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1 Introduction

Over the last few years, there have been measurements of several observables in the B

meson sector which exhibit deviations from their standard model (SM) predictions. These

tensions with the SM are at the level of 2-4 σ and can be considered as signatures of

possible physics beyond the SM. Two such observables are

RD =
Γ(B → D τ ν̄)

Γ(B → D e/µ ν̄)
, RD∗ =

Γ(B → D∗ τ ν̄)

Γ(B → D∗ e/µ ν̄)
. (1.1)

The decays B → D/D∗ l ν̄ are induced by the quark level transition b→ c l ν̄ which occurs

at the tree level within the SM. The evidence for an excess in RD/RD∗ is provided by a

series of measurements by BaBar [1, 2], Belle [3–5] and LHCb [6–8] collaborations. The

SM prediction for RD is 0.300± 0.008 [9] whereas the world average of its measured values

is 0.407 ± 0.039 ± 0.024. For RD∗ the corresponding numbers are 0.252 ± 0.003 [10] and

0.304 ± 0.013 ± 0.007 respectively. In the world average values, taken from [11], the first

error is statistical and the second error is systematic. Theoretical predictions of RD/RD∗

have been updated recently, using different approaches, see for e.g., refs. [12–16].

The present average values of RD and RD∗ exceed the SM predictions by 2.3σ and 3.4σ

respectively. Including the RD/RD∗ correlations, the tension is at the level of 4.1σ [11].

This discrepancy is an indication that the lepton flavor universality (LFU), predicted by the

SM, is violated. Using the full data sample of 772 × 106 BB̄ pairs, the Belle collaboration

has recently reported their measurement of τ polarization in the B → D∗τ ν̄ decay [5].

The measured value, Pτ (D∗) = −0.38 ± 0.51+0.21
−0.16, is consistent with its SM prediction of

−0.497± 0.013 [17].

Very recently the LHCb collaboration has measured a new ratio related to the quark

level transition b→ c l ν̄ [18]

RJ/ψ =
Γ(Bc → J/ψ τ ν̄)

Γ(Bc → J/ψ µ ν̄)
= 0.71± 0.17(stat.)± 0.18(syst.), (1.2)

which is 1.7σ higher than its SM prediction 0.289 ± 0.010 [19]. Thus this measurement

reinforces the idea of LFU violation in the b→ c l ν̄ sector.
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The RD/RD∗ anomalies have been studied in various model dependent and model in-

dependent approaches, see for example refs. [10, 17, 20–41] for model independent analyses,

refs. [42–54] for leptoquark models, refs. [55–63] for models with extra scalars, refs. [64–67]

for extended vector boson models, and refs. [68–76] for other new physics (NP) scenarios.

In ref. [28], all possible four-fermion operators for the b → c τ ν̄ decay were identified and

the constraints on their Wilson coefficients (WCs) were derived by fitting them to the RD
and RD∗ data. The solutions with pseudoscalar operators are subject to an additional

constraint from the leptonic decay Bc → τ ν̄ [38, 47]. This constraint rules out most of the

NP solutions containing pseudoscalar operators. The effect of RJ/ψ anomaly on the NP in

b→ c τ ν̄ sector is considered in refs. [77–82].

In this paper we do a re-analysis of all available data on b → c τ ν̄ transition to find

the allowed NP solutions and the values of corresponding WCs. We include the new data

on RD∗ from Belle [5] and LHCb [7, 8], which has a smaller deviation from the SM, and

the recent data on RJ/ψ. We discuss the inter-relations between different solutions and

show that there are essentially four NP solutions. We comment on ways of distinguishing

between the four allowed solutions using angular asymmetries and polarization fractions.

Further, we analyse the impact of individual measurements from BaBar, Belle and LHCb

on the NP in b→ c τ ν̄ sector. We also consider the scenario with NP in b→ c µ ν̄ amplitude

and show that such a scenario is ruled out by data.

The paper is organized as follows. In section 2, we describe our calculation and present

our results. In section 3, we study the impact of individual measurements from BaBar,

Belle and LHCb experiments on the NP in b → c τ ν̄ transition. In section 4, we discuss

the scenario of NP only in b→ c µ ν̄. In section 5, we present our conclusions.

2 Calculation and results

The most general effective Hamiltonian for b → cτ ν̄ transition, containing all possible

Lorentz structures, is [28]

Heff =
4GF√

2
Vcb

[
OVL +

√
2

4GFVcb

1

Λ2

{∑
i

(
CiOi + C

′
iO
′
i + C

′′
i O

′′
i

)}]
, (2.1)

where GF is the Fermi coupling constant and Vcb is the Cabibbo-Kobayashi-Maskawa

(CKM) matrix element. Here OVL is the SM operator which has the usual (V −A)∗(V −A)

structure. The explicit forms of the four-fermion operators Oi, O
′
i and O

′′
i are given in the

table 1. In writing the above Hamiltonian we assume that the neutrino is always left chiral.

Hence we do not consider operators containing νR. Solutions to RD/RD∗ problem involv-

ing right chiral neutrinos are discussed in refs. [67, 83, 84]. The constants Ci, C
′
i and C

′′
i

are the respective Wilson coefficients of the NP operators in which NP effects are encoded.

The table also gives the Fierz transformed forms of primed and double primed operators in

terms of the unprimed operators. For later convenience we define (2
√

2GFVcbΛ
2)−1 ≡ α.

We set the new physics scale Λ to be 1 TeV, which leads to α = 0.749.

The primed and double primed operators are products of quark-lepton bilinears. They

arise naturally in models containing leptoquarks [85]. Models containing leptoquarks of

charge 2/3, for example the model in ref. [43], give rise to primed operators. The double

– 2 –
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Operator Fierz identity

OVL (c̄γµPLb) (τ̄ γµPLν)

OVR (c̄γµPRb) (τ̄ γµPLν)

OSR (c̄PRb) (τ̄PLν)

OSL (c̄PLb) (τ̄PLν)

OT (c̄σµνPLb) (τ̄σµνPLν)

O
′
VL

(τ̄ γµPLb) (c̄γµPLν) ←→ OVL

O
′
VR

(τ̄ γµPRb) (c̄γµPLν) ←→ −2OSR

O
′
SR

(τ̄PRb) (c̄PLν) ←→ −1
2OVR

O
′
SL

(τ̄PLb) (c̄PLν) ←→ −1
2OSL −

1
8OT

O
′
T (τ̄σµνPLb) (c̄σµνPLν) ←→ −6OSL + 1

2OT

O
′′
VL

(τ̄ γµPLc
c) (b̄cγµPLν) ←→ −OVR

O
′′
VR

(τ̄ γµPRc
c) (b̄cγµPLν) ←→ −2OSR

O
′′
SR

(τ̄PRc
c) (b̄cPLν) ←→ 1

2OVL

O
′′
SL

(τ̄PLc
c) (b̄cPLν) ←→ −1

2OSL + 1
8OT

O
′′
T (τ̄σµνPLc

c) (b̄cσµνPLν) ←→ −6OSL − 1
2OT

Table 1. All possible four-fermion operators that can contribute to b→ cτ ν̄ transition.

primed operators occur due to the exchange of charge 1/3 leptoquark, such as those in

the model of ref. [86]. For this reason we have explicitly included these operators in our

analysis eventhough they are linear combinations of unprimed operators. For a complete

discussion of the properties of various leptoquark models, please see ref. [46].

All possible NP WCs which provided good fit to the RD and RD∗ data were calculated

in ref. [28]. However the world averages for RD∗ have shifted owing to updates from Belle [5]

and LHCb [7]. Hence it is worth redoing the analysis with the new world average [11] to see

changes to the allowed solutions obtained in [28]. Using the effective Hamiltonian given in

eq. (2.1), we compute the observables RD, RD∗ and Pτ as functions of the various Wilson

coefficients. By fitting these expressions to the measured values of the observables, we

obtain the values of WCs which are consistent with the data. Here we consider either one

NP operator or a combination of two similar operators (for example [OVL , OVR ], [OSL , OSR ],

[O
′
VL

, O
′
VR

] and [O
′′
SL

, O
′′
SR

]) at a time while making the fit to the experimental observables.

First we fit the NP predictions to the three observables RD, RD∗ and Pτ . The corre-

sponding χ2 is defined as

χ2(Ceff
i ) =

∑
m,n=RD,RD∗

(
Oth(Ceff

i )−Oexp
)
m

(
V exp + V SM

)−1

mn

(
Oth(Ceff

i )−Oexp
)
n

+
(P th

τ (Ceff
i )− P exp

τ )2

σ2
Pτ

. (2.2)

– 3 –



J
H
E
P
0
9
(
2
0
1
8
)
1
5
2

Here Oth(Ceff
i ) are the theoretical predictions for RD, RD∗ which depend upon the effective

NP WCs Ceff
i . Oexp are the corresponding experimental measurements. V exp and V SM are

the experimental and SM covariance matrices in the RD, RD∗ space, respectively. The

matrix V exp includes the correlation in the combined experimental determination of RD
and RD∗ . In eq. (2.2), σPτ is the uncertainty in the measurement of Pτ . The expressions

for various Ceff
i , as linear combinations of Ci, C

′
i and C

′′
i , are defined below in eq. (2.3).

Ceff
VL

= α
(
CVL + C

′
VL

+ 0.5C
′′
SR

)
,

Ceff
VR

= α
(
CVR − 0.5C

′
SR
− C ′′VL

)
,

Ceff
SL

= α
(
CSL − 0.5C

′
SL
− 6C

′
T − 0.5C

′′
SL
− 6C

′′
T

)
,

Ceff
SR

= α
(
CSR − 2C

′
VR
− 2C

′′
VR

)
,

Ceff
T = α

(
CT − 0.125C

′
SL

+ 0.5C
′
T + 0.125C

′′
SL
− 0.5C

′′
T

)
. (2.3)

The expressions for Rth
D , Rth

D∗ and P th
τ in terms of Ceff

i are

Rth
D (Ceff

i ) = 0.297 | 1+Ceff
VL

+Ceff
VR
|2 +0.398 |Ceff

SL
+Ceff

SR
|2 +0.140 |Ceff

T |2

+0.509Re
[(

1+Ceff
VL

+Ceff
VR

)(
C∗eff
SL

+C∗eff
SR

)]
+0.244Re

[(
1+Ceff

VL
+Ceff

VR

)
C∗eff
T

]
, (2.4)

Rth
D∗(C

eff
i ) = 0.253

(
| 1+Ceff

VL
|2 + |Ceff

VR
|2
)
−0.449Re

[(
1+Ceff

VL

)
C∗eff
VR

]
+0.011 |Ceff

SR
−Ceff

SL
|2 +3.077 |Ceff

T |2

+0.030Re
[(

1+Ceff
VL
−Ceff

VR

)(
C∗eff
SR
−C∗eff

SL

)]
−1.055Re

[(
1+Ceff

VL

)
C∗eff
T

]
+1.450Re

[
Ceff
VR
C∗eff
T

]
, (2.5)

P th
τ (Ceff

i ) =
{

0.252 |Ceff
SL
−Ceff

SR
|2 +4.089 |Ceff

T |2−2.985
(
| 1+Ceff

VL
|2 + |Ceff

VR
|2
)

+8.298Re
[
C∗eff
T

(
1+Ceff

VL

)]
+0.716Re

[(
C∗eff
SR
−C∗eff

SL

)(
1+Ceff

VL
−Ceff

VR

)]
−11.410Re

[
C∗eff
T Ceff

VR

]
+5.136Re

[(
1+Ceff

VL

)
C∗eff
VR

]}
/
{

0.252 |Ceff
SL
−Ceff

SR
|2

+72.609 |Ceff
T |2 +5.983

(
| 1+Ceff

VL
|2 + |Ceff

VR
|2
)
−24.894Re

[
C∗eff
T

(
1+Ceff

VL

)]
+0.716Re

[(
C∗eff
SR
−C∗eff

SL

)(
1+Ceff

VL
−Ceff

VR

)]
+34.232Re

[
C∗eff
T Ceff

VR

]
−10.625Re

[(
1+Ceff

VL

)
C∗eff
VR

]}
. (2.6)

The B → D/D∗ l ν̄ decay distributions depend upon hadronic form-factors. The de-

termination of these form-factors relies heavily on HQET techniques. In this work we use

the HQET form factors in the form parametrized by Caprini et al. [87]. The parameters for

B → D decay are determined from the lattice QCD [9] calculations and we use them in our

analyses. For B → D∗ decay, the HQET parameters are extracted using data from Belle
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and BaBar experiments along with the inputs from lattice. In this work, the numerical

values of these parameters are taken from refs. [88] and [89].

Here our χ2 includes experimental and SM theory uncertainties. For a given NP

operator, the most likely value of its WC is obtained by minimizing the χ2. For this

minimization, we use the MINUIT library [90, 91]. We find that the values of χ2
min fall into

two disjoint ranges (. 1 and & 5). The latter range occurs for NP structures such as CVR ,

CSR , C ′VR etc. The WCs of NP solutions with χ2
min . 1 are listed in table 2.

Comparing the results of table 2 with those of [28], it can be seen that more new physics

solutions are now allowed. In table 2, the solutions with C ′VL and C ′′SR are degenerate with

the CVL solutions, because OVL is the Fierz transform of both O′VL and 2O′′SR . For these

three NP operators, the values of RD and RD∗ are proportional to [1 +αCVL ]2. Hence, we

get two degenerate solutions with equal and opposite values for (1+αCVL). If both CVL and

CVR are non-zero, the theoretical expression for RD is proportional to [1 +α(CVL +CVR)]2

and that for RD∗ depends on [1 +α(CVL +CVR)]2 and [1 +α(CVL −CVR)]2. There are four

combinations of (CVL , CVR) which have the same values for the above two functions and

hence are degenerate. For two of these combinations the value of CVR is negligibly small

and the value of CVL is close to that of the OVL solution. The other two combinations have

equal and opposite values of [1 + α(CVL + CVR)] and [1 + α(CVL − CVR)]. Hence, there

is essentially only one NP solution with non-zero CVL and CVR . Similar explanations can

be found for other degeneracies. Among multiple degenerate solutions, we keep only one

solution in further analysis.

We now include RJ/ψ in our fit. The expression for χ2 will have an additional term(
Rth
J/ψ(Ceff

i )−Rexp
J/ψ

)2

σ2
RJ/ψ

, (2.7)

where σRJ/ψ is the experimental uncertainty in RJ/ψ. The expression of Rth
J/ψ

Rth
J/ψ(Ceff

i ) = 0.289
(
| 1 + Ceff

VL
|2 + | Ceff

VR
|2
)
− 0.559Re

[(
1 + Ceff

VL

)
C∗eff
VR

]
+ 0.014 | Ceff

SR
− Ceff

SL
|2 +3.095 | Ceff

T |2

+ 0.041Re
[(

1 + Ceff
VL
− Ceff

VR

)(
C∗eff
SR
− C∗eff

SL

)]
− 1.421Re

[(
1 + Ceff

VL

)
C∗eff
T

]
+ 1.562Re

[
Ceff
VR
C∗eff
T

]
(2.8)

The form factors for Bc → J/ψ transition and their uncertainties from ref. [92] are used in

the calculation of Rth
J/ψ. These form factors are calculated in perturbative QCD framework.

After the inclusion of RJ/ψ data, the values of χ2
min again fall into two disjoint ranges (≤ 4.8

and ≥ 7.5). The WCs of NP solutions with χ2
min ≤ 4.8 are listed in table 3. The comparison

of the three observables fit with the four observables fit shows some remarkable features.

Each solution with χ2
min . 1 in the three observables fit has a corresponding solution with

χ2
min ≤ 4.8 in the four observables fit. The WCs in the two cases are very close to each

other. In addition, χ2
min & 5 solutions of three observables fit all have χ2

min ≥ 7.5 in

four observables fit. Hence we conclude that the NP which can explain RD/RD∗ can also

– 5 –
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Coefficient(s) Best fit value(s) χ2
min pull

CVL 0.146 0.92 4.32

CVL −2.818 0.92 4.32

CSL −1.917 1.03 4.31

CT 0.514 0.66 4.35

C ′VL 0.146 0.92 4.32

C ′VL −2.818 0.92 4.32

C ′′SL 3.544 1.07 4.30

C ′′SL −0.518 0.07 4.42

C ′′SR −5.636 0.92 4.32

C ′′SR 0.292 0.92 4.32

(CVL , CVR) (−1.282, 1.511) 0.04 4.42

(CVL , CVR) (0.175, 0.053) 0.04 4.42

(CVL , CVR) (−1.389,−1.511) 0.04 4.42

(CVL , CVR) (−2.846,−0.053) 0.04 4.42

(CSL , CSR) (−0.659, 0.912) 0.05 4.42

(CSL , CSR) (2.813,−2.560) 0.05 4.42

(CSL , CSR) (−1.766,−0.195) 0.05 4.42

(C ′VL , C
′
VR

) (0.120,−0.062) 0.03 4.42

(C ′VL , C
′
VR

) (0.194, 0.997) 0.18 4.40

(C ′VL , C
′
VR

) (−2.792, 0.062) 0.03 4.42

(C ′VL , C
′
VR

) (−2.866,−0.997) 0.18 4.40

(C ′SL , C
′
SR

) (−1.561, 1.221) 0.15 4.41

(C ′SL , C
′
SR

) (3.747,−2.746) 0.86 4.33

(C ′′VL , C
′′
VR

) (0.116,−0.185) 0.01 4.43

(C ′′VL , C
′′
VR

) (0.216, 0.949) 0.17 4.40

(C ′′SL , C
′′
SR

) (−0.655,−0.090) 0.02 4.42

(C ′′SL , C
′′
SR

) (3.453, 0.180) 0.87 4.33

(C ′′SL , C
′′
SR

) (0.655,−5.253) 0.02 4.42

(C ′′SL , C
′′
SR

) (−3.453,−5.523) 0.87 4.33

Table 2. Best fit values of the WCs of NP operators at Λ = 1 TeV for the measurements of RD,

RD∗ and Pτ . Here we list solutions with χ2
min . 1. For the SM, we have χ2

SM = 19.61. The pull

values are calculated using pull =
√
χ2

SM − χ2
min.

– 6 –
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Coefficient(s) Best fit value(s) Br(Bc → τ ν̄)

CVL 0.149 2.66× 10−2

CSL −1.920 3.04

CT 0.516 2.15× 10−2

C ′′SL 3.551 2.64

C ′′SL −0.526 5.19× 10−3

(CVL , CVR) (−1.286, 1.512) 2.58× 10−2

(CSL , CSR) (−0.682, 0.933) 2.22

(CSL , CSR) (2.833,−2.583) 19.01

(C ′VL , C
′
VR

) (0.124,−0.058) 6.60× 10−2

(C ′VL , C
′
VR

) (0.198, 0.997) 2.22

(C ′SL , C
′
SR

) (−1.561, 1.231) 1.89× 10−1

(C ′SL , C
′
SR

) (3.750,−2.739) 2.42

(C ′′VL , C
′′
VR

) (0.120,−0.186) 2.21× 10−1

(C ′′VL , C
′′
VR

) (0.221, 0.948) 1.97

(C ′′SL , C
′′
SR

) (−0.643,−0.076) 1.55× 10−2

(C ′′SL , C
′′
SR

) (3.436, 0.219) 2.52

Table 3. Best fit values of the coefficients of new physics operators at Λ = 1 TeV for the measure-

ments of RD, RD∗ , RJ/ψ and Pτ . Here we allow only those solutions for which χ2
min ≤ 4.8. We also

provide the predictions of branching ratio of Bc → τ ν̄ decay for each solution.

account for RJ/ψ. At present, there is no tension between RJ/ψ measurement and the RD
and RD∗ measurements.

We now consider the constraint from the purely leptonic decay Bc → τ ν̄. This decay

is not subject to helicity suppression if the b → c τ ν̄ transition is through pseudo-scalar

operators. The prediction for the partial width of the above decay, in such cases, is likely

to be larger than the measured total decay width of Bc meson. Hence the ratio

Br(Bc → τ ν̄) =
Γ(Bc → τ ν̄)NP

Γ(Bc → all)exp
(2.9)

puts strong constraints on the allowed NP WCs. The most general expression for the

branching fraction of Bc → τ ν̄ is

Br(Bc → τ ν̄) =
|Vcb|2G2

F f
2
Bc
mBcm

2
ττ

exp
Bc

8π

(
1− m2

τ

m2
Bc

)2

×

∣∣∣∣∣1 + Ceff
VL
− Ceff

VR
+

m2
Bc

mτ (mb +mc)
(Ceff

SR
− Ceff

SL
)

∣∣∣∣∣
2

(2.10)
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where fBc = 434±15 MeV [93] and τ exp
Bc

= 0.507±0.009 ps [94]. The NP Wilson coefficients,

Ceff
VL

, Ceff
VR

, Ceff
SL

and Ceff
SR

, are defined in eq. (2.3). Here mb and mc are the quark masses at

the µb = mb scale.

Table 3 also lists predictions for Br(Bc → τ ν̄). In SM, the prediction for this branching

ratio is reasonably small (2.15 × 10−2). We see from table 3 that some NP solutions,

especially those with large pseudo-scalar couplings, predict this quantity to be greater

than 1. Such solutions, obviously, are to be discarded. Recently, it is shown in ref. [95]

that LEP data imposes a constraint Br(Bc → τ ν̄) < 0.1. This constraint rules out two of

the new solutions (C ′SL , C
′
SR

) = (−1.561, 1.231) and (C ′′VL , C
′′
VR

) = (0.120,−0.186).

The list of WCs of NP solutions which satisfy all the present experimental constraints

is given in table 4. Using the best fit values of the allowed solutions, we provide the

predicted central values of the quantities used in the fit, i.e., RD, RD∗ , RJ/ψ and Pτ , for

each solution. This will allow us to see how close are the predictions of NP solutions to

the experimental measurements. We also give the uncertanties on the obtained values of

WCs. The range for the uncertainty is calculated using the definition χ2(Ci) ≤ χ2
min + 1.

When two NP operators are considered together, the ranges of the corresponding WCs are

correlated. These correlation ellipses are shown in figure 1 for the three allowed solutions

with two NP operators.

Looking at the predictions in table 4 we make the following observations:

• There are only four NP solutions effectively because the fifth NP solution is essentially

the same as the first NP solution and the sixth NP solution is essentially the same

as the third NP solution. The value of C ′VR in the fifth solution is quite small and

the value of C ′VL is close to the value of CVL in the first solution. Since the Lorentz

structure of O′VL is the same as that of OVL , we can argue that these two solutions

are essentially the same. Similarly, in the case of the sixth solution the value of C ′′SR
is very small and the value of C ′′SL is close to that of the third solution.

• Except for the tensor NP, all the other the predicted values of RJ/ψ are about half

of the central value of the experimental measurement, but are within 1.6σ. Only for

tensor NP the predicted RJ/ψ is significantly smaller than the SM prediction.

• The prediction for Pτ is markedly different only in the case of NP tensor couplings.

In all other cases Pτ is predicted to be very close to the SM prediction. The reason

for this is different for different cases.

1. The CVL solution has the same Lorentz structure as the SM and hence has the

same prediction for Pτ .

2. In the case of C ′′SL solution, the effective couplings of OSL and OT operators are

quite small and hence the prediction for Pτ remains close to the SM prediction.

3. Pτ prediction for OVR operator is the same as that of OVL (SM) operator. Hence,

a linear combination of these two operators also predicts Pτ to the same as the

SM value.
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NP type Best fit value(s) RD RD∗ RJ/ψ Pτ

SM Ci = 0 0.297± 0.008 0.253± 0.002 0.289± 0.007 −0.498± 0.004

CVL 0.149± 0.032 0.366± 0.013 0.313± 0.008 0.358± 0.012 −0.498± 0.004

CT 0.516± 0.015 0.411± 0.012 0.304± 0.011 0.202± 0.016 +0.115± 0.013

C ′′SL −0.526± 0.102 0.400± 0.020 0.307± 0.012 0.359± 0.015 −0.484± 0.003

(CVL , CVR) (−1.286, 1.512) 0.405± 0.012 0.305± 0.003 0.348± 0.008 −0.499± 0.004

(C ′VL , C
′
VR

) (0.124,−0.058) 0.406± 0.012 0.305± 0.003 0.349± 0.009 −0.484± 0.005

(C ′′SL , C
′′
SR

) (−0.643,−0.076) 0.408± 0.013 0.305± 0.003 0.359± 0.005 −0.477± 0.003

Table 4. Best fit values of the coefficients of new physics operators at Λ = 1 TeV by making use

of data of RD, RD∗ , RJ/ψ and Pτ . Here we allow only those solutions for which χ2
min ≤ 4.8 as well

as Br(Bc → τ ν̄) < 0.1. We also provide the predictions of RD, RD∗ , RJ/ψ and Pτ for each allowed

solutions. We provide the 1σ error for 1-parameter fit and only the central values for 2-parameter

fit. The 1σ ellipses for the three 2-parameter NP solutions are given in figure 1. In the first row,

the SM values of the observables come from our calculations by setting all NP couplings to zero.
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Figure 1. The allowed 1σ ellipses for the two parameter solutions listed in table 4.
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3 Impact of individual measurements from BaBar, Belle and LHCb

The analyses in the previous section were done using the world averages of RD and RD∗ .

The initial measurements of BaBar [1, 2] and Belle [3, 4], where the τ lepton was not studied,

are well above the SM predictions. More recent measurements, where the experiments tried

to reconstruct the τ lepton [5, 7, 8], are closer to the SM predictions. However, it must be

emphasised that in each case the measured value is larger than the SM prediction.

It is worthwhile to treat each individial measurement as a seperate data point to see

how close the predictions of each NP solution are to the corresponding measurement. In

this section we do such an analysis by taking all the measurements related to b → cτ ν̄ as

individual data points. There are ten such measurements including Pτ and RJ/ψ. But the

measurements of RD and RD∗ in BaBar [2] are correlated. The same is true for the Belle

measurement [3]. In addition, the measurement of RD∗ and Pτ by Belle [5] is based on the

same data set and hence are correlated. We take the best fit value of NP WCs in each case

and compute the χ2 for each individual measurement. For comparison we do this for SM

also. The results are presented in table 5. Since some of the measurements are correlated,

the χ2 for these is computed, taking these correlations into account. Therefore we have

only seven individual χ2 values listed in table 5.

From this table we can see the impact of various different measurements on the indi-

vidual values of χ2 as well as the total χ2. First we note that the total χ2 is quite large for

SM but ≤ 8 for all NP solutions. In case of SM, except for BaBar [2], all other individual

χ2 values are . 4. For all NP solutions, except for tensor solution, χ2(RJ/ψ) u 2 because

the NP predictions are typically 1.5σ away from the measured central value. Since the

tensor NP predicts RJ/ψ significantly smaller than the SM prediction, the corresponding

χ2(RJ/ψ) u 4. All other individual χ2 values for all NP solutions satisfy χ2 & 1, meaning

that the NP solutions do indeed provide a very good fit to each individual measurement.

For the three measurements, where the τ lepton is not reconstructed, the NP solutions

lead to considerable reduction in the value of χ2 from the SM value. For BaBar [2], this

reduction is from 14 to & 1. In the case of Belle [3] and LHCb [6] the corresponding

reduction is from 4 to . 1. For the two data points [5, 7] where τ lepton is reconstructed,

the difference between the χ2 values of the SM and the NP solutions is quite small. So

we note that the need for NP is driven by those measurements where the τ lepton was

not reconstructed.

4 New physics in only b→ c µ ν̄

So far, we have discussed scenarios where NP contributes only to b→ c τ ν̄ transition. It is

also interesting to consider scenarios where the NP is not in b→ c τ ν̄ but only in b→ c µ ν̄.

Such an assumption may give a good fit to RD and RD∗ but is likely to disagree with other

semi-leptonic decays of B mesons. Belle has measured the two ratios in b→ c l ν sector [96]

R
µ/e
D =

Γ(B → Dµν)

Γ(B → D eν)
= 0.995± 0.022(stat.)± 0.039(syst.), (4.1)
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NP type Best fit value(s) χ2(All) χ2(I) χ2(II) χ2(III) χ2(IV) χ2(V) χ2(VI) χ2(RJ/ψ)

SM Ci = 0 28.88 14.40 4.27 2.27 0.12 4.22 0.77 2.82

CVL 0.152 6.03 1.76 0.29 0.14 1.0 0.29 0.56 1.96

CT 0.519 7.75 1.02 0.79 0 0.99 0.49 0.34 4.08

C ′′SL −0.535 5.32 1.18 0.57 0 0.75 0.48 0.35 1.95

(CVL , CVR) (−1.293, 1.511) 5.46 1.21 0.54 0 0.77 0.48 0.34 2.06

(C ′VL , C
′
VR

) (0.131, −0.052) 5.41 1.17 0.58 0 0.75 0.48 0.34 2.04

(C ′′SL , C
′′
SR

) (−0.584, −0.032) 5.31 1.18 0.61 0 0.72 0.51 0.32 1.95

Table 5. List of χ2 values of each individual experiment for SM and for each NP solution.

The notations for these experiments are: BaBar→I, Belle’15→II, Belle’16-I→III, Belle’16-II→IV,

LHCb’15→V, LHCb’17→VI.

and [97]

R
e/µ
D∗ =

Γ(B → D∗ e ν)

Γ(B → D∗ µ ν)
= 1.04± 0.05(stat.)± 0.01(syst.). (4.2)

These ratios are in agreement with their SM expectations. Any NP only in b → c µ ν̄

will spoil this agreement. The small uncertainties in the above measurements will lead to

negligibly small NP Wilson coefficients in the b → c µ ν̄ effective Lagrangian. If we take

NP only in the muon sector and do a fit using the available experimental data of RD, RD∗ ,

RJ/ψ, R
µ/e
D and R

e/µ
D∗ , we get χ2

min only a little lower than the χ2
SM = 23. In particular, we

get the χ2
min > 19 for one parameter fit and χ2

min > 17.5 for two parameter fit. Hence, we

can conclude that NP in only b → c µ ν̄ is not a viable explanation for RD/RD∗ anomaly.

However, it is possible to satisfy the constraints in eqs. (4.1) and (4.2) by assuming that

the NP contribution to the decay b→ c µ ν̄ is identical to the NP contribution to the decay

b → c e ν̄. Then experimental constraints on RD/RD∗ require the NP WCs in b → c µ ν̄

transition to be similar in magnitude to those listed in table 4 but of opposite sign.

5 Conclusions

In this work we have done a refit of NP expressions for RD and RD∗ with the new world

averages. Since these values have slightly less tension with SM more NP solutions are

allowed. About a third of these solutions, especially those with scalar/pseudoscalar NP

operators, do not satisfy the constraint from Br(Bc → τ ν̄) and hence are rejected. Among

the allowed solutions, a number of them are degenarate to one another because they have

the same magnitudes of vector and axial-vector couplings in b → cτ ν̄ transition. It is

impossible to distinguish between two solutions, which differ from each other only by a

sign of the amplitude, by studying only those processes driven by b→ cτ ν̄ transition.

All these NP solutions are still allowed when RJ/ψ is included in the fit. Except for the

tensor NP solution, they all have RJ/ψ = 0.35−0.36, significantly smaller than the present

central value 0.71. Since the experimental uncertainties are large these predictions do fall

within the 90% C.L. range. However, the following observation is in order. The phase space

ratio for b→ c τ ν̄ : b→ c µ ν̄ is 0.37. If there were no hadronization effects, LFU predicts
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that RD, RD∗ and RJ/ψ should all be equal to this ratio. The predicted values of these

quantities in SM are indeed different because of different hadronization dynamics. Given

that the measured values of RD and RD∗ are larger only by about 20 − 30% compared to

SM, we expect the NP to change the amplitudes by about 10 − 15%. The present central

value of RJ/ψ is about 2.5 times the SM prediction. An NP amplitude consistent with

RD and RD∗ can change RJ/ψ by a maximum of 30%. It is impossible to obtain a 100%

increase in the value of RJ/ψ without a violent disagreement with RD and/or RD∗ . Hence,

we believe that a future measurement of RJ/ψ must necessarily have a smaller central value.

If later measurements of RJ/ψ find it to be smaller than the SM prediction, then tensor

NP is the likely solution.

By performing fit including all available data on b → c τ ν̄ transition, we identify all

allowed NP solutions and show that there are essentially only four NP solutions. We

have also done the calculation using the measurements of RD, RD∗ , Pτ and RJ/ψ for each

individual experiment. We note that the need for NP is driven by those measurements

where the τ lepton was not studied. Further, we demonstrate that NP only in b → c µ ν̄

does not provide a viable solution to the RD/RD∗ anomaly.

We also note from table 4 that tensor NP can also be distinguished by means of

tau polarization Pτ . In ref. [31], it was shown that the D∗ polarization fraction is also

effective in distinguishing the tensor NP solution. To make a distinction between the rest

of the solutions we need other angular variables such as forward-backward asymmetry and

longitudinal-transverse asymmetry. This problem is studied in ref. [98].
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