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1 Introduction

This research is motivated by a desire to understand the structure of quantum field the-

ory. Our working hypothesis is that much new can be learned by focusing on quantum

field theory in the presence of boundaries and defects. Indeed, there has been enormous

progress associated with boundary quantum field theory, gravitational systems with a

boundary, and boundary effects in string theory. D-branes, i.e. the boundaries of funda-

mental strings, helped lead to the second superstring revolution in the late 90s by providing

non-perturbative insight into the various string theories. In gauge-gravity duality, a central

role is played by the conformal boundary of anti-de Sitter space in a gravitational theory.

Entanglement entropy, which has helped refine our notion of renormalization group flow

in quantum field theory while at the same time providing insight into black hole physics,

is often defined spatially, with a central role played by the entangling surface that sepa-

rates two regions. Boundary effects are also essential for understanding condensed matter

systems such as topological insulators.
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As fixed points of the renormalization group flow, conformal field theories are impor-

tant landmarks in the space of quantum field theory more generally. While the stress tensor

of a CFT is traceless classically, on a curved space-time there are anomalies that provide

important ways of characterizing CFTs and renormalization group flows between them. In

four space-time dimensions, there are two such anomaly coefficients, often called a and c.

In our convention, the central charge a multiplies the Euler density, while c multiplies the

square of the Weyl curvature. Both numbers can be used to check conjectured dualities

between different quantum field theories. Remarkably, a-charge orders QFTs along renor-

malization group flows [1], with aUV > aIR. On the other hand, the c-charge determines

the coefficient of the stress tensor two-point function in general 4d CFTs [2].

In the presence of a 2+1 dimensional boundary, two additional anomaly coefficients

appear, which we shall call b1 and b2. The complete classification based on the Wess-

Zumino consistency condition was given recently in [3] and the trace of the stress tensor

takes the following general form:

〈Tµµ〉(4d) =
1

16π2
(cW 2

µνλρ − aE4) +
δ(xn)

16π2
(aE

(bry)
4 − b1 tr K̂3 − b2hαβK̂γδWαγβδ) , (1.1)

where E4 is the Euler density and Wµνλρ the Weyl curvature; δ(xn) is a Dirac delta function

with support on the boundary. We have ignored the total-derivative anomaly in (1.1), �R,

which is scheme-dependent. Note that the Euler density has a boundary contribution

E
(bry)
4 . We refer the reader to [3] for detailed discussions related to the Euler boundary

term E
(bry)
4 , which has a delicate connection to the universal entanglement entropy across

a sphere.1 The general property aUV > aIR should not be violated when a boundary

is present. To describe the boundary contributions, we construct a projector onto the

boundary metric hµν = gµν−nµnν , with nµ a unit, outward normal vector to the boundary.

Then K̂µν = Kµν − K
3 hµν is the traceless part of the extrinsic curvature. The b1- and b2-

anomalies will be the main focus of the present paper.

Given the importance of a and c, an effort should be made to understand constraints on

and properties of the two new coefficients b1 and b2. A certain amount is known already.

The coefficients are proportional to two- and three-point functions of the displacement

operator [5, 6], i.e. the operator conjugate to the position of the boundary. The coefficients

have been computed for free theories [7–10] and perturbatively for one interacting theory [6].

By reflection positivity of the displacement two-point function, one has the inequality

b2 ≥ 0. In free theories, one has universally that b2 = 8c while such a relation can be

violated by introducing boundary interactions [6].

One of the most interesting stories about these anomaly coefficients concerns their

dependence on marginal couplings. Certain special CFTs in d space-time dimensions belong

to larger families parametrized by a set of marginal couplings. (Marginal means they

source operators with a scaling dimension ∆ = d that is independent of the coupling

strength.) Wess-Zumino consistency implies that a is independent of these couplings [11].

The situation for c is murkier. On the one hand, in the presence of supersymmetry, a

1See also ref. [4] which reproduces the universal entanglement entropy with a more general shape of

entangling surface via a dimensional reduction of the boundary conformal anomaly.
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particular linear combination of a and c is fixed by an anomaly in the R-symmetry current,

which also must be independent of these couplings [12]. Thus, for a supersymmetric theory,

c must be independent. On the other hand in 4d without a boundary, no example of a non-

supersymmetric CFT with marginal directions is known. The logical possibility remains

that if one found a non-supersymmetric family of CFTs with a marginal coupling, c could

depend on that coupling.2

The situation with a boundary is richer. It turns out there is a remarkably simple

non-supersymmetric CFT with a boundary and an exactly marginal coupling. The theory

contains a 4d photon and a 3d electron, and as such is a close cousin of graphene. (For

earlier work on this theory, see refs. [6, 15–20].) The gauge coupling, or equivalently the

charge of the electron, is marginal. An essential difference between this boundary CFT and

field theoretic models of graphene (see e.g. ref. [21]) is that in our theory, the electron and

photon travel with the same relativistic dispersion relation, while in real world graphene,

the electron travels about 300 times slower. That said, the speed of the electron in graphene

has a beta function; our theory could be thought of as the ultimate IR fixed point of real

world graphene, albeit a fixed point one is far from being able to realize in the lab. From a

field theoretic standpoint, this fixed point theory may nevertheless be a useful and tractable

starting point for approximating real world graphene [18–20]. (In the context of graphene,

the fact that the charge of the electron has a vanishing beta function is discussed in various

reviews, see e.g. ref. [22].)

In this graphene-like theory, the boundary anomaly coefficients are more interesting

than the bulk ones. As the interactions are confined to the boundary, a and c are fixed by

their values for a free photon. The boundary coefficients b1 and b2 however can be shown

to depend perturbatively on the charge of the electron [5, 6].

A natural question is whether supersymmetry can further constrain the coefficients b1
and b2 like it does for c. While ultimately one should find a general argument based on

the multiplet structure of supersymmetric theories with boundary, in the style of refs. [23–

26], a simpler approach is to study a couple of examples, to see what types of behaviors

are possible. In this paper, we consider supersymmetric versions of graphene with four

(N = 1), eight (N = 2), and sixteen supercharges (N = 4) in the bulk. The presence of

the boundary breaks half of the supersymmetries. In each case, we consider a free abelian

gauge multiplet which is coupled to matter multiplets localized on the boundary. The

matter fields form multiplets of the effective supersymmetry on the boundary which is 3d

N = 1, 2 and 4 respectively. We construct explicitly the theories with N = 1 and N = 2

in the bulk, emphasizing the role of boundary terms necessary for off-shell supersymmetry,

and obtaining supersymmetric boundary conditions. Building on this, we obtain results

also for N = 4 in the bulk.

We consider in detail the effect of the θF ∧F term. In the presence of a boundary, the

symmetry for shifting θ by 2π is lost and the boundary Chern-Simons term is essentially the

integer part of θ/2π. Normally, to couple the gauge field to charged fields on the boundary

one chooses a Neumann boundary condition FnA = 0 (where A is an index tangent to the

2See refs. [13, 14] for recent discussions of this issue.
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boundary) which keeps the effective boundary gauge field unconstrained. Introducing a

θ-term produces a Robin type boundary condition FnA + tan(α)F̃nA = 0, where F̃nA is the

dual field strength 1
2εnABCF

BC , and tan(α) = θg2

4π2 . This change in the boundary condition

has the effect of screening the gauge coupling g → g cos(α).3

As mentioned above, the anomaly coefficients b1 and b2 are obtained from the two-

and three-point functions of the displacement operator, which in turn is obtained as the

boundary value of the stress tensor component Tnn. Noting that this component depends

only on the bulk fields, the leading correction to the free theory result comes from the one-

loop correction to the propagators of the bulk fields. As a consequence of supersymmetry,

the corrections to the propagators are specified by a single coefficient, as we demonstrate

by explicit computation.

We find that in all three examples, the gauge coupling continues to be exactly marginal.

Morever, both b1 and b2 depend perturbatively on this coupling. Thus, the conclusion is

that the situation for b1 and b2 is rather different than the situation for c. While c is

constrained by supersymmetry to be independent of marginal couplings, b1 and b2 are

not. Our results provide a counter-example to any general argument that b1 or b2 must

be independent of marginal couplings in the presence of supersymmetry. An interesting

caveat is that with N = 4 supersymmetry, there may be a particular combination, b1− b2,

of the charges which remains independent of the coupling.4

We are making the assumption that our super-graphene theories are examples of

boundary conformal field theory, where the full conformal group is broken from O(4, 2)

to O(3, 2) by the presence of a boundary. The assumption is based on an all orders pertur-

bative argument that the beta function for the gauge coupling vanishes as well as power

counting arguments about other possible couplings that could be generated at loop level,

but the assumption could be wrong. There could be non-perturbative corrections to the

beta function. The theory may be unstable with respect to a symmetry breaking phase

transition, for example one that spontaneously breaks the U(Nf ) flavor symmetry, although

one may reasonably hope that for sufficiently small coupling, the theory remains stable.5

These issues about stability and non-perturbative effects deserve further study, but lie

outside the scope of the present work.

The structure of this paper is as follows. Section 2 discusses the various graphene-like

models. Section 2.1 contains a brief review of the non-supersymmetric graphene-like model

employed in ref. [6] along with a new discussion of the effect of the θF ∧ F term in the

action. In section 2.2, we introduce our theory with four bulk supercharges, dubbed N = 1

super graphene. In section 2.3, we continue with our eight supercharge theory, N = 2 super

graphene. Section 3 contains the calculation of perturbative corrections to the coefficients b1

3See refs. [27–29] for related work.
4Of course there could still be special cases where supersymmetrizing a given theory does lead to b1 and

b2 which are independent of marginal couplings.
5The hope is based on a relationship to three-dimensional QED with Nf flavors [19] where there may

be a similar symmetry breaking below a critical Nf , with the identification Nf ∼ 1/g. Note that there is

a closer relationship between these graphene-like theories and three dimensional QED than with its four

dimensional cousin. In the large number of flavors limit, three dimensional QED is expected to flow to a

conformal fixed point where the Feynman rules become very similar to those of our theories.
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and b2 along with a detailed discussion of propagators. In section 4, we consider a one-loop

analysis of super graphene. We show that the theories are perturbatively scale invariant,

and also calculate one-loop self-energies of the bulk fields, needed for the calculations in

section 3.

We end with a short discussion containing several potential future projects. Appendix

A provides details about our conventions for fermions. Appendix B lists relevant Feynman

rules needed for our one-loop computations.

2 Ultrarelativistic models of graphene

2.1 Non-supersymmetric model

The non-supersymmetric model of graphene (mixed dimensional QED) mentioned in the

introduction and used in ref. [6] has the following action:

Stot =

∫
M

d4x

(
−1

4
FµνFµν +

g2θ

16π2
FµνF̃µν

)
+

∫
∂M

d3x
(
iψ̃ /Dψ

)
. (2.1)

The notation requires some unpacking. Greek indices µ, ν are bulk while Roman indices

A,B are reserved for the boundary. We will denote the index n as the direction normal

to the boundary and the space M corresponds to xn > 0 while the boundary ∂M is the

locus xn = 0. We raise and lower indices with a Minkowski tensor ηµν with mostly plus

signature. The Maxwell field strength Fµν = ∂µAν − ∂νAµ is constructed in the usual way,

and we also use the dual field strength F̃µν = 1
2εµνρσF

ρσ. (Note that in ref. [6], θ was set to

zero.) We let Dµ = ∂µ− igAµ and /D = ΓADA. The 4d gamma matrices γµ and 3d gamma

matrices ΓA satisfy the usual Clifford algebra {γµ, γν} = −2ηµν and {ΓA,ΓB} = −2ηAB,

and γ5 = γ0γ1γ2γ3. Additionally, ψ̃ = ψ†Γ0 is our notation for a 3d barred spinor. The

standard bar notation, λ̄, is reserved for 4d spinors. More details about our conventions

regarding spinors can be found in appendix A.

Let there be Nf fermions. In earlier work [5, 6], Nf was assumed to be an even number

to avoid generating a parity anomaly and corresponding induced Chern-Simons term on the

boundary. We relax this constraint here. A Chern-Simons term k
4πA∧ F on the boundary

integrates to k
4πF ∧ F in the bulk and can be absorbed by a shift of θ. Note that in the

presence of a boundary, the familiar symmetry of shifting θ by 2π is lost since it follows

from the quantization of
∫
F ∧ F on a closed manifold. (Indeed, a way to restore the

symmetry is to augment the transformation rule by a shift of the boundary Chern-Simons

level [30].)

Shifts in Chern-Simons terms are typically generated through loop effects. While we do

not calculate the shifts — indeed we cannot in our dimensional regularization scheme — it

is on the one hand well known how to do so using other regularization schemes, e.g. Pauli-

Villars, and on the other not particularly useful given the ability to shift θ to whatever

value we desire. Our philosophy is to incorporate the possibility of such shifts by a suitably

chosen θ-term. The θ in our action is thus to be interpreted as one that includes all of

the one loop shifts to the Chern-Simons level and that zeros out the quantum corrected

Chern-Simons term on the boundary.

– 5 –
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A generic variation of the bulk degrees of freedom leads to the boundary term

−δAA
(
FnA − g2θ

8π2
εnABCFBC + gJA

)
(2.2)

where JA = ψ̃ΓAψ is the boundary charge current. In order to have boundary interactions

between AB and ψ, the variation δAB should be unconstrained. Vanishing of the boundary

term implies instead a Robin type constraint on FnA. Let us define an angle α associated

with this mixing by

tan(α) ≡ g2θ

4π2
. (2.3)

The boundary condition is then written as6

cos(α)FnA − sin(α)F̃nA = −g cos(α)JA . (2.4)

This form suggests that we can use the SL(2,R) symmetry of free Maxwell theory to define

a new potential Aθµ whose field strength satisfies the θ = 0 boundary condition F θnA = 0. It

is interesting to note that the limit θ → ∞ corresponds to Dirichlet boundary conditions

for the gauge field. Such boundary conditions decouple the boundary degrees of freedom

from the gauge interaction. We therefore anticipate that corrections corresponding to

boundary interactions vanish in the θ →∞ limit. Indeed, in the Aθ frame the full boundary

condition (2.4) takes the form F θnA = −g cos(α)JA. The effective coupling is hence g cos(α)

which vanishes in the limit θ →∞.

In ref. [6], through a one-loop computation, the β-function of this theory was found

to vanish. In fact, through standard Ward identity and non-renormalization arguments,

which we will review in the supersymmetric case later and which hold for arbitrary θ, this

model is expected to be exactly conformal in 4d [6].

The bulk central charges for this model do not depend on θ or the coupling. The

boundary central charges b1 and b2 are

b1(Mixed QED) =
8

35

(
2− 3g2 cos2 α

8
Nf +O(g4)

)
, (2.5)

b2(Mixed QED) =
2

5

(
2− g2 cos2 α

4
Nf +O(g4)

)
, (2.6)

both of which depend on g. While only the b2 result was computed in ref. [6] (and only in

the special case θ = 0) using the results from refs. [5, 6] (or details from later sections of

this paper), it is straightforward to compute b1 as well. (At zeroth order, these charges are

determined by the 4d Maxwell theory with a boundary and are independent of the choice

of boundary condition, FnA = 0 or FAB = 0.7) One of the main motivations of the present

work is to generalize (2.5) and (2.6) to supersymmetric theories.

6This condition is reminiscent of a similar effect in refs. [31, 32] in which a constant B-field background

for open strings generates interpolating boundary conditions. We thank S. Murthy for discussion on this

point.
7The boundary condition FnA = 0 on the gauge field is sometimes called “absolute”. The Dirichlet-like

condition FAB = 0 on the other hand is called “relative”.
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2.2 N = 1 super graphene

Before writing down the action for N = 1 super graphene, it is useful to make some general

remarks about how the presence of a boundary breaks the 4d N = 1 SUSY algebra,

{Q, Q̄} = 2iγµ∂µ , (2.7)

down to a 3d N = 1 SUSY subalgebra. Here Q is a Majorana supercharge, Q̄ is defined by

QTC and C is the charge conjugation matrix (see appendix A). Additionally, the algebra

has an R-symmetry acting on Q by eηγ
5
Q (γ5 is imaginary in our conventions).

The presence of the boundary breaks translation invariance in the normal direction

and as a consequence we can preserve at most half of the bulk supersymmetries. We

are therefore looking for a subalgebra consisting of two supercharges, which includes only

the tangential translations ∂A. We now show the subalgebra is defined by introducing

projectors Π± such that

Π± =
1

2
(1± β) , β ≡ iγnγ5eηγ5 , (2.8)

along with their barred conjugates Π± = C−1ΠT
±C = γ0Π†±γ

0. We choose the 3d subalgebra

to be generated by Q+ and Q̄+ such that Π+Q+ = Q+. As we are dealing with a conformal

theory with an unbroken R-symmetry in the bulk, we may use the R-symmetry to set the

real parameter η to zero. In view of more general applications, e.g. two planar boundaries

with two independent parameters η and η′, we will keep the η parameter in what follows.

To preserve the subalgbra, the projection operators must act on the gamma matrices as

Π+γ
µΠ+ = δµAΠ+γ

A . (2.9)

As a result, in addition to the usual suite of projection operator relations, Π+ + Π− = 1

and Π+Π− = 0, the projectors also satisfy

Π±γ
A = γAΠ± , Π±γ

n = γnΠ∓ , Π±γ
5 = γ5Π∓ . (2.10)

From these commutation relations, one can derive the form (2.8).

It is noteworthy that the tangential gamma matrices γA do not commute with the

projectors, and hence cannot be identified with their 3d counterparts. It will be useful

to find objects which do possess this property. With this goal in mind, let us define

γ̃µ = e−ηγ
5
γµ. The definition can be understood as conjugation with the R-symmetry

operator eηγ
5/2. It is straightforward to check that Π±γ̃

A = γ̃AΠ± and Π±γ̃
n = γ̃nΠ∓.

Any expression containing projectors can then be easily converted to 3d according to the

rule Π±γ̃
A = ±ΓA, and a rule for associating a 3d barred spinor λ̃ with λ†γ̃0 = λ̄eηγ

5
,

satisfying Π̃±λ = λ̃Π±. From the definition of the barred spinor we can also identify the

3d charge conjugation matrix with C̃ = eηγ
5
C by requiring that λ̃ = λT C̃. The charge

conjugation matrix satisfies the relation ΠT
±C̃ = C̃Π±.

With these preliminaries, we are ready to write down the action for N = 1 super-

graphene. We divide the action into bulk and boundary contributions:

Stot = Sbulk + Sbry . (2.11)

– 7 –
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The 4d bulk contains a photon described by a vector field Aµ and its super partner, a

photino, described by a Majorana spinor λ. We also introduce a real scalar auxiliary

field D. The corresponding action is

Sbulk =

∫
M

d4x

(
−1

4
FµνFµν +

g2θ

16π2
FµνF̃µν +

i

2
λ̄/∂λ+

1

2
D2

)
, (2.12)

where /∂ = γµ∂µ and F̃µν = 1
2εµνρσF

ρσ. The bulk action preserves four supercharges, with

the following supersymmetry transformations:

δAµ = −iε̄γµλ , (2.13)

δλ =

(
1

2
Fµνγ

µν − γ5D

)
ε , (2.14)

δD = iε̄γ5/∂λ , (2.15)

where γµν = 1
2 [γµ, γν ]. Through Noether’s theorem, the SUSY generators Q and Q̄ are

related to ε and ε̄ in the usual way. In the presence of a boundary, the preserved subalgebra

is parametrized by a spinor variable ε satisfying the condition Π+ε = ε.

The 3d boundary contains an electron described by a Dirac spinor ψ and a selectron

described by a complex scalar field φ, along with a complex auxiliary field F . The interac-

tions between the photon, photino, electron and selectron are constrained to the boundary:

Sbry =

∫
∂M

d3x

(
iψ̃ /Dψ − |DAφ|2 + |F |2 + ig

(
λ̃+ψφ

∗ − ψ̃λ+φ
)

− 1

4
λ̄γ5eηγ

5
λ− g2θ

8π2
λ̃+λ+

)
, (2.16)

where λ+ = Π+λ.

The terms λ̄γ5eηγ
5
λ and λ̃+λ+ in the boundary action are necessary for supersymme-

try. On its own, the action (2.12) is not invariant under the supersymmetry variations (2.13)

in the presence of a boundary, even if the variations are restricted to the subalgebra. The

problem is that supersymmetric Lagrangians are invariant only up to a total derivative,

thus leading to a boundary term. The added terms λ̄γ5eηγ
5
λ and λ̃+λ+ offset the variation

coming from the bulk [23, 24, 33], but only provided we restrict to the subalgebra. The

terms are thus a manifestation of our inability to preserve all four supercharges of the bulk

in the presence of a boundary.8

The remaining terms in Sbry can be motivated by considering the multiplet structure

of 3d N = 1 SUSY. The most basic such multiplet is a scalar multiplet, which consists of

φ, ψ and F . As in graphene, the matter fields are electrically charged and interact with

the effective Maxwell field on the boundary, namely AA. To extend this interaction in

8The boundary action can be obtained more systematically via superspace methods. One path is to find

a superspace extension of the normal coordinate which is invariant under the preserved supersymmetry.

Integrating the WαWα superfield over a supersymmetrized chiral Heaviside theta function leads to the

fermion bilinear boundary terms [26]. (Wα is the field strength superfield whose lowest component is the

photino.) Similar procedures can be used in the N = 2 case we describe below.

– 8 –
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a supersymmetric fashion we argue as follows. Under the subalgebra derived above, the

bulk multiplet decomposes into two multiplets of the preserved symmetry. The multiplet

of interest to us includes the effective gauge field as well as a fermion λ+ = Π+λ, with

variations given by

δAA = −i ε̃ΓAλ+ , δλ+ =
1

2
ΓABεFAB . (2.17)

Since this multiplet is identical to the regular gauge multiplet of 3d N = 1 supersymme-

try, the 3d boundary action takes a standard form when written in terms of λ+ and the

boundary value of AA.

The off-shell SUSY transformations of the boundary multiplet are given by

δφ = −ε̃ψ , (2.18)

δψ = iΓAεDAφ− Fε , (2.19)

δF = ε̃
∂L
∂ψ̃

= i ε̃ /Dψ − ig ε̃ λ+φ . (2.20)

By off-shell SUSY we mean not only that the SUSY transformations close off-shell but

also that neither boundary conditions nor equations of motion need be applied to have

an invariant action Stot. We treat boundary conditions and equations of motion on an

equal footing.

Boundary conditions. Let us first consider a purely classical analysis of the boundary

conditions. Compared with eq. (2.2), a generic variation of the bulk degrees of freedom

leads to an additional boundary term,

−δAA
(
FnA − tan(α)F̃nA + gJA

)
− δλ̃+

(
λ− + tan(α)λ+ − ig(ψφ∗ − ψcφ)

)
, (2.21)

where ψc = −C̃−1ψ̃T is the Majorana conjugate,9 tan(α) is defined in eq. (2.3), and the

dual field strength is given by F̃µν = 1
2εµνρσF

ρσ. We define

λ− ≡ γ5Π−λ (2.22)

such that Π+λ− = λ−, and the electric current on the boundary is given by

JA = ψ̃ ΓAψ + i
[
(DAφ)∗φ− φ∗(DAφ)

]
. (2.23)

Two physical considerations lead to a natural choice of boundary conditions. As in the

non-supersymmetric case, we want to allow for non-trivial electric interactions between the

bulk gauge field and the charged boundary fields. Interactions require an unconstrained

δAB on the boundary and suggest we consider the alternate boundary condition in which

FnA is constrained.

9Note that ψ is not Majorana since it’s complexified so ψc 6= ψ.
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Second, the boundary conditions that we choose should be consistent with the

preserved supersymmetries, i.e. no further constraints are generated through super-

transformations. We explained above that the pair (AA, λ+) is a multiplet of the effective

3d N = 1 on the boundary. In the same way λ− and FnA are related by supersymme-

try. Indeed,

δAn = ε̃ λ− , (2.24)

δλ− = εD + iΓAεFnA , (2.25)

δD = −i ε̃ΓA∂Aλ− − ε̃ ∂nλ+ . (2.26)

The boundary conditions must be consistent with the multiplet structure (FnA, λ−) and

(F̃nA, λ+). With θ = 0, the condition on FnA is related to a condition on the photino,

λ−. Once θ 6= 0, there is mixing between the FnA and F̃nA multiplets, and the boundary

term (2.21) implies the boundary conditions

FnA = tan(α)F̃nA − gJA , λ− = − tan(α)λ+ + ig (ψφ∗ − ψcφ) , (2.27)

so as to have a well-defined variational problem. (One is free to impose the equation of

motion D = 0 to the auxiliary field above.)

From a quantum or path integral point of view, the perspective on the boundary

conditions shifts from varying the fields to summing over them. The questions are whether

and how to sum over boundary values of the fields. Dirichlet boundary conditions are

equivalent to treating the boundary values of the fields as fixed external sources. Instead,

we would like to treat the boundary values as dynamical and sum over them, allowing

the bulk and boundary fields to interact with each other. Up to some numerical factors,

integrating the bulk action by parts leads to the expression (2.21) but with δAA and

δλ̃+ replaced with AA and λ̃+. Morally, integrating over the boundary values of AA and

λ̃+ in the path integral then leads to Dirac delta like conditions enforcing the boundary

conditions (2.27).

As we work in perturbation theory, we should emphasize that our starting point is

to find the free propagators in the bulk and on the boundary. We thus start with the

boundary conditions

FnA = tan(α)F̃nA , λ− = − tan(α)λ+ , (2.28)

and interpret (2.27) as perturbative corrections to the free theory.

For the fermion we can put the boundary conditions in a more convenient form by using

the definition λ− = Π+γ
5λ. The boundary condition is then equivalent to Π−e

−αγ5λ = 0.

We can define a new projection Πθ
− = eαγ

5
Π−e

−αγ5 such that the boundary condition is

simply Πθ
−λ = 0. The conjugation of Π− by eαγ

5
is clearly analogous to the action of the

R-symmetry and has the effect of shifting η → η − 2α in Π−. This shift is reminiscent of

the relation between the θ-term and an anomalous R-symmetry. To avoid confusion, let

us emphasize that Πθ
− is only relevant for the boundary conditions on λ. The preserved

supercharge is still determined by Π+ and so are the definitions of λ± which are the

components of the multiplets of the preserved supersymmetry.
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2.3 N = 2 super graphene

In the case of N = 2 there are two copies of the minimal supercharge Qi with i = 1, 2. The

supercharges form a doublet of the SU(2)R symmetry. Since the R-symmetry is incom-

patible with the Majorana condition, the supercharges must instead admit a symplectic

Majorana condition (see appendix A)

Q̄i = εijQ
jTC+ , (2.29)

where C+ = iγ5C is a new charge conjugation matrix obeying C+γ
µC−1

+ = γµT . The

N = 2 algebra is given by {Qi, Q̄j} = 2iδij /∂. Repeating the analysis of the previous section

we define projection operators

Π± =
1

2
(1± ~v · ~τ β) , (2.30)

where ~v is a unit vector, ~τ ij are the generators of the SU(2)R algebra normalized so that

(~v · ~τ)2 = 1, and β = iγnγ5eηγ
5

as before. We choose the supercharges defined by the

positive projector, namely Q+ = Π+Q and its complex conjugate. They generate a 3d

N = 2 subalgebra given by {Q+, Q̃+} = 2iΓA∂A. Previous definitions of the 3d bar Q̃, the

gamma matrices γ̃A and so forth apply here without change.

We are here treating Q+ as a 3d Dirac spinor. Lest this cause any confusion, let us

briefly comment on the apparent vanishing of the SU(2) indices in the definition Π+Q.

The matrix ~v · ~τ has eigenvalues ±1. In the subspace of the +1 eigenvalue, the projector

becomes 1
2(1 + β), and acting on a 4-component spinor it gives the 3d Dirac spinor Q+.

In the subspace of −1 we get, up to multiplication by C̃+ and transposition, the 3d Dirac

spinor Q̃+. We shall review the relation between 3d and 4d spinors in more detail later in

this section.

Let us consider the global symmetries more closely. In addition to the SU(2)R men-

tioned before, the 4d N = 2 algebra also has a U(1)R symmetry acting on Qi by eηγ
5
Qi.

This symmetry is necessarily broken in the presence of a boundary, just as in the N = 1

case, since γ5 doesn’t commute with the projection operator. In contrast, the U(1) sub-

group of SU(2)R generated by ~v ·~τ clearly commutes with the projector and corresponds to

the R-symmetry of 3d N = 2 acting on Q+ by eiϕQ+ and in the −1 subspace by e−iϕQ̃+.

Labelling the two other generators of SU(2)R by (τ±)ij with the anti-commutative property

{τ±, ~v · ~τ} = 0, we get the useful identity Π+τ± = τ±Π−. As long as the R-symmetries are

unbroken in the bulk we can use them to set η = 0 and ~v to a convenient value, although

we shall not bother to do that.

We again write the total action as

Stot = Sbulk + Sbry . (2.31)

The bulk now contains a photon Aµ, 2 photinos λi, and 2 real scalars S and P . The

photinos correspond to a pair of symplectic Majorana fermions. The bulk action reads

Sbulk =

∫
M

d4x

(
−1

4
FµνF

µν +
i

2
λ̄i/∂λ

i − 1

2
(∂µS)2 − 1

2
(∂µP )2 +

1

2
~D2

)
. (2.32)

– 11 –



J
H
E
P
0
9
(
2
0
1
8
)
1
6
1

The vector ~D denotes 3 auxiliary fields. We will introduce a θ-term separately below to

avoid clutter.

The boundary fields are the same as they were before — a complex scalar φ and 3d

Dirac spinor ψ along with a complex auxiliary field F . However, there are several additional

Yukawa couplings involving the bulk fields:

Sbry =

∫
∂M

d3x

(
−1

4
λ̄i ~v · ~τ ijγ5eηγ

5
λj −X(~v · ~D + ∂nX)

+ iψ̃ /Dψ − |DAφ|2 + |F |2 +
√

2ig
(
φ∗ λ̃+ψ − φ ψ̃λ+

)
+ gψ̃ Y ψ − g2|φ|2Y 2 − g(~v · ~D + ∂nX)|φ|2

)
, (2.33)

where λ+ = Π+λ
1 is taken to be a 3d Dirac spinor (more on that below), and the real

scalars X and Y are defined by(
X

Y

)
=

(
− sin η cos η

− cos η − sin η

)(
S

P

)
. (2.34)

The action (2.31) is invariant off-shell under the following SUSY transformations with

the variation parameter satisfying Π+εi = εi :

δAµ = −iε̄iγµλi , (2.35)

δλi =

(
1

2
γµνFµνδ

i
j − i ~D · ~τ ij

)
εj + /∂(S + γ5P )εi , (2.36)

δS = −iε̄iλi , (2.37)

δP = −iε̄iγ5λi , (2.38)

δ ~D = ~τ ij ε̄i/∂λ
j , (2.39)

and
1√
2
δφ = −ε̃ ψ , (2.40)

1√
2
δψ =

(
iΓAεDAφ− Fεc

)
− gY εφ , (2.41)

1√
2
δF = ε̃ c

∂L
∂ψ̃

=
(
i ε̃ c /Dψ − igφε̃ c λ+

)
+ gY ε̃ cψ , (2.42)

where ε = ε1 and εc = −C̃−1
+ ε̃ T (where C̃+ ≡ eηγ5C+ like in the N = 1 case).

To verify supersymmetry, it is instructive to derive the 3d multiplet of AA which

participates in the boundary interactions. We find

δAA = −i ε̃ΓAλ+ + iλ̃+ΓAε , (2.43)

δλ+ =
1

2
ΓABεFAB − i

(
~v · ~D + ∂nX

)
ε− ΓAε ∂AY , (2.44)

δY = i ε̃ λ+ − iλ̃+ε , (2.45)

δ
(
~v · ~D + ∂nX

)
= ε̃ΓA∂Aλ+ + ∂Aλ̃+ΓAε . (2.46)

– 12 –



J
H
E
P
0
9
(
2
0
1
8
)
1
6
1

The multiplet we have obtained is the 3d N = 2 vector multiplet in Wess-Zumino gauge.

In addition to the effective gauge field on the boundary AA, this multiplet comprises a

Dirac spinor λ+, a real scalar Y and a real auxiliary field ~v · ~D + ∂nX. The appearance of

this particular combination of the 4d fields as effective components of the boundary vector

multiplet explains the form of the interactions in (2.33).

Let us now consider adding a θ-term. As in the N = 1 preserving case, supersym-

metry requires a compensating boundary action, which can easily be derived using the

variation (2.43). We find

Sθ =

∫
M

d4x
g2θ

16π2
FµνF̃µν −

∫
∂M

d3x
g2θ

4π2

(
λ̃+λ+ − Y (~v · ~D + ∂nX)

)
. (2.47)

As before we can absorb any Chern-Simons term on the boundary in this action. This

way, the Chern-Simons level is the integer part of θ/2π which no longer has the symmetry

θ → θ + 2π.

Let us now go on to discuss the details of the relation between the 4d Majorana spinors

and the projected 3d Dirac spinors, and in doing so explain how the variations in (2.43)–

(2.46) are derived. The symplectic Majorana condition can be written in a form adapted

to the 3d subspace as

λ̃i = εijλ
j T C̃+ , (2.48)

which gives us the relations

λ2 = C̃−1
+ λ̃T1 , λ̃2 = λ1T C̃+ . (2.49)

Without loss of generality we can associate i = 1 with the +1 eigenvalue of ~v · ~τ and i = 2

with −1. We then have

(Π+)1
iλ
i =

1

2
(1 + β)λ1 ≡ λ+ , (Π+)2

iλ
i =

1

2
(1− β)λ2 = C̃−1

+ λ̃T+ . (2.50)

Indeed, this is consistent since βC̃−1
+ = −C̃−1

+ βT . The required extra minus sign, relative

to the analogous N = 1 relation, which converts (1 − β) to (1 + β)T is a result of using

C+ = iγ5C. As an example consider

δAA = −iε̄iγAλi = −i ε̃iγ̃Aλi . (2.51)

Since (Π+)ijε
j = εi we define ε1 = ε and the i = 1 term immediately gives −i ε̃ΓAλ+. For

the i = 2 term we have

−i ε̃2γ̃Aλ2 = −iεT C̃+γ̃AC̃
−1
+ λ̃T+ = iλ̃+ΓAε . (2.52)

Boundary conditions. The arguments concerning boundary conditions are analogous

to the N = 1 case. The variational principle yields the same boundary condition for the

gauge field as before, FnA = g2θ
4π2 F̃

nA − gJA. Applying the equation of motion ~D = 0 to

the auxiliary fields, the boundary conditions for the scalars are

X − tanαY = g|φ|2 , (2.53)

∂n(Y + tanαX) = −gψ̄ψ + g2|φ|2Y . (2.54)
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This leads us to define new fields Xθ and Y θ with(
Xθ

Y θ

)
=

(
cosα − sinα

sinα cosα

)(
X

Y

)
, (2.55)

such that the free-field boundary conditions are Xθ = 0 and ∂nY
θ = 0. This new basis

is analogous to Aθµ introduced in the non-supersymmetric case (2.4), for which the corre-

sponding boundary conditions are F θnA = 0 for any θ. Because of its complexified nature

in the N = 2 case, the photino boundary condition can be written in a simpler form

than before,

λ− +
g2θ

4π2
λ+ =

√
2igψφ∗ . (2.56)

As in the N = 1 case we can define new projections Πθ
± = eαγ

5
Π±e

−αγ5 such that the

boundary conditions take the form Πθ
−λ =

√
2ig cosαψφ∗.

Morally, the N = 4 case corresponds to adding a couple more X, Y , and λ fields to

the N = 2 action. To see a full SU(4) R-symmetry along with its breaking pattern in the

presence of a boundary is however more intricate. We will omit a similar presentation of

the N = 4 action and move on. As the general structure of the Yukawa interactions in the

N = 4 case is already apparent from the N = 2 case we presented above, we do not need

the details in the perturbative calculations to follow. (See refs. [34–36] for a discussion of

boundary conditions for N = 4 Yang-Mills theory in 4d.)

3 Propagators and displacement operator correlators

In this section we will compute the leading order corrections to the anomaly coefficients

b1 and b2 by slightly generalizing a free-field computation of these same coefficients. In

general, the coefficients are related to two- and three-point functions of the displacement

operator, which in turn is related to the boundary limit of the normal-normal component of

the stress-tensor, Tnn. In the free-field limit, these correlation functions are straightforward

to compute using Wick’s theorem.

As discussed in [6], the leading correction is completely captured by the one-loop

self-energies of the bulk fields, where the self-energies come from interactions between the

boundary limit of these bulk fields and the boundary degrees of freedom. Thus, we can

obtain the corrected b1 and b2 by simply redoing the free-field computations but with

resummed propagators that incorporate the one-loop self-energies.

We begin this section by discussing the propagators of the various bulk fields. We then

use these propagators, along with self-energies to be obtained in section 4, to compute the

corrected values of b1 and b2. The propagators are also important for performing the one

loop computations in section 4.

3.1 Scalar

In general the two-point function of a scalar field in the presence of a boundary is fixed

by conformal symmetry up to a single function.10 In the present case, since the fields are

10Without a boundary, the functional form of the two-point function is determined by the scaling dimen-

sion of the operators. In the presence of a boundary there is a non-trivial cross ratio [38–40].
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free in the bulk, the two-point function is determined up to a choice of normalization and

a reflection coefficient:

GΦ(x;x′) = κs

(
1

|x− x′|d−2
+ Ωs

1

|x̄− x′|d−2

)
, (3.1)

where x = (y,x) and x̄ = (−y,x) and y = xn is the normal direction. The conventional

normalization is

κs =
1

(d− 2) Vol(Sd−1)
(3.2)

with Vol(Sd−1) = 2πd/2/Γ(d/2). This form of (3.1) can be understood according to the

method of images. The first term corresponds to the usual Green’s function of the free

bulk field equation, while the second is a homogeneous solution with an undetermined

coefficient. The variable Ωs determines the boundary conditions for bulk fields. Reflection

positivity of 〈Φ(x)Φ(x′)〉 along with 〈∂nΦ(x)∂nΦ(x′)〉 further restrict −1 ≤ Ωs ≤ 1.11 Of

all possible values of Ωs only those saturating the bound correspond to local boundary

conditions on the fields, namely

Ωs =

{
−1, Dirichlet,

1, Neumann.
(3.3)

Other values of Ωs correspond to non-trivial boundary interactions. As explained in the

previous section, in perturbation theory we use the propagator in the limit where the

boundary interactions vanish. In particular, for the N = 2 scalar fields X and Y we have

the value Ωs = −1 and Ωs = 1 respectively. We will see below that these initial values of

Ωs get perturbative corrections.

A nonzero θ parameter alters the story somewhat by introducing mixing between the

X and Y scalar fields. However, we can always rotate to a frame (2.55) where Xθ and

Y θ decouple and have the standard Dirichlet and Neumann boundary conditions in the

g → 0 limit.12

Since the interactions we consider are confined to the boundary, the internal propaga-

tors in a Feynman diagram are always boundary to boundary. It is thus useful to work in

a hybrid formalism where we replace the tangential coordinates x with momenta but leave

the normal direction y untouched. Our convention for the Fourier transform is

G̃Φ(y, y′; p) =

∫
dd−1x e−ip·xGΦ(y,x; y′, 0) =

1

2p
(e−p|y−y

′| + Ωse
−p|y+y′|) . (3.4)

In this form it is easy to verify (3.3), e.g. the propagator G̃X restricted to the boundary

y = 0 vanishes, as it should given the Dirichlet boundary conditions.

11Ref. [6] noted these bounds in the context of the boundary conformal bootstrap program [41], for a

particularly simple class of crossing equations associated with generalized free fields.
12Here we shall not distinguish between the conformal Robin boundary condition and the Neumann

boundary condition as we focus on the flat limit.
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The propagator for G̃Φ has one fewer power of p in the denominator than the typical

fully Fourier transformed propagator used in the absence of a boundary. As the Feynman

rules we use are the usual ones but with this alternate propagator, the changes in the physics

we find can often be traced back to this change in the power of p in the denominator of

the propagator.

Note that in Wick rotating the Fourier transforms to real time and converting them

to conventional Feynman propagators, a factor of 1/i appears.

3.2 Photon

The photon in the free limit, for θ = 0, satisfies either absolute or relative boundary

conditions. By the method of images, in the Feynman gauge, the correlation functions are

given by

Gnn(x;x′) = κs

(
1

|x− x′|d−2
− Ωv

1

|x̄− x′|d−2

)
, (3.5)

GAB(x;x′) = κs

(
1

|x− x′|d−2
+ Ωv

1

|x̄− x′|d−2

)
ηAB , (3.6)

and their Fourier transforms can be read off from the result for the scalar fields,

G̃nn(y, y′; p) =
1

2p

(
e−p|y−y

′| − Ωve
−p|y+y′|) , (3.7)

G̃AB(y, y′; p) =
1

2p

(
e−p|y−y

′| + Ωve
−p|y+y′|)ηAB . (3.8)

The absolute boundary conditions of interest in this paper, which preserve a nonzero bound-

ary value of FAB, correspond to Ωv = 1. The relative choice, more familiar from electro-

statics problems where the boundary is an equipotential surface, is Ωv = −1.

To incorporate a θ 6= 0, one can interpret the propagators (3.5) and (3.6) as those

of the “rotated” photon Aθµ. The correlation functions for the original field strengths can

then be extracted from the boundary condition relation F θµν = cos(α)Fµν − sin(α)F̃µν and

a corresponding equality for F̃ θµν . Wick rotating and converting to Feynman propagators,

we need again a factor of 1/i.

3.3 Photino

We can use arguments similar to those made for the scalar to constrain the bulk fermion

two-point function. This leads to13

Gλ(x;x′) = −κf
(
iγ · (x− x′)
|x− x′|d

+ Ωf
iγ · (x̄− x′)
|x̄− x′|d

)
, (3.9)

where κf = 1/Vol(Sd−1). It is straightforward to check that the image term satisfies the

Dirac equation acting from the right on x′. Since the same must be true for the Dirac

operator acting on x from the left we must have that Ωf γ · x̄ = γ · xΩ′f for some Ω′f . In

13We use this opportunity to correct the overall sign typo in the fermion propagator in [5, 6]. The final

results in these papers are not changed.
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fact we can show that Ω′f = Ω̄f . The two-point function 〈λ(x)λ̄(x′)〉 = 〈λ(x′)λ̄(x)〉 must be

self-conjugate, which in turn implies that Ωf γ · x̄ = γ · x Ω̄f . In components, this relation

is the already familiar

Ωfγ
n + γnΩ̄f = 0 , Ωfγ

A − γAΩ̄f = 0 . (3.10)

These equations are precisely the same we found for β = iγnγ5eηγ
5

except that Ωf does

not necessarily square to one in interacting theories. Moreover, the phase of Ωf does

not have to be correlated with η, the phase of β which is determined by the preserved

subalgebra, i.e. the phase of Π+. In fact, as explained below (2.28), such a relative phase

is a consequence of a θ-term. The change in the fermion boundary condition coming from

θ leads to βθ = iγnγ5e(η−2α)γ5 with tanα = g2θ
4π2 . Putting everything together, we will see

below that supersymmetry fixes the form to Ωf = Ωvβ
θ for N = 1 and Ωf = Ωv(~v · ~τ)βθ

for N = 2.

As in the case of the scalars, in the context of perturbation theory we consider the free

propagator with Ωf = β for N = 1 or Ωf = (~v ·~τ)β for N = 2, setting θ = 0 for simplicity.14

Focusing for simplicity on the N = 1 case, the Fourier transform of (3.9) is then

G̃λ(y, y′; p) =

∫
dd−1x e−ip·xGλ(y,x; y′, 0) (3.11)

= −1

2

(
γApA
p

+ i sgn(y − y′)γn
)
e−p|y−y

′| − β

2

(
γApA
p
− iγn

)
e−p(y+y′) .

To get more insight into the propagator it is convenient to use the language adapted to

3d. To this end we rewrite the two-point function as 〈λ(x)λ̃(x′)〉 which has the effect

of substituting γµ → γ̃µ in (3.11). Consider taking one of the insertion points x to the

boundary, i.e. y = 0. We find

〈λ(0; p)λ̃(y′;−p)〉 = −Π+

(
γ̃ApA
p
− iγ̃n

)
e−y

′p . (3.12)

Acting with Π− from the left clearly annihilates this expression which is a reflection of the

boundary condition λ− = 0. A similar expression is found for y′ = 0 with Π+ appearing to

the right of the brackets in (3.12) thus reflecting the boundary condition of λ̃. As before,

we only encounter boundary to boundary propagators with y = y′ = 0 in which it is

clear from (3.9) that there is no γn term. (The result in (3.11) is obtained based on the

assumption that either y or y′ are non-vanishing.) The propagator then becomes 3d

〈λ(0; p)λ̃(0;−p)〉 = −Π+
γ̃ApA
p

= −ΓApA
p

. (3.13)

In Wick rotating to real time and converting to Feynman propagators, again a factor

of 1/i appears.

14Alternatively, the results for the propagator apply without change provided we make the substitutions

γ̃A → e2αγ
5

γ̃A, λ̃→ λ̃e−2αγ5 etc. These substitutions are of course just a shift η → η−2α in the definitions

γ̃A and λ̃.
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3.4 Relations between Ωs, Ωv and Ωf

Let us now show how supersymmetry relates Ωs, Ωv and Ωf . To facilitate the comparison

let us denote ∆(x− x′) = κs/|x− x′|d−2, such that

GΦ = ∆(x− x′) + ∆(x− x̄′)Ωs , Gλ = i/∂
(

∆(x− x′) + ∆(x− x̄′)Ωf

)
, (3.14)

and likewise for the gauge field. We have written the fermion propagator in the tilde frame,

so by /∂ we here mean γ̃µ∂µ. Note in addition that Ωf is self-conjugate in this frame, which

means Ωf γ̃ · x̄ = γ̃ · xΩf .

To relate the propagators, we use the fact that supersymmetry transformations as-

sociated with the preserved subalgebra annihilate the vacuum, and therefore correlation

functions of expressions which are exact supersymmetry variations vanish. Consider first,

in the N = 1 case, the multiplet (AA, λ+) whose variations are found in (2.17). This

leads to

0 = 〈δ
(
AA(x)λ̃+(x′)

)
〉

= −iε̃ γ̃A〈λ+(x)λ̃+(x′)〉 − 1

2
ε̃ γ̃BC〈AA(x)FBC(x′)〉 , (3.15)

which, modulo a gauge transformation, gives the relation Π+Ωf = Π+Ωv and implies

N = 1 : Ωf = Ωvβ . (3.16)

An almost identical derivation gives the same relation for N = 2. To find the relation

between the N = 2 scalars and fermions we look at the correlation function

0 = 〈δ
(
Y (x)λ̃+(x′)

)
〉

= iε̃ 〈λ+(x)λ̃+(x′)〉 − ε̃ γ̃A〈Y (x)∂AY (x′)〉 , (3.17)

which gives the relation

N = 2 : Ωf = ΩY (~v · ~τ)β . (3.18)

Using the transformations

δλ− = γ̃Aε∂AX + . . . , δX = −i ε̃ λ− + iλ̃−ε , (3.19)

where the ellipses correspond to terms with fields other than X, a similar correlation

function with X and λ̃− gives

N = 2 : Ωf = −ΩX(~v · ~τ)β . (3.20)

To see where the extra sign comes from, recall the definition λ− = γ5Π−λ = Π+γ
5λ. The

quantity 〈λ−(x)λ̃−(x′)〉 is thus proportional to

γ5Gλγ
5 = i/∂

(
∆(x− x′)−∆(x− x̄′)Ωf

)
. (3.21)

Given these relations between the ΩX , ΩY , Ωf , and Ωs, let us introduce the following

universal scaling factor:

Ω = ΩY = −ΩX = Ωv . (3.22)
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Adding interactions. In the previous section, we analyzed the propagator for general

values of Ω and explained that in the free limit |Ω| = 1. Now let us consider how the

self-energies lead to a modification of the boundary condition parameter Ω. In the next

section, we will see that the one-loop self-energies of the fields take the following form:

Π̃(X)(p) = σ(g)p , Π̃(Y )(p) = − σ(g)p , (3.23)

Π̃(λ)(p) = σ(g)
/p

p
, Π̃AB

(Aµ)(p) = − σ(g)

p
(p2ηAB − pApB) . (3.24)

It turns out that supersymmetry guarantees the function σ(g) showing up in each of these

self-energies is the same: we find15

σ =
(g cosα)2

8
Nf , (3.25)

where Nf counts the number of Dirac fermions propagating on the boundary. (To trust

perturbation theory, the quantity (g cosα)2Nf should be kept small.)

Having the above result, we can determine how Ω depends on σ(g). Let us take the

Y field as the simplest example. Concatenating the self-energy with scalar propagators to

the boundary and away from the boundary yields the shift in the two-point function:

δG̃Y (y, y′; p) = G̃Y (y, 0; p)Π̃(Y )(p)G̃Y (0, y′; p)

= −σY e
−p(y+y′)

p
. (3.26)

Comparing with the Fourier transformed propagator (3.4), we conclude that there is a

perturbative shift in the boundary condition:

Ω = ΩY = 1− 2σY +O(g4) . (3.27)

Similar computations for the remaining three fields — X, λ, and Aµ — yield results that

are consistent with (3.16), (3.18), (3.20), and (3.22). We note that the sign of the correction

to Ω is consistent with the reflection positivity bounds −1 ≤ Ω ≤ 1.

3.5 Displacement operator two- and three-point functions

We are interested in the displacement two- and three-point functions because of their rela-

tion to the boundary anomaly coefficients b1 and b2, established by two of us in refs. [5, 6].

For a small but nonzero value of the interaction g, the leading O(g2) correction to these

correlation functions comes from a modification of the boundary condition parameter Ω in

the propagators.

We will first review results for the displacement correlation functions computed from

the free propagators using Wick’s Theorem. Given the form of the bulk propagators dis-

cussed above, we will then compute the leading O(g2) correction to the displacement cor-

relation functions by a slight generalization of the free-field computation.

15Removing only fermions from our actions would lead to certain mixed dimensional scalar QED type

theories which still have boundary interactions and, presumably, the corresponding σ could depend on the

coupling. In the supersymmetric cases we are interested in here, sending Nf → 0 implies removing scalars

as well and the theories become free.
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In a boundary CFT, a central role is played by the displacement operator, which can

be defined as a failure of the stress tensor conservation on the boundary:

∂µT
µn(x) = Dn(x)δ(xn) . (3.28)

An integrated version of this definition relates the displacement operator to the boundary

limit of the normal-normal component of the stress tensor:

Tnn|∂M = Dn(x) . (3.29)

Conformal invariance on the boundary constrains the form of the two- and three-point

correlation functions up to constants, which we call cnn and cnnn:

〈Dn(x)Dn(0)〉 =
cnn

|x|8
, 〈Dn(x)Dn(x′)Dn(0)〉 =

cnnn

|x|4|x′|4|x− x′|4
. (3.30)

Refs. [5, 6] identified that

b1 =
2π6

35
cnnn , b2 =

2π4

15
cnn . (3.31)

Free theories. For free theories, we can calculate cnn and cnnn using Wick’s theorem.

The normal-normal component of the free-field stress tensor is

TΦ
nn = (∂nΦ)2 − 1

12
(2∂2

n + �)Φ2 , (3.32)

T λnn =
i

4

(
(∂nλ̄)γnλ− λ̄γn∂nλ

)
, (3.33)

T
Aµ
nn =

1

2
FnAFn

A − 1

4
FABF

AB , (3.34)

for a scalar, a Majorana fermion and a gauge field, respectively. The results are described

in greater detail in refs. [5, 6, 39]. Below we quote the 4d results in the case of interest.

For a single real scalar with propagator (3.1), one finds

cnnΦ =
1

4π4

(
1 + Ω2

)
, (3.35)

cnnnΦ =
1

36π6
(8− 3Ω + 24Ω2 − Ω3) . (3.36)

For a single Majorana fermion with propagator (3.9) and four-dimensional gamma matrices

one finds

cnnλ =
3

4π4

(
1 + Ω2

)
, (3.37)

cnnnλ =
5

8π6
(1 + 3Ω2) . (3.38)

For a photon with propagators (3.5) and (3.6), one obtains

cnnAµ =
3

π4

(
1 + Ω2

)
, (3.39)

cnnnAµ =
2

π6
(1 + 3Ω2) . (3.40)

In free theories, Ω2 = 1 and only the central charge b1 of a scalar depends on boundary

conditions.
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Adding interactions. While we computed these coefficients using Wick’s Theorem and

assuming free field theory, in the interacting case we claim that the O(g2) correction is

captured correctly by making the substitution Ω = 1 − 2σ in these formulae. At order g2,

the only diagrams that contribute to the stress-tensor two-point function are the free field

diagrams and the one loop self-energy corrections. (Starting at O(g4), there are diagrams

that involve scattering of four bulk fields.)

Note that cnn ∼ (1−2σ) while cnnn ∼ (1−3σ). Without doing any further calculations,

we see immediately that b1 and b2 must depend on the gauge coupling, regardless of the

amount of supersymmetry. Every one of our bulk fields leads to a reduction in b1 and b2
by an amount proportional to σ, and there is no possibility of cancellation. It is tempting

to conjecture that boundary interactions generally will never increase the values of these

boundary central changes in a boundary CFT. It would be interesting to search for a

general argument or find a counterexample.

Let us explicitly calculate the corrections in the various cases. In the N = 1 case,

including contributions from the photon and the photino we obtain

b
(N=1)
1 =

2π6

35
(cnnnAµ + cnnnλ ) =

3

5
−

9g2Nf

40
+O(g4) , (3.41)

b
(N=1)
2 =

2π4

15
(cnnAµ + cnnλ ) = 1−

g2Nf

4
+O(g4) . (3.42)

Here and below, we give the results when θ = 0. A θ 6= 0 can be restored by simply making

the replacement g → g cos(α). In the N = 2 case, including the scalars and a second

photino we obtain

b
(N=2)
1 =

2π6

35
(cnnnAµ + 2cnnnλ + cnnnX + cnnnY )

=
38

45
−

19g2Nf

60
+O(g4) , (3.43)

b
(N=2)
2 =

2π4

15
(cnnAµ + 2cnnλ + cnnX + cnnY )

=
4

3
−
g2Nf

3
+O(g4) . (3.44)

In the N = 4 case, since the interactions between the additional bulk fields and the

boundary matter should simply be duplicates of the interactions we have already studied,

the result can be deduced by including an extra couple of photinos and bulk scalars.

We obtain

b
(N=4)
1 =

2π6

35
(cnnnAµ + 4cnnnλ + 3cnnnX + 3cnnnY )

=
4

3
−
g2Nf

2
+O(g4) , (3.45)

b
(N=4)
2 =

2π4

15
(cnnAµ + 4cnnλ + 3cnnX + 3cnnY )

= 2−
g2Nf

2
+O(g4) . (3.46)
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In all cases, we find that the first-order correction to these anomaly coefficients is nonzero.

In other words, these coefficients depend on the marginal coupling g. (The zero-th order

contributions of these results correspond to the boundary central charges in free theories.)

Observe that the following quantity:

∆b ≡ b1 − b2 (3.47)

does not depend on g in the N = 4 case (at leading order), suggesting the combination

of curvature invariants tr K̂3 ± hµνK̂ρσWµρνσ may play a special role in these types of

boundary conformal field theories with N = 4 supersymmetry in the bulk.16 It will be

interesting to see if this quantity remains g-independent at higher orders.

4 Perturbation theory for super graphene

4.1 Renormalization group analysis

In this subsection, we will argue that our supersymmetric graphene theories are examples of

boundary conformal field theory, with an exactly marginal coupling — the gauge coupling

— to all orders in perturbation theory. This discussion however neglects two issues that

are worth further scrutiny but will not be discussed here. The first is the possibility of

non-perturbative contributions to the beta function. While instantons should be absent

in the abelian gauge theory, it is not obvious how magnetic monopoles on the boundary

might alter our theories. The second is stability, for example spontaneous breaking of the

U(Nf ) flavor symmetry. We believe that for sufficiently small coupling, the theory should

be stable [15, 17, 19], but this issue and the other one deserve further consideration.

Let us begin with a discussion of the superficial degree of divergence of the differ-

ent diagrams. Topological constraints along with momentum conservation imply that the

superficial degree of divergence of an arbitrary diagram, regardless of loop level, is

1

2
(6− 2nA − 4nX − 2nY − 3nλ − nφ − 2nψ) . (4.1)

The quantity nΦ is the number of external legs of the field Φ. The reason that nX and

nY have different coefficients is that they have different boundary conditions. An external

X leg can only couple to the diagram through a |φ|2∂nX vertex. That restriction in turn

means the ∂n must produce a power of an external momentum that is not integrated over

in the diagram and thus does not contribute to a short distance divergence.

Another useful quantity to consider is the power of the loop momenta, modulo two, in

the numerator of an arbitrary diagram. This power is

nA + nY + nφ +
1

2
(nλ + nψ) . (4.2)

If this power is odd, then by rotational invariance, the leading divergence of the diagram

is reduced by one.

16In this case, the bulk charges are the same: a = c = 1
4
.
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The expressions (4.1) and (4.2) are useful for deducing a number features of the one

loop calculations we will perform in the next subsection and also for extrapolating those

results to arbitrary loop order. Let us begin with the self-energy of the bulk fields. These

self-energies must all be finite, as one can see in a variety of ways. The easiest is perhaps

locality: boundary interactions cannot renormalize the photon, photino, or X and Y scalar

wave functions. Indeed, we will see this finiteness explicitly at one loop in the next subsec-

tion. But the naive power counting implicit in eqs. (4.1) and (4.2) largely bears out these

observations as well.

Consider first the self-energy of the photon, for which nA = 2 with all the other nΦ set

to zero. We see immediately that the diagrams should have superficial degree of divergence

1. However, the photon self-energy must be accompanied by a gauge invariant prefactor

qµqν − gµνq2 which immediately cuts down the degree of divergence by 2, rendering these

diagrams finite.

Given the result for the photon, supersymmetry can be used to argue that the photino

as well as the X and Y fields have no wave function renormalization. Let us nevertheless

repeat the naive power counting arguments. For the photino self-energy, eq. (4.1) suggests

the diagrams are logarithmically divergent. However, from eq. (4.2), rotational invariance

cuts down the degree of divergence by one. Based on eq. (4.1), the self-energy of X should

be finite. The Y field at last provides an example where eqs. (4.1) and (4.2) are insufficient

to give the right answer. Naively, Y should be linearly divergent. However, what happens

at least at one loop level is that two diagrams contribute, and their divergences cancel.

The self-energies of the boundary degrees of freedom and the boundary vertices are

less well behaved. For the most part, they all have log divergences and corresponding

wave-function renormalization. The eqs. (4.1) and (4.2) are sufficient to give the correct

log divergence for the electron self-energy as well as the ψ̄ψAµ, Aµ|φ|2, and A2
µ|φ|2 vertices.

While eqs. (4.1) and (4.2) are insufficient to see it, through supersymmetry, the selectron

self-energy must be log divergent as well. While eqs. (4.1) and (4.2) predict a log diver-

gence for the λψφ Yukawa vertex, what happens at least at one loop is that two diagrams

contribute and the divergence cancels. It would be interesting to see whether the finiteness

is accidental or comes from some symmetry and persists at higher loop level.

Let us summarize our one loop results for the wave-function renormalizations. From

the one loop self-energies and vertex functions we compute in the next subsection, we can

read off the various wave-function renormalization Z-factors in the Lagrangian.17 We will

divide the singular terms into two contributions. The first involves loops without a photino,

and the second comes from loops with a photino. In the N = 1 case, the Z-factors are

Zψ = 1 + g2

(
− 1

6π2ε
− 1

3π2ε
+ finite

)
= 1 + g2

(
− 1

2π2ε
+ finite

)
, (4.3)

Zφ = 1 + g2

(
5

6π2ε
− 1

3π2ε
+ finite

)
= 1 + g2

(
1

2π2ε
+ finite

)
, (4.4)

17We follow the conventions of Srednicki’s field theory text book [37]. As before, a nonzero θ can be

incorporated by making the replacement g → g cos(α).
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ZAµψψ = 1 + g2

(
− 1

6π2ε
− 1

3π2ε
+ finite

)
= Zψ , (4.5)

ZAµφφ = 1 + g2

(
5

6π2ε
− 1

3π2ε
+ finite

)
= Zφ , (4.6)

and

Zλφψ = 1 + g2

(
1

2π2ε
− 1

2π2ε
+ finite

)
= 1 + g2(finite) , (4.7)

ZAµ = 1 + g2(finite) , (4.8)

Zλ = 1 + g2(finite) , (4.9)

where ε = 4−d and the log divergences can be associated with the 1/ε terms. Note that the

Ward identities which follow from gauge symmetry imply in a minimal subtraction scheme,

to all loops, that Zψ = ZAµψψ and that Zφ = ZAµφφ. Indeed, these Ward identities continue

to be satisfied even if one removes the photino from the spectrum.

The constraints from having a supersymmetric action mean that, to all loops,

ZψZφ = Z2
λφψ . (4.10)

While from the naive power counting discussed earlier we expect (4.10) is log divergent order

by order in perturbation theory, we have found something stronger at one loop, namely

that Zλφψ and ZψZφ are individually finite. We do not know if they remain individually

finite at higher loop order.

The supersymmetric and gauge symmetry constraints on the Z-factors along with the

finiteness of the Z-factors for the bulk fields Aµ and λ are enough to guarantee that the

gauge coupling is not renormalized at any loop order in perturbation theory for the N = 1

theory. For example, for the Aµψψ vertex, the relation between the bare coupling and

physical coupling is given by g0Z
1/2
Aµ
Zψ = gZAµψψ, which then guarantees g is independent

of scale. Given the general arguments in this subsection, we did not actually need the

detailed one loop results although they provide a useful check.

The same is true for the N = 2 theory. In this case, we have Z-factors associated with

the additional Yukawa interactions. The structure of the Lagrangian and supersymmetry

imply the following wave-function renormalization relations, to all loops,

ZY ψ2 = Zψ , (4.11)

ZXφ2 = ZY 2φ2 = Zφ . (4.12)

These relations, along with the finiteness of ZX , ZY , Zλ, and ZAµ are enough to guarantee

that the beta functions for all of the Yukawa couplings vanish, without doing any one-loop

calculations. (The loop computations are still needed in order to determine the values of

b1 and b2.)

The story for the N = 4 theory is very similar to what we just discussed above in the

N = 2 case, the main difference being that we have more photinos and X and Y type fields

– 24 –



J
H
E
P
0
9
(
2
0
1
8
)
1
6
1

(a) (b) (c)

Figure 1. The photon self-energy at one-loop.

at our disposal. The nature of the interaction vertices and propagators is the same, and

the power counting arguments and Ward identities are analogous. Thus, we expect that

the N = 4 theory also has a vanishing beta function for the gauge coupling at all orders

in perturbation theory.

Finally, let us discuss terms that do not appear in the Lagrangian, of the schematic

form XY , ψ2φ2, and φ6, but which could in principle be generated at loop level. (The

vertex ψ2φ does not conserve charge and is related by supersymmetry to φ4.)

Rotational invariance (4.2) means all of the XY mixing diagrams are finite. The φ2ψ2

and φ6 couplings are the most interesting. They are classically marginal and related by

supersymmetry via a Φ4 type superfield in the Lagrangian, were we to include it.18

The constraints of eqs. (4.1) and (4.2) on ψ2φ2 are surprisingly stringent. Naively, the

diagram is log divergent, but rotational invariance makes it finite. Thus, we expect the

beta function for the ψ2φ2 to vanish at the point when the physical coupling itself vanishes.

By supersymmetry, the story must be the same for the φ6 coupling although one cannot

see it from eqs. (4.1) and (4.2).

The story changes somewhat if we include a bare ψ2φ2 coupling. The numerator of

the loop integral will include an extra number of momenta equal to the number of bare

ψ2φ2 vertices. Thus provided we have an odd number of ψ2φ2 vertices in the diagram (plus

the two external ψ lines), there is no additional rotational invariance constraint and the

diagrams are expected to be log divergent. In other words, if we were to include a g4Φ4

term in the Lagrangian, we would expect the g2
4 contribution to the beta function to vanish

and the first nonzero contributions to be order g4g
2 and g3

4.

4.2 One loop calculations

The relevant Feynman rules are collected in appendix B. We will calculate self-energies for

the photon, photinos, and bulk scalars X and Y in general. For the boundary degrees of

freedom ψ and φ, we will only present detailed self-energy calculations in the N = 1 case

since the self-energies of ψ and φ are irrelevant to the computation of central charges b1
and b2, and we have already discussed why the beta functions should also vanish for N = 2

and 4 SUSY. To incorporate a nonzero θ, simply replace g → g cos(α) below.

18Note that we can arrange for charge conservation by having superfields Φ+ and Φ− with opposite

charges in a theory with Nf > 1.
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Figure 2. The photino self-energy at one-loop.

Photon self-energy. Three diagrams contributed to the photon self-energy at one loop

(see figure 1). Let us separate out the scalar and fermionic contributions to the photon

self-energy:

iΠ̃AB
(Aµ)(q) = i

(
Π̃AB

(Aµ,ψ)(q) + Π̃AB
(Aµ,φ)(q)

)
. (4.13)

In dimensional regularization, we find19

iΠ̃AB
(Aµ,ψ)(q) = (−1)(ig)2Nf

∫
dd−1p

(2π)d−1

tr[ΓAi/pΓBi(/p+ /q)]

p2(p+ q)2

= −ig2Nf (q2ηAB − qAqB)
(d− 3)π2− d

2

4d−2 cos
(
πd
2

)
Γ
(
d
2

) 1

q5−d , (4.14)

iΠ̃AB
(Aµ,φ)(q) = Nf

∫
dd−1p

(2π)d−1

(
(ig)2

(
1

i

)2 (2p+ q)A(2p+ q)B

p2(p+ q)2
+ (−2ig2)

(
1

i

)
ηAB

1

p2

)
=

1

(d− 3)
iΠ̃AB

(Aµ,ψ)(q) . (4.15)

We have inserted a factor of Nf to account for the possibility of having Nf flavor multiplets

on the boundary. In d = 4, the contributions are finite and equal:

iΠ̃AB
(Aµ,ψ)(q) = iΠ̃AB

(Aµ,φ)(q) = −
ig2Nf

16q
(q2ηAB − qAqB) . (4.16)

Photino self-energy. The photino self-energy at one-loop can be computed from a single

diagram (figure 2):

iΠ̃(λ)(q) = 2Nf (g)(−g)

∫
dd−1p

(2π)d−1

i/p(−i)
p2(p+ q)2

=
(2ig2Nf )π2− d

2

4d−2 cos
(
πd
2

)
Γ
(
d
2 − 1

) /q

q5−d . (4.17)

There is an extra factor of two because there is a second diagram with the charge flowing

in the opposite direction inside the loop. In 4d, the numerical prefactor of this self-energy

19We take tr1 = 2 for the 3d Clifford space. Thus, for instance, tr(/p/q) = −2p · q. Note that we adopt

effectively 2-component fermions on the boundary so there is a factor 2 difference when comparing (4.14)

with the corresponding result in [6].
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Figure 3. (a) contributes to the X self-energy; (b), (c) contribute to the Y self-energy.

is the same as that for the total photon self-energy:

iΠ̃(λ)(q) =
ig2Nf

8

/q

q
. (4.18)

Bulk-scalars self-energy. One diagram contributes to the self-energy of the X scalar

(figure 3a):

iΠ̃(X)(q) = (−ig)2Nf

∫
dd−1p

(2π)d−1

q2(−i)(−i)
p2(p+ q)2

= ig2Nf
25−2dπ2− d

2

cos
(
πd
2

)
Γ
(
−1 + d

2

)qd−3 . (4.19)

Two diagrams contribute to the self-energy of the Y scalar (figures 3b and 3c):

iΠ̃(Y )(q) = (−ig)2Nf (−1)

∫
dd−1p

(2π)d−1

tr[i/pi(/p+ /q)]

p2(p+ q)2
− 2ig2Nf

∫
dd−1p

(2π)d−1

(−i)
p2

= −ig2Nf
25−2dπ2− d

2

cos
(
πd
2

)
Γ
(
−1 + d

2

)qd−3 . (4.20)

In 4d, the self-energies are equal and opposite:

iΠ̃(X)(q) = −iΠ̃(Y )(q) =
ig2Nf

8
q . (4.21)

(The numerical coefficient is the same as in the photon and photino cases.) Note that here

we should not combine (4.20) with (4.19) as there are two different scalars in the bulk with

different boundary conditions.

Electron self-energy. There are both photon and photino contributions to the electron

self-energy (figure 4):

iΠ̃(ψ)(q) = i
(

Π̃(ψ,Aµ)(q) + Π̃(ψ,λ)(q)
)
, (4.22)

where

iΠ̃(ψ,Aµ)(q) = (ig)2

∫
dd−1p

(2π)d−1

ΓAi/pΓB(−i)ηAB
p2|p− q|

= − ig2

6π2ε
/q + . . . , (4.23)

iΠ̃(ψ,λ)(q) = (g)(−g)

∫
dd−1p

(2π)d−1

i/p

|p|
(−i)

(p− q)2
= − ig2

3π2ε
/q + . . . . (4.24)
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(a) (b)

Figure 4. The electron self-energy at one-loop in the N = 1 theory.

(a) (b) (c)

Figure 5. The selectron self-energy at one-loop in the N = 1 theory.

We focus on the singular contribution to the diagram in d = 4 − ε dimensions. The total

singular contribution is

iΠ̃(ψ)(q) = − ig2

2π2ε
+ . . . . (4.25)

Selectron self-energy. We again divide up the one-loop self-energy into contributions

from photons and contributions with photinos running in the loop (figure 5):

iΠ̃(φ)(q
2) = i

(
Π̃(φ,Aµ)(q

2) + Π̃(φ,λ)(q
2)
)
, (4.26)

where

iΠ̃(φ,Aµ)(q
2) = (ig)2 (−i)2

∫
dd−1p

(2π)d−1

(p+ q)2

|p− q|p2
+ (−2ig2)(d− 1) (−i)

∫
dd−1p

(2π)d−1

1

|p|

=
5ig2

6π2ε
q2 + . . . , (4.27)

iΠ̃(φ,λ)(q
2) = (g)(−g)(−1)

∫
dd−1p

(2π)d−1

tr[i/pi(/p− /q)]
|p|(p− q)2

= − ig2

3π2ε
q2 + . . . . (4.28)

The photino contribution comes from a single diagram while the photon contribution comes

from a pair of diagrams. We again focus on the singular contribution to the diagrams in

d = 4− ε dimensions. The total singular contribution is

iΠ̃(φ)(q
2) =

ig2

2π2ε
q2 + . . . . (4.29)
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(a) (b)

Figure 6. The electron charge renormalization in the N = 1 theory.

Charge renormalization for electron. We divide up the vertex renormalization of the

electron into contributions with a photon and with a photino running in the loop (figure 6):

iṼ A
(ψ)(q1, q2) = i

(
Ṽ A

(ψ,Aµ)(q1, q2) + Ṽ A
(ψ,λ)(q1, q2)

)
, (4.30)

where

iṼ A
(ψ,Aµ)(q1, q2) = (ig)3

∫
dd−1p

(2π)d−1

ΓCi(/p+ /q1
)ΓAi(/p+ /q2

)ΓB(−i)ηCB
(p+ q1)2(p+ q2)2|p|

=
ig3ΓA

6π2ε
+ . . . , (4.31)

iṼ A
(ψ,λ)(q1, q2) = (g)(−g)(ig)

∫
dd−1p

(2π)d−1

(2p+ q1 − q2)Ai(−/p)(−i)2

|p|(p+ q1)2(p− q2)2

=
ig3ΓA

3π2ε
+ . . . . (4.32)

There is one diagram with a photon in the loop and one diagram with a photino. The total

singular contribution is

iṼ A
(ψ)(q1, q2) =

ig3ΓA

2π2ε
+ . . . . (4.33)

Charge renormalization for selectron. We divide up the vertex renormalization into

contributions with photons and photinos (figure 7):

iṼ A
(φ) = i

(
Ṽ A

(φ,Aµ) + Ṽ A
(φ,λ)

)
. (4.34)

There are three diagrams with a photon running in the loop:

iṼ A
(φ,Aµ)(q1, q2) = (ig)3

∫
dd−1p

(2π)d−1

(p+ 2q1) · (p− 2q2)(2p+ q1 − q2)A(−i)3

(p+ q1)2(p− q2)2|p|

+(−2ig2)(ig)

∫
dd−1p

(2π)d−1

(
(p+ 2q1)A(−i)2

(p+ q1)2|p|
+

(p− 2q2)A(−i)2

(p− q2)2|p|

)
= −ig3 1

2π2ε
(q1 − q2)A

(
−1 +

8

3

)
+ . . . (4.35)
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(a) (b)

(c) (d)

Figure 7. The selectron charge renormalization in the N = 1 theory.

The flip in sign of q2 with respect to the Feynman rule is because we take q2 to be ingoing.

There is only one diagram with a photino in the loop:

iṼ A
(φ,λ)(q1, q2) = (g)(−g)(ig)(−1)

∫
dd−1p

(2π)d−1

tr[i(/p+ /q1
)ΓAi(/p− /q2

)i/p]

(p+ q1)2(p− q2)2|p|

= i
g3

3π2ε
(q1 − q2)A + . . . (4.36)

The total singular contribution is

iṼ A
(φ) = − ig3

2π2ε
(q1 − q2)A + . . . . (4.37)

Yukawa renormalization. Two diagrams contribute at one-loop to the renormalization

of the Yukawa φψλ interaction (figure 8):

iṼ(Y ) = i
(
Ṽ(Y,λ) + Ṽ(Y,Aµ)

)
, (4.38)

where

iṼ(Y,λ)(q1, q2) = (g)2(−g)

∫
dd−1p

(2π)d−1

i/p i(/p+ /q1
)(−i)

|p|(p+ q1)2(p− q2)2
= − g3

2π2

1

ε
+ . . . , (4.39)

iṼ(Y,Aµ) = (g)(ig)2

∫
dd−1p

(2π)d−1

(−i)(−i)i(/p− /q2
)(/p+ 2/q1

)

(p+ q1)2|p|(p− q2)2
=

g3

2π2

1

ε
+ . . . (4.40)

The total singular contribution vanishes.
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(a) (b)

Figure 8. The Yukawa coupling renormalization in the N = 1 theory.

5 Conclusion and future perspective

We have demonstrated that N = 1, N = 2, and N = 4 super graphene models are all very

likely to be interesting examples of boundary superconformal field theories. Their beta

functions vanish at all orders in perturbation theory in d = 4. Hence, the gauge coupling

g should be exactly marginal. We have shown how the boundary central charges b1 and b2
depend explicitly on g. Unlike the situation for the bulk central charge c, neither b1 or b2
is protected by supersymmetry.20

There is however one interesting caveat for N = 4 theories, where we noticed that the

combination b
(N=4)
1 − b(N=4)

2 was independent of the gauge coupling, suggesting a possible

special role for the curvature invariants tr K̂3 ± hµνK̂ρσWµρνσ in 4d theories with bulk

N = 4 supersymmetry, broken in half by the boundary. Along the lines of refs. [25, 26, 42],

perhaps the structure of the displacement operator multiplet in N = 4 theories can shed

light on this coupling independence.

Our analysis allowed for the possibility of a bulk θF ∧ F term in the action for the

photon. We saw that this term effectively screened the interactions between the charged

particles, sending g → g cos(α) where tan(α) = g2θ/4π2. Intriguingly, there is a new

perturbative limit where g cos(α) can be kept small even if the coupling g itself is large. As

a boundary k
4πA∧F Chern-Simons term can be absorbed by a shift in θ, this perturbative

large θ-limit is akin to a large k expansion in 3d Chern-Simons theory.

Let us conclude this paper by mentioning a number of interesting future projects that

suggest themselves in light of this work, among them dynamical flavor-symmetry breaking,

supersymmetric indices and localization, and extensions to 3d theories with 2d boundaries.

When the number of electrons is even, there are suggestions [15, 17, 19] that while our

graphene theory is perturbatively conformal, there may be a critical value of the gauge

20Note the fact that these boundary central charges depend on marginal couplings naively suggests that

they are unlikely to be useful candidates to measure boundary renormalization group flow in 4d bCFTs. In

this sense, these boundary charges are rather different from the a-central charge in 4d, the c-central charge

in 2d, and the 3d sphere partition function — often called f — which are known to be larger in the UV

than in the IR and are independent of marginal couplings [1, 44, 45].
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coupling g above which a mass term is spontaneously generated for the fermions which

dynamically breaks some of the flavor symmetry. Approximations for the critical g come

from resumming classes of Feynman diagrams. It would be interesting to see if a similar

symmetry breaking happens in supersymmetric graphene, and whether supersymmetry

allows for a calculation of the critical g with greater accuracy.

Given the eight supercharges and the unbroken U(1) R-symmetry of the N = 2 super

graphene, it seems likely that a supersymmetric index can be constructed for this theory and

also that the path integrals on special spaces, e.g. a hemisphere or disk with S3 boundary,

can be computed exactly using supersymmetric localization. What can be learned from

such an index and/or path integral?

In 3d theories with a 2d boundary, there are again two boundary anomaly coeffi-

cients [43]. Let us call them a(3d) and b(3d) and write

〈Tµµ〉3d =
δ(xn)

4π

(
a(3d)R̊+ b(3d) tr K̂2

)
, (5.1)

where R̊ is the boundary Ricci scalar and tr K̂2 = trK2− 1
2K

2. Their relationships with the

stress tensor 2-point correlation function near the boundary were discussed only recently

in [5]. We would like to find a cousin of our graphene-like theories, perhaps 3d Chern-

Simons coupled to a 2d boundary fermion, in particular a cousin with an exactly marginal

coupling where the boundary charge b(3d) can be computed perturbatively. (The charge

a(3d) will not depend on the coupling in any case because it is defined from a topological

invariant.) Two groups recently have investigated dualities in 3d theories in the presence

of 2d boundaries [46–48]. It would be interesting to use the boundary central charges to

provide further evidence for dualities between field theories. While we focused on a U(1)

theory here to keep the bulk non-interacting, generalizations to non-abelian gauge groups

are important as well.

Clearly, there is much to be done.
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Martin Roček, and Cristian Vergu for useful discussions. This work was supported in

part by the U.S. National Science Foundation Grant PHY-1620628, by the U.K. Science

& Technology Facilities Council Grant ST/P000258/1, and by the ERC Starting Grant

N. 304806.

A Conventions

We use Greek letters µ, ν for 4d bulk indices and Roman letters A, B, for 3d boundary

indices. Our convention for the Levi-Civita tensor is that ε0123 = 1. Our metrics have

mostly plus signature: ηµν = diag(−,+,+,+) and ηAB = diag(−,+,+). Our gamma

matrices satisfy the Clifford algebras:

{γµ, γν} = −2ηµν and {ΓA,ΓB} = −2ηAB . (A.1)
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In 4d, the “fifth” gamma matrix is defined to be γ5 ≡ γ0γ1γ2γ3. Two gamma matrix

identities useful for verifying SUSY of the 4d vector mulitplet are

1

2
[γµ, γν ]γρ = ηµργν − ηνργµ + εµνρσγ

σγ5 , (A.2)

1

2
γρ[γµ, γν ] = −ηµργν + ηνργµ + εµνρσγ

σγ5 . (A.3)

For definiteness, let us choose a basis for the 4d gamma matrices:

γµ =

(
0 σµ

σ̄µ 0

)
, γ5 =

(
−i 0

0 i

)
, (A.4)

where σµ = (−1, ~σ) and σ̄µ = (−1,−~σ). Note that (γ0)† = γ0 while (γi)† = −γi. Defining

the cospinors in the usual way ψ̄ = ψ†γ0, from these identities and the anti-commutation

relations one can deduce γµψ = ψ̄γµ. Furthermore (γ0)T = γ0 and (γ2)T = γ2 while

(γ1)T = −γ1 and (γ3)T = −γ3.

The photino is a Majorana spinor and thus satisfies the reality condition λ = λC ≡
Cλ̄T (or equivalently λ̄ = λTC) where C ≡ iγ0γ2 = −CT = −C† = C∗ = −C−1 =

diag(iσ2,−iσ2). The reality constraint implies a handful of bilinear identities useful for

demonstrating SUSY:

s̄1Ms2 = sT1 CMs2 = −sT2 CC−1MTCT s1 = s̄2C
−1MTCs1 . (A.5)

Useful special cases are

C−1MTC =

{
M M = 1, γ5γµ , γ5 ,

−M M = γµ , [γµ, γν ] , γ5[γµ, γν ] .
(A.6)

Another useful relation is Cγρ[γµ, γν ]C−1 = ([γµ, γν ]γρ)
T .

Reducing 4d Majorana spinors to 3d. The relation between the 4d and 3d spinor

expressions can be obtained as follows. Given the 3d gamma matrices ΓA, a 4d Clifford

algebra can be constructed as

γ̃A =

(
ΓA 0

0 −ΓA

)
, γ̃n =

(
0 eiη

−e−iη 0

)
. (A.7)

In this basis the projectors Π± = 1
2(1± β) with β = iγnγ5eηγ

5
are diagonal and commute

with the tangential 4d gamma matrices. The relation Π±e
−ηγ5 = e−ηγ

5
Π± suggests the

identification γ̃µ = e−ηγ
5
γµ. The transformation that diagonalizes the projectors is given by

U =
1√
2

(
1 0

0 σn

)(
1− iβγ5

)
=

1√
2

(
1 −eiησn

e−iη σn

)
, (A.8)

written explicitly in the Weyl basis. A 3d spinor ψ is identified, in the basis where the

projectors are diagonal, with (ψ 0)T when it is embedded as an eigenvalue 1 of Π+. In the

Weyl basis it takes the form

e
iη
2 U−1

(
ψ

0

)
=

1√
2
e−

η
2
γ5

(
ψ

σ̄nψ

)
, (A.9)
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with the extra phase in U chosen for convenience. The actual form of the embedded 3d

spinor in the Weyl basis is never needed and we can trade it for ψ without confusion.

Let us develop the dictionary for converting 4d expressions to 3d ones. It follows from

the relations above that we can exchange

Π±γ̃
A = ±ΓA , Π±γ̃

n = ±iγ5Π∓ . (A.10)

The 3d bar is related to the 4d bar by

λ̄ ≡ λ†γ0 = λ†γ̃0e−ηγ
5 ≡ λ̃e−ηγ5 , (A.11)

and the 3d bar has the property Π̃±λ = λ̃Π±. The 3d charge conjugation matrix can be

identified such that λ̃ = λT C̃. Comparing with λ̄ = λTC and (A.11) leads to

C̃ = Ceηγ
5
, (A.12)

with the properties

C̃T = −C̃ , C̃† = C̃−1 = e−ηγ
5
C−1 6= −C̃ , C̃ γ̃µC̃−1 = −γ̃µT . (A.13)

In verifying SUSY on the boundary, a Fierz rearrangement identity is required,

(λ̃ψ)(ψ̃χ)− (χ̃ψ)(ψ̃λ) = (λ̃ΓAχ)(ψ̃ΓAψ) . (A.14)

Symplectic Majorana fermions. In the case of N = 2 supersymmetry the number of

supercharges is doubled. We now have Qi where i = 1, 2 is a fundamental SU(2) index.

It is lowered and raised according to the conventions Qj = εjiQ
i and Qi = εijQj with

ε12 = −ε12 = 1. We also use the convention (Qi)∗ = Qi so that upper and lower index

contractions form invariants. The generators of the R-symmetry are the Pauli matrices

denoted by (~τ)ij and satisfy the relation εik(~τ)kj = εjk(~τ)ki. ForN = 2, the previously used

Majorana condition is incompatible with the SU(2) symmetry. Instead we introduce the

symplectic Majorana condition, defining a new charge conjugation matrix by C+ = iγ5C,

where the plus serves to indicate the relation C+γ
µC−1

+ = (γµ)T contrary to (A.6).

λ̄i = εijλ
jTC+ . (A.15)

There are a host of bilinear relations necessary for demonstrating SUSY. The analogs of

the Majorana relation (A.5) are

s̄1iMs2
i = −s̄2iC

−1
+ MTC+s1

i , (A.16)

s̄1iMτ ijs2
j = s̄2iC

−1
+ MTC+τ

i
js1

j . (A.17)

Rewriting C−1
+ MTC+ = iγ5C−1MTCiγ5, using the results in (A.6), one obtains

ε̄iλ
i = −λ̄iεi , (A.18)

ε̄iγ
µλi = −λ̄iγµεi , (A.19)

ε̄iγ
5λi = −λ̄iγ5εi , (A.20)
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ε̄iγ
5γµλi = λ̄iγ

5γµεi , (A.21)

ε̄iγ
µνλi = λ̄iγ

µνεi , (A.22)

ε̄iγ
5γµνλi = λ̄iγ

5γµνεi . (A.23)

The second relation introduces an additional minus sign.

Similar to the N = 1 case, we can write down the eigenvectors of the projection

matrices Π± in a basis where γ5 is diagonal, although for the most part we do not need

them. For simplicity, focus on the case where ~v = (0, 0, 1) and the action of the SU(2)

generators ~τ is already diagonalized. In this case,

Π+ε
1 = ε1 =

1√
2
e−

η
2
γ5

(
ε

σ̄nε

)
, (A.24)

Π+ε
2 = ε2 = − 1√

2
e−

η
2
γ5

(
εc

−σ̄nεc

)
, εc = −C̃−1

+ ε̃ T . (A.25)

B Feynman rules

The Feynman rules can be read from the N = 1 and N = 2 Lagrangians.21 We specialize

to propagators where at least one of the two points is on the boundary. The rules are

as follows:

Propagators:

Aµ (Feynman gauge): = −ie
−py

p
ηAB

λ: = Π+
iγApAe

−py

p
X and Y : =

−ie−py

p

ψ: =
iΓApA
p2

φ: =
−i
p2

Vertices:

= igΓB = −ig(p+ p′)A
p′ p

= −2ig2ηAB = ig

21Note the λψφ vertices are written for the N = 1 theory. In the N = 2 theory, they pick up a factor of√
2 and λ is no longer Majorana.
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= g = −g

= −2ig2 = −ipg
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