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1 Introduction

It is well known that precision flavour observables put strong constraints on models of

new physics. While these models typically predict new particles which might be found by

LHC experiments or at future colliders, first hints could show up as anomalies in precision

flavour observables. Their examination could then lead to clues towards the nature of new

physics. It is therefore of interest to calculate these observables in a generic extension of

the standard model (SM).

We consider an arbitrary number of additional heavy degrees of freedom: gauge bosons,

fermions and scalars. Perturbative unitarity imposes important constraints on such generic

extensions. The required cancellation of unbounded high-energy growth of scattering am-

plitudes leads to specific relations among the coupling constants that are common to all

models. These relations allow us to understand and perform the renormalisation of the ob-

servables in a general way. The feasibility of this approach is expected on general grounds

since the equations implied by perturbative unitarity uniquely reflect the spontaneously
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broken gauge structure [1–3] and thus may as well be derived by means of Slavnov-Taylor

identities (STI). Here we advocate the practical implementation of those simple relations

in the calculation and renormalisation of generic loop amplitudes. This goes beyond the

typical application of perturbative unitarity in which one derives upper bounds on yet

unobserved mass spectra [4–6] and combinations of masses and/or couplings [7–11].

As an example we study the flavour-changing transition between two SM quarks dj and

di of different generations, induced by a heavy neutral gauge boson at one-loop for vanishing

external momenta. An example is the FCNC s→ d transition with the emission of a virtual

Z boson, the so-called Z penguin. It contributes, in combination with flavor-changing box

diagrams, to processes like the rare K → πνν̄ decays. Just like the SM, many models

of new physics generate this transition first at the one-loop level, since their neutral SM-

fermion currents are flavour-conserving.1 In this article we discuss the renormalisation of

the general one-loop result for this process, assuming the absence of tree-level contributions

to the dj → di transition. Then we provide manifestly finite results for the special case of

charged internal particles. It is then straightforward to obtain the Z penguin in any given

model by just inserting the specific couplings into our generic result. Due to sum rules

derived from the STI, only a reduced set of couplings needs to be specified in practice. We

illustrate this procedure in detail for several examples.

Our method has several interesting applications. It provides explicit and manifestly

finite results for a very general class of extensions of the SM. The strategy is not restricted to

flavour observables, but might also be applicable, for instance, to collider and dark-matter

phenomenology.

This paper is organised as follows. After a definition of the generic Lagrangian in

section 2, we present in section 4 the general analytic result which in many models is as

yet unknown, and elaborate on its renormalisation. In section 5 we explicitly perform the

renormalisation of our result for the case of charged heavy particles. As an illustration, we

(re-)derive the Z penguin in various renormalisable models, to wit, the SM, the two-Higgs-

doublet model, an extension of the SM with vector-like quarks, and the minimal super-

symmetric SM (MSSM). In the appendices we give the results for the box diagrams in our

notation and provide the definitions and explicit expressions of the requisite loop functions.

Moreover, we provide the full list of Slavnov-Taylor identities for four-point couplings.

2 The generic Lagrangian

In this work we consider an extension of the SM by an arbitrary number of heavy scalar,

fermion, and vector fields (in this context, “heavy” means that the particle masses are of

the order of the electroweak scale or larger). As our starting point we define the parts of

the generic Lagrangian which are relevant to the calculation of box and penguin diagrams.

The interaction terms involving massless SM vector fields — photons and gluons — are

fixed by QED and QCD gauge invariance. In particular, the massive-massless interaction

1Since this property drastically improves the potential agreement of a model with experimental flavour

constraints, especially from ∆S = 2 observables, it is sometimes enforced by imposing an additional Z2

parity on the particle content (an example is T parity in little Higgs models [12]).
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terms are given in terms of the covariant derivative

(Dµ)ij = (∂µ − ieQFAµ)δij − igsGaµT aF,ij (2.1)

by the usual kinetic terms of the massive fields F . Here T aF,ij and QF generate the action

of the respective gauge group SU(3)c and U(1)em on the field F .

The three-point interactions of massive fields

L3 =
∑

f1f2s1σ

yσ,abc
s1f̄1f2

has1ψ̄
b
f1
Pσψ

c
f2

+
∑

f1f2v1σ

gσ,abc
v1f̄1f2

V a
v1,µψ̄

b
f1
γµPσψ

c
f2

(2.2)

+
i

6

∑
v1v2v3

gabcv1v2v3

(
V a
v1,µV

b
v2,ν ∂

[µV c,ν]
v3

+ V c
v3,µV

a
v1,ν ∂

[µV b,ν]
v2

+ V b
v2,µV

c
v3,ν ∂

[µV a,ν]
v1

)
+

1

2

∑
v1v2s1

gabcv1v2s1 V
a
v1,µV

b,µ
v2
hcs1 −

i

2

∑
v1s1s2

gabcv1s1s2 V
a,µ
v1

(
hbs1 ∂µh

c
s2 −

(
∂µh

b
s1

)
hcs2

)
.

involve real physical scalars hsi , Dirac fermions ψfi , and real vector fields Vvi , with non-

zero masses Msi , mfi and Mvi , respectively (complex fields are taken into account by also

including the complex conjugated field as an independent degree of freedom in the sum,

which automatically ensures the correct normalisation). These fields are enumerated by

the corresponding indices si, fi, vi. The index σ denotes the two chiralities σ = L,R, via

the chiral projectors PR,L = (1± γ5)/2. Square brackets denote antisymmetrisation of the

enclosed Lorentz indices (no symmetry factors are implied). At one-loop level, no quartic

interactions are needed for the calculation of the Z penguin. They enter, however, in the

derivation of the coupling sum rules (see section 3); the requisite Lagrangian terms are

shown in appendix C.

The sums in eq. (2.2) run over all particles in a given multiplet. Consider, for instance,

the last term in eq. (2.2): if v1 corresponds to the SM Z boson and the scalar indices to

a charged scalar multiplet, the sum runs of both positively and negatively charged scalar

particles. Alternatively, one could sum over positive particles only and omit the factor 1/2

in front of the sum.

We assume that all vector fields obtain their mass by the spontaneous breakdown

of a local symmetry. The Lagrangian L3 comprises only the model-dependent couplings;

all remaining “unphysical” interactions, for instance of the would-be Goldstone bosons

associated with the spontaneous symmetry breaking, can be inferred from the requirement

of perturbative unitarity, via the STIs which we discuss below.

Due to SU(3)×U(1) gauge invariance non-vanishing couplings may only exist for index

combinations which allow the fields to combine to form an uncharged singlet. For instance,

a nonvanishing coefficient yσ,abc
s1f̄1f2

implies the charge relation Qs1 +Qf2 = Qf1 , and

yσ,dbc
s1f̄1f2

T es1,da + yσ,abd
s1f̄1f2

T ef2,dc = T ef1,bd y
σ,adc

s1f̄1f2
. (2.3)

This last property is important for the calculation of QCD corrections in the spirit of

refs. [13–15]. In the following, we will suppress the colour indices. They can always be

thought of as being subsumed in the field indices vi, si, and fi, if necessary.
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If one of the fermions (e.g., ψf2) is uncharged, Schur’s lemma implies that even Ts1 =

Tf1 . Hermiticity puts further restrictions on the couplings. For instance, we can express the

couplings of negatively charged Higgs and gauge bosons to fermions through the couplings

of the corresponding positively charged particles. In general we have

yσs1f̄2f1
=
(
yσ̄s̄1f̄1f2

)∗
, gσv1f̄2f1

=
(
gσv̄1f̄1f2

)∗
, gv1v2s1 =

(
gv̄1v̄2s̄1

)∗
,

gv1s1s2 = −
(
gv̄1s̄1s̄2

)∗
, gv1v2v3 = −

(
gv̄1v̄2v̄3

)∗
.

(2.4)

The bars over bosonic indices denote the exchange of indices within a pair of oppositely

charged particles (as in g
W+...

= gW−...) and have no effect for neutral particles. The bars

over the σs denote the opposite chirality.

We will calculate the Z penguin using the general Lagrangian eq. (2.2). In practice,

one would then substitute the couplings of a given model into our final results. This

substitution is performed for several examples in section 5. In particular, in this way one

recovers the SM result (see section 5.1.1 for the specific substitutions needed in this case).

3 Slavnov-Taylor identities for Feynman rules

The constraints derived from perturbative unitarity reflect a spontaneously broken gauge

symmetry. To exploit these constraints for our generic Lagrangian we use the STIs of

an arbitrary fundamental spontaneously broken gauge theory. The massive vector fields

of (2.2) are the gauge bosons of the fundamental theory supplemented by a standard Rξ
gauge-fixing term. This has two consequences. First, the couplings of Goldstone bosons

can be linked directly to the couplings of the corresponding vectors in the mass-eigenstate

basis. This use of STIs is well known and summarized in the Goldstone-boson equivalence

theorem [3, 4, 16, 17]. Second, we obtain certain sum rules, i.e. equations that impose

non-trivial constraints on the couplings of physical fields and encode the full spontaneously

broken gauge structure on the level of Feynman rules.2 We will use these sum rules later

to renormalise the Z penguin.

From a technical point of view it is easiest to derive the sum rules from the vanishing

Becchi-Rouet-Stora-Tyutin (BRST) [19, 20] transformation of suitable vertex functions.

To start, we note that throughout this work the gauge freedom of (2.2) is fixed with a

standard linear Rξ Lagrangian [21]

Lfix = −
∑
v

(2ξv)
−1Fv̄Fv , Fv = ∂µV

µ
v − σvξvMvφv , (3.1)

for every vector field Vv of mass Mv and the corresponding pseudo-Goldstone boson field

φv. The coefficients σv can have the values ±i for complex fields and ±1 for real fields. For

the SM fields they are given by σW± = ±i and σZ = 1, and we choose this convention in

general for all charged and neutral vector fields.

By applying a BRST transformation s to a Green’s function

Gūv(...)ph ≡
〈
T
{
ūv(. . .)ph

}〉
(3.2)

2The couplings in (2.2) are defined such that the Feynman rules are given, after multiplication by a

factor of i, in terms of the usual Lorentz structures in the conventions of FeynArts [18].
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which involves an anti-ghost field ūv, and using the transformation property sūv = −Fv/ξv,
we obtain a linear relation between the connected, truncated Green’s functions G

Wv(...)ph
c

and G
φv(...)ph
c . Here, the dots (. . .)ph stand for any combination of physical, asymptotic

on-shell fields, whose BRST variations vanish. The underlining of a field indicates that

the corresponding external leg has been amputated. In our convention, labels on vertex

functions denote outgoing fields, whereas all momenta are incoming.3 Angle brackets

denote a vacuum expectation value, and T{. . .} the time-ordered product of fields.

The STIs lead to the following relation in momentum space:(
kµ

iσv̄ξvMv

)T
Gv̄(µν)

(
〈V ν

v(. . .)ph〉c
〈φ
v
(. . .)ph〉c

)
= 0 . (3.3)

Gv̄(µν) denotes the propagator for a vector boson or its Goldstone boson, and is given by

the inverse of the two-point vertex function Γv (µν). These functions can be decomposed as

Γv(µν)(k,−k) =

 ∑
P=T,L

gPµνΓVvVv̄P (k2) kµΓVvφv̄L (k2)

kνΓφ
aVv̄
L (k2) Γφvφv̄(k2)

 , Gv̄(µλ)Γ
v(λν) = i

(
δνµ 0

0 1

)
. (3.4)

where gTµν ≡ gµν − kµkν
k2 and gLµν ≡ gµν − gTµν . It follows [23] that the STIs are given by

〈T
{
kµV µ

v − iσv̄MvAv(k
2)φv

}
(. . .)ph〉 = 0 , Av =

ΓVvVv̄L + k2

ξv

Mv

(
Mv − iσvΓVvφv̄L

) . (3.5)

In principle, one would have to account for the mixing of different bosons; consider, for

instance, Z −A mixing in the SM. However, this only affects eq. (3.5) at loop level, while

we use the equation to evaluate Feynman rules and tree-level sum rules, where, in fact,

Av(k
2) = 1. Evaluating this identity at tree level shows that the three-point couplings

involving Goldstone bosons φv are related to the couplings involving the corresponding

gauge bosons Vv as follows:

gv1φ2φ3 = σv2σv3

M2
v2

+M2
v3
−M2

v1

2Mv2Mv3

gv1v2v3 , gφ1φ2s1 = −σv1σv2

M2
s1

2Mv1Mv2

gv1v2s1 ,

gv1v2φ3 = −iσv3

M2
v1
−M2

v2

Mv3

gv1v2v3 , gφ1s1s2 = iσv1

M2
s1 −M2

s2

Mv1

gv1s1s2 ,

gv1φ2s1 = −iσv2

1

2Mv2

gv1v2s1 , gφ1φ2φ3 = 0 ,

yσφ1f̄1f2
= −iσv1

1

Mv1

(
mf1g

σ
v1f̄1f2

− gσ̄v1f̄1f2
mf2

)
.

(3.6)

Here the subscripts φi correspond to Goldstone-boson indices and are used in distinction

to the subscripts si corresponding to physical scalars (for instance, Higgs bosons).

3The momentum configuration of the vectors and Goldstone bosons appearing in the gauge-fixing func-

tion is not restricted any further, in contrast to the procedure used, for instance, in applications of the

Goldstone-boson equivalence theorem [22].
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The STIs for four-point diagrams have two consequences. If the diagram contains a

four-point coupling, the resulting relation allows to express this coupling in terms of three-

point couplings. In this way, all four-point couplings with at least one Goldstone or vector

boson can be derived; they are summarized in appendix C. If the diagram does not contain

a four-point coupling, the STIs yield sum rules which imply additional relations among

three-point couplings. For instance, the Lie-algebra structure of the vector and fermion

couplings is reflected by the two sum rules∑
v5

(
gv1v2v5gv3v4v̄5 + gv2v3v5gv1v4v̄5 + gv3v1v5gv2v4v̄5

)
= 0 , (3.7)∑

v3

gσv3f̄1f2
gv1v2v̄3 =

∑
f3

(
gσv1f̄1f3

gσv2f̄3f2
− gσv2f̄1f3

gσv1f̄3f2

)
. (3.8)

Eq. (3.7) is simply the Jacobi identity, and eq. (3.8) relates the structure constants of

fermion and vector representations. It is interesting to note that eq. (3.8) implies the

unitarity of the Cabibbo-Kobayashi-Maskawa (CKM) matrix for an universal, diagonal Z-

boson coupling to fermions. The remaining sum rules provide non-trivial constraints on

the unitarization properties of the given couplings. Here we show only the two sum rules

needed for the renormalisation of the Z penguin:

∑
s1

gv1v2s̄1y
σ
s1f̄1f2

=
∑
v3

M2
v1
−M2

v2

M2
v3

gv1v2v̄3

(
mf1g

σ
v3f̄1f2

− gσv3f̄1f2
mf2

)
+
∑
f3

(
−mf1

(
gσv2f̄1f3

gσv1f̄3f2
+ gσv1f̄1f3

gσv2f̄3f2

)
−mf2

(
gσv2f̄1f3

gσv1f̄3f2
+ gσv1f̄1f3

gσv2f̄3f2

)
+ 2mf3

(
gσv2f̄1f3

gσv1f̄3f2
+ gσv1f̄1f3

gσv2f̄3f2

))
, (3.9)∑

s1

gv1s2s̄1y
σ
s1f̄1f2

= −
∑
v3

1

2M2
v3

gv1v̄3s2

(
mf1g

σ
v3f̄1f2

− gσv3f̄1f2
mf2

)
+
∑
f3

(
gσv1f̄1f3

yσs2f̄3f2
− yσs2f̄1f3

gσv1f̄3f2

)
. (3.10)

We refer to appendix C for the remaining rules.

4 Result for the Z penguin

We present our result for the renormalised Z penguin in the form of an effective vertex. The

penguin function CσdjdiZ describing the transition between two light SM fermions dj → di
is defined in terms of the amputated vertex function as

Γ
djdiZ
µσ = γµPσ ×

GF√
2

e

π2
M2
Z

cw
sw
CσdjdiZ ≡

γµPσ
(4π)2

ĈσdjdiZ . (4.1)

The function CσdjdiZ , or ĈσdjdiZ respectively, depends on all masses and couplings that

appear; σ = L,R stands for the chiral projection. It is obtained by calculating the Feynman

– 6 –
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dj di

Z

v1

f1 f2

dj di

Z

s1

f1 f2

dj di

Z

v1

f1

v2

dj di

Z

s1

f1

v1

dj di

Z

v1

f1

s1

dj di

Z

s1

f1

s2

Figure 1. Representative Feynman diagrams contributing to the one-loop amputated dj − di − Z
Green’s function. Straight lines denote fermions, wavy lines denotes vectors, and dashed lines

denote scalar particles.

diagrams shown in figure 1, using the Feynman rules derived from the Lagrangian eq. (2.2).

In the physical meson decay process, the momentum transfer is much smaller than any of

the internal particle masses. Accordingly, setting the external momenta and light fermion

masses to zero in the matching calculation, the result in the ’t Hooft-Feynman gauge is

ĈσdjdiZ =

{∑
f1v1

∑
f2 /∈ SM

[
κσf1f2v1

B0

(
mf1 ,mv1

)
+ κ′σf1f2v1

]
+
∑
f1s1

∑
f2 /∈ SM

κσf1f2s1B0

(
mf1 ,ms1

)
+
∑
f1f2v1

[
k̃σf1f2v1

(
C̃0

(
mf1 ,mf2 ,Mv1

)
− 1

2

)
+ kσf1f2v1

C0

(
mf1 ,mf2 ,Mv1

)
+ k′σf1f2v1

]

+
∑
f1v1v2

[
k̃σf1v1v2

(
C̃0

(
mf1 ,Mv1 ,Mv2

)
+

1

2

)
+ kσf1v1v2

C0

(
mf1 ,Mv1 ,Mv2

)
+ k′σf1v1v2

]

+
∑
f1v1s1

[
k̃σf1v1s1

(
C̃0

(
Ms1 ,mf1 ,Mv1

)
+

1

2

)
+ kσf1v1s1C0

(
Ms1 ,mf1 ,Mv1

)]
(4.2)

+
∑
f1f2s1

[
k̃σf1f2s1

(
C̃0

(
Ms1 ,mf1 ,mf2

)
− 1

2

)
+ kσf1f2s1C0

(
Ms1 ,mf1 ,mf2

)]

+
∑
f1s1s2

k̃σf1s1s2

(
C̃0

(
Ms1 ,Ms2 ,mf1

)
+

1

2

)}
.

The functions C0 and C̃0 can be found in eqs. (B.2) and (B.3), respectively. The couplings

are contained in the κ and k factors that are defined as follows:

κσf1f2v1
= −mf1

mf2

(
gσZd̄if2

[(
4−

m2
f1

M2
v1

)
gσv1f̄2f1

+
mf1mf2

M2
v1

gσv1f̄2f1

]
gσv̄1f̄1dj

+ gσv̄1d̄if1

[(
4−

m2
f1

M2
v1

)
gσv1f̄1f2

+
mf1mf2

M2
v1

gσv1f̄1f2

]
gσZf̄2dj

)
, (4.3)

– 7 –
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κ′σf1f2v1
=

2mf1

mf2

(
gσZd̄if2

gσv1f̄2f1
gσv̄1f̄1dj

+ gσv1d̄if1
gσv̄1f̄1f2

gσZf̄2dj

)
,

κσf1f2s1 =
mf1

mf2

(
gσZd̄if2

yσs1f̄2f1
yσs̄1f̄1dj

+ yσs1d̄if1
yσs̄1f̄1f2

gσZf̄2dj

)
, (4.4)

k̃σf1f2v1
=

(
gσZf̄2f1

+
mf1mf2

2M2
v1

gσZf̄2f1

)
gσv̄1d̄if2

gσv1f̄1dj
,

kσf1f2v1
= −mf1mf2

M2
v1

(
mf1mf2g

σ
Zf̄2f1

+ 2M2
v1
gσZf̄2f1

)
gσv̄1d̄if2

gσv1f̄1dj
,

k′σf1f2v1
= −gσZf̄2f1

gσv̄1d̄if2
gσv1f̄1dj

+
1

2

(
gσZd̄idig

σ
v1d̄if1

gσv̄1f̄1dj
+ gσv̄1d̄if1

gσv1f̄1dj
gσZd̄jdj

)
δf1f2 ,

k̃σf1v1v2
= −

(
3 +

m2
f1

(M2
v1

+M2
v2
−M2

Z)

4M2
v1
M2
v2

)
gZv1v̄2g

σ
v̄1d̄if1

gσv2f̄1dj

− 1

2

(
1 +

m2
f1

2M2
v1

)(
gσZd̄idig

σ
v1d̄if1

gσv̄1f̄1dj
+ gσv1d̄if1

gσv̄1f̄1dj
gσZd̄jdj

)
δv1v2 , (4.5)

kσf1v1v2
=
m2
f1

(
M4
v1

+M4
v2
−M2

Z(M2
v1

+M2
v2

)
)

M2
v1
M2
v2

gZv1v̄2g
σ
v̄1d̄if1

gσv2f̄1dj
,

k′σf1v1v2
= 2 gZv1v̄2g

σ
v̄1d̄if1

gσv2f̄1dj
,

k̃σf1v1s1 = −
kσf1v1s1

4M2
v1

, kσf1v1s1 = mf1

(
gZv̄1s1y

σ
s̄1d̄if1

gσv1f̄1dj
+ gZv1s̄1y

σ
s1f̄1dj

gσv̄1d̄if1

)
, (4.6)

k̃σf1f2s1 =
1

2
gσZf̄2f1

yσs̄1d̄if2
yσs1f̄1dj

, kσf1f2s1 = −mf1mf2g
σ
Zf̄2f1

yσs̄1d̄if2
yσs1f̄1dj

, (4.7)

k̃σf1s1s2 =
1

2
gZs̄1s2y

σ
s̄2d̄if1

yσs1f̄1dj
− 1

4

(
gσZd̄idiy

σ
s̄1d̄if1

yσs1f̄1dj
+ yσs̄1d̄if1

yσs1f̄1dj
gσZd̄jdj

)
δs1s2 . (4.8)

The sums in (4.2) run over all components of the fields (e.g., explicitly over W+ and W−

in the SM). Note that the scalar-index sums in (4.2) run only over physical fields; the

contributions of would-be Goldstone bosons have been accounted for via the replacement

of the Goldstone couplings in terms of couplings to physical particles, using eq. (3.6). The

contribution of the Z penguin to processes like rare B and K decays is not separately

gauge-invariant without including the box contributions. We present the explicit generic

results for completeness in appendix A.

Our result (4.1) consists of several contributions. In general, we can write (i 6= j)

Γ
djdiZ
µσ = Γ

djdiZ,(1)
µσ +

[
δZg,σ

Zd̄idj
+

1

2

∑
f1

(
gσZd̄if1

δZψ,σ
f̄1dj

+δZψ,σ †
d̄if1

gσZf̄1dj

)
+

1

2

∑
v1

δZVZv1
gσv̄1d̄idj

]
Pσ .

(4.9)

Here Γ
Zdjdi,(1)
µσ denotes the sum of all contributing one-loop diagrams, and the rest are

the vertex, fermion field, and gauge-boson field renormalisation constants, respectively.

Note that in this work we assume the absence of tree-level FCNC transitions between light

quarks, i.e. gσ
v̄1d̄idj

= 0. In this case, we can use the STIs (3.8), (3.9) and (3.10) to show that

the fermion field renormalisation constants are sufficient to cancel all divergences in (4.9)

(in other words, δZg,σ
Zd̄idj

can be chosen to vanish). This is done explicitly in section 5.

The two-point functions in the full theory lead to mixing among the fermions beyond

tree level. We perform an off-diagonal field renormalisation for all fermions fields, with

– 8 –
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dj d′ di

Z

Figure 2. One-heavy-particle reducible contribution to the Z penguin.

finite terms chosen to restore a diagonal and canonically normalised kinetic and mass term.

As one consequence, diagrams with a reducible heavy-fermion line (of the form shown in

figure 2) are exactly cancelled by corresponding counterterm diagrams.

The one-loop corrections to the renormalised fermion two-point function can be written

as

δΓ
fifj
σ =

[(
Σψ,σ

V,f̄jfi
+δZψ,σ

H,f̄jfi

)
/p+Σψ,σ

S,f̄jfi
− 1

2
(mfjδZ

ψ,σ

f̄jfi
+δZψ,σ †

f̄jfi
mfi)−δjiδmfi

]
Pσ . (4.10)

The finite parts of the field renormalisation constants for j 6= i are obtained from the

requirement that the off-diagonal parts of the self energy (4.10) vanish. They are given by

δZψ,σ
f̄jfi

∣∣
fin

=
2

m2
fj
−m2

fi

(
m2
fi

Σψ,σ

V,f̄jfi
+mfjmfiΣ

ψ,σ

V,f̄jfi
+mfjΣ

ψ,σ

S,f̄jfi
+mfiΣ

ψ,σ

S,f̄jfi

)∣∣
fin
. (4.11)

They enter our generic result after having been expanded in small mass ratios. The diag-

onal field renormalisation constants are not necessary in our case. If we had allowed for

the presence of tree-level dj → di transitions, one would have to fix these constants by

renormalisation conditions. Note that, in this case, the one-loop result would correspond

to a tiny correction of an already suppressed tree-level amplitude. These consideration can

be important, however, in an analogous treatment of charged current couplings [24].

We will show in the next section that all divergences in our generic result completely

cancel against the divergent terms in the field rotation, without introducing additional

counterterms. In order to make this cancellation manifest, it is necessary to use the conse-

quences of tree-level perturbative unitarity derived in section 2 in form of the STIs. This

step is independent of the specification of a model and can be applied without detailed

knowledge about the sector responsible for the spontaneous symmetry breaking.

5 Renormalised results

The result (4.2) is valid for any number of heavy new scalars, vectors, and Dirac fermions. It

is, however, not very suitable for numerical evaluation: the functions C̃0 in eq. (5.4) contain

divergent terms (cf. appendix B). While the STI (via relations between the couplings

appearing in the coefficients (4.3)–(4.8)) ensure that the result is finite, the cancellation of

the divergences is not manifest. In this section we will derive manifestly finite versions of

our result that, in addition, depend on a minimal number of physical couplings.

– 9 –
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In order to make contact to phenomenological applications, we remind the reader that

the loop functions appearing in rare K and B meson decays are given by the following

combinations [25]

Xσ(x) = CσsdZ(x)− 4BσL
sdνν(x) , Y σσ′(x) = CσsdZ(x)−B(x)σσ

′
sd`` , (5.1)

with CσsdZ and Bσσ′
sd`k`k

given in eq. (4.1) and eq. (A.2), respectively.

5.1 SM Fermions and charged scalars and vectors

We first consider the simplified case of theories with charged heavy scalars and vectors —

in other words, we drop all coefficients in eq. (4.2) that involve couplings to heavy new

fermions. We then simplify the remaining expression by repeatedly eliminating physical

coupling constants via application of the STI. The result obtained in this way is not only

manifestly finite, but also depends on fewer physical coupling constants than the original ex-

pression. This procedure is not unique. While the STI ensure that one will finally arrive at a

finite result, there is some freedom of which couplings to eliminate and which ones to retain.

For instance, continuing with our simplified case, we can first eliminate the right-

handed Z-fermion coupling by solving the “Yukawa sum rule” eq. (3.10) for gRZq̄q, and

solving the “gauge boson mass sum rule” eq. (3.9) for gRZt̄t. We then apply the “unitarity

sum rule”, eq. (3.8), together with the universality of the Z coupling to fermions, to

eliminate all dependence on couplings involving light quarks (this step is a generalization of

the GIM mechanism). We can then solve eq. (3.8) for gLZt̄t. Applying the resulting relations

to eqs. (4.3)–(4.8) eliminates all divergences, and we obtain the manifestly finite expression

ĈLdjdiZ =
∑
s1s2

fS(mt,Ms1 ,Ms2)yL
s+2 t̄dj

(
δs1s2y

R
s−2 d̄it

(
gLZd̄jdj − g

L
Zt̄t

)
+ gZs+1 s

−
2
yR
s−1 d̄it

)
+
∑
v1v2

fV (mt,Mv1 ,Mv2)gZv+
2 v
−
1
gL
v+
1 t̄dj

gL
v−2 d̄it

+
∑
s1v1

fV S(mt,Ms1 ,Mv1)yL
s+1 t̄dj

gL
v−1 d̄it

gZv+
1 s
−
1

+
∑
s1v1

fV S′(mt,Ms1 ,Mv1)yR
s−1 d̄it

gL
v+
1 t̄dj

gZv−1 s
+
1
.

(5.2)

The loop functions are given by

fV (mi,mj ,mk) =m2
iC0 (mi,mk,mk)−

m2
i

(
m2
j +m2

k−M2
Z

)
4m2

jm
2
k

+
m2
i

(
−3m2

j +m2
k−M2

Z

)
+4m2

k

(
m2
j−m2

k+M2
Z

)
4m2

jm
2
k

m2
iC0 (mi,mi,mk)

+
−M2

Z

(
3m2

j +4m2
k

)
−13m2

jm
2
k+3m4

j +4m4
k

4m2
jm

2
k

m2
iC0 (mi,mj ,mk) ,

fS(mi,mj ,mk) =
1

2
m2
iC0 (mi,mi,mk)−

1

2
m2
jC0 (mi,mj ,mk)−

1

2
, (5.3)
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fV S(mi,mj ,mk) =mi

(
1−

m2
j

4m2
k

)
C0 (mi,mj ,mk)

+

(
m3
i

4m2
k

−mi

)
C0 (mi,mi,mk)−

mi

4m2
k

,

fV S′(mi,mj ,mk) =
m3
iC0 (mi,mi,mj)

4m2
k

+
3

4
miC0 (mi,mj ,mk)−

mi

4m2
k

.

The function C0 can be found in eq. (B.2).

A comment is in order: the sums over charged vectors vi and charged scalars si in

eq. (5.2) run over the particle types, but not over the different charges: for SM fermion

content the charge of the internal vectors and scalars is fixed by the external fermions (e.g.,

for a strange to down transition, there are only up-type quarks in the loop, so the internal

vectors and scalars must have negative charge −e).

5.1.1 Standard Model

We illustrate the general procedure described above by considering the s→ d transition in

the SM. Here, the only relevant heavy degrees of freedom are the top quark, and the gauge

bosons Z and W±. Starting with the general result (4.2), we need to keep only the terms

ĈL,SM
sdZ =

∑
f1f2v1

[
k̃σf1f2v1

(
C̃0

(
mf1 ,mf2 ,Mv1

)
− 1

2

)
+ kσf1f2v1

C0

(
mf1 ,mf2 ,Mv1

)
+ k′σf1f2v1

]

+
∑
f1v1v2

[
k̃σf1v1v2

(
C̃0

(
mf1 ,Mv1 ,Mv2

)
+

1

2

)
+ kσf1v1v2

C0

(
mf1 ,Mv1 ,Mv2

)
+ k′σf1v1v2

]
(5.4)

Next, we insert the SM couplings of W bosons

gLW+ūjdk
=

e

sw
√

2
Vjk , gLW+ν̄j`k

=
e

sw
√

2
δjk , gZW+W− =

e

tw
(5.5)

and Z bosons

gLZf̄jfk =
2e

s2w

(
T f3 −Qfs2

w

)
δjk , gRZf̄jfk = − 2e

s2w
Qfs

2
wδjk . (5.6)

Here T f3 = ±1/2 is the third component of the weak isospin of the fermion f and Qf is

its electric charge in units of the positron charge e. The sine of the weak mixing angle is

denoted by sw = sin(θw). In addition we defined s2w = sin(2θw) and tw = tan(θw). The

CKM matrix elements are denoted by Vjk.

The Z-boson coupling to fermions in the SM is universal and diagonal; hence, the sum

rule (3.8) leads to the unitarity of the CKM matrix. Defining λ
(d′d)
q = Vqd′V

∗
qd, this allows

us to eliminate λsdu = −λsdc − λsdt , and thus the coefficient λsdt multiplies the difference of

the diagrams with massive top and massless up quark. This leads to a partial cancellation

of UV divergences — the well-known GIM (Glashow-Iliopoulos-Maiani) mechanism.

After this manipulation, the result still has a left-over divergence, proportional to

1

M2
W

− 1

c2
wM

2
Z

. (5.7)
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Evaluating the sum rule (3.9) for the choice σ = L, v1 = Z, v2 = W+, f1 = t, f2 = b, and

inserting the SM couplings, leads immediately to the relation

M2
W = c2

wM
2
Z . (5.8)

Thus, the divergent term vanishes. The finite term exactly reproduces the result of Inami

and Lim [26]

C
L (SM)
d′dZ = λ

(d′d)
t C(xt) , C(x) =

x

8

[
x− 6

x− 1
+

3x+ 2

(x− 1)2
log(x)

]
, (5.9)

for the top-quark contribution to the d′ → dZ vertex. The ratio of the quark and W -boson

masses squared is denoted by xq = m2
q/M

2
W .

Of course, the same result is obtained in a much simpler way by directly using the

result (5.2). Both the GIM mechanism and “gauge boson mass relation” (5.8) are already

built in. Moreover, it suffices to specify the reduced set of SM couplings (5.5) — the

Z-fermion couplings (5.6) are then fixed via the STI.

5.1.2 2HDM

As an example with additional charged scalars we consider the contribution of charged

Higgs bosons in a two Higgs doublet model (2HDM) [27]. Using that the couplings involving

both charged gauge and Higgs bosons vanish, gZW+
j h
−
i

= gZW−j h
+
i

= 0, we see that only

the first line in eq. (5.2) contributes, with a prefactor given by

yL
h+
j t̄d

(
δijy

R
h−j s̄t

(
gLZd̄d − gLZt̄t

)
+ gZh+

i h
−
j
yR
h−i s̄t

)
. (5.10)

Specializing to the case of one charged Higgs, we need the following additional Feynman

rules [27]

gZh−h+ =−e c2w

2swcw
, yLh+ t̄di

=
(
yRh−d̄it

)∗
=
mt

tβ

Vtde√
2swMW

, yRh+ t̄di
=
(
yLh−d̄it

)∗
=O(mdi) ,

(5.11)

with tβ = tanβ. We then find

C(xt, yt) = −VtdV
∗
ts

8t2β
xt fS(mt,Mh,Mh) (5.12)

where

fS(mt,Mh,Mh) =
yt

1− yt
+

yt log yt
(yt − 1)2

(5.13)

and we defined x = m2
t /M

2
W , y = m2

t /M
2
h . This reproduces the function

CH(xt, yt) = −1

8
|Y |2xtyt

[
1

1− yt
+

log yt
(yt − 1)2

]
(5.14)

from [28], where Y = v1/v2 = cotβ.
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5.2 Arbitrary charged Fermions, scalars, and vectors

We now consider the general case of theories with arbitrary numbers of heavy charged

fermions, scalars and vectors, and simplify the general result eq. (4.2) by repeatedly elim-

inating physical coupling constants via application of the STI.

In analogy to our procedure described in the previous section, we can first eliminate the

diagonal right-handed Z-fermion coupling by solving the “Yukawa sum rule” eq. (3.10) for

gR
Zf̄f

, thus eliminating this coupling in conjunction with couplings to heavy scalars. Next,

we solve the “gauge boson mass sum rule” eq. (3.9) for gR
Zf̄f

and use the resulting relation

to eliminate all diagonal right-handed Z couplings to fermions in conjunction with vector

couplings. We then repeatedly apply the “unitarity sum rule”, eq. (3.8), to eliminate all

couplings of fermions to the charged vectors and all couplings of the Z boson to left-handed

fermions, looping over all heavy fermions. Together with our assumption of universality

and diagonality of the Z-boson couplings to down-type SM quarks, this eliminates all

divergences. Note that the “unitarity sum rule”, eq. (3.8), leads to a “generalized GIM

mechanism”, effectively eliminating some of the couplings of one (arbitrarily chosen) heavy

fermions in the loop (denoted below by the subscript f ′). The resulting, manifestly finite

expression for the Z penguin for an arbitrary number of charged fermions, scalars, and

vectors is then

ĈLdjdiZ =
∑
f1f2v1

gLZf̄2f1
gLv1f̄1dj

gLv̄1d̄if2
FV (mf1 ,mf2 ,Mv1)

+
∑
f1f2v1

gRZf̄2f1
gLv1f̄1dj

gLv̄1d̄if2
FV ′ (mf1 ,mf2 ,Mv1)

+
∑
f1v1v2

gZv2v̄1g
L
v1f̄1dj

gLv̄2d̄if1
FV ′′

(
mf ′ ,mf1 ,Mv1 ,Mv2

)
+
∑
f1f2s1

gLZf̄2f1
yLs1f̄1dj

yRs̄1d̄if2
FS (mf1 ,mf2 ,Ms1)

+
∑
f1s1s2

(
gZs2s̄1 + δs1s2g

L
Zd̄jdj

)
yLs1f̄1dj

yRs̄2d̄if1
FS′ (mf1 ,Ms1 ,Ms2)

+
∑
f1f2s1

gRZf̄2f1
yLs1f̄1dj

yRs̄1d̄if2
FS′′ (mf1 ,mf2 ,Ms1)

+
∑
f1s1v1

gZv1s̄1y
L
s1f̄1dj

gLv̄1d̄if1
FSV (mf1 ,Ms1 ,Mv1)

+
∑
f1s1v1

gZv̄1s1g
L
v1f̄1dj

yRs̄1d̄if1
FSV′ (mf1 ,Ms1 ,Mv1) ,

(5.15)

The respective loop functions can be written

FV (mi,mj ,mk) = C̃δ (mi,mj ,mk) +
m2
j

m2
k

(
m2
jC0 (mj ,mj ,mk)−m2

iC0 (mi,mj ,mk)
)
,

FV ′ (mi,mj ,mk) =
mimj

2m2
k

(
C̃δ (mi,mj ,mk)− 4m2

kCδ (mi,mj ,mk)
)
,

FV ′′(mi,mj ,mk,ml) = C̃∆(mi,mj ,mk,ml) + fV ′′(mi,mk,ml)− fV ′′(mj ,mk,ml) ,

FS (mi,mj ,mk) = −mimjC0 (mi,mj ,mk) , (5.16)
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FS′ (mi,mj ,mk) = −1

2

(
C̃δ (mj ,mi,mk) + 1

)
,

FS′′ (mi,mj ,mk) =
1

2
C̃δ (mi,mj ,mk) ,

FSV (mi,mj ,mk) =
mi

4m2
k

(
4m2

kCδ (mj ,mi,mk)− C̃δ (mj ,mi,mk)− 1
)
,

FSV′ (mi,mj ,mk) =
mi

4m2
k

(
4m2

kC0 (mi,mj ,mk)− C̃δ (mk,mi,mj)− 1
)
,

where

1

m2
i

fV ′′(mi,mj ,mk) =
m2
j +m2

k −M2
Z

4m2
jm

2
k

(
1 + C̃δ(mj ,mi,mk)

)
+

(
m2
i

m2
k

+
m2
k −M2

Z

m2
j

+ 1

)
C0(mi,mi,mk)

−
m4
j +m4

k −M2
Z

(
m2
j +m2

k

)
m2
jm

2
k

C0(mi,mj ,mk)

(5.17)

and

C̃∆ (mi,mj ,mk,ml) = 3
(
C̃0 (mi,mk,ml)− C̃0 (mj ,mk,ml)

)
− C̃0 (mi,mi,ml) + C̃0 (mj ,mj ,ml)

C̃δ(mi,mj ,mk) = C̃0 (mi,mj ,mk)− C̃0 (mj ,mj ,mk)

Cδ(mi,mj ,mk) = C0 (mi,mj ,mk)− C0 (mj ,mj ,mk) .

(5.18)

These loop functions are manifestly finite; it is interesting to note that one could perform

the whole calculation without regulator in four space-time dimensions if one applies the

sum rules first. Note also that several of the loop functions vanish if the fermion masses

are equal; namely, we have

FV (m,m,M) = FV ′ (m,m,M) = FV ′′ (m,m,M) = FS′′ (m,m,M) = 0 . (5.19)

As a consequence, the result depends only the off-diagonal right-handed couplings of the

Z boson to fermions. Furthermore, we have FS (m,m,M) = FS′ (m,M,M), and the only

contributions in the fourth line in eq. (5.15) proportional to diagonal Z couplings arise

from the finite parts of the field renormalisation constants.

As before, given the charges of the internal fermions, the charges of the internal scalars

and vectors are determined by the charges of the external particles, via Qs,v = 1/3+Qf ; so

the sums in eq. (5.15) effectively run only over the particles with positive charge. Finally,

we remind the reader that we suppressed colour indices throughout; coloured particles

can easily be taken into account with the understanding that the sums also run over all

components of fields in multiplets of SU(3).

5.2.1 Vector-like quarks

As an example, we consider vector-like quarks in a representation that does not generate

tree-level FCNC transitions in the down-quark sector [29]. For simplicity, we treat the case

of an up-type singlet vector-like quark, U , with charge 2/3, isospin zero, and mass mU .
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The additional quark U mixes with the SM fermions via Yukawa term in the La-

grangian, given by

LY = −
∑
k

Q
k
LY

U
k URH̃ + h.c. (5.20)

(note that hard mixing terms Lmix = −∑3
k=1m

k
uu u

k
RUL+h.c. can be eliminated via a field

rotation). Here k is a SM generation index, and the charge conjugate of the Higgs field H

is given by H̃ = iσ2H∗ = iσ2(H†)T .

We obtain the contributions to the Z penguin by inserting the appropriate couplings

into the general result (5.15). First, note that all RH Z couplings as well as the LH tree-

level Z couplings to down-type quarks are not changed from their SM values. Therefore,

we need only the following additional Feynman rules:

gLZūiuj =
e

swcw

[
1

2
(V V †)ij −

2

3
s2
wδij

]
, gLW+ūidj

=
e√
2sw

Vij , gZW+W− =
ecw
sw

(5.21)

where V is the generalized, non-unitary CKM matrix (see, e.g., [30, 31]). (Note that

the Higgs couplings contribute only indirectly to the Z penguin, via the mixing angles

comprised by the matrix V .) The resulting expression for the Z penguin is

C=VtdV
∗
tsf1(xt)+VUdV

∗
Usf1(yU )+VUdV

∗
ts(V V

†)tUf4(xt,yU )+VtdV
∗
Us(V V

†)Utf4(yU ,xt)

+Vtd
[
V ∗cs(V V

†)ct+V
∗
us(V V

†)ut
]
f2(xt)+VUd

[
V ∗cs(V V

†)cU+V ∗us(V V
†)uU

]
f2(yU ) (5.22)

+V ∗ts
[
Vcd(V V

†)tc+Vud(V V
†)tu
]
f3(xt)+V ∗Us

[
Vcd(V V

†)Uc+Vud(V V
†)Uu

]
f3(yU )

where xt = m2
t /M

2
W , yU = m2

U/M
2
W , and the loop functions are given by

f1(x) =
x(x− 6)

8(x− 1)
+
x(2 + 3x) log x

8(x− 1)2
, f2(x) =

x log x

8(1− x)
, f3(x) = −x

8
− f2(x) ,

f4(x, y) =
x(x− 2y + xy) log x

8(x− 1)(x− y)
− (x− 1)y2 log y

8(y − 1)(x− y)
− x

8
. (5.23)

The box contribution for external neutrinos (needed for the rare K → πνν̄ decays) is

B = VtdV
∗
ts g(xt) + VUdV

∗
Us g(yU ) (5.24)

where

g(x) =
x

x− 1
− x log x

(x− 1)2
. (5.25)

The large-mass limit. As a simple application we study the limit of a vector-like quark

with a mass much larger than the electroweak symmetry-breaking scale. In general, we

expect the effects of the heavy quark to decouple — all contributions to physical observables

should be suppressed by a power of mU . This is not immediately obvious from the loop

function; to see this, it is necessary to expand also the mixing matrix V in inverse powers

of mU . In a basis where the SM up-quark Yukawas are diagonal, the leading contributions

can be written as (see also the discussion in ref. [30])

V =

(
VCKM

v√
2mU

Y U†VCKM

)
, (5.26)
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where VCKM is the SM CKM matrix. Using this explicit form, it can easily be shown that

the non-decoupling terms in (5.22) cancel.

The leading terms in the large-mass expansion are thus of order 1/m2
U , and they can

be captured by an effective theory description (cf. ref. [32]). We will treat here the special

case Y U
1 = Y U

2 = 0, so that only the flavor-diagonal top-quark couplings will be modified,

but no FCNC transitions in the up-quark sector are generated. Working again in a basis

where the up-quark SM Yukawas are diagonal, only the following operators are generated

at order 1/m2
U [29]:

Q
(3)
Hq,33 ≡ (H†i

↔
Da
µ H)(Q̄3

Lγ
µσaQ3

L) ,

Q
(1)
Hq,33 ≡ (H†i

↔
Dµ H)(Q̄3

Lγ
µQ3

L) ,

QuH,33 ≡ (H†H)(Q̄3
LH̃tR) .

(5.27)

These operators contain the Higgs doublet H and its charge conjugate H̃, the left-handed

third-generation quark doublet Q3
L, and the right-handed top quark tR. Moreover, σa are

the Pauli matrices and Dµ is the SM gauge-covariant derivative and we defined

(H†i
↔
Dµ H) = iH†

(
DµH

)
− i
(
DµH

)†
H ,

(H†i
↔
Da
µ H) = iH†σa

(
DµH

)
− i
(
DµH

)†
σaH ,

(5.28)

so that the operators Q
(3)
Hq,33 and Q

(1)
Hq,33 are manifestly Hermitian.

Here, we are not interested in Higgs physics observables, so we will concentrate on the

Z-penguin operators Q
(3)
Hq,33 and Q

(1)
Hq,33. The implications of constraints from rare meson

decays for anomalous tt̄Z couplings in the limit of heavy quark masses have been treated

in ref. [33] in an effective theory framework. We want to compare these results to those

obtained in our concrete model.

The effective theory approach allows to calculate the leading-logarithmic contribution

to the rare meson decays via operator mixing (see ref. [33] for details). From ref. [29] we

can read off the Wilson coefficients

C
(3)
Hq,33 = −C(1)

Hq,33 =
1

4
VtdV

∗
ts

∣∣Y U
3

∣∣2 , (5.29)

while the results in ref. [33] provide the logarithmic contribution to the Xand Y functions

δY NP = δXNP = −3 + 2xt
2

C
(1)
φq,33

v2

Λ2
log

µW
Λ

= −3 + 2xt
8

VtdV
∗
ts

∣∣Y U
3

∣∣2 v2

m2
U

log
µW
mU

, (5.30)

where xt = m2
t /M

2
W and we identified Λ = mU . Inserting the expansion (5.26) into the

explicit result, we obtain the logarithmic term

X
∣∣
log

= −3 + 2xt
8

VtdV
∗
ts

∣∣Y U
3

∣∣2 v2

m2
U

log
MW

mU
(5.31)

which reproduces the EFT result.
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In fact, the EFT approach at one-loop allows only to calculate the leading-logarithmic

term in the 1/m2
U expansion. Having the full theory at hand, we can now check whether this

is a reasonable appoximation. Choosing, as an example, a mass mU = 1 TeV, and adding

the box contribution to obtain a gauge-invariant result, we find that the logarithmic term

dominates the remaining terms of order 1/m2
U by a factor of seven for the rare K → πνν̄

decays, and by a factor of four for Bs → µ+µ−. We see that the EFT result gives, in this

instance, a good estimate of the leading contributions.

Another interesting question is the contribution of dimension-eight operators (corre-

sponding to terms suppressed by 1/m4
U ). We find that the dimension-six terms dominate

over the dimension-eight contributions for masses mU & 150 GeV — in particular, for all

masses where an expansion in v/mU is justified.

5.2.2 Charginos in the MSSM

As a further check of our formalism, we compare the result for additional scalars and

fermions with the chargino contributions to the Z penguin in the MSSM. The particles in

the loop are the two charginos, (χ̃1, χ̃2), and the six up-type squarks, (Ũj), where we follow

the notation of ref. [34]. Using the charge conjugated charginos (χ̃c1, χ̃
c
2) inside the loop,

the relevant coupling constants read

gZU−i U
+
j

= − e

s2W

(
3∑
I=1

ZIi∗U ZIjU −
4

3
s2
W δij

)
,

gL
Zχciχ

c
j

= − e

s2w

(
Z1i
−Z

1j∗
− + (c2

W − s2
W )δij

)
gR
Zχciχ

c
j

= − e

s2w

(
Z1i

+Z
1j∗
+ + (c2

W − s2
W )δij

)
yL
U−i χ

c
jdk

=

3∑
I=1

VIk

(
− e

sW
ZIi∗U Z1j

+ + Y I
u Z

(I+3)i∗
U Z2j

+

)
,

yR
U−i χ

c
jdk

= −
3∑
I=1

VIk
(
Y k
d Z

Ii∗
U Z2j

−
)
,

(5.32)

Using these coupling constants and the standard model couplings of the Z-Boson to the

down quarks we reproduce the results of the chargino contributions presented in ref. [35].

6 Conclusion

In this work we presented a manifestly finite result for the three-point function involving

two light SM fermions and the Z boson (the “Z penguin”), in generic extensions of the SM

that satisfy the condition of perturbative unitarity. The Z penguin is the main ingredient

for the prediction of decay rates for rare meson decays.

We allow for an arbitrary number of heavy new scalar, fermionic, and vector particles.

The vector particles are assumed to obtain their mass via the spontaneous breaking of a

gauge symmetry. The specific form of the result is independent of the symmetry-breaking

mechanism.
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We have derived manifestly finite results for the case of arbitrary charged internal

particles. The results depend on a reduced set of physical couplings (reflecting the structure

of the underlying symmetry group). This elimination of redundant couplings is important

in particular when one performs a fit to flavor or collider data. The presentation of explicit

results for neutral particles is relegated to future work. Furthermore, we plan to apply our

methods also in the context of dark matter and collider physics to study simplified models

with a consistent UV behaviour.
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A Result for the box diagrams

The box-diagram contribution to the effective Hamiltonian for dj → di`k ¯̀
l transitions reads

H∆F=1 Box
eff =

4GF√
2

α

2πs2
w

{∑
σ1σ2

(
BSσ1σ2
djdi`l`k

(d̄iPσ1dj)(
¯̀
kPσ2`l)

+BV σ1σ2
djdi`l`k

(d̄iγ
µPσ1dj)(

¯̀
kγµPσ2`l)

)
+
∑
σ

BTσ
djdi`l`k

(d̄iσ
µνPσdj)(¯̀

kσµνPσ`l)

}
,

(A.1)

with σµν = i[γµ, γν ]/2. The use of chiral Fierz identities (see e.g. [36]) shows that the

tensor structures with mixed chirality (d̄iσ
µνPσdj)(¯̀

kσµνPσ̄ `l) vanish identically. Hence,

they are omitted from (A.1). We decompose the box functions BMσ1σ2
djdi`l`k

as

BMσ1σ2
djdi`l`k

=

√
2

GF

s2
w

α

1

32π
×
{ ∑
f1f2v1v2

(
c̃Mσ1σ2
f1f2v1v2

D̃0

(
mf1 ,mf2 ,Mv1 ,Mv2

)
+ cMσ1σ2

f1f2v1v2
D0

(
mf1 ,mf2 ,Mv1 ,Mv2

))
+

∑
f1f2v1s1

(
c̃Mσ1σ2
f1f2v1s1

D̃0

(
Ms1 ,mf1 ,mf2 ,Mv1

)
+ cMσ1σ2

f1f2v1s1
D0

(
Ms1 ,mf1 ,mf2 ,Mv1

))
+

∑
f1f2s1s2

(
c̃Mσ1σ2
f1f2s1s2

D̃0

(
Ms1 ,Ms2 ,mf1 ,mf2

)
+ cMσ1σ2

f1f2s1s2
D0

(
Ms1 ,Ms2 ,mf1 ,mf2

))}
,

(A.2)
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where the superscript takes the values M = S, V, T . The coefficients for the vector projec-

tion are given by

cV σ1σ2
f1f2v1v2

= m2
f1
m2
f2

(
1

M2
v1

+
1

M2
v2

)
gσ1

v̄2d̄if1
gσ1

v1f̄1dj

(
gσ2

v̄1
¯̀
kf2
gσ2

v2f̄2`l
− flipVf2

)
,

c̃V σ1σ2
f1f2v1v2

= − 1

4(M2
v1

+M2
v2

)
cV σ1σ2
f1f2v1v2

(A.3)

+

(
gσ2

v̄1
¯̀
kf2
gσ2

v2f̄2`l
− 4 flipVf2

)
×

−g
σ1

v̄2d̄if1
gσ1

v1f̄1dj
, σ1 = σ2

gσ1

v̄1d̄if1
gσ1

v2f̄1dj
, σ1 6= σ2

,

cV σ1σ2
f1f2v1s1

= mf1mf2

(
gσ1

v̄1d̄if1
yσ1

s1f̄1dj
+ flipVf1

)(
yσ̄2

s̄1 ¯̀
kf2
gσ2

v1f̄2`l
+ flipVf2

)
, (A.4)

c̃V σ1σ2
f1f2v1s1

= − 1

4M2
v1

cV σ1σ2
f1f2v1s1

, cV σ1σ2
f1f2s1s2

= 0 ,

c̃V σ1σ2
f1f2s1s2

= −1

4
yσ̄1

s̄2d̄if1
yσ1

s1f̄1dj

(
yσ̄2

s̄1 ¯̀
kf2
yσ2

s2f̄2`l
− flipVf2

)
.

Here, flipVf1
represents contributions for which we interchange the coupling constants via

gσ
... d̄if1

↔ gσ
... f̄1dj

and yσ
... d̄if1

↔ yσ̄
... f̄1dj

, and flipVf2
acts analogously on `l,k and f2. For the

scalar projections we obtain the coefficients

c̃Sσ1σ2
f1f2v1v2

= mf1mf2

(
1

M2
v1

+
1

M2
v2

)
gσ̄1

v̄2d̄if1
gσ1

v1f̄1dj

{
gσ̄2

v̄1
¯̀
kf2
gσ2

v2f̄2`l
+ flipSf2

}
,

cSσ1σ2
f1f2v1v2

= −
4M2

v1
M2
v2

+m2
f1
m2
f2

M2
v1

+M2
v2

c̃Sσ1σ2
f1f2v1v2

,

c̃Sσ1σ2
f1f2v1s1

=
(
yσ1

s̄1d̄if1
gσ1

v1f̄1dj
− flipSf1

)(
gσ̄2

v̄1
¯̀′
kf2
yσ2

s1f̄2l
− flipSf2

)
, (A.5)

cSσ1σ2
f1f2v1s1

= −
m2
f1
m2
f2

M2
v1

c̃Sσ1σ2
f1f2v1s1

, c̃Sσ1σ2
f1f2s1s2

= 0 ,

cSσ1σ2
f1f2s1s2

= −mf1mf2 y
σ1

s̄2d̄if1
yσ1

s1f̄1dj

(
yσ2

s̄1 ¯̀
kf2
yσ2

s2f̄2`l
+ flipSf2

)
,

and finally the tensor coefficients read

cTσf1f2v1v2
= −mf1mf2g

σ̄
v̄2d̄if1

gσv1f̄1dj

(
gσ̄v̄1

¯̀
kf2
gσv2f̄2`l

− flipSf2

)
,

c̃Tσf1f2v1v2
= −1

4

(
1

M2
v1

+
1

M2
v2

)
cTσf1f2v1v2

, (A.6)

c̃Tσf1f2v1s1 =
1

4

(
yσs̄1d̄if1

gσv1f̄1dj
+ flipSf1

)(
gσ̄v̄1

¯̀
kf2
yσs1f̄2`l

+ flipSf2

)
,

cTσf1f2v1s1 = cTσf1f2s1s2 = c̃Tσf1f2s1s2 = 0 .

Similar to above flipSf1
stands for additional contributions, here with the coupling constants

yσ· d̄if1
↔yσ· f̄1dj

and gσ· d̄if1
↔gσ̄· f̄1dj

interchanged, and flipSf2
acts analogously on `l,k and f2.

It is possible to extract the generic effective Hamiltonian for the |∆F | = 2 boxes from

the above results, if one keeps in mind that the external particle-antiparticle pairs allow

for additional Wick contractions of the transition amplitude and that the conventional
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normalization of the effective Hamiltonian is different. We use Fierz identities to express

the result in terms of the operator basis of [37], where

H∆F=2 Box
eff =

G2
F

4π2
M2
W

(∑
σ

SV σσ1,djdi
QV σσ1,didj

+
∑
n=1,2

(
SLRn,djdi Q

LR
n,didj

+
∑
σ

SSσσn,djdi
QSσσn,didj

))
,

QV σσ1 = (d̄jγµPσdi)(d̄jγ
µPσdi) ,

QLR1 = (d̄jγµPLdi)(d̄jγ
µPRdi) , QLR2 = (d̄jPLdi)(d̄jPRdi) ,

QSσσ1 = (d̄jPσdi)(d̄jPσdi) , QSσσ2 = (d̄αj Pσd
β
i )(d̄βj Pσd

α
i ) .

(A.7)

A summation over colour indices α, β is understood. In order to obtain the coefficients S

from (A.4)–(A.6), the following prescription holds:

SV σσ1,djdi
= 4BV σσ

djdi`l`k
|`k,l→ di,j ,

SLR1,djdi
= 8BV LR

djdi`l`k
|`k,l→ di,j , SLR2,djdi

= 8BSLR
djdi`l`k

|`k,l→ di,j ,

SSσσ1,djdi
=
(
4BSσσ

djdi`l`k
− 16BTσσ

djdi`l`k

)
|`k,l→ di,j , SSσσ2,djdi

= −32BTσσ
djdi`l`k

|`k,l→ di,j .

(A.8)

B Loop functions

In the UV-divergent loop functions we set ε = (4 −D)/2. The loop functions are defined

as (cf. [37])

i

(4π)2
B0 (m1,m2)

(
4π

µ2
e−γE

)ε
=

∫
dDq

(2π)D
1

q2 −m2
1

1

q2 −m2
2

i

(4π)2
C0 (m1,m2,m3)

(
4π

µ2
e−γE

)ε
=

∫
dDq

(2π)D
1

q2 −m2
1

1

q2 −m2
2

1

q2 −m2
3

(B.1)

i

(4π)2
D0 (m1,m2,m3,m4)

(
4π

µ2
e−γE

)ε
=

∫
dDq

(2π)D
1

q2 −m2
1

1

q2 −m2
2

1

q2 −m2
3

1

q2 −m2
4

These functions read:

B0 (m1,m2) =
1

ε
+1+

m2
1 log

(
µ2

m2
1

)
−m2

2 log
(
µ2

m2
2

)
m2

1−m2
2

C0 (m1,m2,m3) =
m2

1m
2
2 log

(
m2

2

m2
1

)
+m2

3m
2
2 log

(
m2

3

m2
2

)
+m2

1m
2
3 log

(
m2

1

m2
3

)
(
m2

1−m2
2

)(
m2

1−m2
3

)(
m2

2−m2
3

) (B.2)

D0 (m1,m2,m3,m4) =
∑

cyclic permutations

m2
1 logm2

1(
m2

1−m2
2

)(
m2

1−m2
3

)(
m2

4−m2
1

)
C̃0(m1,m2,m3) =B0(m2,m3)+m2

1C0(m1,m2,m3)

D̃0(m1,m2,m3,m4) =C0(m2,m3,m4)+m2
1D0(m1,m2,m3,m4) (B.3)

C Complete list of STIs for Feynman rules

Here we list the full set of identities for the four-point couplings provided by the tree-level

analysis of STIs described in section 2. Their derivation involves the following additional
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three- and four-point coupling

L3&4 ⊃ −
∑
vi,vj

{
ie

2
ωA,vivjF

µνV a
vi,µV

a
vj ,ν +

igs
2
ωabcG,vivjG

a,µνV b
vi,µV

c
vj ,ν

}
+

1

6

∑
s1s2s3s4

gabcs1s2s3

(
has1h

b
s2h

c
s3

)
+

1

24

∑
s1s2s3s4

gabcds1s2s3s4

(
has1h

b
s2h

c
s3h

d
s4

)
(C.1)

+
1

8

∑
v1v2v3v4

gabcdv1v2v3v4

(
V a
v1,µV

b,µ
v2
V c
v3,νV

d,ν
v4

)
+

1

4

∑
v1v2s1s2

gabcdv1v2s1s2

(
V a
v1,µV

b,µ
v2
hcs1h

d
s2

)
.

The kinetic term of the vector fields Vvi and the couplings to the field strength tensors ω

contribute to triple gauge boson vertices with one photon or gluon. U(1)em × SU(3)colour

gauge invariance restricts these couplings to be of the form

ωA,ij = δijQVj , ωabcG,ij = δijT
a
Vj ,bc

. (C.2)

The quartic interactions involving unphysical Goldstone couplings can be expressed in

terms of physical couplings as follows:

gφ1φ2φ3φ4 =
−σv1σv2σv3σv4

4mv1mv2mv3mv4

∑
s5

m2
s5

(
gv1v4s5gv2v3s̄5 + symm(v2, v3, v4)

)
,

gv1v2φ3φ4 =
σv3σv4

2mv3mv4

{∑
s5

gv1v2s5gv3v4s̄5

+
∑
v5

((
m2
v1

+m2
v2
− 2m2

v5

)(
gv1v4v5gv2v3v̄5 + gv1v3v5gv2v4v̄5

)
− (m2

v1
−m2

v2
)(m2

v3
−m2

v4
)

m2
v5

gv1v2v5gv3v4v̄5

)}
,

gφ1φ2φ3s4 =
i σv1σv2σv3

6mv1mv2mv3

{∑
s5

(2m2
s4 − 3m2

s5)gv1s4s5gv2v3s̄5

+m2
s4

∑
v5

m2
v2
−m2

v3

m2
v5

gv1v5s4gv2v3v̄5 + symm(v1, v2, v3)

}
,

gv1v2φ3s4 =
i σv3

mv3

{∑
v5

(
− gv1v5s4gv2v3v̄5 − gv2v5s4gv1v3v̄5 (C.3)

+ gv3v5s4gv1v2v̄5

m2
v1
−m2

v2

2m2
v5

)
+
∑
s5

gv3s4s5gv1v2s̄5

}
,

gφ1φ2s3s4 =
σv1σv2

2mv1mv2

{∑
s5

(
gs3s4s5gv1v2s̄5

+
[
gv1s3s5gv2s4s̄5 (2m2

s5 −m2
s3 −m2

s4) + symm(s3, s4)
])

+
∑
v5

(
gv5s3s4gv1v2v̄5

(
m2
s3 −m2

s4

) m2
v1
−m2

v2

m2
v5

+

[
gv1v5s4gv2v̄5s3

(
m2
s3 +m2

s4

) 1

4m2
v5

+ symm(v1, v2)

])}
,
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gφ1s2s3s4 =
i σv1

mv1

{∑
s5

gs2s3s5gv1s4s̄5 −
∑
v5

gv5s2s3gv1v̄5s4

m2
s2 −m2

s3

2m2
v5

+ symm(s2, s3, s4)

}
.

Furthermore, all quartic interactions with vectors are fixed by the three-point couplings

gv1v2v3v4 =
∑
v5

(
gv1v4v5gv2v3v̄5 + gv1v3v5gv2v4v̄5

)
,

gv1v2s3s4 =

{∑
v5

gv1v5s4gv2v̄5s3

1

4m2
v5

−
∑
s5

gv1s3s5gv2s4s̄5 + symm(v1, v2)

}
.

(C.4)

The remaining, purely bosonic sum-rules are given by∑
s5

(
gv1v2s5gv3v4s̄5 − gv1v4s5gv2v3s̄5

)
=
∑
v5

(
gv1v3v5gv2v4v̄5

(
2m2

v5
−m2

v1
−m2

v2
−m2

v3
−m2

v4

)
+ gv1v2v5gv3v4v̄5

(
m2
v5

+
(m2

v1
−m2

v2
)(m2

v3
−m2

v4
)

m2
v5

)
+ gv1v4v5gv2v3v̄5

(
m2
v5
− (m2

v1
−m2

v4
)(m2

v2
−m2

v3
)

m2
v5

))
,∑

s5

(
gv1v2s5gv3s4s̄5 − gv2v3s5gv1s4s̄5

)
(C.5)

=
∑
v5

(
gv2v5s4gv1v3v̄5 + gv3v5s4gv1v2v̄5

1

2

(
1− m2

v1
−m2

v2

m2
v5

)

+ gv1v5s4gv2v3v̄5

1

2

(
1 +

m2
v2
−m2

v3

m2
v5

))
,∑

v5

gv1v2v̄5gv5s3s4 =
∑
v5

1

4m2
v5

(
gv1v5s4gv2v̄5s3 − gv1v5s3gv2v̄5s4

)
+
∑
s5

(
gv1s3s5gv2s4s̄5 − gv2s3s5gv1s4s̄5

)
.

All rules given here and in section 2 hold in the limiting case of any of the particles being

massless. The couplings of photons or gluons of course simplify considerably and can be

expressed by using the U(1) and SU(3) charges defined in (2.1). Moreover they can be

separated into two classes: couplings involving V -A or V -G transitions (the generalization

of Z-A transitions known from the SM) and those without. Couplings of the latter class

are either directly included in the covariant kinetic Lagrangian or zero. This includes4

gAφ1φ2 = gAAφ1φ2 = gAφ1s1 = gAAφ1s1 = 0 ,

gAAφ1φ2 = −2i(gAv1v̄1)2δv1v̄2 .
(C.6)

4To derive the first line, one has to note that gAv1s2 vanishes. This coupling has to come from the kinetic

term of a multiplet Φ of the full gauge group, and is thus proportional to eQΦAµV
µ
a (Φ†TVaΦ). However

the Goldstone directions are precisely given by TVa〈Φ〉.

– 22 –
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The equations also hold with G instead of A. The class of couplings with V -A or V -G

transitions has to be derived from the STIs. They are given by

gAv1φ2 = iemv1δv1v̄2 ,

gAv1φ2φ3 = e σv2σv3

(
Qv2 −Qv3

) m2
v2

+m2
v3
−m2

v1

2mv2mv3

gv1v2v3 ,

gAv1φ2s3 = −ie σv2

(
Qv2 −Qs3

) 1

2mv2

gv1v2s3 ,

gAv1v2v3 = −e (Qv2 −Qv3) gv1v2v3 ,

gAv1s2s3 = e (Qs2 −Qs3) gv1s2s3 .

(C.7)

In the quartic coupling we used charge conservation to simplify the right hand side. The

corresponding equations with a gluon are

gc3c1c2Gv1φ2
= iσv2

(
T c3v2

)
c1c2

mv1δv1v̄2 ,

gc4c1c2c3Gv1φ2φ3
= σv2σv3

m2
v2

+m2
v3
−m2

v1

2mv2mv3

∑
c5

((
T c4v2

)
c2c5

gc1c5c3v1v2v3
−
(
T c4Va3

)
c3c5

gc1c2c5v1v2v3

)
,

gc4c1c2c3Gv1φ2s3
= −i σv2

1

2mv2

∑
c5

((
T c4v2

)
c2c5

gc1c5c3v1v2s3 −
(
T c4s3
)
c3c5

gc1c2c5v1v2s3

)
,

gc4c1c2c3Gv1v2v3
= −

∑
c5

((
T c4v2

)
c2c5

gc1c5c3v1v2v3
−
(
T c4v3

)
c3c5

gc1c2c5v1v2v3

)
,

gc4c1c2c3Gv1s1s2
=
∑
c5

((
T c4s1
)
c2c5

gc1c5c3v1s1s2 −
(
T c4s2
)
c3c5

gc1c2c5v1s1s2

)
.

(C.8)

We have checked explicitly that the STIs for five-point vertex functions do not imply

additional sum rules.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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