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1 Introduction

The unification of different theories is always one of interesting problems in theoretical

physics. The modern researches on S-matrix have exhibited amazing structures within am-

plitudes of gauge and gravity theories, such as the Kawai-Lewellen-Tye (KLT) relations [1],

Bern-Carrasco-Johansson (BCJ) color-kinematics duality [2–4], which are invisible in the

traditional Lagrangian formulism of quantum field theory. These discoveries hint the exis-

tence of some long hidden unifying relations for on-shell amplitudes. A strong evidence for

the marvelous unity among amplitudes of different theories has been spelled out in [9] by

using the CHY formulae [5–9]. More explicitly, different theories are defined by different

CHY-integrands, while they found that CHY-integrands for a wide range of theories can be

generated from the CHY-integrand for gravity theory,1 through the so called compactifying,

squeezing as well as the generalized dimensional reduction procedures [9].

1Here the gravity theory has to be understood in a generalized version, i.e., Einstein gravity theory

couples to a dilaton and two-forms.
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Recently, Cheung, Shen and Wen discovered similar unifying relations for on-shell tree-

level amplitudes of a variety of theories from a different angle: by acting some Lorentz and

gauge invariant differential operators, one can transmute the physical amplitude of a theory

into the one of another theory [10]. In their unified web, amplitudes of various theories

include Einstein-Yang-Mills theory, Einstein-Maxwell theory, Born-Infeld theory, Dirac-

Born-Infeld theory, special Galileon theory, non-linear sigma model, as well as bi-adjoint

scalar theory, can be generated by transmuting the amplitudes of gravity theory. The role

of these differential operators has been understood and checked from various angels, such as

several explicit examples, factorization property, double copy structure, soft behavior, etc.

Since the similar unified webs for amplitudes of various theories have been given both

in [9] and [10], it is very natural to investigate the relation among these two different

approaches. In this note, we will establish the exact relation through the CHY formulae [5–

9]. Tree-level amplitudes in the CHY formulae are represented as integrals over auxiliary

variables as

An =

∫
dµn ICHY , (1.1)

where the auxiliary variables are localized by constraints from the so-called scattering

equations which depend on the external momenta. In this formulae, the measure part

dµn is universal for all theories, while different theories are defined by the so called CHY-

integrands ICHY. Based on this fact, the basic idea of the note can be described as

following. Since differential operators discussed in this note are defined through Lorentz

invariants include polarization vectors of external particles such as εi · εj and εi · kj , they

are commutable2 with the integral
∫
dµn over auxiliary variables. Therefore, converting an

amplitude is equivalent to converting the CHY-integrand. More explicitly, if two amplitudes

Aα and Aβ are related by an operator O as Aα = OAβ , analogous relation ICHY
α = OICHY

β

for integrands must hold, and vice versa. Thus, one can derive the unifying relations

systematically by acting operators on CHY-integrands.

Applying differential operators on CHY-integrands, we will re-derive all unifying rela-

tion in [10]. We will also define new operators which are composed of basic trace operators,

to generate amplitudes of theories having not been mentioned in [10]. Then all amplitudes

which have CHY representations in [9] can be bringed into the picture of unification: they

are generated from the amplitudes of gravity theory via several operators. Other relations

among amplitudes indicated by these operators will also be discussed.

The remainder of this paper is organized as follows. In section 2, we give a brief intro-

duction of the Pfaffian and the CHY formulae which are crucial for subsequent discussions.

In section 3, we study the effects of three basic operators when acting them on the building

blocks of CHY-integrands. Then, in section 4 we will consider the effects of operators

built by these basic operators. The unified web and other relations for amplitudes will be

presented in section 5. Finally, we end with a summary and discussions in section 6.

2We want to remark that in [10], differential operators such as ∂ki·kj have also been discussed. However,

these operators will interact with scattering equations, thus we will not use them in this note.
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2 Review of Pfaffian and CHY formulae

For reader’s convenience, we will briefly discuss the definition of Pfaffian, and rapidly review

the CHY formulae.

2.1 Definition of Pfaffian

The definition of Pfaffian is essential for the work in this note. For a 2n×2n skew symmetric

matrix S, Pfaffian is defined as

PfS =
1

2nn!

∑
σ∈S2n

sgn(σ)

n∏
i=1

aσ(2i−1),σ(2i) , (2.1)

where S2n is the permutation group of 2n elements and sgn(σ) is the signature of σ. More

explicitly, let Π be the set of all partitions of {1, 2, · · · , 2n} into pairs without regard to

the order. An element α in Π can be written as

α = {(i1, j1), (i2, j2), · · · , (in, jn)} , (2.2)

with ik < jk and i1 < i2 < · · · < in. Now let

πα =

(
1 2 3 4 · · · 2n− 1 2n

i1 j1 i2 j2 · · · in jn

)
(2.3)

be the corresponding permutation of the partition α. If we define

Sα = sgn(πα) ai1j1ai2j2 · · · ainjn , (2.4)

then the Pfaffian of the matrix A is given as

PfS =
∑
α∈Π

Sα . (2.5)

Both representations (2.1) and (2.5) will be used later. From the (2.5) one can observe

that in every term Sα of the Pfaffian, each number of {1, 2, · · · , 2n}, as the subscript of

the matrix element, will appear once and only once. This observation is simple but useful

for latter discussions.

2.2 CHY formulae

With the definition of Pfaffian described above, now we can introduce the CHY formulae [5–

9]. In the CHY formulae, tree level amplitudes for n massless particles arise from a multi-

dimensional contour integral over the moduli space of genus zero Riemann surfaces with n

punctures, M0,n. It can be expressed as

An =

∫
dµn IL({k, ε, z})IR({k, ε̃, z}) , (2.6)

which possesses the Möbius SL(2,C) invariance. Here ki, εi and zi are the momentum,

polarization vector, and puncture location for ith particle, respectively. The measure is

defined as

dµn ≡
dnz

vol SL(2,C)

∏
i

′δ(Ei) . (2.7)

– 3 –
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Theory IL(k, ε, z) IR(k, ε̃, z)

gravity theory Pf ′Ψ Pf ′Ψ

Einstein-Yang-Mills CTr1 · · · CTrm

∑
{i,j}

′P{i,j}(n, l,m) Pf ′Ψ

pure Yang-Mills Cn(σ) Pf ′Ψ

Einstein-Maxwell Pf ′[Ψ]n−2m,2m:n−2mPf [X]2m Pf ′Ψ

Einstein-Maxwell(photon with flavor) Pf ′[Ψ]n−2m,2m;n−2mPf [X ]2m Pf ′Ψ

Born-Infeld (Pf ′A)2 Pf ′Ψ

Yang-Mills-scalar CTr1 · · · CTrm

∑
{i,j}

′P{i,j}(n, l,m) Cn(σ)

Yang-Mills-scalar(special) Pf ′[Ψ]n−2m,2m;n−2mPf [X ]2m Cn(σ)

pure bi-adjoint scalar Cn(σ̃) Cn(σ)

non-linear sigma model (Pf ′A)2 Cn(σ)

φ4 Pf ′APf [X]n Cn(σ)

extended Dirac-Born-Infeld CTr1 · · · CTrm

∑
{i,j}

′P{i,j}(n, l,m) (Pf ′A)2

Dirac-Born-Infeld Pf ′[Ψ]n−2m,2m;n−2mPf [X ]2m (Pf ′A)2

special Galileon (Pf ′A)2 (Pf ′A)2

Table 1. Form of the integrands for various theories.

The δ-functions impose the scattering equations

Ei ≡
∑

j∈{1,2,...,n}\{i}

sij
zij

= 0 , (2.8)

where sij ≡ (ki + kj)
2 is the Mandelstam variable, and zij ≡ zi − zj . The scattering

equations define the map from the space of kinematic variables to M0,n, and fully localize

the integral on their solutions.

The integrand in (2.6) depends on the theory under consideration, and carries all

kinematical information of external particles. For any theory known to have a CHY repre-

sentation, the corresponding integrand can be split into two parts IL and IR, as can be seen

in (2.6). Either of them are weight-2 for each variable zi under the Möbius transformation.

We list integrands for various theories as in table 1 [9].3

We now explain each ingredient appearing in this table in turn. The n × n matrixes

are defined through

Aij =


ki · kj
zij

i 6= j ,

0 i = j ,

Bij =


εi · εj
zij

i 6= j ,

0 i = j ,

Cij =


ki · εj
zij

i 6= j ,

−
n∑

l=1, l 6=j

kl · εj
zlj

i = j ,
(2.9)

3For theories contain gauge or flavor groups, we only show the integrands for color-ordered partial

amplitudes instead of full ones.
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and

Xij =


1

zij
i 6= j ,

0 i = j ,
Xij =


δIi,Ij

zij
i 6= j ,

0 i = j .

(2.10)

where δIi,Ij forbids the interaction between particles with different flavors. To clarify the

dimension, we denote the n×n matrixes X and X as [X]n, [X ]n. The 2n×2n antisymmetric

matrix Ψ is given by

Ψ =

(
A C

−CT B

)
. (2.11)

The reduced Pfaffian of Ψ is defined as Pf ′Ψ = (−)i+j

zij
PfΨ[i,j], where the notation Ψ[i,j]

means the rows and columns i, j of the matrix Ψ have been deleted (with 1 ≤ i, j ≤ n).

It can be proved that this definition is independent of the choice of i and j. Analogous

notation holds for Pf ′A.

The definition of Ψ can be generalized to the (2a+ b)× (2a+ b) case [Ψ]a,b:a as

[Ψ]a,b:a =

 A(a+b)×(a+b) C(a+b)×a

−CT
a×(a+b) Ba×a

 , (2.12)

here A is a (a + b) × (a + b) matrix, C is a (a + b) × a matrix, and B is a a × a matrix.

The definitions of elements of A, B and C are the same as before. The reduced Pfaffian

Pf ′[Ψ]a,b:a is defined in the same manner. With the definition of the reduced Pfaffian, one

can observe that: each polarization vector εi appears once and only once in each term of

the reduced Pfaffian.

Furthermore, starting from the 2n × 2n matrix Ψ, the polynomial P{i,j}(n, l,m) is

defined by

P{i,j}(n, l,m) = sgn({i, j}) zi1j1 · · · zimjm Pf ′[Ψ]n−l,i1,j1,...,im,jm:n−l

= −sgn({i, j}′) zi1j1 · · · zim−1jm−1 Pf [Ψ]n−l,i1,j1,...,im−1,jm−1:n−l , (2.13)

where ik < jk ∈ Trk and Trk’s are m sets satisfy4

Tr1 ∪ Tr2 ∪ · · · ∪ Trm = {n− l + 1, n− l + 2, · · · , n} . (2.14)

In the notation [Ψ]n−l,i1,j1,...,im,jm:n−l, we explicitly write {i1, j1, . . . , im, jm} instead of 2m

to emphasize the locations of 2m rows and 2m columns in the original matrix Ψ. Two

signatures sgn({i, j}) and sgn({i, j}′) correspond to partitions {(i1, j1), · · · , (im, jm)} and

{(i1, j1), · · · , (im−1, jm−1)} respectively, and one can verify sgn({i, j}) = sgn({i, j}′). In

the second line of (2.13), the reduced Pfaffian is calculated by removing rows and columns

4Each set has at least two elements, so in general we have l ≥ 2m.
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im and jm, and (−)(n−l+2m−1)+(n−l+2m) = (−) have been used. Under the definition of

P{i,j}(n, l,m) in the second line, the summation
∑
{i,j}

′P{i,j}(n, l,m) means∑
{i,j}

′
P{i,j}(n, l,m) ≡

∑
i1<j1∈Tr1
···

im−1<jm−1∈Trm−1

P{i,j}(n, l,m) ≡ Pf ′Π . (2.15)

where the sum is over all possible choices of pairs in each trace subset. Notice that one

can choose to delete rows and columns belong to any Trk when computing the reduced

Pfaffian, and
∑
{i,j}

′P{i,j}(n, l,m) is independent of the choice since it is equal to the

reduced Pfaffian of Π, which is constructed using the squeezing procedure [9].

Finally, the Parke-Taylor factor for ordering σ is given as

Cn(σ) =
1

zσ1σ2zσ2σ3 · · · zσn−1σnzσnσ1
, (2.16)

it implies the color order {σ1σ2 · · ·σn−1σn} for the partial amplitude.

3 Basic operators

In this section, we will consider the effects of acting three basic differential operators given

in [10] on the elementary building-blocks of CHY-integrands such as Pf ′Ψ, Pf ′[Ψ]a,b:a, as

well as
∑′
{i,j} P{i,j}(n, l,m).

3.1 Trace operator

The trace operator Tij is defined as [10]

Tij ≡ ∂εiεj . (3.1)

Here εiεj means εi · εj and the differential operator is to take derivative regarding to the

combination εi ·εj . Similar understanding holds for all operators in this note. If one applies

Tij on the reduced Pfaffian Pf ′Ψ, only terms containing factor εiεj (i.e.,element Ψi+n,j+n)

provide non-vanishing contributions. Thus performing the operator Tij is equivalent to the

replacement

εiεj → 1 , εiV → 0 , εjV → 0 , (3.2)

where V denotes vectors kl’s or εl 6=i,j ’s, since εi and εj appear once and only once in each

term of the reduced Pfaffian respectively. As noted in [10], the effect is nothing but the

dimensional reduction (or the “compactifying” procedure in [9]). Thus we arrive at a new

matrix Ψ̃ satisfies

Tij Pf ′Ψ = Pf ′Ψ̃ . (3.3)

Without lose of generality, one can assume {i, j} = {n− 1, n},5 then the new matrix Ψ̃ is

given by

Ψ̃ =

 An×n Cn×(n−2) 0

−CT
(n−2)×n B(n−2)×(n−2) 0

0 0 X2×2

 =

(
[Ψ]n−2,2:n−2 0

0 [X]2

)
. (3.4)

5This assumption can be realized by moving lows and columns. Since (n + i)th row and column will be

moved simultaneously while moving ith ones, the possible − sign will not arise.
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The reduced Pfaffian of the matrix Ψ̃ can be calculated straightforwardly as

Pf ′Ψ̃ = Pf ′[Ψ]n−2,2;n−2Pf [X]2 . (3.5)

Thus, we find

Tij Pf ′Ψ = Pf ′[Ψ]n−2,2;n−2Pf [X]2 . (3.6)

Same analysis gives the result of trace operator acting on generalized matrix [Ψ]a,b:a

TijPf ′[Ψ]a,b:a = Pf ′[Ψ]a−2,b+2:a−2Pf [X]2 . (3.7)

Repeating the manipulations, multiple action of trace operators give following generaliza-

tion of (3.6) as

Ti1j1Ti2j2 Pf ′Ψ = Pf ′[Ψ]n−4,4;n−4Pf [X1]2Pf [X2]2 ,

· · ·
Ti1j1Ti2j2 · · · Timjm Pf ′Ψ = Pf ′[Ψ]n−2m,2m;n−2mPf [X1]2Pf [X2]2 · · ·Pf [Xm]2

=
(−)m

(zi1j1zj1i1)(zi2j2zj2i2) · · · (zimjmzjmim)
P{i,j}(n, 2m,m) , (3.8)

where P{i,j}(n, l,m) is defined in (2.13), and we have arranged elements as

[Xk]2 =

(
0 1

zikjk
1

zjkik
0

)
. (3.9)

We want to emphasize that the multiple action of Tij on Pf ′Ψ produce the structure

P{i,j}(n, l,m), which is crucial for many theories. This is why it is called the trace operator.

3.2 Insertion operator

The insertion operator is defined by [10]

Tikj ≡ ∂kiεk − ∂kjεk . (3.10)

As pointed out in [10], Tikj itself is not a gauge invariant operator, but when it acts on

objects obtained after acting one trace operators, it is effectively gauge invariant. Thus

we consider the effect of acting this operator on the polynomial
∑
{i,j}

′P{i,j}(n, l,m) only.

According to discussions in [10], one should assume that k ∈ {1, 2, · · · , n− l} and i, j ∈ Tri
to protect the gauge invariance. For simplicity, we assume i, j ∈ Trm and taking the

expansion (2.13) where Trm has been deleted. This gauge choice will greatly simplify our

discussion, since with this choice kiεk can appear in (2.13) only through Ckk.

Initially, Pf [Ψ]n−l,i1,j1,...,im−1,jm−1:n−l is

Pf [Ψ]n−l,i1,j1,...,im−1,jm−1:n−l =
∑
α∈Π

sgn(πα)[Ψ]a1b1 [Ψ]a2b2 · · · [Ψ]a(n′+m′)b(n′+m′) , (3.11)

where the definition in (2.5) has been used. The element [Ψ]aibi is at the ath
i row and

bthi column of the matrix [Ψ]n−l,i1,j1,...,im−1,jm−1:n−l, and we have defined n′ = n − l,

– 7 –
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m′ = m − 1. Since εk appears only in Ckk, when acting ∂kiεk on (3.11), only terms

containing element [Ψ]k,n′+2m′+k (see the expression (2.12)) can survive. Consider such

a term, the remaining part after the action corresponds to a partition of the set

{1, 2, · · · , 2(n′ + m′)} \ {k, n′ + 2m′ + k}, which has the length 2(n′ + m′ − 1). Such a

term appears in the Pf [Ψ]n−l−1,i1,j1,...,im−1,jm−1:n−l−1, weighted by a different signature

sgn(πα̃), where the new matrix [Ψ]n−l−1,i1,j1,...,im−1,jm−1:n−l−1 is obtained from the original

one [Ψ]n−l,i1,j1,...,im−1,jm−1:n−l by deleting kth and (n′ + 2m′ + k)th rows and columns, and

sgn(πα̃) corresponds to the partition of the length-2(n′ +m′ − 1) set. By comparing these

two special partitions, where one belongs to the original matrix and one belongs to the

new one,

α = {(a1, b1), (a2, b2), · · · , (k, n′ + 2m′ + k), · · · , (a(n′+m′), b(n′+m′))},
α̃ = {(a1, b1), (a2, b2), · · · , (a(n′+m′−1), b(n′+m′−1))} , (3.12)

one can get sgn(πα) = sgn(πα̃) since α̃ is obtained from α by deleting the pair (k, n′ +

2m′ + k). Using above observation, when we sum all contributions together, we will have

∂kiεkPf [Ψ]n−l,i1,j1,...,im−1,jm−1:n−l =
−1

zik
Pf [Ψ]n−l−1,i1,j1,...,im−1,jm−1:n−l−1 . (3.13)

Applying this result to (2.13), we get immediately

Tikj

(∑
{i,j}

′
P{i,j}(n, l,m)

)
=

(
1

zjk
− 1

zik

)(∑
{i,j}

′
P{i,j}(n, l + 1,m)

)

=
−zij
zikzkj

(∑
{i,j}

′
P{i,j}(n, l + 1,m)

)
. (3.14)

Let us give a little bit explanation of the result (3.14). There are two parts. The part(∑
{i,j}

′P{i,j}(n, l+1,m)
)

means we have added a new element k into the set Trm. Here is

no ordering of the set and every element is at the same footing. The ordering information

comes from the part
−zij
zikzkj

, especially the denominator factor zikzkj gives a line connecting

i to k and then k to j, i.e., one has inserted the element k between i, j.

To really achieve the goal, from table 1, one can see that
∑
{i,j}

′P{i,j}(n, l,m) always

appears together with a series of Parke-Taylor factors CTr1 · · · CTrm . If the original CTrm

contains 1/zij , multiplying the factor zij/(zikzjk) replaces it with 1/zikzkj , therefore implies

the new color order {. . . ikj . . .}, i.e., the insertion of the element k between i, j. This

explanation tells us how to systematically insert elements into a trace one by one with a

well defined sequence of insertion operators.

Since the polynomial
∑
{i,j}

′P{i,j}(n, l,m) is independent of the choice of the deleted

rows and columns, assuming i and j belong to any other Trk will lead to the same conclu-

sion, although the calculation will be more complicate.

3.3 Longitudinal operator

The longitudinal operators are defined via [10]

Li ≡
∑
j 6=i

kikj∂kjεi , (3.15)

– 8 –
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and

Lij ≡ −kikj∂εiεj . (3.16)

Among these two, the Lij is intrinsically gauge invariant, but Li is not.6 We now discuss

the effects of acting them on the reduced Pfaffian Pf ′[Ψ]a,b:a.

We first consider the operator Lij . It turns εiεj into kikj , and annihilates all other εiV ’s,

εjV ’s. Using the observation that εi and εj can appear once and only once respectively,

one can conclude that Lij changes the reduced Pfaffian of the matrix [Ψ]a,b:a as

Lij Pf ′

 A(a+b)×(a+b) C(a+b)×a

−CT
a×(a+b) Ba×a

⇒ Pf ′


A(a+b)×(a+b) C(a+b)×(a−2) 0

−CT
(a−2)×(a+b) B(a−2)×(a−2) 0

0 0 A2×2

 .

(3.17)

Next, we turn to the operator Li, which replaces every kjεi with kjki. Under such replace-

ment, the diagonal elements of the matrix C become

Cii → −
n∑

l=1, l 6=i

kl · ki
zli

, (3.18)

which will vanish due to the scattering equation. Thus, the effect of Li is given by

Li Pf ′

 A(a+b)×(a+b) C(a+b)×a

−CT
a×(a+b) Ba×a

⇒ Pf ′


A(a+b)×(a+b) C(a+b)×(a−2) A(a+b)×2

−CT
(a−2)×(a+b) B(a−2)×(a−2) 0

A2×(a+b) 0 0

 .

(3.19)

At this moment, the meaning of (3.17) and (3.19) is not clear. Actually, the longitudi-

nal operators can not be performed individually to generate any object belongs to physical

integrands. Instead, they should be used in a special manner, which will be discussed in

the next section.

4 Products of basic operators

Using the products of basic operators, more operators will be constructed. In this section,

we will discuss these composed operators, especially their action on the reduced Pfaffian

Pf ′Ψ, which is the fundamental building-block for the integrand of gravity theory.

4.1 Operator T [α]

The operator T [α] for a length-m set α = {α1, α2, · · · , αm} is defined as7 [10]

T [α] ≡ Tα1αm ·
m−1∏
i=2

Tαi−1αiαm . (4.1)

6It is useful to compare operators Lij and Tij : they differ by the factor ki ·kj , which turns the interaction

into derivatively coupling. Their common part, i.e., ∂εiεj plays the same role, i.e., ”compactify”.
7We adopt the convention in [10] that the product of two operators O1 · O2 acts on an amplitude as

(O1 · O2)A = O2O1A, i.e., the operator O1 is performed at first, and O2 secondly.
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We now act this operator on Pf ′Ψ. Firstly, performing Tα1αm gives

Tα1αm Pf ′Ψ =
−1

zα1αmzαmα1

zα1αmPf ′[Ψ]n−2,α1,αm:n−2

=
1

zα1αmzαmα1

Pf [Ψ]n−2:n−2 , (4.2)

where (3.6) and (−)(n−1)+n = (−) have been used. Then one can act Tα1α2αm on it, and

use (3.14) to get

Tα1α2αmTα1αm Pf ′Ψ =
1

zα1αmzαmα1

−zα1αm

zα1α2zα2αm

Pf [Ψ]n−3:n−3

=
−1

zα1α2zα2αmzαmα1

Pf [Ψ]n−3:n−3 . (4.3)

Similarly, one can obtain

Tα2α3αmTα1α2αmTα1αm Pf ′Ψ =
−1

zα1α2zα2αmzαmα1

−zα2αm

zα2α3zα3αm

Pf [Ψ]n−4:n−4

=
1

zα1α2zα2α3zα3αmzαmα1

Pf [Ψ]n−4:n−4 . (4.4)

This procedure can be repeated recursively, and finally one will arrive

T [α] Pf ′Ψ =
(−)m

zα1α2zα2α3 · · · zαm−1αmzαmα1

Pf [Ψ]n−m:n−m

= (−)m+1Cα
∑
{i,j}

′
P{i,j}(n,m, 1) . (4.5)

Above calculation is straightforward as long as m ≤ n− 1. The case m = n needs a careful

treatment. When m = n, the final insertion operator Tαn−2αn−1αn acts on the Pfaffian of

the 2× 2 matrix [Ψ]1:1 which is given as

[Ψ]1:1 =

(
0 Cαn−1,αn−1

−CT
αn−1,αn−1

0

)
. (4.6)

The Pfaffian of this matrix is

Pf [Ψ]1:1 = Cαn−1,αn−1 = −
n∑

l=1, l 6=αn−1

klεαn−1

zl,αn−1

. (4.7)

Applying Tαn−2αn−1αn on it, we get

T [α1, α2, · · · , αn] Pf ′Ψ =
(−)n

zα1α2zα2α3 · · · zαn−1αnzαnα1

= (−)nCn . (4.8)

The above result can be generalized to multi-trace cases T [α1] · T [α2] · · · , via general

relations (3.8) and (3.14), with the constraint [αi]∩ [αj ] = ∅. Let us consider, for example,

T [α] · T [β] =

(
Tα1αm ·

m−1∏
i=2

Tαi−1αiαm

)
·

(
Tβ1βl ·

l−1∏
i=2

Tβi−1βiβl

)

= Tα1αm · Tβ1βl ·

(
m−1∏
i=2

Tαi−1αiαm

)
·

(
l−1∏
i=2

Tβi−1βiβl

)
. (4.9)
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The first step is using (3.8) to obtain

Tβ1βlTα1αm Pf ′Ψ =

(
−1

zβ1βlzβlβ1

)(
−1

zα1αmzαmα1

)∑
{i,j}

′
P{i,j}(n, 4, 2) , (4.10)

where∑
{i,j}

′
P{i,j}(n, 4, 2) = P{i,j}(n, 4, 2) = zβ1βlPf [Ψ]n−4,β1,βl:n−4 = zα1αmPf [Ψ]n−4,α1,αm:n−4 .

(4.11)

Secondly, one can use (3.14) to get

Tαm−2αm−1αm · · · Tα2α3αmTα1α2αm

(
−1

zα1αmzαmα1

)∑
{i,j}

′
P{i,j}(n, 4, 2)

= Tαm−2αm−1αm · · · Tα2α3αm

(
1

zα1α2zα2αmzαmα1

)∑
{i,j}

′
P{i,j}(n, 5, 2)

...

= (−)m+1Cα
∑
{i,j}

′
P{i,j}(n, 2 +m, 2) . (4.12)

Thirdly, we use (3.14) again to obtain

Tβl−2αl−1αl · · · Tβ2β3βlTβ1β2βl
(

−1

zβ1βlzβlβ1

)∑
{i,j}

′
P{i,j}(n, 2 +m, 2)

= (−)l+1Cβ
∑
{i,j}

′
P{i,j}(n, l +m, 2) . (4.13)

Combining them together we get

T [α] · T [β] Pf ′Ψ = (−)m+l+2CαCβ
∑
{i,j}

′
P{i,j}(n, l +m, 2) . (4.14)

Now one can see the recursive pattern that

T [α1] · T [α2] · · · T [αk] Pf ′Ψ = (−)k+
∑
|αi|
(∏

Cαi
)∑
{i,j}

′
P{i,j}(n,

∑
|αi|, k) , (4.15)

where |αk| denotes the length of the set αk.

4.2 Operator L · Tab
The operator L is defined through longitudinal operators as [10]

L ≡
∏
i

Li = L̃+ · · · , with L̃ ≡
∑
ρ∈pair

∏
i,j∈ρ
Lij . (4.16)

The expression (4.16) means that at the algebraic level, the effect of
∏
i Li is different from

that of
∑

ρ∈pair

∏
i,j∈ρ Lij . However, if we consider the combination L · Tab Pf ′Ψ, and let
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subscripts of Li’s and Lij ’s run through all nodes in {1, 2, · · · , n} \ {a, b}, the effects of∏
i Li and

∑
ρ∈pair

∏
i,j∈ρ Lij are same, give a result which has a meaningful explanation.

Let us first study the effect of the operation L̃ · Tab Pf ′Ψ. Since L̃ and Tab are com-

mutable, i.e., L̃ · Tab = Tab · L̃, we will apply the operator Tab on Pf ′Ψ firstly to get (3.6),

then act L̃ on it. It is straightforward to see
∑

ρ∈pair

∏
i,j∈ρ Lij changes the matrix (3.4)

into

Ψ′ =


An×n 0 0

0 −A(n−2)×(n−2) 0

0 0 X2×2

 , (4.17)

due to the previous result (3.17). The Pfaffian of the matrix(
−A(n−2)×(n−2) 0

0 X2×2

)
, (4.18)

is just (−)a+bPf ′(−A) = (−)
n
2
−1+a+bPf ′A, thus∑

ρ∈pair

∏
i,j∈ρ
Lij · Tab Pf ′Ψ = Pf ′Ψ′ = (−)

n
2
−1+a+b

(
Pf ′A

)2
. (4.19)

Next we consider the effect of acting
∏
i Li on Tab Pf ′Ψ. Using (3.19) we know the

operator
∏
i Li turns the matrix (3.4) into

Ψ′′ =


An×n An×(n−2) 0

A(n−2)×n 0 0

0 0 X2×2

 , (4.20)

thus the reduced Pfaffian is

Pf ′Ψ′′ = Pf ′ÃPf [X]2 , (4.21)

where

Ã ≡

(
An×n An×(n−2)

A(n−2)×n 0

)
. (4.22)

To compute the reduced Pfaffian of Ã, we choose ath and bth rows and columns of An×n
to be removed. Furthermore one can use the relation that for the matrix S with the block

structure

S =

(
M Q

−QT N

)
, (4.23)

when M is invertible, the Pfaffian of S satisfies

PfS = PfM Pf(N +QTM−1Q) . (4.24)
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Using this, the reduced Pfaffian of Ã can be calculated as

Pf ′Ã =
(−)a+b

zab
PfA(n−2)×(n−2) Pf

(
0 +AT

(n−2)×(n−2)A
−1
(n−2)×(n−2)A(n−2)×(n−2)

)
=

(−)a+b

zab
PfA(n−2)×(n−2) Pf

(
0 +AT

(n−2)×(n−2)

)
=

(−)a+b

zab
PfA(n−2)×(n−2) Pf

(
−A(n−2)×(n−2)

)
= (−)

n
2
−1+a+bzab

(
Pf ′A

)2
, (4.25)

Putting it back we obtain∏
i

Li · Tab Pf ′Ψ = Pf ′Ψ′′ = (−)
n
2
−1+a+b

(
Pf ′A

)2
. (4.26)

Above calculations show that

L · Tab Pf ′Ψ = L̃ · Tab Pf ′Ψ = (−)
n
2
−1+a+b

(
Pf ′A

)2
. (4.27)

It is worth to notice that this result is independent of the choice of a and b.

4.3 New operators TX2m and TX2m

As can be seen in table 1, the CHY-integrands for several theories require the ingredients

Pf [X]2m and Pf [X ]2m. These objects can also be created from the original matrix Ψ via

appropriate operators. Now we give the definition of these new operators.

For a given length-2m set I, we define a new operator as

TX2m ≡
∑
ρ∈pair

∏
ik,jk∈ρ

Tikjk . (4.28)

Here the set of pairs {(i1, j1), (i2, j2), · · · , (im, jm)} is a partition of I with conditions i1 <

i2 < . . . < im and it < jt, ∀t. Using the result in (3.8) as well as the (2.5), one can conclude

that the operator TX2m generates a new matrix

Ψ̃∗ =


An×n −CT

n×(n−2m) 0

C(n−2m)×n B(n−2m)×(n2−m) 0

0 0 X2m×2m

 , (4.29)

such that acting TX2m on the reduced Pfaffian Pf ′Ψ gives

TX2m Pf ′Ψ = Pf ′Ψ̃∗ = Pf ′[Ψ]n−2m,2m:n−2mPf [X]2m , (4.30)

which provides the desired building block Pf [X]2m.

By similar argument, we can also define the operator TX2m as

TX2m ≡
∑
ρ∈pair

∏
i,j∈ρ

δIik ,IjkTikjk , (4.31)
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which is the generalization of TX2m . The δIik ,Ijk ’s turn the matrix [X]2m into [X ]2m,

therefore we get

TX2m Pf ′Ψ = Pf ′[Ψ]n−2m,2m:n−2mPf [X ]2m , (4.32)

which gives the required building block Pf [X ]2m. Before ending this part, we want to

emphasize one important point: since Tij is intrinsically gauge invariant, so are TX2m

and TX2m .

5 Unifying relations for amplitudes

With preparations in previous sections, we are ready to exhibit relations between ampli-

tudes. As discussed in section 1, the idea is, differential operators are commutable with

the integration over complex variables zi’s, thus the effects of acting them on amplitudes

can be realized as acting on corresponding CHY-integrands, and vice versa. Our previous

calculations have explicitly established the relation between two approaches in [9] and [10].

In this section, we will apply our results in sections section 3 and section 4 to write down

relations between different scattering amplitudes, as did in [9] and [10].

5.1 The unified web

Now we act the operators on CHY integrands for various theories to get the unifying

relations for amplitudes. The starting point is the formulation for the gravity theory.

The reason is, all operators decrease the spins of external particles, thus the unified web

must start from the amplitudes for gravitons which carry highest spins. The integrand

of gravity theory is shown in the first line of table 1, two parts IL and IR depend on

two independent sets of polarization vectors {ε} and {ε̃}, respectively. Since all operators

are defined through partial differentials of some Lorentz invariants contain polarization

vectors, it is natural to restrict the effect of them on the IL part (or equivalently the

IR part), by defining operators via ε (or ε̃). Performing operators on the IL part and

using (3.8), (4.8), (4.15), (4.27), (4.30) and (4.32), after comparing with the middle column

of table 1, we get following relations:

AEYM = T [Tr1] · · · T [Trm]AG ,

AYM = T [i1 · · · in]AG ,

AEM = TX2m AG ,

AEM
flavor = TX2m AG ,

ABI = L · T [ab]AG , (5.1)

up to an overall sign. Here AG, AEYM, AYM, AEM, AEM
flavor, ABI denote amplitudes of grav-

ity theory, Einstein-Yang-Mills theory, pure Yang-Mills theory, Einstein-Maxwell theory,

Einstein-Maxwell theory that photons carry flavors, Born-Infeld theory, respectively.

For the pure Yang-Mills integrand, there is only one copy pf ′Ψ depends on polarization

vectors, thus operators can be performed directly. Starting from the pure Yang-Mills
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integrand, we obtain relations:

AYMS = T [Tr1] · · · T [Trm]AYM ,

AYMS
special = TX2m AYM ,

ABS = T [i1 · · · in]AYM ,

ANLSM = L · T [ab]AYM ,

Aφ4 = TXn AYM , (5.2)

up to an overall sign, where AYMS, AYMS
special, ABS, ANLSM, Aφ4 denote amplitudes of Yang-

Mills-scalar theory, special Yang-Mills-scalar theory, bi-adjoint scalar theory, non-linear

sigma model, as well as φ4 theory, respectively. Notice that the amplitude of φ4 theory is

generated via a special TX2m that 2m = n.

Applying operators on the Born-Infeld integrand, we get relations:

ADBI
ex = T [Tr1] · · · T [Trm]ABI ,

ADBI = TX2m ABI ,

ANLSM = T [i1 · · · in]ABI ,

ASG = L · T [ab]ABI , (5.3)

up to an overall sign, where ADBI
ex , ADBI, ANLSM, ASG denote amplitudes of extended Dirac-

Born-Infeld theory, Dirac-Born-Infeld theory, non-linear sigma model, special Galileon the-

ory, respectively.

Our results (5.1), (5.2) and (5.3), give not only unified relations presented in [10], but

also other relations among theories having CHY representations in [9]. We want to remark

that a result in this paper is different from the one in [10], i.e., the Einstein-Maxwell theory:

their differential operator is just one term of the operator TX2m defined in (4.28).

Relations presented above can be organized into table 2. In this table the notations

T ε[Tri] and T ε̃[Tri] means two operators are defined through two independent sets of

polarization vectors {ε} and {ε̃} respectively, and so do notations of other operators. If

one adds the identical operator I into the set of operators, table 2 can be summarized as

Aother = Oε · Oε̃AG(ε, ε̃, k) , (5.4)

where Oε and Oε̃ denote operators which are defined through {ε} and {ε̃} respectively.

Since the manifest double copy structure of the CHY integrands, Oε and Oε̃ are applied

on two copies independently at the integrand-level.

5.2 Other relations

Differential operators connect not only amplitudes from different theories, but also ampli-

tudes of same type of theory. For example, let us consider the Einstein-Yang-Mills theory.

Let us start from a (m + n)-point color-ordered amplitude AEYM(ih1 , · · · , ihm; jg1 , · · · , j
g
n),

where h and g denote gravitons and gluons respectively with the color order of gluons as
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Amplitude Operator acts on AG(ε, ε̃, k)

AEYM(ε, ε̃, k) T ε[Tr1] · · · T ε[Trm]

AYM(ε̃, k) T ε[i1 · · · in]

AEM(ε, ε̃, k) T εX2m

AEM
flavor(ε, ε̃, k) T εX2m

ABI(ε̃, k) Lε · T ε[ab]

AYMS(ε̃, k) T ε[i1 · · · in] ·
(
T ε̃[Tr1] · · · T ε̃[Trm]

)
AYMS

special(ε̃, k) T ε[i1 · · · in] · T ε̃X2m

ABS(k) T ε[i1 · · · in] · T ε̃[i′1 · · · i′n]

ANLSM(k) T ε[i1 · · · in] ·
(
Lε̃ · T ε̃a′b′

)
Aφ4

(k) T ε[i1 · · · in] · T ε̃Xn

ADBI
ex (ε̃, k)

(
Lε · T ε[ab]

)
·
(
T ε̃[Tr1] · · · T ε̃[Trm]

)
ADBI(ε̃, k)

(
Lε · T ε[ab]

)
· T ε̃X2m

ASG(k)
(
Lε · T ε[ab]

)
·
(
Lε̃ · T ε̃[a′b′]

)
Table 2. Unifying relations.

{j1, j2, · · · , jn}. Using the relation (3.14), one can act insertion operators to turn gravitons

into gluons at any desired positions, such as following:

AEYM(ih3 , · · · , ihm; jg1 , i
g
1, i

g
2, j

g
2 , · · · , j

g
n) = Ti1i2j2 Tj1i1j2 AEYM(ih1 , · · · , ihm; jg1 , · · · , j

g
n) ,

AEYM(ih3 , · · · , ihm; jg1 , i
g
1, j

g
2 , i

g
2, j

g
3 , · · · , j

g
n) = Tj2i2j3 Tj1i1j2 AEYM(ih1 , · · · , ihm; jg1 , · · · , j

g
n) ,

(5.5)

In above expressions, we have turned two gravitons into gluons, with different orderings: the

first one with ordering {j1, i1, i2, j2, · · · , jn} and the second one, {j1, i1, j2, i2, j3, · · · , jn},
respectively. Situations for other theories can be analyzed similarly.

One can also seek amplitudes for other theories beyond these given in table 2, by acting

on the amplitude of gravity theory via other combinations of differential operators. The

operator Oε in (5.4) has 6 choices which are I, T [Tr1] · · · T [Trm], T [i1 · · · in], TX2m , TX2m ,

L · Tab, and so does Oε̃. Thus, starting from the CHY-integrand of gravity theory, there

are 21 kinds of CHY-integrands can be obtained by performing operators. We now list the

remaining 8 cases as following:

T εX2m
· T ε̃X′

2m′
, T ε[i1 · · · in] · T ε̃X2m

,(
Lε · T ε[ab]

)
· T ε̃X2m

,
(
T ε[Tr1] · · · T ε[Trm]

)
· T ε̃X2m

,(
T ε[Tr1] · · · T ε[Trm]

)
· T ε̃X2m

,
(
T ε[Tr1] · · · T ε[Trm]

)
·
(
T ε̃[Tr1′ ] · · · T ε̃[Trm′ ]

)
,

T εX2m
· T ε̃X2m

, T εX2m
· T ε̃X2m

. (5.6)
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Using results in section 4, one can get the corresponding integrands generated by them. If

some of these integrands correspond to physical amplitudes, then new unifying relations

occurs. The complete analyis of various combinations in (5.6) is beyond the scope of this

note and we will leave it to future work. Here we just give some brief discussions.

For the first case T εX2m
· T ε̃X′

2m′
, when 2m = 2m′ = n, it yields the integrand

T εXn · T
ε̃
Xn I

G(ε, ε̃, k, z) =
(
Pf ′An Pf [X]n

)(
Pf ′An Pf [X]n

)
, (5.7)

where IG(ε, ε̃, k, z) denotes the integrand for gravity theory. This is the integrand for

Einstein-Maxwell-scalar theory, with all external particles are scalars [11]. This result is

just a special case with n = 2m = 2m′. As we have emphasized, since T εXn is intrinsically

gauge invariant, we can take any length for this operator. Furthermore, the role of Tij is

just to do the dimension reduction. With this understanding, one can see that for general

m and m′ the T εX2m
· T ε̃X′

2m′
AG(ε, ε̃, k) will give the theory obtained from gravity theory by

dimension reduction, i.e., the general Einstein-Maxwell-scalar amplitudes, whose external

particles can be either gravitons, photons, as well as scalars, i.e.,

AEMS(ε, ε̃, k) = T εX2m
· T ε̃X′

2m′
AG(ε, ε̃, k) . (5.8)

For the second case T ε[i1 · · · in] · T ε̃X2m
, when 2m = n, we get

T ε[i1 · · · in] · T ε̃Xn I
G(ε, ε̃, k, z) = CnPf ′APf [X]n , (5.9)

which is the φ4 theory. Again, the operator T ε̃X2m
can be any length. When 2m < n, we

get the theory obtained by doing dimension reduction from Yang-Mills theory, which is the

special Yang-Mills-Scalar theory

T ε[i1 · · · in] · T ε̃X2m
IG(ε, ε̃, k, z) = CnPf ′[Ψ]n−2m,2m:n−2mPf [X]2m . (5.10)

Here if we replace T ε̃X2m
by T ε̃X2m

, we will get the special Yang-Mills-Scalar theory with

multiple kinds of scalars, as can be seen in table 2.

Other cases in (5.6) can be discussed similarly. One can obtain more possible integrands

via products Oε = Oε1 · · · Oεa and Oε̃ = Oε̃1 · · · Oε̃b. However, which combinations produce

sensible physical scattering amplitudes is not clear and it is worth to be carefully studied.

For a physical Oε ·Oε̃ IG(ε, ε̃, k, z), information of external particles such as spins and gauge

structures can be read out directly from the obtained integrand, but pin down the form of

interaction is a hard work.

6 Summary and discussion

To summarize, we have provided manifest connection between two approaches, i.e., the dif-

ferential operator in [10] and various manipulations (such as compactification and squeezing

procedures) in [9]. Using this connection, by acting differential operators on the CHY in-

tegrand of gravity theory, one can systematically derive unifying relations for amplitudes

of various theories, include Einstein gravity, Einstein-Yang-Mills theory, Einstein-Maxwell
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theory, pure Yang-Mills theory, Yang-Mills-scalar theory, Born-Infeld theory, Dirac-Born-

Infeld theory and its extension, bi-adjoint scalar theory, φ4 theory, non-linear sigma model,

as well as special Galileon theory. Along the line, all unifying relations in [10] have been

reproduced, and all theories which have CHY representations in [9] have been included

in the unified web. We have also discussed other new relations for amplitudes, which are

indicated by our method.

The manifest double copy structure of the CHY integrand permits two sets of operators

Oε and Oε̃ to be applied independently. This advantage simplifies the derivation: it is

sufficient to consider the effects of acting operators on the reduced Pfaffian Pf ′Ψ.

A natural question will be, why these operators? From discussions in [10], one critical

condition is the gauge symmetry. The trace operators protect the gauge invariance while

others do not. This is why the insertion and longitudinal operators should be performed

after the trace operator. There are other operators, such as Tijkl, have not been used in the

construction. Thus it will be interesting to consider broader form of differential operators.

Furthermore, how to understand these physical conditions from the point of view of CHY

formulae is also important.

Our result can also be used to other studies. For example, recent studies [12–17]

have shown how to expand the Einstein-Yang-Mills amplitudes by the Yang-Mills ones. If

one acts the differential operator at both sides of the expansion, a differential equation

connecting amplitudes of two different theories will be obtained. Solving this differential

equation (or doing the integration), we should find amplitudes for particles with higher

spins from other ones with lower spins. This is opposite to current construction of united

web by starting from highest spin state, i.e., gravitons.
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