STIs. This
step is independent of the specification of a model and can be applied without detailed
knowledge about the sector responsible for the spontaneous symmetry breaking.

5 Renormalised results

The result (4.2) is valid for any number of heavy new scalars, vectors, and Dirac fermions. It
is, however, not very suitable for numerical evaluation: the functions Co in eq. (5.4) contain
divergent terms (cf. appendix B). While the STI (via relations between the couplings
appearing in the coefficients (4.3)—(4.8)) ensure that the result is finite, the cancellation of
the divergences is not manifest. In this section we will derive manifestly finite versions of
our result that, in addition, depend on a minimal number of physical couplings.



In order to make contact to phenomenological applications, we remind the reader that
the loop functions appearing in rare K and B meson decays are given by the following
combinations [25]

’

X°(x) = Clyz(w) — 4B, (2), Y7 (@) = Coyz(w) — B()3 (5.1)

sdvv
with C,, and ngé/kék given in eq. (4.1) and eq. (A.2), respectively.

5.1 SM Fermions and charged scalars and vectors

We first consider the simplified case of theories with charged heavy scalars and vectors —
in other words, we drop all coefficients in eq. (4.2) that involve couplings to heavy new
fermions. We then simplify the remaining expression by repeatedly eliminating physical
coupling constants via application of the STI. The result obtained in this way is not only
manifestly finite, but also depends on fewer physical coupling constants than the original ex-
pression. This procedure is not unique. While the STI ensure that one will finally arrive at a
finite result, there is some freedom of which couplings to eliminate and which ones to retain.

For instance, continuing with our simplified case, we can first eliminate the right-
handed Z-fermion coupling by solving the “Yukawa sum rule” eq. (3.10) for QJZ%qu and
solving the “gauge boson mass sum rule” eq. (3.9) for gIZ%Et' We then apply the “unitarity
sum rule”, eq. (3.8), together with the universality of the Z coupling to fermions, to
eliminate all dependence on couplings involving light quarks (this step is a generalization of
the GIM mechanism). We can then solve eq. (3.8) for ggﬁ. Applying the resulting relations
to egs. (4.3)—(4.8) eliminates all divergences, and we obtain the manifestly finite expression

AL B L R L L R
Cd]dZZ - Z fs(mta Msl 9 MSQ)yS;{d] (58182ys;Jit (gZCide - ngt) + gZSTSEyS;Jit>
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The loop functions are given by
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i
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~10 -
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m*
fvs(mi,mj,mi) =m; | 1——2% | Co (mg,mj,my,)
4
my,

3
m; m;
—m; | Co(my,mz,mp) — —
+(4m2 ) o lma, k) = g
3
m‘CO(miamhmj) 3 m;
fvs(mi,mg,my) = — e +Zmi00(mi;mj,mk)_m.

The function Cp can be found in eq. (B.2).

A comment is in order: the sums over charged vectors v; and charged scalars s; in
eq. (5.2) run over the particle types, but not over the different charges: for SM fermion
content the charge of the internal vectors and scalars is fixed by the external fermions (e.g.,
for a strange to down transition, there are only up-type quarks in the loop, so the internal
vectors and scalars must have negative charge —e).

5.1.1 Standard Model

We illustrate the general procedure described above by considering the s — d transition in
the SM. Here, the only relevant heavy degrees of freedom are the top quark, and the gauge
bosons Z and W¥. Starting with the general result (4.2), we need to keep only the terms

AL,SM > 5 1
C’st = Z |:k?lf2’01 <CO (mfl?mf27 le) - 2> + k?1f2v1 Co (mfl’mf27 le) + k}ihvl]
f1fav1
~ ~ 1
+ Z |:k}'1vlv2 (CO (mfl’MUNMU?) + 2) + k?lmmco (mfl’MﬂlvMUQ) + k}ol-v1’t)2:| (54)
fiviva
Next, we insert the SM couplings of W bosons
L e L e e
gW+ﬂjdk = WV]IC’ gW+17j€k = mc;jka gzw+w- = a (5-5)
w w
and Z bosons
2e 2e
L 2 R 2

Here Tg = £1/2 is the third component of the weak isospin of the fermion f and Qy is
its electric charge in units of the positron charge e. The sine of the weak mixing angle is
denoted by s, = sin(fy,). In addition we defined s9,, = sin(26,,) and t,, = tan(6,). The
CKM matrix elements are denoted by V.

The Z-boson coupling to fermions in the SM is universal and diagonal; hence, the sum
rule (3.8) leads to the unitarity of the CKM matrix. Defining )\gd’d) = VgV, this allows
us to eliminate A\3¢ = —X\3? — )¢ and thus the coefficient A\j¢ multiplies the difference of
the diagrams with massive top and massless up quark. This leads to a partial cancellation
of UV divergences — the well-known GIM (Glashow-Iliopoulos-Maiani) mechanism.

After this manipulation, the result still has a left-over divergence, proportional to

1 1

— = . 5.7
MZ T EL (5:7)
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Evaluating the sum rule (3.9) for the choice 0 = L, v1 = Z, vo = W, fi =t, fo = b, and
inserting the SM couplings, leads immediately to the relation

Mg, = 2 M%. (5.8)

Thus, the divergent term vanishes. The finite term exactly reproduces the result of Inami
and Lim [26]

L(SM d'd z|lz—6 3r+2
CLEW _ NN 0(z,) | C(a) = slo 1t oz os@) (5.9)

for the top-quark contribution to the d’ — dZ vertex. The ratio of the quark and W-boson
masses squared is denoted by z, = mg /M%V

Of course, the same result is obtained in a much simpler way by directly using the
result (5.2). Both the GIM mechanism and “gauge boson mass relation” (5.8) are already
built in. Moreover, it suffices to specify the reduced set of SM couplings (5.5) — the
Z-fermion couplings (5.6) are then fixed via the STI.

5.1.2 2HDM

As an example with additional charged scalars we consider the contribution of charged
Higgs bosons in a two Higgs doublet model (2HDM) [27]. Using that the couplings involving
both charged gauge and Higgs bosons vanish, Gzwiny = 9zwont = 0, we see that only
the first line in eq. (5.2) contributes, with a prefactor given by

L R L L R
Yntd <5ijyhj5t (9740 — 970) + 9zntn; yhist) : (5.10)
Specializing to the case of one charged Higgs, we need the following additional Feynman
rules [27]
9Zh—nt+ = —€ = Z/Lr = (yR 7 )* = @% er = (yL 7 )* =O0(mq,)
2chw ) hTtd; h—d;t t,B \/istW ) htid; h—d;t i)
(5.11)
with tg = tan 5. We then find
ViaVi
C(zt,yt) = — tgtgts wy fs(me, My, M) (5.12)
B
where |
fs(my, My, My) = U 08 b (5.13)

L=y (ye—1)?

and we defined x = m?/M3,, y = m?/M?. This reproduces the function

1 log
+
-y (ye—1)?

1
Cu(xy,yr) = —§|Y|2xtyt (5.14)

from [28], where Y = vy /v2 = cot 5.
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5.2 Arbitrary charged Fermions, scalars, and vectors

We now consider the general case of theories with arbitrary numbers of heavy charged
fermions, scalars and vectors, and simplify the general result eq. (4.2) by repeatedly elim-
inating physical coupling constants via application of the STI.

In analogy to our procedure described in the previous section, we can first eliminate the
diagonal right-handed Z-fermion coupling by solving the “Yukawa sum rule” eq. (3.10) for
gIZ% P thus eliminating this coupling in conjunction with couplings to heavy scalars. Next,
we solve the “gauge boson mass sum rule” eq. (3.9) for gg r and use the resulting relation
to eliminate all diagonal right-handed Z couplings to fermions in conjunction with vector
couplings. We then repeatedly apply the “unitarity sum rule”, eq. (3.8), to eliminate all
couplings of fermions to the charged vectors and all couplings of the Z boson to left-handed
fermions, looping over all heavy fermions. Together with our assumption of universality
and diagonality of the Z-boson couplings to down-type SM quarks, this eliminates all
divergences. Note that the “unitarity sum rule”, eq. (3.8), leads to a “generalized GIM
mechanism”, effectively eliminating some of the couplings of one (arbitrarily chosen) heavy
fermions in the loop (denoted below by the subscript f’). The resulting, manifestly finite
expression for the Z penguin for an arbitrary number of charged fermions, scalars, and
vectors is then

~L _ L L L
CdjdiZ B Z gzﬁflgmﬁdjg@lcziszV (mfl’mfz’le)

f1fan
R L L
+ Z ng2f1gv1f1djg?71Jif2FV' (g, gy, Moy )
f1favr
L L
+ Z gzvzﬁlg’l)lfldjgfmgifl FV” (mf’a mflva1 3 Mvg)
fiviva
L L R
+ Z ng2f1yS1f1djy§13if2FS (mp,mypy, M)
fifas1 (5 15)
L L R '
+ Z (gZ52§1 + 65152gZdej) yS1f1djy§2d_if1FS, (mfl7M517M52)
fis1s2
R L R
+ Z ng2f1yS1f1djy§1€zif2FS” (mfl’me’ Msl)
fif2s1
L L
+ Z 92vi5:1Ys, f1d;9v,d; 1 Fgsv (mf17 M, , My, )
fisiv1
L R
+ Z gZﬁ1s1gv1f1djygljileSV’ (mflaMsuMm) )
fisiv1
The respective loop functions can be written
. m?
Fy (mi, mj, my) = Cs (mi, mj, my) + m—% (m?C’o (mj,mj, my) — m?CO (mi,mj,mk)) ,
k
m;m; /[ ~
Fyr (mg, mj,my) = Q;nzj <Cé (mi, mj, my;) — 4miCs (mi,mj,mk)> :
k
Fyu(mi,my, mp, my) = Ca(ma, my, my, my) + fyr(ma, my,my) — fyo(mg, my, my)
Fg (m;, mj, my) = —mym;Co (m;, mj, my) , (5.16)
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FS’ (miamj)mk) = -

<é<s (mj,ms,my) + 1) 7

DO | =

1~
Egr (mi, mj, my) = 5 Cs (mi, mj, my)

m; ~
FSV (miumj)mk) - m (4mzc§ (mjvmivmk‘) - 05 (mj)mi7mk) - 1) )
k

m; ~
Fgyr (mg,mj,my) = ﬁ <4mi00 (mi, mj, my) — Cs (my, ms, mj) — 1),
k

where

2 2 2
m4+mis — M -
J k Z(1+C( . .
5m],m2,mk))
4m?mi

W V”(miamj7mk) =
(2
2

2 2
+ (mz 4 mJQ + 1) Co(mi, mj, my) (5.17)
m? + mi - M% (m? + mi)

m?mz CO(mla ’I?’L],mk)

and

Ca (mi,my, mg,my) =3 <éo (mi, my, my) — Co (mj7mk,ml)>
i _NCO (mi,mi,ml) +~Co (mj,mj,ml) (5.18)
Cs(mi, mj, my) = Co (mi, myj, my) — Co (my, mj, my)
Cs(mg, mj, my) = Co (mq, mj, my) — Co (my, mj, mg) .
These loop functions are manifestly finite; it is interesting to note that one could perform
the whole calculation without regulator in four space-time dimensions if one applies the
sum rules first. Note also that several of the loop functions vanish if the fermion masses
are equal; namely, we have

Fy (m,m,M) = Fy: (m,m, M) = Fyn (m,m,M) = Fgn (m,m, M) =0. (5.19)

As a consequence, the result depends only the off-diagonal right-handed couplings of the
Z boson to fermions. Furthermore, we have Fg (m,m, M) = Fg (m, M, M), and the only
contributions in the fourth line in eq. (5.15) proportional to diagonal Z couplings arise
from the finite parts of the field renormalisation constants.

As before, given the charges of the internal fermions, the charges of the internal scalars
and vectors are determined by the charges of the external particles, via Qs = 1/3+Qy; so
the sums in eq. (5.15) effectively run only over the particles with positive charge. Finally,
we remind the reader that we suppressed colour indices throughout; coloured particles
can easily be taken into account with the understanding that the sums also run over all
components of fields in multiplets of SU(3).

5.2.1 Vector-like quarks

As an example, we consider vector-like quarks in a representation that does not generate
tree-level FCNC transitions in the down-quark sector [29]. For simplicity, we treat the case
of an up-type singlet vector-like quark, U, with charge 2/3, isospin zero, and mass my.
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The additional quark U mixes with the SM fermions via Yukawa term in the La-
grangian, given by

Ly == QY UrH +h.c. (5.20)
k
note that hard mixing terms L,ix = — 3: mE kU +h.c. can be eliminated via a field
k=1 """uu “R

rotation). Here k is a SM generation index, and the charge conjugate of the Higgs field H
is given by H = ioc?H* = io?(HT)T.

We obtain the contributions to the Z penguin by inserting the appropriate couplings
into the general result (5.15). First, note that all RH Z couplings as well as the LH tree-
level Z couplings to down-type quarks are not changed from their SM values. Therefore,
we need only the following additional Feynman rules:

e |1

SwCw | 2

e eCy

2 L
(Vv — §3w5ij v Iwrad, = \[TSsz‘j, zwrw- = (5.21)

L
gZﬂi’LLj -

where V' is the generalized, non-unitary CKM matrix (see, e.g., [30, 31]). (Note that
the Higgs couplings contribute only indirectly to the Z penguin, via the mixing angles
comprised by the matrix V.) The resulting expression for the Z penguin is

C=VaaVis f1(z) +VuaVi o f1(yo) VoV (VV D fa(ze,yo )+ ViaVe s (VV Do falyo )
Vi [VEVVD a4+ Vi (VV D] fo () +Via [V (VV D o+ Vi, (VYD o fo(yo) (5.22)
AV Vea(VV et Vaua(VV )] £3(20) + Vi [Vea(VV D e+ Vaa (VV ) 0] 3 (y0)

where z; = m? /MI%V, Yy = m%, /MI%V, and the loop functions are given by

ho) = 5o+ TR ) = B ) =~ fala).
il y) = z(z -2y +ay)loge (v — 1y?logy T (5.23)

8(z — 1)(z —y) 8(y —1)(z—y) 8

The box contribution for external neutrinos (needed for the rare K — mvw decays) is

B = ViqVis g(xt) + VuaVirs 9(yu) (5.24)
where |
T xlogx
= — . 5.25

The large-mass limit. As a simple application we study the limit of a vector-like quark
with a mass much larger than the electroweak symmetry-breaking scale. In general, we
expect the effects of the heavy quark to decouple — all contributions to physical observables
should be suppressed by a power of my. This is not immediately obvious from the loop
function; to see this, it is necessary to expand also the mixing matrix V in inverse powers
of my. In a basis where the SM up-quark Yukawas are diagonal, the leading contributions
can be written as (see also the discussion in ref. [30])

Vexwm
v=[ , , 5.26
<ﬂmUYUTVCKM> (5-26)
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where Vo is the SM CKM matrix. Using this explicit form, it can easily be shown that
the non-decoupling terms in (5.22) cancel.

The leading terms in the large-mass expansion are thus of order 1/ m%, and they can
be captured by an effective theory description (cf. ref. [32]). We will treat here the special
case YlU = YQU = 0, so that only the flavor-diagonal top-quark couplings will be modified,
but no FCNC transitions in the up-quark sector are generated. Working again in a basis
where the up-quark SM Yukawas are diagonal, only the following operators are generated
at order 1/m? [29]:

QW) = (H'i D" H)(Qir"o"Q3),
QW) 5 = (HYi D, H)(Q37"QY) . (5.27)
Quirss = (H H)(QF Htg) .

These operators contain the Higgs doublet H and its charge conjugate H, the left-handed
third-generation quark doublet @3, and the right-handed top quark tg. Moreover, o¢ are
the Pauli matrices and D,, is the SM gauge-covariant derivative and we defined

(H'iD, H) =il (D,H) —i(DH) H, (5.25)
(H'iD% H) = iH'o" (D, H) — i(D,H) o H , '

so that the operators Q Hq.33 and Q%;,% are manifestly Hermitian.

Here, we are not interested in Higgs physics observables, so we will concentrate on the
Z-penguin operators Qg;g?) and Qg;%. The implications of constraints from rare meson
decays for anomalous ttZ couplings in the limit of heavy quark masses have been treated
in ref. [33] in an effective theory framework. We want to compare these results to those
obtained in our concrete model.

The effective theory approach allows to calculate the leading-logarithmic contribution
to the rare meson decays via operator mixing (see ref. [33] for details). From ref. [29] we
can read off the Wilson coeflicients

2, (5.29)

® o Ly ey
CHq,33 - _CHq,33 - ZV;&ths‘Y?,
while the results in ref. [33] provide the logarithmic contribution to the Xand Y functions

3+ 2w (1) 1 bw 3—1—21}

“w
2 ¢q33A2 &7

where z; = m7/MZ, and we identified A = my. Inserting the expansion (5.26) into the
explicit result, we obtain the logarithmic term

3 + 2$t U MW
log = ViaVis|Ys | L

(5.31)

which reproduces the EFT result.
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In fact, the EFT approach at one-loop allows only to calculate the leading-logarithmic
term in the 1/ m%] expansion. Having the full theory at hand, we can now check whether this
is a reasonable appoximation. Choosing, as an example, a mass my = 1TeV, and adding
the box contribution to obtain a gauge-invariant result, we find that the logarithmic term
dominates the remaining terms of order 1/ m2U by a factor of seven for the rare K — nwvo
decays, and by a factor of four for B, — pu*pu~. We see that the EFT result gives, in this
instance, a good estimate of the leading contributions.

Another interesting question is the contribution of dimension-eight operators (corre-
sponding to terms suppressed by 1/ m‘l‘]) We find that the dimension-six terms dominate
over the dimension-eight contributions for masses my 2 150 GeV — in particular, for all
masses where an expansion in v/my is justified.

5.2.2 Charginos in the MSSM

As a further check of our formalism, we compare the result for additional scalars and
fermions with the chargino contributions to the Z penguin in the MSSM. The particles in
the loop are the two charginos, (Y1, X2), and the six up-type squarks, (U ), where we follow
the notation of ref. [34]. Using the charge conjugated charginos (x§,x5) inside the loop,
the relevant coupling constants read

*r71j
gZUZ,U;, = —— (Z ZI’L Z J _ 8W51]> y

SowW T—1
e 14 ryljx 2 2
9ens = —a (Z—ZZ—J + (ew — 8w)5z'j>
_ = 1z 13* 2 .2 B
9o = S2w (Z 2+ lew 8W)5”> (5.32)
_ Tix r715 I 7 (I+3)ix ;2§
inxﬁdk_;vI%—z z72+vlz, "z >
k r71ix 727
in_;;dk =" ; Vv[k (Yd ZUz Z—J) ’

Using these coupling constants and the standard model couplings of the Z-Boson to the
down quarks we reproduce the results of the chargino contributions presented in ref. [35].

6 Conclusion

In this work we presented a manifestly finite result for the three-point function involving
two light SM fermions and the Z boson (the “Z penguin”), in generic extensions of the SM
that satisfy the condition of perturbative unitarity. The Z penguin is the main ingredient
for the prediction of decay rates for rare meson decays.

We allow for an arbitrary number of heavy new scalar, fermionic, and vector particles.
The vector particles are assumed to obtain their mass via the spontaneous breaking of a
gauge symmetry. The specific form of the result is independent of the symmetry-breaking
mechanism.
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We have derived manifestly finite results for the case of arbitrary charged internal
particles. The results depend on a reduced set of physical couplings (reflecting the structure
of the underlying symmetry group). This elimination of redundant couplings is important
in particular when one performs a fit to flavor or collider data. The presentation of explicit
results for neutral particles is relegated to future work. Furthermore, we plan to apply our
methods also in the context of dark matter and collider physics to study simplified models
with a consistent UV behaviour.
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A Result for the box diagrams

The box-diagram contribution to the effective Hamiltonian for d; — d;¢1.0; transitions reads

= OX 4GF «Q 10 7 0
HAF=1Box _ 5 e { Z (ij e, (diPoydj) (£ Poy )

0102

+ By (diy Paydy) (e Post) (A1)

+ ZBd dész d O"LLVPUdj)(ZkO'M,,Pagl)} 5

with o, = i[y*,7"]/2. The use of chiral Fierz identities (see e.g. [36]) shows that the
tensor structures with mixed chirality (Jia“”Pgdj)(ZkaWPg ¢;) vanish identically. Hence,

they are omitted from (A.1). We decompose the box functions Bé\/[glﬁ‘l’fk as

BM010'2 _ \/58121) 1 ~Moio2 D M. M
djdifﬂk_GiFEgziﬂ-x Z Ct1 fovive O(mfl’mf2’ v ”2)

f1favive

M
T fqu;?izszo(memfwMv17Mv2)>
~Moio2 1
+ Z (Cf1f2lv12S1D0(M51’mfl’mfval)

J1favis1 (A.2)
+ f1f10'2 DO(Msl,mfl,me,le))

V181

~Moio
+ Z (Cf1f2181252D0(M81>M82>mf1’mf2)
f1fas1s2

f1f2s152

+CM¢T1U2 Do(Msl,MSQ,mfl,mf2)>} s
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where the superscript takes the values M = S, V,T. The coefficients for the vector projec-
tion are given by

1 1
Voio2 _ 2 2 o1 o1 o9 o9 LV
cf1f12v1v2 = Mgy, (ME + Mg ) gﬁ2(iiflg7.)lfldj (gz‘;lfkfggvgfzel B ﬂlpf2> )
1 2
1
~Voi09 Voioo
f1favive T 4(M3 i Mg )Cf1f2v1v2 (A.3)
1 2
_ 01 o1 _
4 oo Afl gﬁ2dz‘flg711f1dj’ g1 02
gv1€kf2gvzfzfz pf2 o1 01 o1 #o ’
Iond;f9vs fray LT 92
Voo _ o o
cflflTU?Sl - mfl mf2 (g’ljjcziflysllf_ld + ﬂlpfl) (yslékfzgvlfg& + ﬂlpf2) ’ (A4)
~Voi09 _ 1 CV0'102 CV0'102 -0
fifavist 4M3 f1favis1? fifasisa = 0
1

~Voio9

_ - 01 o1 o
hifzsisz ~ 4 y§2gz‘f1y81f1dj (yslfkfz Ysafaty ﬂlpf2>

Here, ﬂip}/1 represents contributions for which we interchange the coupling constants via
o o o o LV

9 an g...fldj and y...&i_fl > y_._fldj,'and flipy, acts analogously on ¢, and f2. For the

scalar projections we obtain the coefhicients

~So109 1

1 o o
hifevres = AT (M2 + ]\42 > gﬁ;&iflgvllfldj {gv1€kf2gv2f2€l + ﬂlpfz}
2 2
AM, M , +my m?,

So109 _ ~So102

f1favive T Mgl + M32 f1favive ?

~Soi102 _ o1 o1 S a2

Cfi fovis1 — (y§1af f1gv1f1dj B ﬂlpf1> (gmé’ f2 s1f2l ﬂlpf?) ) (A'5)
30102 _ mflmf2 ~Sa’10’2 650102 _ 0

f1f2v181 - M2 fifavisy? fifasisa — 7

Soi102

— g1 o1
Chifasiss = T2 Ys, 0,1 Y5, <y514kf2y82f2& * ﬂlpf2> ’

and finally the tensor coefficients read

T _ G G .. S
cflo..f2vlv2 - _mflme‘ggQJif1glo)-1f_1dj (gglzkfzg:;f_gfl - ﬂlpf?) ’
1 1 1
~T _ T
f10f2v1”U2 ) <M31 + Mz?z)cflafmwz ) (A'ﬁ)
1 _

~T _ .. S .. S

cflafﬂlsl - Z (yglfziﬁg;ﬁd' + ﬂlpfl) (gglzkf2yg—1f2£l + ﬂlpr) )

To _ To ~To =0

Cfifavist — Cfifasisa — Cfifasisa —

Similar to above ﬂip? stands for additional contributions, here with the coupling constants
v s —y’ ' hd and ¢° s q° ' hd, interchanged, and ﬂ1pf acts analogously on £ ;, and f.

It is poss1ble to extract the generic effective Hamiltonian for the |AF| = 2 boxes from
the above results, if one keeps in mind that the external particle-antiparticle pairs allow

for additional Wick contractions of the transition amplitude and that the conventional
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normalization of the effective Hamiltonian is different. We use Fierz identities to express
the result in terms of the operator basis of [37], where

AF=2 Box __ Voo VO'O' SUU
Hefr = MW(Zsldd 1d,-d+z <Sndd ndd Z rd di ndidj))’

n=1,2
QVUU_(J'YuPd)( 37 " Pyd;),

LR = ( J'Y;LPLd ) J'Y“PRd ) LR = (CZ‘PLd')(CZ'PRd') (A7)
$00 — (d; Pyd;)(d; Pydy) , 577 = (d5 Pyd])(d] Pydy) .

A summation over colour indices «, 8 is understood. In order to obtain the coefficients S
from (A.4)—(A.6), the following prescription holds:

Voo __ Voo
Stdia, =4 Ba,agee e, —diy
_ VLR LR _ SLR
51 Jdjd; 8Bd d; elek‘fk 1> dij o Sz,djdi = 8ijdﬂl£k ’Ek,z —dij (A'S)
Soo Too Soo __ Too
ST, = (4 Bd Hee — 16 Bi o) e~ diy s Ssava, = —32BqCnelon, s -

B Loop functions

In the UV-divergent loop functions we set € = (4 — D)/2. The loop functions are defined
as (cf. [37])

i 47 ¢ dPq 1 1
730 (ml, mg) (G_WE> = /
(4m)? I (2m)P g% —mi ¢* — mj

i Amr ¢ dPq 1 1 1
——Cpy (my, me, mg3 <6’YE> = / B.1
(47)2 ( ) 2 (2m)P ¢%2 — m? ¢ — m3 ¢% — m3 (B-1)
i 47 ¢ dPq 1 1 1 1
7D0 (m17m2am37m4) <6_7E> = /
(47)? w2 2m)P 2 —m2 g2 —m2 ¢ —m3 ¢ —m3

These functions read:

By (my,mg)=—-+1+ ——
my—my
m?2m3log (m—%>+m m3log (—3>+m m log( %)
Co(my,ma,mg) = 1z my 372 3 1773 3 (B.2)
A (2 —m3) (3 —m3) (m3 —m3) '
2 2
mylogm
Dg (m1,ma,m3,my) = Z —
cyclic permutations (ml o m2) (m1 B m3) (m4 - ml)
Co(mi,ma,m3) = Bo(ma, m3) +miCo(m1, ma,ms3)
Do(m1,ma,m3,m4) = Co(ma, ms,ma) +miDo(m1,ma, ms,ms) (B.3)

C Complete list of STIs for Feynman rules

Here we list the full set of identities for the four-point couplings provided by the tree-level
analysis of STIs described in section 2. Their derivation involves the following additional
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three- and four-point coupling

e 19s  ab b
v a a aoc a,uv (&
53&4 i Z {2 wA”Uivj F'u Vuhu‘/;)jﬂj + IR vavi’U j G : ‘/UivuVUj:V

2 j
'Ui,Uj
1 b b 1 bed b d
o 2 it (R RbRG )+ op DT gt (bbb e,) (C.1)
51828384 518528384
1 bed b d 1 bed b d
+ g Z ggllc}gvg”ml (‘/tuai,,LLsz’“VUCg,l/‘/viy) + Z Z 95116)28182 (‘/’Uai,,u‘/l&“uhglhs2) :
V1V2V3V4 V1V28152

The kinetic term of the vector fields V,,, and the couplings to the field strength tensors w
contribute to triple gauge boson vertices with one photon or gluon. U(1)em X SU(3)colour
gauge invariance restricts these couplings to be of the form

S abc __ 5 ma
waij = 05;Qv; Wiy = 0551V, pe - (C.2)

The quartic interactions involving unphysical Goldstone couplings can be expressed in

terms of physical couplings as follows:

— Oy, Opy O3 Oy

g¢1¢2¢3¢4 = m§5 <9v1v455gv2v3§5 + Symm(UQ7 v37 U4)> 9
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Furthermore, all quartic interactions with vectors are fixed by the three-point couplings

gv1v2v3v4 = § (gv1v4vsgv2v3175 + gvlvgvsgvgu%) )

> . (C.4)
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s
The remaining, purely bosonic sum-rules are given by

§ (gv10285gv3v4§5 - gvlv4859v2v355)
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_ E 2 2 2 2 2
- <gv1v305gv21}4ﬁ5 (vas - m’Ul - mv2 - mv3 — mv4)

s
(m12}1 - m%g)(m12)3 - m12)4)>

2
+ Gv1vav5 Jusva s (mv5 +
2 2 2 2
2 (mvl - mv4)(m’uz - m’ug) >>
b

+ Gv1v4v5 Juavss (mv5 -
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All rules given here and in section 2 hold in the limiting case of any of the particles being
massless. The couplings of photons or gluons of course simplify considerably and can be
expressed by using the U(1) and SU(3) charges defined in (2.1). Moreover they can be
separated into two classes: couplings involving V-A or V-G transitions (the generalization
of Z-A transitions known from the SM) and those without. Couplings of the latter class
are either directly included in the covariant kinetic Lagrangian or zero. This includes?

GAp16o = JAAG16s = JA¢rs1 = GAAgs; =0, (C.6)

JAAp1¢2 = _Qi(gAvlm)z&vuh .

4To derive the first line, one has to note that gay, s, vanishes. This coupling has to come from the kinetic
term of a multiplet ® of the full gauge group, and is thus proportional to eQs A,V (@TTVQ'@). However
the Goldstone directions are precisely given by Ty, (®).
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The equations also hold with G instead of A. The class of couplings with V-A or V-G
transitions has to be derived from the STIs. They are given by

gAv1¢>2 = 1€ mv16U1172 )

GAvigagps = €O0vy0us (sz - st)

Gvrvovs 5

: 1 C.7
JAvipass = TLE 0w, (sz - Qsa) W Gvivass ( )

v2

JAvivgvy = —€ (Qv2 - Qv3) Gvivavs
gA’U18283 =€ (QSQ - Q83) g’U15253 .

In the quartic coupling we used charge conservation to simplify the right hand side. The
corresponding equations with a gluon are

c3cic2 __ Cc3 _
9Guvi¢s = 0u2 (Tv2 )01C2 My, 51)1112 )

2 2 .2
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Guid2¢3 273 21y My v2 ) eyes Jvivavs Vag/ cscs Jv1vavs
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1
cacrce2c3 _ 5 ( 04) c1C5C3 ( 04) cicacs
9Gvyp2ss L vy 21, Z ( T, cacs Jvrvass Ty cacs Jvrvass ) o (C.8)
cs
€4€1C2€3 __ ( 04) cics5C3 ( C4) cicacs
gG’l}11}2’U3 Z( T’U2 cacs gvlvgvg Tv3 c3cs 91;11)21)3 )
C5

genes =3 (1), 95155 — (T5),.., 9515252)
C5
We have checked explicitly that the STIs for five-point vertex functions do not imply

additional sum rules.

Open Access. This article is distributed under the terms of the Creative Commons
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