
J
H
E
P
0
9
(
2
0
1
8
)
1
5
0

Published for SISSA by Springer

Received: February 14, 2018

Revised: June 10, 2018

Accepted: September 23, 2018

Published: September 26, 2018

Bootstrapping the spectral function: on the

uniqueness of Liouville and the universality of BTZ

Scott Collier,a Petr Kravchuk,b Ying-Hsuan Linb and Xi Yina

aJefferson Physical Laboratory, Harvard University,

Cambridge, MA 02138 U.S.A.
bWalter Burke Institute for Theoretical Physics, Caltech,

Pasadena, CA 91125, U.S.A.

E-mail: scollier@physics.harvard.edu, pkravchuk@caltech.edu,

yinhslin@gmail.com, xiyin@fas.harvard.edu

Abstract: We introduce spectral functions that capture the distribution of OPE coef-

ficients and density of states in two-dimensional conformal field theories, and show that

nontrivial upper and lower bounds on the spectral function can be obtained from semidefi-

nite programming. We find substantial numerical evidence indicating that OPEs involving

only scalar Virasoro primaries in a c > 1 CFT are necessarily governed by the structure

constants of Liouville theory. Combining this with analytic results in modular bootstrap,

we conjecture that Liouville theory is the unique unitary c > 1 CFT whose primaries have

bounded spins. We also use the spectral function method to study modular constraints on

CFT spectra, and discuss some implications of our results on CFTs of large c and large

gap, in particular, to what extent the BTZ spectral density is universal.

Keywords: Conformal and W Symmetry, Conformal Field Theory, Field Theories in

Lower Dimensions, AdS-CFT Correspondence

ArXiv ePrint: 1702.00423

Open Access, c© The Authors.

Article funded by SCOAP3.
https://doi.org/10.1007/JHEP09(2018)150

mailto:scollier@physics.harvard.edu
mailto:pkravchuk@caltech.edu
mailto:yinhslin@gmail.com
mailto:xiyin@fas.harvard.edu
https://arxiv.org/abs/1702.00423
https://doi.org/10.1007/JHEP09(2018)150


J
H
E
P
0
9
(
2
0
1
8
)
1
5
0

Contents

1 Introduction 1

2 Spectral function bounds from semidefinite programming 5

2.1 A sphere four-point spectral function 5

2.2 Bounding the spectral function in a CFT with only scalar primaries 8

3 The linear method and the uniqueness of Liouville theory 12

3.1 Solution of the linear constraints on the spectral function 12

3.2 Constraints from modular invariance 14

3.3 Degenerate spectrum and TQFT 18

4 The modular spectral function 20

4.1 The minimization problem 20

4.2 Some consistency checks 22

4.2.1 Extremal spectra with maximal gap 22

4.2.2 Only scalar primaries 24

4.2.3 No scalar primaries 24

4.3 CFTs at large c with large gap 25

5 On the universality of the BTZ spectral density 28

A Zamolodchikov’s recurrence relation 30

B Liouville CFT and DOZZ structure constants 31

C The BTZ spectral density 33

D Details of the numerical computations 34

D.1 Details of the solution of the semidefinite problem 34

D.2 Details of the solution of the linear problem 37

D.2.1 Numerical checks of completeness 38

D.3 Bounds from a reduced basis of linear functionals 39

1 Introduction

Enormous progress in the conformal bootstrap program has been made in recent years based

on semidefinite programming [1–21]. Typically, one aims to bound the scaling dimensions

and OPE coefficients of the first few operators in the spectrum based on unitarity and

crossing invariance of the 4-point function. Such methods are most powerful in constraining
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CFTs with simple low lying spectrum, but become less constraining when the spectrum

becomes dense.

In this paper we introduce the spectral function method, which allows for constraining

not just the gap or the first few OPE coefficients but the distribution of OPE coefficients

over a wide range of scaling dimensions. While the method can be applied to CFTs in

any spacetime dimension, we focus on a particular application to two-dimensional unitary

CFTs.1 There the spectral functions are defined by truncating the Virasoro conformal

block decomposition of a 4-point function in the scaling dimension of the internal primaries,

evaluated at the self-dual cross ratio, or by truncating the Virasoro character decomposition

of a partition function in the scaling dimension of the primaries, evaluated at the self-dual

modulus. More precisely, consider a scalar 4-point function2

g(z, z̄) ≡ 〈φ(0)φ(1)φ(z, z̄)φ′(∞)〉 =
∑
s,∆

C2
s,∆Fs,∆(z, z̄), (1.1)

where Fs,∆(z, z̄) are Virasoro conformal blocks for an internal primary of dimension ∆ and

spin s. The corresponding spectral function is defined by truncating the Virasoro conformal

block decomposition of the four-point function

f(x) =
1

g(z = z̄ = 1
2)

∑
s,∆≤x

C2
s,∆Fs,∆

(
z = z̄ =

1

2

)
. (1.2)

Of course, for a compact CFT with a discrete spectrum, f(x) will be composed of step

functions. If the CFT is non-compact, then typically f(x) will be a monotonically increasing

smooth function that takes value between 0 and 1. We will see that the crossing equation∑
∆,s

C2
s,∆ [Fs,∆(z, z̄)−Fs,∆(1− z, 1− z̄)] = 0 (1.3)

combined with additional assumptions on the spectrum lead to upper and lower bounds

on f(x). Numerically, the crossing equation can be utilized by applying to (1.3) linear

functionals spanned by the basis ∂nz ∂
m
z̄ |z=z̄=1/2, for odd n + m ≤ N . The resulting upper

and lower bounds on f(x) (which are rigorous bounds although not optimal) will be denoted

f+
N (x) and f−N (x).

If we make the assumption that the CFT contains only scalar Virasoro primaries, we

find that f+
N (x) and f−N (x) become closer as N increases, for various values of the central

charge c > 1. We conjecture that both converge to the spectral function of Liouville theory,

which can be computed by integrating the square of the DOZZ structure constants [23, 24]

times the Virasoro conformal blocks. Note that this approach can be extended to the

4-point function involving a pair of different primaries, leading to spectral functions that

encode the most general structure constants of the CFT.

Convergence of the upper and lower bounds f±N (x) to the same value f∞(x) is related

to the completeness of the derivatives of scalar Virasoro blocks in a suitable space of func-

tions. Conversely, this completeness statement implies the uniqueness of the solution to

1In this paper, our definition of a 2d CFT includes consistency on all Riemann surfaces, which follows

from crossing symmetry and modular covariance of 1-point functions on the torus [22].
2The notation φ′(∞) stands for limz,z̄→∞ z2hφ z̄2h̄φφ(z, z̄).
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the crossing equations. We propose a numerical test for the completeness and find com-

pelling evidence suggesting that it holds. We moreover obtain numerical approximations to

the (conjecturally) unique solution to the crossing equations, which reproduce the DOZZ

spectral function with high accuracy. In contrast to the semidefinite methods, this linear

approach does not rely on the assumption that the OPE coefficients are real.3 The linear

and semidefinite results above therefore lead us to conjecture that the DOZZ structure

constants are the unique solution to the crossing equations for (not necessarily unitary)

CFTs with only scalar primaries (of non-negative scaling dimensions) and c > 1.

Interestingly, we find that the bounds on the spectral function f±N (x) exist for external

operator dimensions ∆φ ≥ c−1
16 (3

4 of the Liouville threshold), and converge to a step

function when ∆φ is equal to c−1
16 . When ∆φ < c−1

16 , the crossing equation cannot be

satisfied with only scalar internal primaries, ruling out the possibility of such operators.4

We will see that all of these are in agreement with the analytic continuation of Liouville

4-point functions.

A caveat in the above uniqueness claim is that we have assumed a non-degenerate

scalar spectrum. If degeneracies are allowed, then the operator algebra of Liouville CFT

tensored with a topological quantum field theory (TQFT) (or equivalently, a finite dimen-

sional commutative non-unital Frobenius algebra) would also solve the crossing equation.

In fact, such a TQFT can always be “diagonalized” by a basis change, and amounts to su-

perselection sectors. We will give partial arguments suggesting that under our assumptions,

“Liouville⊗TQFT” is the only possibility.

If we further invoke modular invariance, it will turn out that demanding that a unitary

CFT contains only primaries of spins in a finite range (s ≤ smax for some finite smax) implies

that the CFT must have a non-compact spectrum with only scalar primaries, and that the

spectral density ρ(∆) must be that of Liouville theory, namely

ρ(∆) ∝ 1√
∆− c−1

12

. (1.4)

This leads us to conjecture that Liouville theory is the unique unitary CFT with c > 1

whose primaries have bounded spins.

The spectral function method also can be applied to modular bootstrap. In this

context, we write the torus partition function as

Z(τ, τ̄) ≡ Tr qL0− c
24 q̄L̄0− c

24 =
∑
∆,s

d∆,sχ∆,s(τ, τ̄), (1.5)

where χ∆,s is the Virasoro character associated with a primary of dimension ∆ and spin

s and d∆,s is the degeneracy. The modular spectral function is defined by truncating the

Virasoro character decomposition of the partition function

fmod(x) =
1

Z(τ = −τ̄ = i)

∑
s,∆≤x

d∆,sχ∆,s(τ = −τ̄ = i). (1.6)

3However, it should be stressed that, unlike the semidefinite method, it is not entirely rigorous. Further-

more, it only ever works if we expect a unique solution. Therefore, it should be regarded as complementary

to the much more general semidefinite method.
4This was also observed in unpublished work of Balt van Rees.
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Once again, upper and lower bounds f±mod,N (x) can be obtained by acting on the modular

crossing equation ∑
∆,s

d∆,s [χ∆,s(τ, τ̄)− χ∆,s(−1/τ,−1/τ̄)] = 0 (1.7)

with linear functionals spanned by the basis (τ∂τ )n(τ̄ ∂τ̄ )m|τ=−τ̄=i, for odd n + m ≤ N .

In [20] (improving upon [25, 26]), an upper bound ∆mod(c) on the gap in the scaling

dimensions was computed numerically as a function of the central charge c. When this

bound is saturated, the entire spectrum is fixed by modular invariance, and is determined

by the zeros of the optimal linear functional acting on the Virasoro characters. We will see

in examples of small c (between 2 and 8) that under the assumption of maximal dimension

gap, f+
mod,N (x) and f−mod,N (x) converge with increasing N to step functions, corresponding

to the spectral functions of known theories.

For larger values of c, even when the dimension gap is maximized, the convergence

of the bounds f±mod(x) to a sum of step functions is difficult to see numerically, because

a good approximation of the optimal linear functional requires larger values of N , and

because the step function feature becomes invisible due to an exponentially large spectral

density. Nonetheless, for 50 ≤ c ≤ 300, we find empirically that the horizontal average

fmod,N (x) of the upper and lower bounds converges rather quickly with N , and the result is

in good agreement with the total contribution from thermal AdS3 and BTZ black hole [27]

to the gravity partition function, which results in the modular spectral function

fBTZ
mod (x) =

3

4
+

1

4
Erf

(√
6π

c

(
x− c

6

))
+

(
1

c
corrections

)
. (1.8)

Note that this asymptotic spectral function at large c is nontrivial when the dimension x

lies in a window of width ∼ √c around c/6. The agreement with the numerical bounds

confirms the validity of the effective field theory of pure gravity in AdS3 in the canonical

ensemble, for temperatures of order 1 in AdS units.

Curiously, BTZ black holes corresponding to operators of scaling dimension ∆ in the

range c
12 < ∆ < c

6 never dominate the canonical ensemble, and yet have macroscopic

(AdS scale) horizon, provided that ∆− c
12 scales with c. While the naive expectation from

effective field theory is that the Bekenstein-Hawking entropy formula should be a valid

counting of the microstates of such BTZ black holes, it is unclear to us whether this is a

universal property of CFTs with sufficiently large gap.5 In principle, the modular spectral

function bounds at large c should either confirm or disprove such statements. To probe

the density of states in the regime ∆ = yc for 1
12 < y < 1

6 and large c would require

exponential precision in determining the modular spectral function, which is beyond our

current numerical capability.

This paper is organized as follows. In section 2 we introduce the spectral function for

the scalar 4-point function in a 2D CFT, and explain how to obtain upper and lower bounds

5Such a universality would in particular require the dimension gap bound ∆mod(c) to have asymptotic

slope 1
12

, namely d∆mod(c)
dc

→ 1
12

, c→∞, which is not ruled out by the result of [20] but remains unproven

(with no numerical evidence either).
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f±N (x) from semidefinite programming. We then specialize to the case where only scalar

primaries are present, and demonstrate the convergence of the bounds toward the Liouville

spectral function. In section 3, we examine the completeness of scalar Virasoro conformal

blocks which would be implied by the aforementioned convergence, and we give numerical

evidence that the completeness indeed holds. We then present analytic arguments based

on modular invariance that a unitary CFT with c > 1 and Virasoro primaries of bounded

spin must be a non-compact CFT with the same spectral density as that of Liouville. This

together with the result of section 2 strongly supports the conjecture that Liouville theory

is the only CFT with bounded spins. In section 4, we analyze the numerical bounds on

the modular spectral function in a number of examples. We conclude with a discussion on

the universality of the BTZ spectral density in large-c CFTs with large gaps.

2 Spectral function bounds from semidefinite programming

2.1 A sphere four-point spectral function

We begin by considering the conformal block decomposition of the sphere four-point func-

tion of a pair of scalar Virasoro primary operators φ1, φ2 of dimensions ∆1,∆2,

g12(z, z̄) =〈φ1(z, z̄)φ2(0)φ2(1)φ′1(∞)〉

=
∞∑
s=0

∑
∆∈I12;s

C2
12;s,∆F12;s,∆(z, z̄).

(2.1)

Here I12;s is the set of scaling dimensions of spin-s primary operators in the φ1φ2 OPE

and C12;s,∆ = Cφ1φ2O is the OPE coefficient corresponding to the fusion of φ1 and φ2 into

the primary O with dimension ∆ and spin s.6 The OPE coefficients are real in a unitary

CFT. The conformal block F12;∆,s takes the form

F12;s,∆(z, z̄) =FVir
c

(
∆1

2
,
∆2

2
,

∆2

2
,

∆1

2
;
∆ + s

2
; z

)
F̄Vir
c

(
∆1

2
,

∆2

2
,
∆2

2
,

∆1

2
;

∆− s
2

; z̄

)
+ FVir

c

(
∆1

2
,
∆2

2
,
∆2

2
,

∆1

2
;

∆− s
2

; z

)
F̄Vir
c

(
∆1

2
,

∆2

2
,

∆2

2
,

∆1

2
;

∆ + s

2
; z̄

)
,

(2.2)

where FVir
c (h1, h2, h3, h4;h; z) is the holomorphic Virasoro conformal block with external

primaries of weight hi and an internal primary of weight h, in a CFT with central charge c.

Note that in writing the four-point function this way we have assumed a parity-invariant

spectrum.7 An efficient method for computing Virasoro conformal blocks is Zamolod-

chikov’s recurrence relation [24, 28], which we review in appendix A. It computes the

blocks as expansions in the “nome” q(z), defined as

q(z) ≡ exp(iπτ(z)), τ(z) ≡ iF (1− z)

F (z)
, F (z) = 2F1(1/2, 1/2, 1|z). (2.3)

6When the operator spectrum is degenerate, C2
12;∆,s would be replaced by the sum of squares of OPE

coefficients of all primaries of dimension ∆ and spin s.
7In what follows we specialize to the case where the spectrum only has scalar primary operators, so this

distinction is trivial.

– 5 –



J
H
E
P
0
9
(
2
0
1
8
)
1
5
0

Note that as z ranges over the complex plane, q(z) takes value in an eye-shaped region

on the unit disc, and the expansion of a conformal block in q converges on the entire unit

disc. In the numerical approach, we apply Zamolodchikov’s recurrence relation up to a

finite depth dq, which generates the correct q-series coefficients up to order qdq . We then

truncate the conformal block to this order as an approximation of the exact block.

It follows from the associativity of OPE that the four-point function is crossing sym-

metric, which amounts to the crossing equation

∞∑
s=0

∑
∆∈I12;s

C2
12;s,∆ [F12;s,∆(z, z̄)−F12;s,∆(1− z, 1− z̄)] = 0. (2.4)

This relation puts highly nontrivial constraints on the spectrum and OPE coefficients

of the CFT, some of which were analyzed in [19, 21, 29–31]. In previous works, one

typically either focuses on a limit of the crossing equation in the cross ratio and extracts

asymptotic properties of the spectrum, or numerically bounds the scaling dimension and

OPE coefficients of the first few operators from the positivity assumption on C2
12;∆,s.

We now introduce a “spectral function” that captures the distribution of OPE coef-

ficients over a range of scaling dimensions of primaries in the φ1φ2 OPE, defined through

the conformal block decomposition of the four-point function evaluated at the crossing-

symmetric point z = z̄ = 1
2 , truncated on the dimension of internal primary operators:

f(∆∗) ≡
1

g12(1/2, 1/2)

b∆∗c∑
s=0

∑
∆∈I12;s,∆≤∆∗

C2
12;s,∆F12;s,∆(1/2, 1/2). (2.5)

Note that due to the unitarity bound, f(∆∗) receives no contribution from primary oper-

ators with spin s > ∆∗. By definition, obviously, f(∆∗) is a non-decreasing function that

takes value between 0 and 1.

One can place bounds on the spectral function using semidefinite programming as

follows. We would like to either maximize or minimize the spectral function subject to the

crossing equation expanded around z = z̄ = 1
2

0 =

∞∑
s=0

∑
∆∈I12;s

C2
12;s,∆∂

m
z ∂

n
z̄F12;s,∆(z, z̄)

∣∣
z=z̄= 1

2

, m+ n odd. (2.6)

Note that z = 1
2 corresponds to the nome q = e−π, thus the q-expansion of conformal

blocks converges rather quickly at this point. Consider a set of coefficients y0,0 and ym,n
(m+ n odd) such that

(y0,0 −Θ(∆∗ −∆))F12;s,∆(1/2, 1/2) +
∑

m+n odd

ym,n∂
m
z ∂

n
z̄F12;s,∆(z, z̄)|z=z̄= 1

2
≥ 0. (2.7)

Here Θ(∆∗−∆) is the step function that takes value 1 for ∆ ≤ ∆∗ and 0 otherwise. (∆, s)

runs through all possibly allowed values of dimension and spin in the OPE. We could

place additional assumptions on the spectrum by restricting the range of (∆, s) in (2.7).

– 6 –
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For instance, if we are to impose a dimension gap ∆gap or twist gap tgap, then we have

respectively ∆ ≥ max(s,∆gap) or ∆ ≥ s+ tgap for the spin-s (non-vacuum) primaries.8

We shall seek the minimal y0,0 such that (2.7) holds, which we denote by ymin
0,0 . It

follows that

f(∆∗) =
1

g12(1/2, 1/2)

∞∑
s=0

∑
∆∈I12;s

C2
12;s,∆F12;s,∆(1/2, 1/2)Θ(∆∗ −∆)

≤ 1

g12(1/2, 1/2)

∞∑
s=0

∑
∆∈I12;s

C2
12;s,∆

×
[
ymin

0,0 F12;s,∆(1/2, 1/2) +
∑

m+n odd

ym,n∂
m
z ∂

n
z̄F12;s,∆(z, z̄)|z=z̄= 1

2

]
=ymin

0,0 ,

(2.8)

where we have invoked unitarity by making use of the non-negativity of the squared struc-

ture constants, and applied the crossing equation. In other words, ymin
0,0 is an upper bound

on the value of the spectral function at ∆∗.

Likewise, if we minimize w0,0 subject to

(w0,0 + Θ(∆∗ −∆))F12;s,∆(1/2, 1/2) +
∑

m+n odd

wm,n∂
m
z ∂

n
z̄F12;s,∆(z, z̄)|z=z̄= 1

2
≥ 0, (2.9)

then

f(∆∗) ≥− wmin
0,0 , (2.10)

i.e., −wmin
0,0 is a lower bound on the value of the spectral function at ∆∗.

To obtain these bounds numerically we need to restrict to a finite subset of linear

functionals acting on the crossing equation. We will do so by restricting the sums in (2.7)

and (2.9) to odd m + n ≤ N ; we refer to N as the “derivative order.” The upper and

lower bounds on the spectral function derived from the above minimization procedure

using linear functionals up to derivative order N will be denoted f+
N (∆∗) and f−N (∆∗),

respectively. While these bounds at every N are rigorous by themselves, the optimal

bounds are obtained by extrapolating to the N →∞ limit.

The numerical implementation of the above procedure is performed using the SDPB

package [32], with two practical modifications. Firstly, we will need to truncate the spec-

trum: while the application of SDPB does not require cutting off the dimension spectrum

from above, a sufficiently large but finite truncation on the spin is necessary. In principle,

the spin truncation means that we would not be taking into account all inequalities obeyed

by the coefficients y0,0 and ym,n, resulting in stronger-than-correct bounds on the spectral

function.9 Nonetheless, working at a fixed derivative order N , we generally find that the

spectral function bounds stabilize to within numerical precision once the maximal spin

8In the case of a compact CFT, one must take care to additionally impose (2.7) and (2.9) on the

vacuum block.
9Indeed, the discussion in section 3.2 shows precisely why it is dangerous to truncate spectra of primaries

on their spins.
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smax is taken to be sufficiently large (empirically, smax at order N is sufficient). For the

application to theories with only scalar primaries in the next few subsections, of course,

we do not need to worry about the spin truncation being sufficiently large. In this case,

however, we must be especially careful in taking the truncation on the q-series of the con-

formal blocks to be sufficiently large, as the corrections to the approximate blocks would

introduce nonzero spin primary contributions.

Secondly, since SDPB deals with the question of whether there exists a linear com-

bination of polynomials pi(x) that is non-negative for all x ≥ 0, the above minimization

problem must be recast in the form of inequalities on polynomial functions of ∆ on a semi-

infinite line. For instance, suppose we impose a lower bound ∆∗s on the dimension of spin-s

primaries as part of the a priori assumptions on the spectrum, then (2.7) is equivalently

written as

y0,0F12;s,∆(1/2, 1/2) +
∑

m+n odd

ym,n∂z∂
n
z̄ F12;s,∆(z, z̄)|z=z̄= 1

2
≥ 0, ∆ ≥ ∆∗,

(y0,0 − 1)F12;s,∆(1/2, 1/2) +
∑

m+n odd

ym,n∂z∂
n
z̄ F12;s,∆(z, z̄)|z=z̄= 1

2
≥ 0, ∆∗s ≤ ∆ < ∆∗.

(2.11)

By default, ∆∗s can be set to the unitarity bound. While the first inequality in (2.11) can

be implemented in SDPB by a simple shift in the variable ∆, the second inequality which

holds for ∆ in an interval is more subtle. It is handled10 by converting the inequality

to one on the semi-infinite line by a change of variable ∆ = (∆̃∆∗ + ∆∗s)/(∆̃ + 1); now

∆∗s ≤ ∆ < ∆∗ amounts to ∆̃ ≥ 0.

2.2 Bounding the spectral function in a CFT with only scalar primaries

We now specialize to the case of CFT with only scalar primary operators. We do not

specify the normalization of the primaries; as far as the spectral function is concerned, the

external primaries are effectively normalized through the 4-point function (thus capturing

relative OPE coefficients). This allows us to deal simultaneously with compact and non-

compact CFTs. (By a non-compact CFT, we mean one with continuous spectrum and

no SL(2,R) × SL(2,R)-invariant vacuum.) As alluded to in the introduction, there is

only one known unitary CFT with c > 1 of this type, namely Liouville theory, and we will

compare our bounds to the Liouville spectral function which can be obtained by numerically

integrating the known OPE coefficients (given by DOZZ formula [23, 24], as reviewed in

appendix B) with the Virasoro conformal blocks.

We can write the four-point function involving a pair of primaries φ1, φ2 as

g12(z, z̄) =

∫ ∞
0

d∆ C2
12;0,∆F12;0,∆(z, z̄), (2.12)

and the spectral function as

f(∆∗) =
1

g12(1/2, 1/2)

∫ ∆∗

0
d∆ C2

12;0,∆F12;0,∆(1/2, 1/2). (2.13)

10This trick is due to David Simmons-Duffin.
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Figure 1. Upper and lower bounds on the spectral function from linear functionals of in-

creasing derivative order (from green to red), assuming only scalar primaries for c = 8 with

∆φ/∆0 = 3
4 ,

7
8 , 1,

24
7 . In all cases, the shaded regions are excluded and the black curve denotes

the corresponding spectral function of (analytically continued) Liouville theory.

This accommodates both continuous and discrete spectra (in the latter case the integral

will receive contributions from delta-functions). To place bounds on f(∆∗), we simply solve

the minimization problem (2.7), (2.9) for s = 0 only. This is implemented with SDPB with

a given set of c, ∆1 and ∆2, while scanning over a range of ∆∗, at increasing derivative

orders N .

First, we consider the case where all external operators in the four-point function have

the same scaling dimension (above or below the Liouville threshold, ∆0 ≡ 2ξ). Our results

for c = 8 are summarized in figure 1. We observe that as the derivative order N increases,

the upper and lower bounds approach one another, narrowing the allowed range of the

spectral function. Both bounds appear to be converging upon the spectral function of

Liouville theory (whose background charge Q is related to c by c = 1 + 6Q2), which sits in

the middle of the allowed window.

There exist solutions to the scalar-only crossing equations when the external operator

dimension drops below the Liouville threshold, so long as ∆φ ≥ 3
4∆0. For ∆φ < 3

4∆0,

solutions to the crossing equations with only scalar primaries in the OPE are excluded by

our numerical analysis. When ∆φ = 3
4∆0, we find that the upper and lower bounds on the
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spectral function converge quickly to a step function, i.e., f+
N (∆∗) ≈ fN− (∆∗) ≈ Θ(∆∗−2ξ),

already at small derivative order N . This case and an example where ∆φ lies in between
3
4∆0 and the Liouville threshold are included in figure 1.

In fact, for ∆φ ∈ ( c−1
16 ,

c−1
12 ), our bounds on the spectral function are entirely consis-

tent with the analytic continuation of the Liouville spectral function to external operator

dimensions below the Liouville threshold. Indeed, such analytically continued Liouville

correlators arise in the study of certain normalizable BPS correlators in super-Liouville

theory [19] as a result of a relation due to Ribault and Teschner between SL(2) WZW

model correlators and Liouville correlators [33]. A priori, the crossing invariant Liouville

4-point function involves external primaries of scaling dimension ∆i = 2αi(Q − αi), and

an integration over internal primaries of scaling dimension ∆ = 2α(Q− α), where both αi
and α lie on the half line Q

2 + iR≥0. We can analytically continue αi to the real axis, away

from Q
2 , provided that no pole in the structure constant C(α1, α2, α) as a function of α

crosses the integration contour Q
2 + iR. This is possible for Q

2 < α1 + α2 < Q, but fails for

α1+α2 ≤ Q
2 when a pole in α crosses the contour and the 4-point function picks up a residue

contribution that violates unitarity. Indeed, α1 = α2 = Q
4 corresponds to ∆φ = 3

4∆0, and

we find the step function behavior demonstrated in figure 1 whenever α1 + α2 = Q
2 .11

Next, we study the bounds on the spectral function for the 4-point function involving

a pair of primaries φ1 and φ2 of different scaling dimensions, of the form (2.1). Note that

for a non-compact CFT with only scalar primaries, such spectral functions capture the

complete set of structure constants for three primaries of arbitrary weights. In figure 2 we

plot the upper and lower bounds on the mixed correlator spectral function for c = 8 with

external primaries of various dimensions (∆1,∆2). Once again, the bounds narrow down

the allowed window towards the spectral function of Liouville theory.

Apart from the case of α1 + α2 = Q
2 , our numerical upper and lower bounds have

not quite converged convincingly to the (analytic continuation of) the Liouville spectral

function, due to the computational complexity of computing bounds at high derivative order

N . Our results nonetheless suggest such a convergence in the N → ∞ limit, supporting

our conjecture that the DOZZ structure constants C(α1, α2, α3) are the unique solution to

the crossing equations for unitary CFTs with c > 1 and only scalar primaries.

Note that the convergence of the bounds on the 〈φφφφ〉 spectral function would deter-

mine the φφ OPE up to normalization; if this holds for all ∆φ, it would then determine,

assuming a non-degenerate spectrum, the conformal block decomposition of 〈φ1φ1φ2φ2〉 as

well. This then determines the most general φ1φ2 OPE, up to normalization. Compatibil-

ity with all crossing equations fixes the normalizations of OPE coefficients to be DOZZ up

to an overall scale factor which cannot be fixed for a non-compact CFT.12 Thus, in order

11This step function behavior is consistent with the fact that the 4-point conformal block with α1+α2 = Q
2

and internal primary with α = Q
2

is crossing invariant by itself. This conformal block is the same as the

holomorphic part of the 4-point function 〈e2α1φ(z)e2α2φ(0)e2α2φ(1)e2α1φ(∞)〉 in the linear dilaton CFT with

background charge Q. Note that in the linear dilaton theory the closure of the OPE demands a non-

unitary spectrum.
12This is because we can always tensor with a non-unital Frobenius algebra Gα with a single generator e,

(e, e) = 1, e2 = αe for any α ∈ R.
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Figure 2. Upper and lower bounds on the mixed correlator spectral function for c = 8 and

(∆1

∆0
, ∆2

∆0
) = ( 5

9 ,
8
9 ), (1, 7

8 ), (1, 12
7 ). The black curve denotes the (analytically continued) DOZZ spec-

tral function. In (c), a small gap of ∆gap = 0.01 has been imposed to explicitly exclude the vacuum

channel which would correspond to a singular conformal block for the mixed correlator.

to establish our conjecture for the uniqueness of the DOZZ solution for the scalar-only

crossing equations in the non-degenerate case, it suffices to consider the OPE of pairs of

identical primaries, and then the result for mixed correlators would follow.

One can notice that the bounds appear to change slowly with N in certain regions of the

plots. We also observed in the numerical studies of spectral functions in modular bootstrap

that the convergence of upper and lower bounds is relatively slow for continuous spectra as

compared to discrete spectra (see section 4.2.2) in the cases where we know that the solution

to the modular crossing equation is unique. It appears to be quite difficult numerically

to push these bounds to higher derivative orders N , due to the need to substantially

increase the truncation order dq on the q-expansion of the Virasoro conformal blocks. This

is discussed in appendix D.1. In the next subsection, we consider an alternative method

of directly solving the linear system that determines the spectral function assuming that

the optimal upper and lower bounds coincide. This method in fact does not rely on the

assumption of reality of the OPE coefficients and appears to converge much faster to the

DOZZ spectral function.

– 11 –



J
H
E
P
0
9
(
2
0
1
8
)
1
5
0

3 The linear method and the uniqueness of Liouville theory

3.1 Solution of the linear constraints on the spectral function

For CFTs with only scalar primaries, if the upper and lower bounds on the spectral function

indeed converge (thereby pinning down the Liouville spectral function as the only solution),

namely ymin
0,0 in (2.7) agrees with −wmin

0,0 in (2.9), we would have a solution to the linear

equation

Θ(∆∗ −∆)F12;0,∆(1/2, 1/2) = y0,0F12;0,∆(1/2, 1/2)

+
∑

m+n odd

ym,n∂
m
z ∂

n
z̄F12;0,∆(z, z̄)|z=z̄= 1

2
.

(3.1)

That is to say, on a certain vector space of functions in ∆, the function

Θ(∆∗ −∆)F12;0,∆(1/2, 1/2) can be decomposed on the basis spanned by F12;0,∆(1/2, 1/2)

and ∂mz ∂
n
z̄F12;0,∆(z, z̄)|z=z̄= 1

2
. Since the step functions are themselves complete, our conjec-

ture of the DOZZ structure constants as the unique solution is related to the completeness

of this basis on a suitably defined Hilbert13 space of functions in ∆.14 We note in passing

that in [34], Teschner proved the existence of the braiding and fusion transformations (and

derived the fusion coefficients) of the Virasoro conformal blocks using a method that sug-

gests that the Virasoro blocks in question (namely, the chiral blocks with internal weight

above the Liouville threshold) form a complete set for an appropriate space of functions of

the internal weight. While we do not have a proof of this statement, here we will adopt the

strategy of analyzing the linear problem directly in an attempt to solve for the coefficient

y0,0 (for a truncated system). The stability of the solution and its convergence to the

Liouville spectral function will provide strong evidence for the conjecture. Another way to

arrive at (3.1) is the following. In a non-compact CFT with only scalar primaries the cross-

ing symmetry equations, together with a normalization condition g12(1/2, 1/2) = 1, (3.1)

can be written as ∫ ∞
0

d∆C2
12;0,∆F12;0,∆(1/2, 1/2) = 1,∫ ∞

0
d∆C2

12;0,∆∂
n
z ∂

m
z̄ F12;0,∆(1/2, 1/2) = 0, n+m odd.

(3.2)

We may equivalently express these equations as

〈v, p0,0〉 = 1,

〈v, pn,m〉 = 0, n+m odd,
(3.3)

13It is not obvious that the Hilbert space structure is the fundamentally correct one; for example, it might

be that the correct notion is denseness in some Banach space.
14Note that the linear independence of F12;0,∆(1/2, 1/2) from ∂mz ∂

n
z̄ F12;0,∆(z, z̄)|z=z̄= 1

2
as functions of ∆

is guaranteed by the existence of DOZZ structure constants as a solution to the crossing equation. Indeed,

according to (3.2) below, DOZZ structure constants give a linear functional which is 1 on F12;0,∆(1/2, 1/2)

but 0 on ∂mz ∂
n
z̄ F12;0,∆(z, z̄)|z=z̄= 1

2
.
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where the vectors v, pn,m represent the functions

v(∆) = C2
12;0,∆/fv(∆), (3.4)

pn,m(∆) = ∂nz ∂
m
z̄ F12;0,∆(1/2, 1/2)/fp(∆). (3.5)

for some suitable choices of fv(∆) and fp(∆) (see appendix D.2 for details), while the inner

product is defined by

〈x, y〉 =

∫ ∞
0

x∗(∆)y(∆)dµ(∆), (3.6)

with the measure dµ(∆) = fv(∆)fp(∆)d∆.

We now hope for completeness of the set pn,m (from hereon we only consider n =

m = 0 or n + m odd), assuming that all functions in question have finite norm. We

truncate by n+m ≤ N and consider the approximation of v by its orthogonal projection

vN = PNv onto PN = span{pn,m}n+m≤N . Note that despite the notation vN , because of

the equations (3.3), vN is independent of a particular solution v. It can be computed by

evaluating the Gram matrix of p vectors and taking its inverse,

vN =

n+m≤N∑
n,m

n′+m′≤N∑
n′,m′

〈v, pn,m〉 (G−1
N )n,mn′,m′pn′,m′ =

n′+m′≤N∑
n′,m′

(G−1
N )0,0

n′,m′pn′,m′ , (3.7)

where

(GN )n,mn′,m′ =
〈
pn,m, pn′,m′

〉
, n+m ≤ N, n′ +m′ ≤ N. (3.8)

The spectral function can be computed as the inner product

f(∆∗) = 〈v, θ∆∗〉 =

∫ ∆∗

0
d∆C2

12;0,∆F12;0,∆(1/2, 1/2), (3.9)

where

θ∆∗(∆) = Θ(∆∗ −∆)p0,0(∆). (3.10)

We have an estimate,

〈v, θ∆∗〉 = 〈v, PNθ∆∗〉+ 〈v, (1− PN )θ∆∗〉 = 〈vN , θ∆∗〉+RN (∆∗), (3.11)

where

|RN (∆∗)|2 = | 〈v, (1− PN )θ∆∗〉 |2 ≤ |v|2|(1− PN )θ∆∗ |2 = EN |v|2|θ∆∗ |2. (3.12)

Note that EN = |(1−PN )θ∆∗ |2/|θ∆∗ |2 is also independent of a particular solution v and is

computable from (3.3).

If (3.1) holds in the norm induced from 〈·, ·〉, then EN → 0. Conversely, if we show for

all ∆∗ that limN→∞EN = 0, it will imply that any normalizable solution to (3.3) and thus

to (3.2) is equal to the limit limN→∞ vN , which is unique if it exists. Our strategy would

be therefore to evaluate vN and EN numerically and estimate their limits.

We first numerically evaluate fN (∆∗) = 〈vN , θ∆∗〉 and find that it converges to the

Liouville spectral density in the limit N →∞. For example, in figure 3(a) the approxima-

tion fN is plotted at successive odd values of N up to N = 25 for c = 8 and ∆φ = 7/12.
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Figure 3. (a) Plot of fN (∆∗) for c = 8, ∆φ = 7
12 , as N ranges from N = 1 (blue) to N = 25 (red)

with step of 2. (b) Comparison of fN (∆∗) (N = 27 in solid blue and N = 33 in solid red) with the

exact DOZZ spectral function (dashed, black) for c = 2, ∆φ = 55
12 .

We can see that the curves exhibit the expected convergence. Another example where the

external operator dimension is far above the Liouville threshold is shown in figure 3(b),

where we studied c = 2, ∆φ = 55/12, up to N = 33 and dq = 200. While fN (∆∗) oscillates

wildly at smaller N (the case N = 27 is shown for comparison), the oscillation settles down

substantially as N is increased.

In figure 4 we compare fN (∆∗) with the DOZZ spectral function for c = 8 and c = 30,

with ∆φ at or above the Liouville threshold, as well as an example of a mixed correlator

spectral function15 with two different values of external operator dimensions. In all cases

we find good agreement.

To further support the conjecture, we numerically compute the error estimate EN as

a function of N . For example, in figure 5 we show EN as a function of 1/N for ∆φ = c−1
12 ,

∆∗ = c
10 , and c = 8. In the figure we also show a linear fit using N ≥ 11. Empirically,

we find that the result is consistent with EN ∼ N−1. We study EN in more detail in

appendix D.2.1.

The discussion above depends on the assumption that v has finite norm. This assump-

tion itself depends on the choice of measure. We describe our choice of measure and details

of our implementation in appendix D.2. Here we simply note that with our choice, v has

finite norm if C4
12;0,∆ is locally integrable on [0,∞), and the OPE expansion is convergent

in the region |z| < 1. Discrete spectra have infinite norm since C4
12;0,∆ involves squares of

delta-functions, but such spectra are excluded by modular invariance.

3.2 Constraints from modular invariance

Strong constraints on the primary spectrum, especially in the scalar-only case, follow from

modular invariance alone. In fact, there is a simple argument that shows any 2D CFT with

c > 1 and primary operators with bounded spin must have a spectrum identical to that of

15The mixed correlator spectral function was obtained under a technical assumption of a lower dimension

bound of ∆0
5

(note that this is below the Liouville threshold ∆0), see appendix D.2 for details.
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Figure 4. Comparison of fN (∆∗) (solid, red) with the exact DOZZ spectral function (dashed, blue)

for external operator dimension ∆φ, and in the mixed correlator case, external operator dimensions

∆1 and ∆2 (∆0 ≡ c−1
12 is the Liouville threshold as before).
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Figure 5. Plot of EN for as a function of 1/N , c = 8, ∆φ = 7
12 , ∆∗ = 0.8, N ≤ 25. The dashed

curve is a linear fit for N ≥ 11.
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Liouville theory: that is, the spectrum is non-compact, has scalar primaries only, and has

a spectral density that is uniformly distributed in Liouville momentum P =
√

2(∆− c−1
12 ).

Suppose the primaries have spins no greater than smax. We can write the reduced

torus partition function in the following way:

Z̃(τ, τ̄) = τ
1
2

2 |η(τ)|2Z(τ, τ̄)

= τ
1
2

2

|q−ξ(1− q)|2 +
∑

h+h̃>0

d(h, h̃)qh−ξ q̄h̃−ξ


=

∑
s,|s|≤smax

e2πisτ1fs(τ2),

(3.13)

where q = e2πiτ , ξ = c−1
24 , d(h, h̃) is the degeneracy of primary operators in the spectrum

with conformal weights (h, h̃) and fs(x) =
∑

∆≥|s| d(∆+s
2 , ∆−s

2 )x
1
2 e−2πx(∆−2ξ). For now

we assume that the CFT is compact, and the vacuum character is degenerate and so

smax ≥ 1. The non-compact CFTs may be viewed as limiting cases, where the spectral

density diverges and we divide the partition function by an infinite normalization factor

which removes the vacuum contribution. Here we consider unitary CFTs; in particular, we

assume that the degeneracies d(h, h̃) and the conformal weights h, h̃ are non-negative.

Now consider the following change of variables

x = τ2, y =
τ2

|τ |2 , (3.14)

chosen so that the modular S transformation exchanges x and y. We can then write the

modular crossing equation in terms of these variables as

∑
s

e
2πis

√
x
y
−x2

fs(x) =
∑
s

e2πis
√

y
x
−y2

fs(y) (3.15)

Of course, the functions above have branch cuts at x = y−1, but since the sum over spins

is finite by assumption, the analytic continuation around the branch is straightforward.

Furthermore, fs(y) is an analytic function for Re(y) > 0. To proceed, we fix x = re−iα

with r > 0 and 0 < α < π
2 and y = ε with ε → 0+, so that the modular crossing

equation becomes ∑
s

e2πs
√

r
ε
(sin α

2
+i cos α

2
)fs(x) ≈

∑
s

fs(ε)

=
∑
s

fs(ε
−1),

(3.16)

where in the first line we dropped the phase factors e2πis
√

ε
r
eiα−ε2 (which are close to 1

due to the boundedness of s) in front of fs(ε); this is a valid approximation since fs(ε) is

positive for all s (as follows from our unitarity assumption). In the second line we again

invoked modular invariance (this particular equality is realized as the modular crossing

equation with τ1 = 0, τ2 = ε). In the case that the CFT is compact, the right-hand side is
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dominated by the contribution of the vacuum, in particular∑
s

fs(ε
−1) ≈ ε− 1

2 e
4πξ
ε . (3.17)

By comparing to the ε → 0 limit of the left-hand side, which is dominated by the term

with maximal spin∑
s

e2πs
√

r
ε
(sin α

2
+i cos α

2
)fs(re

−iα) ≈ e2πsmax

√
r
ε
(sin α

2
+i cos α

2
)fsmax(re−iα), (3.18)

we arrive at a contradiction and deduce that unitary 2D CFTs with primary operators of

bounded spin must have non-compact spectra: namely, there is no SL(2,R) × SL(2,R)-

invariant vacuum and the dimension of the lowest-lying primary operator obeys ∆min > 0.

In fact, this same logic allows us to conclude that the dimension of the lowest-lying

operator must obey ∆min ≥ c−1
12 . In the ε→ 0 limit, we have

e2πsmax

√
r
ε
(sin α

2
+i cos α

2
)fsmax(re−iα) ≈

∑
s

fs(ε
−1)

=Z̃(τ1 = 0, τ2 = ε−1)

=ε−
1
2

∫ ∞
0

d∆ρ(∆)e−
2π
ε

(∆−2ξ),

(3.19)

where ρ(∆) is the density of primary operators in the spectrum with dimension ∆ (of

any spin). The two sides of the equation are clearly incompatible if the minimum scaling

dimension for which ρ(∆) is nonzero is smaller than 2ξ. Furthermore, by non-negativity of

the spectral density, the right-hand side can grow no faster than ε−
1
2 as ε → 0+. On the

other hand, the absolute value of (3.18) grows like e2πsmax

√
r
ε

sin α
2 in this limit. Modular

invariance thus demands that smax = 0: that is, a unitary 2D CFT with primary operators

of bounded spin must in fact have only scalar primary operators in addition to having a

non-compact spectrum. Moreover in this case the modular crossing equation becomes

f0(x) = f0(y), (3.20)

which demands that f0(x) is a constant. Thus the required spectral density is nothing

other than that of Liouville theory, namely ρ(∆) = ρLiouville(∆) ∝ (∆− 2ξ)−
1
2 Θ(∆− 2ξ),16

completing the argument. In particular, the dimension of the lowest-lying operator must

be exactly ∆min = 2ξ.

By this result, our conjecture that the DOZZ structure constants are the unique solu-

tion to the crossing equations for a unitary 2D CFT with central charge c > 1 and only

scalar primaries, as supported by substantial numerical evidence in sections 2.2 and 3.1

leads us to conjecture that Liouville theory is the unique unitary c > 1 CFT with Virasoro

primaries of bounded spin.17

16To normalize the reduced partition function of Liouville theory to 1, the constant of proportionality

is
√

2.
17Note that we have not made use of the torus 1-point function. A priori, the modular invariance of

the torus 1-point function puts nontrivial constraints on the structure constants with a pair of primaries

identified. For the purpose of establishing our conjecture regarding the uniqueness of Liouville, once the

OPE coefficients are pinned down to those of DOZZ by the crossing equation, the torus 1-point functions

are already modular invariant [35].
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3.3 Degenerate spectrum and TQFT

In our analysis of the crossing equation so far, we have implicitly assumed that the scalar

primaries are labeled by a continuous parameter, namely the scaling dimension ∆φ, without

further degeneracy. If this assumption is relaxed, one can construct more examples of

(non-compact) c > 1 CFTs with only scalar primaries, by taking the tensor product of

Liouville CFT with a topological quantum field theory (TQFT); the latter has a finite

dimensional Hilbert space on the circle and its structure constants are governed by those

of a commutative Frobenius algebra [36].18 We conjecture that this is the only possibility.

Let us assume that the scalar primaries are labeled by their scaling dimension ∆ and

an extra index i, and denote the structure constants by

Cijk(∆1,∆2,∆3) = Aijk(∆1,∆2,∆3)CDOZZ(∆1,∆2,∆3), (3.21)

where we have explicitly factored out the DOZZ structure constants. Our numerical results

in the previous sections on the spectral function of mixed correlators of the form 〈φ1φ2φ2φ1〉
indicate that for a CFT with degenerate scalar-only primary spectrum,∑

k

(Aijk(∆1,∆2,∆))2 = Bij(∆1,∆2) (3.22)

is independent of ∆. In fact, we can strengthen this result slightly. Let us consider a

mixed correlator 〈φiφjφkφ`〉 where φi, φ` have scaling dimension ∆1, φj , φk have scaling

dimension ∆2, and the crossing equation∑
m

∑
∆

Cijm(∆1,∆2,∆)Ck`m(∆1,∆2,∆)F12;0,∆(z, z̄)

=
∑
m

∑
∆

Ci`m(∆1,∆2,∆)Ckjm(∆1,∆2,∆)F12;0,∆(1− z, 1− z̄).
(3.23)

By taking the part of (3.23) that is odd under z → 1 − z, z̄ → 1 − z̄, our earlier claim of

the uniqueness of scalar-only solution to the crossing equation implies that∑
m

Aijm(∆1,∆2,∆)Ak`m(∆1,∆2,∆) + (j ↔ `)

is independent of ∆. On the other hand, for the even part of (3.23) under z → 1− z, z̄ →
1− z̄, the numerical analysis described in appendix D.2.1 is consistent with the conjecture

that {∂nz ∂mz̄ F12;0,∆|z=z̄= 1
2
, n,m ∈ Z≥0, n+m even} form a complete basis on the space func-

tions of ∆ on the positive real axis defined by the same norm as in section 3.1, which implies

that
∑

mAijm(∆1,∆2,∆)Ak`m(∆1,∆2,∆) =
∑

mAi`m(∆1,∆2,∆)Akjm(∆1,∆2,∆) for ev-

ery ∆ > 0, and thus∑
m

Aijm(∆1,∆2,∆)Ak`m(∆1,∆2,∆) = Bijk`(∆1,∆2) (3.24)

is independent of ∆.

18To be precise, we do not need to require the TQFT to have a vacuum state (or the algebra to be unital).
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It is likely that by analyzing a system of crossing equations for multiple scalar corre-

lators involving φi, φj , φk, φ` of generally different scaling dimensions, one could establish

that the spectral function for 〈φiφjφkφ`〉 (with only scalar Virasoro primaries in the OPEs)

is proportional to that of Liouville CFT, which would be equivalent to the statement that∑
m

Aijm(∆1,∆2,∆)Ak`m(∆3,∆4,∆) =
∑
m

Ai`m(∆1,∆4,∆)Akjm(∆3,∆2,∆)

=Bijk`(∆1,∆2,∆3,∆4)

(3.25)

is independent of ∆, extending (3.24). We leave the numerical bootstrap of the spectral

function with four generic external weights to future work. We now argue that if (3.25)

holds, then our conjecture follows.

To each pair-of-pants decomposition of a genus g Riemann surface, represented by a

trivalent graph, we may associate a sum of product of Aijk’s, with indices contracted and

scaling dimensions identified along each edge of the graph, which we denote by Ẑg. (3.25)

implies the crossing relation between graphs with fixed weights on the edges, and by apply-

ing crossing one can always turn the trivalent graph into one that does not contain tadpole

subgraphs.19 (3.25) further implies that Ẑg is independent of the scaling dimension on every

edge that connects a pair of distinct vertices, and thus the genus g partition function of the

CFT is equal to Ẑg times the Liouville partition function. It then follows from modular

invariance that Ẑg is independent of the pair-of-pants decomposition, and depends on the

genus g only.

To proceed, pick a finite set of scaling dimensions ∆a, a = 1, . . . ,M and let N∆ be

the number of degenerate primaries of dimension ∆, which we will assume to be finite.

Set N = maxN∆a and extend the ranges of the discrete labels to run up to N for all

∆a by setting the previously undefined structure constants to zero. Then the totality of

Aijk(∆a,∆b,∆c) gives an element A in C = S3(⊕aRN ). The space C is equipped with an

action of
∏
aO(N), corresponding to changes of basis for the discrete labels. Ẑg regarded

as polynomials generate the algebra of
∏
aO(N) invariants on C. It follows that A is

equivalent to any other A′ with the same values of Ẑg by a
∏
aO(N) reparametrization. In

particular, since A is such that values of Ẑg on it are independent of the internal labels, A
is equivalent to A0 in which all Aijk(∆a,∆b,∆c) are replaced by aijk = Aijk(∆1,∆1,∆1).

It then follows that we can choose N∆a = N .

By taking various finite sets of scaling dimensions sharing the dimension ∆1, we find

that N∆ = N is independent of ∆ and thus the density of states is given by N copies of

Liouville density. Furthermore, for any such finite set we have

Aijk(∆a,∆b,∆c) = aijk (3.26)

up to a reparametrization of finite labels. Note that such reparametrizations depend on

the choice of our finite set of ∆a’s, being defined only up to automorphisms of aijk. As

we show below, these automorphisms are scarce. Compatibility between different ∆a then

19That is to say, modular constraints on the general torus 1-point function are not needed for the argument

presented here.
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completely fixes them after we fix the reparametrization for ∆1. Thus we can pass to the

full continuous set of scaling dimensions, and conclude that the CFT in question is a tensor

product of Liouville with a TQFT defined by the structure constants aijk (or the partition

functions Ẑg).

In fact, we can always find a basis in which the structure constants aijk are diagonalized.

To see this, note that the crossing equation for aijk implies that the matrices Mi with

entries (Mi)jk = aijk are mutually commuting N × N symmetric matrices, and thus can

be simultaneously diagonalized by some O(N) matrix R, namely Λ′ijk =
∑

mnRjmRknaimn
are diagonal in jk. Then Λijk =

∑
mRimΛ′mjk is still diagonal in jk and completely

symmetric, and thus Λijk = δijkλk. Multiplying by a diagonal matrix with ±1 entries if

necessary, we can set λm > 0. (If some λm = 0 they do not contribute to the correlators

and we can obviously add or remove such λ’s at will.) It is straightforward to check that

the automorphisms of Λijk are just the permutations preserving the λ’s. The partition

functions are Ẑg =
∑

n λ
g−1
n .

This diagonalization implies that the algebra defined by aijk is given by ⊕nGλn . Here

Gλ = Re with (e, e) = 1 and e2 = λe. Forming the tensor product Liouville⊗Gλ corresponds

to rescaling all OPE coefficients by λ. The overall scale of OPE coefficients cannot be fixed

in the absence of the vacuum, and thus we can regard all these theories as isomorphic to

Liouville. Therefore, the TQFT structure amounts to superselection sectors.

4 The modular spectral function

4.1 The minimization problem

We now consider the decomposition of the reduced torus partition function of a com-

pact, unitary CFT (assumed to be parity-invariant)20 with no conserved currents into

non-degenerate Virasoro characters

Ẑ(τ, τ̄) =|τ | 12 |η(τ)|2Z(τ, τ̄)

=χ̂0(τ) ˆ̄χ0(τ̄) +
∑
s≥0

∑
∆∈Is

d∆,s

(
χ̂∆+s

2
(τ) ˆ̄χ∆−s

2
(τ̄) + χ̂∆−s

2
(τ) ˆ̄χ∆+s

2
(τ̄)
)
,

(4.1)

where Is is the discrete spectrum of dimensions of primary operators, d∆,s = d(∆+s
2 , ∆−s

2 ) =

d(∆−s
2 , ∆+s

2 ), and the reduced characters are given by

χ̂0(τ) =(−iτ)
1
4 q−ξ(1− q)

χ̂h(τ) =(−iτ)
1
4 qh−ξ.

(4.2)

Analogously to the four-point spectral function introduced in section 2.1, we define a

“modular spectral function” by truncating the Virasoro character decomposition of the

20As in [20], the bounds we derive here assuming a parity-invariant spectrum can be applied to parity

non-invariant theories as well by considering the parity-positive projection of the partition function.
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reduced partition function up to a cutoff dimension ∆∗, evaluated at the self-dual modulus

τ = −τ̄ = i,

fmod(∆∗) =
1

Ẑ(i,−i)

[
χ̂0(i) ˆ̄χ0(−i)

+

b∆∗c∑
s=0

∑
∆∈Is,∆≤∆∗

d∆,s

(
χ̂∆+s

2
(i) ˆ̄χ∆−s

2
(−i) + χ̂∆−s

2
(i) ˆ̄χ∆+s

2
(−i)

)]
.

(4.3)

As with the four-point spectral function, it is straightforward to place bounds on

fmod(∆∗) due to modular invariance using semidefinite programming. Defining Ẑ∆,s(τ, τ̄) =

χ̂∆+s
2

(τ) ˆ̄χ∆−s
2

(τ̄) + χ̂∆−s
2

(τ) ˆ̄χ∆+s
2

(τ̄) and Ẑ0,0(τ, τ̄) = χ̂0(τ) ˆ̄χ0(τ̄), the modular crossing

equation demands that

0 =∂mz ∂
n
z̄

[
Ẑ0,0(τ, τ̄) +

∞∑
s=0

∑
∆s∈Is

d∆,sẐ∆,s(τ, τ̄)

]∣∣∣∣∣
z=z̄=0

, m+ n odd (4.4)

where we have redefined τ = iez, τ̄ = −ie−z̄. We then seek to minimize y0,0 subject to the

inequalities

(y0,0 − 1)Ẑ0,0(i,−i) +
∑

m+n odd

ym,n∂
m
z ∂

n
z̄ Ẑ0,0(τ, τ̄)

∣∣∣
z=z̄=0

≥ 0

(y0,0 −Θ(∆∗ −∆))Ẑ∆,s(i,−i) +
∑

m+n odd

ym,n∂
m
z ∂

n
z̄ Ẑ∆,s(τ, τ̄)

∣∣∣
z=z̄=0

≥ 0, ∆ ≥ ∆∗s, s ≥ 0,

(4.5)

for arbitrary coefficients ym,n. In the first line we have singled out the inequality involving

the vacuum primary. In the second line, we made the extra assumption of a gap ∆∗s in

the spin-s sector of the spectrum, as will be useful in later applications. As before, the

minimal such y0,0 gives an upper bound on the modular spectral function, since

fmod(∆∗) ≤
1

Ẑ(i,−i)

[
ymin

0,0

(
Ẑ0,0(i,−i) +

∑
s,∆

d∆,sẐ∆,s(i,−i)
)

+
∑

m+n odd

ym,n∂
m
z ∂

n
z̄

(
Ẑ0,0(τ, τ̄) +

∑
s,∆

d∆,sẐ∆,s(τ, τ̄)

)]∣∣∣∣∣∣
z=z̄=0

= ymin
0,0 .

(4.6)

Similarly, the minimal w0,0 subject to the constraints

(w0,0 + 1)Ẑ0,0(i,−i) +
∑

m+n odd

wm,n∂
m
z ∂

n
z̄ Ẑ0,0(τ, τ̄)

∣∣∣
z=z̄=0

≥ 0

(w0,0 + Θ(∆∗ −∆))Ẑ∆,s(i,−i) +
∑

m+n odd

wm,n∂
m
z ∂

n
z̄ Ẑ∆,s(τ, τ̄)

∣∣∣
z=z̄=0

≥ 0, ∆ ≥ ∆∗s, s ≥ 0,

(4.7)

provides a nontrivial lower bound on the modular spectral function

fmod(∆∗) ≥ −wmin
0,0 . (4.8)
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Working up to a finite derivative order m + n ≤ N , we denote the corresponding upper

and lower bounds obtained in this way f+
mod,N (∆∗) and f−mod,N (∆∗) respectively.

4.2 Some consistency checks

4.2.1 Extremal spectra with maximal gap

In [20], an upper bound ∆mod(c) on the gap in the scaling dimension of primary operators

due to modular invariance of the torus partition function was computed numerically as a

function of the central charge. Given a dimension gap ∆gap(≤ ∆mod(c)), an upper bound

on the degeneracy of primaries at dimension ∆gap can be obtained provided ∆gap >
c−1
12 .

When this upper bound on the degeneracy at the gap is saturated, the entire modular

invariant spectrum is determined by the locations of the zeros of the optimal linear func-

tional (optimized with respect to the degeneracy bound) acting on the Virasoro characters.

Such (candidate) CFT spectra were dubbed ‘extremal.’ Furthermore, it is expected that

for each given c > 1, there is a unique modular invariant spectrum (imposing positivity but

not the integral condition on the degeneracy of primaries) whose dimension gap saturates

the upper bound ∆mod(c) [37].

In [20], a number of examples of CFTs with spectra that saturated the bound on the

dimension gap were identified at small values of the central charge. Here, we study the

bounds on the modular spectral function at these values of the central charge assuming

the maximal dimension gap. We will find that the resulting bounds indeed pin down the

extremal modular spectral functions. To compute the bounds on the modular spectral

functions in these cases, we impose (4.5), (4.7) with ∆∗s = max(s,∆mod(c)).

For c = 2, the dimension gap bound of ∆mod(2) = 2
3 is realized by the spectrum of the

SU(3) WZW model at level one. This theory admits a description in terms of free bosons

with T 2 target space at the Z3-invariant point in its complex structure and Kähler moduli

spaces, with partition function

Zext

(
2,

2

3

)
=

∑
ni,wj∈Z

q
α′
4
k2
L q̄

α′
4
k2
R

|η(τ)|4 , (4.9)

where

k2
L,R =

Gmn

α′
(nm +Bmkw

k ±Gmkwk)(nn +Bnlw
l ±Gnlwl) (4.10)

for G =
(

1 1
2

1
2

1

)
, B =

(
0 1

2

− 1
2

0

)
. The bounds on the modular spectral function collapse

precisely to this extremal modular spectral function when the maximal gap is imposed, as

shown in figure 6.

For c = 4, the dimension gap bound of ∆mod(4) = 1 is realized by the spectrum of the

SO(8) WZW model at level 1, which also admits a description in terms of 8 free fermions

with diagonal GSO projection. This theory occupied the kink on the curve ∆mod(c). The

partition function of this theory is given by

Zext(4, 1) =
1

2

(∣∣∣∣Θ2(τ)

η(τ)

∣∣∣∣8 +

∣∣∣∣Θ3(τ)

η(τ)

∣∣∣∣8 +

∣∣∣∣Θ4(τ)

η(τ)

∣∣∣∣8
)
. (4.11)
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fmod(Δ*)
c = 8, scalar dimension gap = 2, N = 31

(d)

Figure 6. The upper (blue) and lower (red) bounds on the modular spectral function. Top: the

bounds for c = 2 with an assumed dimension gap one-half of (left) and equal to (right) the maximal

gap allowed by modular invariance. Bottom: the bounds on the modular spectral function for c = 4

with the maximal dimension gap (left) and for c = 8 with the maximal gap in the spectrum of

scalar primaries (right). In all cases, the dotted lines denote the modular spectral function for the

corresponding extremal spectrum.

Once again, in figure 6 we see that the bounds on the modular spectral function collapse

to that of the extremal spectrum.

For c = 8, there is a nontrivial bound on the dimension gap in the spectrum of scalar

primaries, ∆s=0
mod(8) = 2. This bound on the scalar gap is saturated by the spectrum of the

E8 WZW model at level one. This theory, which occupied the first kink on the bounding

curve ∆s=0
mod(c), admits an equivalent description in terms of 8 compact bosons at the

holomorphically factorized point in the moduli space; the holomorphic factor is described

by the Narain compactification on Γ8, the root lattice of E8. The partition function is

Zext,s=0(8, 2) = |j(τ)| 23 , (4.12)

where j(τ) is the elliptic j-invariant. Figure 6 shows that the bounds on the modular spec-

tral function (derived using ∆∗s = ∆s=0
modδs,0 + s) collapse to that of the extremal spectrum.
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c=8, only scalar primaries, dimension gap = Δ0, N=31

Liouville

Figure 7. Bounds on the modular spectral function assuming only scalar primaries and a dimension

gap of ∆gap = c−1
12 for c = 8.

4.2.2 Only scalar primaries

As an additional example to illustrate the convergence of the bounds on the modular

spectral function, we revisit the case of a CFT with only scalar primary operators. In

section 3.2, we showed that a unitary c > 1 CFT with primaries of bounded spins must

have a non-compact spectrum with only scalar primaries and a density of states equal to

that of Liouville theory. The modular spectral function of Liouville theory is given by

fLiouville
mod (∆∗) =Erf(

√
2π(∆∗ − 2ξ)). (4.13)

Assuming a scalar-only spectrum, and a dimension gap 2ξ (that is, we impose (4.5), (4.7) for

s = 0 only with ∆∗0 = 2ξ), the numerical results of upper and lower bounds on the modular

spectral function are shown in figure 7. Note that while the bounds do appear convergent

toward the Liouville modular spectral function (as they must), the rate of convergence

is rather slow compared to the previous examples of discrete extremal spectra at small

c. On the other hand, such a slow convergence with N is qualitatively similar to our

bounds on the 4-point spectral function in the scalar-only case, as analyzed in section 2.2,

where we also expect a continuous spectrum, and also to the non-compact example in the

next subsection.

We thus expect that the slow convergence is associated with continuity of the spectrum.

This is natural from the point of view of extremal functionals — the extremal spectrum

should converge to the continuous one as N → ∞, but at any finite N the extremal

spectrum has finitely many operators, which therefore should condense. On the other

hand, in the discrete case we typically need only a small number of operators to accurately

determine the partition function or the correlation function in the neighborhood of the

crossing/modular symmetric point.

4.2.3 No scalar primaries

In [20], following the observation that the bound on the gap of the dimension of scalar

primaries diverged as c → 25−, it was shown that for c ≥ 25 there exist (non-compact)
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Figure 8. Bounds on the modular spectral function with no scalar primaries in the spectrum and

a dimension gap of ∆gap = c−13
12 for c = 25. The dotted black curve denotes the extremal modular

spectral function (4.15).

modular-invariant spectra with no scalar primary operators. This is due to the fact that

the modular invariant function

Zno-scalar(τ, τ̄) =
J(τ) + J̄(τ̄)

τ
1
2

2 |η(τ)|2
, (4.14)

where J(τ) = j(τ) − 744, may be interpreted as the partition function of a unitary non-

compact CFT with no scalar primary operators, twist gap c−25
12 and dimension gap c−13

12

for c ≥ 25. This spectrum turns out to saturate the bound on the dimension gap in the

case that there are no scalar primaries in the spectrum. Writing J(τ) =
∑∞

s=−1 jsq
s, the

modular spectral function takes the form

fno-scalar
mod (∆∗) =

1

984

b∆∗−2ξc∑
s=−1

jsErf(
√

2π(∆∗ − 2ξ − s)). (4.15)

To compute the bounds on the modular spectral function in this case, we im-

pose (4.5), (4.7) for s > 0 with ∆∗s = max(s, 2ξ − 1). As shown in figure 8, the bounds on

the modular spectral function do indeed appear to be converging to (4.15) as the derivative

order of the linear functional is increased, suggesting that the no-scalar spectrum is unique

for c = 25. Note that for c = 25 the dimension gap c−13
12 coincides with the unitarity bound

(since we assume no scalars). We expect that for c > 25 the uniqueness holds only under

the assumption of the dimension gap c−13
12 .

4.3 CFTs at large c with large gap

In [20], the upper bound on the dimension gap ∆mod(c) due to modular invariance of the

torus partition function was computed numerically for central charge up to c ∼ O(102).

As c is increased, the convergence of the upper bound with increasing derivative order

N slows, and accurate determinations of the optimal bound on the gap require a careful

extrapolation to the limit N → ∞. Nonetheless, a conjecture on the monotonicity of the

slope of the optimal bounding curve d∆mod(c)
dc leads one to conclude that the asymptotic
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Figure 9. Upper and lower bounds on the modular spectral function in the case that the dimension

gap is close to the maximal value allowed by modular invariance for c = 50, 100, 300. The dotted

black curve shows the modular spectral function of perturbative pure gravity due to the thermal

AdS3 and Euclidean BTZ saddles in the gravitational path integral.

slope is less than 1
9 . Potentially, the asymptotic slope could be as small as 1

12 , a possibility

that is natural from the holographic perspective (see the discussion in the next section)

but with no direct evidence from the analysis of the modular crossing equation.

Thus at large c it has been difficult to determine ∆mod(c) accurately, and furthermore

the exponential growth of operator degeneracies (combined with the need to go to very

large N to get a good approximation of the optimal linear functional at large c) makes it

practically impossible to resolve the discreteness of the spectrum by bounding the modular

spectral function even when the bound ∆mod(c) is saturated. Nonetheless, we can study

the bounds on the modular spectral function assuming a gap ∆gap close to ∆mod(c), at

values of c where the value of ∆mod(c) can be reliably computed by numerical extrapolation

of ∆
(N)
mod(c) to N =∞. Figure 9 shows plots of the bounds on the modular spectral function

for c = 50, 100, 300 with assumed dimension gap ∆gap close to the bound ∆mod(c).

The plots reveal several interesting features that we believe are universal at large c

assuming a sufficiently large gap ∆gap(> c−1
12 ). Firstly, for ∆∗ � c

6 , the upper and lower

bounds on the modular spectral function converge to fmod(∆∗) = 1
2 : that is, modular
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invariance demands that the vacuum character accounts for exactly half of the partition

function at the self-dual temperature. Furthermore, the bounds appear to be convergent

upon a smooth function that interpolates between 1
2 and 1 in a window of size ∼ √c

about ∆∗ = c
6 .

It is generally expected that 2D CFTs at large c with large gap should be holographi-

cally dual to a semiclassical theory of pure gravity in AdS3. To the best of our knowledge,

this statement has not been precisely formulated: how large does the gap need to be? If we

merely demand that the dimension gap21 grow linearly in c, corresponding to a Planckian

mass gap in the bulk theory, but with a coefficient less than 1
12 , then the entropy need

not follow Bekenstein-Hawking in the entire range ∆ ≥ c
6 . This is the range of masses

for which BTZ black holes dominate the canonical ensemble at its Hawking temperature.

On the other hand, one might expect that CFTs with gap close to ∆mod(c) (if they exist)

are holographic duals to suitable non-perturbative completions of pure gravity in AdS3,

in the sense that observables such as the spectral density are correctly captured by the

perturbative expansion around known saddle points of the gravitational path integral in

the bulk up to exp(−c) corrections.

This suggests that we compare the bounds on the modular spectral function to that

of pure gravity, which, up to a priori unknown non-perturbative corrections, is computed

by the contributions from thermal AdS3 and the Euclidean BTZ black hole saddle points,

which are known to be perturbatively 1-loop exact. We derive this modular spectral func-

tion in appendix C, see in particular (C.3), (C.5). The bounds shown in figure 9 indeed

appear to be converging upon the pure gravity result (1.8) for dimensions above the as-

sumed gap.

Note that for ∆∗ � c
6 , that the bounds on the modular spectral function with large gap

converge to 1
2 can be explained by the fact that in the semiclassical limit, the gravitational

path integral evaluated at the self-dual temperature is dominated by the contributions

of two saddles mentioned above, which are exchanged by the modular S transformation,

and thus the vacuum contribution accounts for 1
2 . Interestingly, at large c, the upper and

lower bounds on the vacuum contribution already converge to 1
2 when the dimension gap is

slightly above c−1
12 , not necessarily close to ∆mod(c). This is illustrated in figure 10, where

we plot the bounds on the contribution of the vacuum to the modular spectral function

as a function of the dimension gap for c = 8, 50, 100. Note that the vacuum contribution

to the spectral function determines the partition function Z(τ, τ̄) itself at the self-dual

temperature (τ = −τ̄ = i). From the bulk perspective, that the vacuum accounts for 1
2 of

the modular spectral function amounts to the statement that the thermal AdS3 and BTZ

saddle points are the two dominant saddle points in the gravitational path integral, while

all other saddle points are exponentially suppressed.22

21In a non-compact CFT where the vacuum is absent, by gap we mean the dimension of the lightest

primary.
22This property does not hold when the dimension gap is less than or equal to c−1

12
, even if the former is

of order c, at large c. A possible bulk interpretation is that there are singular saddle point contributions

(such as the Euclidean continuation of the massless BTZ black hole) to the gravity path integral where the

pure gravity perturbation theory breaks down.
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Figure 10. Bounds on the contribution of the vacuum character to the modular spectral function

as a function of the imposed gap in the dimensions of primary operators for c = 8, 50, 100.

In [38], it was shown that in theories where the light spectrum is appropriately sparse

(a condition of which the maximal gap is an extreme case), the microcanonical entropy is

given universally by the Cardy formula to leading order for all operators with dimension

∆ ≥ c
6 . Note that the sparseness criterion is satisfied by our assumption on the gap, but

our statement regarding the modular spectral function and thereby the spectral density

extends to the regime of ∆ slightly below c
6 (see further discussion in the next section).

We conjecture that in the large c limit, assuming a gap sufficiently close to ∆mod(c),23

the bounds f±mod(c) converge onto the modular spectral function of pure gravity described

above, up to order exp(−c) corrections. Indeed, we note that for c ∼ O(102), the horizontal

average of the bounds fmod,N (∆∗) is already well approximated by the pure gravity modular

spectral function at moderate values of N , as shown in figure 11.

5 On the universality of the BTZ spectral density

The BTZ black hole in AdS3 has a striking feature that is unlike black holes in other

spacetime dimensions (in asymptotically either AdS or flat spacetime): a Planckian mass

23As remarked earlier, it is likely that a gap not too far above c−1
12

will suffice, not necessarily close

to ∆mod(c).
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Figure 11. The horizontal average of the upper and lower bounds on the modular spectral function

for c = 100 with dimension gap close to the upper bound imposed by modular invariance.

BTZ black hole has a macroscopic horizon radius (rather than, say, Planckian radius),

provided that the mass is an order 1 fraction above the BTZ threshold in Planck units.

The microstates of such a black hole would be dual to an operator in the CFT of dimension

∆ > (1 + ε) c
12 , where ε is an order 1 fraction that does not scale with c. When there is a

sufficiently large mass gap in the spectrum, standard effective field theory reasoning in the

bulk would suggest that the entropy of the BTZ black hole, which captures the degeneracy

of microstates, should be computed from the Bekenstein-Hawking formula based on the

Einstein-Hilbert action, as any local higher-derivative corrections to the Einstein-Hilbert

action of pure gravity in three dimensions can be absorbed by field redefinition. This would

predict a degeneracy or spectral density

ρ(∆) ∼ exp

[
2π

√
c

3

(
∆− c

12

)]
(5.1)

to leading order in the large c limit, for ∆/c > 1
12 .

For ∆ > c
6 , i.e., above twice the BTZ threshold, this universal behavior of the spectral

density was demonstrated in [38] to be a consequence of the sparseness of the spectrum

and modular invariance. From the gravity perspective, this is also the regime in which

the Euclidean BTZ black hole solution is the dominant saddle point of the Euclidean pure

gravity path integral, i.e., the BTZ black hole dominates the canonical ensemble at its

Hawking temperature, and therefore the spectral density must be (5.1) in order to produce

the correct free energy above the self-dual temperature.

The regime c
12 < ∆ < c

6 is much more interesting. Here the BTZ black hole does

not dominate the canonical ensemble. Its contribution to the gravitational free energy is

non-perturbatively suppressed compared to the thermal AdS3 contribution. A priori, since

we do not know the most general non-perturbative contributions to the pure gravity path

integral, we cannot draw any reliable conclusion on the spectral density in this regime. This

also puts doubt on the validity of the Bekenstein-Hawking formula, despite the macroscopic

size of the horizon. If the Bekenstein-Hawking formula is violated in this regime, it then

indicates some sort of breakdown of the effective field theory reasoning based on locality.
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What conclusion can we draw from our numerical bounds on the modular spectral

function for c ∼ O(102)? We saw that in a window of size
√
c around c

6 , the modular

spectral function is constrained to well approximate the AdS3 +BTZ answer, in agreement

with the expectation from the known perturbative contributions to the Euclidean gravity

path integral. Unfortunately, our numerical results do not have sufficient resolution to allow

for distilling a contribution of order exp(−c), thus preventing us from concluding whether

the Bekenstein-Hawking entropy of BTZ correctly accounts for the spectral density in the

regime ∆ = yc, for 1
12 < y < 1

6 . In fact, if the latter is true, then the asymptotic slope

of the modular bound on the dimension gap, limc→∞ d∆mod(c)/dc, must be equal to 1
12 ,

but this has not been shown. Thus, the fate of the small-yet-large BTZ black holes below

twice the BTZ threshold remains a mystery.
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A Zamolodchikov’s recurrence relation

The Virasoro block for a four-point function 〈O1(z)O2(0)O3(1)O4(∞)〉 with central charge

c, external weights hi, and internal weight h can be represented as

F V irc (hi;h; z) = [16q(z)]h−
c−1
24 z

c−1
24
−h1−h2(1− z)

c−1
24
−h1−h3

× [θ3(q(z))]
c−1

2
−4(h1+h2+h3+h4)H(λ2

i , h|q(z)),
(A.1)

where the nome q(z) is defined as

q(z) ≡ exp(iπτ(z)), τ(z) ≡ iF (1− z)

F (z)
, F (z) ≡ 2F1(1/2, 1/2, 1|z). (A.2)

If we define

c = 1 + 6Q2, Q = b+
1

b
, hm,n =

Q2

4
− λ2

m,n, λm,n =
1

2

(
m

b
+ nb

)
, (A.3)
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then H(λ2
i , h|q(z)) satisfies Zamolodchikov’s recurrence relation

H(λ2
i , h|q(z)) = 1 +

∑
m,n≥1

[q(z)]mnRm,n({λi})
h− hm,n

H(λ2
i , hm,n +mn|q(z)), (A.4)

where hm,n are the weights of degenerate Virasoro representations, and Rm,n({λi}) are

Rm,n({λi}) = 2

∏
r,s(λ1 + λ2 − λr,s)(λ1 − λ2 − λr,s)(λ3 + λ4 − λr,s)(λ3 − λ4 − λr,s)∏′

k,` λk,`
.

(A.5)

The product of (r, s) is over

r = −m+ 1,−m+ 3, . . . ,m− 1,

s = −n+ 1,−n+ 3, . . . , n− 1,
(A.6)

and the product of (k, `) is over

k = −m+ 1,−m+ 2, . . . ,m,

` = −n+ 1,−n+ 2, . . . , n,
(A.7)

excluding (k, `) = (0, 0) and (k, `) = (m,n).

B Liouville CFT and DOZZ structure constants

The Liouville CFT is parameterized by the central charge c = 1 + 6Q2, where Q = b+ b−1,

and a cosmological constant −µ < 0. It is governed by the action

SLiouville =
1

4π

∫
d2z
√
g
(
gmn∂mφ∂nφ+QRφ+ 4πµe2bφ

)
. (B.1)

To study Liouville theory on the sphere, one typically works with a flat reference metric

gmn supplemented with the boundary condition

φ(z, z̄) = −2Q log |z|+O(1), |z| → ∞. (B.2)

The field φ(z, z̄) is not a primary operator under holomorphic coordinate transformations

z → w(z). In this case one must take care to regulate the action and introduce boundary

terms to ensure that the action is finite and invariant under conformal transformations.

The Hilbert space consists of a continuous spectrum of scalar primary operators Vα
with α ∈ Q

2 + iR≥0 and conformal dimension ∆ = 2α(Q − α). Operators with α outside

this range, such as the identity operator, do not correspond to normalizable states and thus

do not belong to the Hilbert space. Making use of a somewhat nonstandard convention

(the reason for which will become clear soon), we normalize the primaries so that in the

asymptotic regime where the Liouville potential vanishes (the φ → −∞ limit) they take

the form24

Vα ∼ S(α)−
1
2 e2αφ + S(α)

1
2 e2(Q−α)φ, (B.3)

24In the literature on the Liouville CFT, usually considered are operators with the asymptotic form

Vα ∼ e2αφ and which do not have standard two-point functions.
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where S(α) is the reflection amplitude

S(α) =− (πµγ(b2))(Q−2α)/bΓ(1− (Q− 2α)/b)Γ(1− (Q− 2α)b)

Γ(1 + (Q− 2α)/b)Γ(1 + (Q− 2α)b)
. (B.4)

The torus partition function is the same as that of a single non-compact free scalar. The

sphere two-point function of primary operators is

〈Vα1(z, z̄)Vα2(0)〉 =
δ(α1 − α2)

|z|∆1+∆2
. (B.5)

Note that with our choice of conventions the two-point function is canonically normalized.

The sphere three-point function is given by the DOZZ structure constants [23, 24]

〈Vα1(z1, z̄1)Vα2(z2, z̄2)Vα3(z3, z̄3)〉

=

 3∏
j=1

S(αj)
− 1

2

 C(α1, α2, α3)

|z12|∆1+∆2−∆3 |z23|∆2+∆3−∆1 |z31|∆3+∆1−∆2
,

C(α1, α2, α3) =
[
πµγ(b2)b2−2b2

](Q−
∑
i αi)/b

× Υ′b(0)Υb(2α1)Υb(2α2)Υb(2α3)

Υb(
∑

i αi −Q)Υb(α1 + α2 − α3)Υb(α2 + α3 − α1)Υb(α3 + α1 − α2)
.

(B.6)

The special functions are given by the following

γ(x) =
Γ(x)

Γ(1− x)

log Υb(x) =

∫ ∞
0

dt t−1

(Q
2
− x
)2

e−t −
sinh2

[(
Q
2 − x

)
t
2

]
sinh tb

2 sinh t
2b

 , 0 < Re(x) < Re(Q).

(B.7)

Note in particular that the upsilon function satisfies Υb(Q−x) = Υb(x), which implies that

Υb(
Q
2 + iP ) is a real function of P . To extend Υb(x) beyond the range of its definition, one

notes the following identities

Υb(x+ b) = γ(bx)b1−2bxΥb(x)

Υb(x+ b−1) = γ(b−1x)b
2x
b
−1Υb(x),

(B.8)

which can be proven by considering an integral representation of log Γ(x). The function

Υb(x) has simple zeros at x = 0, x = Q as well as x = mb + n
b when m and n are both

non-positive integers, and when m and n are both positive integers. It is instructive to

rewrite the Liouville three-point function coefficient as a manifestly real function of the

Liouville momenta Pi = −i(αi− Q
2 ), since P takes non-negative values for operators in the
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physical Hilbert space:

C(P1, P2, P3) ≡
[
πµγ(b2)b2−2b2

] Q
2b

 3∏
j=1

S(αj)
− 1

2

C(α1, α2, α3)

=
Υ′b(0)

Υb(
Q
2 + i

∑
j Pj)

×

 (Υb(2iP1)Υb(−2iP1))
1
2

Υb

(
Q
2 + i(P2 + P3 − P1)

) × (2 permutations)

 ,
(B.9)

where we have used that the reflection amplitude can also be written as

S(α) =
[
πµγ(b2)b2−2b2

](Q−2α)/b Υb(2α)

Υb(2α−Q)
. (B.10)

The statement that the formula for the structure constants (B.6) proposed by [23, 24]

satisfies crossing symmetry was established in [34]. There, the existence of the fusion

transformations of Virasoro conformal blocks was substantiated, leading to a derivation

of the formula (B.6). The four-point function is constructed from the DOZZ structure

constants as

〈Vα1(z, z̄)Vα2(0)Vα3(1)Vα4(∞)〉

=

 4∏
j=1

S(αj)
− 1

2

∫ ∞
0

dP

π
C

(
α1, α2,

Q

2
+ iP

)
C

(
α3, α4,

Q

2
− iP

) ∣∣∣∣FVir
c

(
∆i

2
;
∆α

2
; z

)∣∣∣∣2

=
[
πµγ(b2)b2−2b2

]−Q
b

∫ ∞
0

dP

π
C(P1, P2, P )C(P3, P4, P )

∣∣∣∣FVir
c

(
∆i

2
;

∆α

2
; z

)∣∣∣∣2 .
(B.11)

Note that the OPE coefficients C(P1, P2, P ) are real for real Liouville momenta P1, P2, P

provided c > 1, even if b is complex (when 1 < c < 25). The µ-dependent prefactor can

be absorbed by redefining the normalization of sphere correlators as well as that of the

primary operators themselves.

Although modular invariance demands that the Liouville momentum P is real for

all primary operators Vα in the Hilbert space (this is also seen directly from canonical

quantization of Liouville theory on the cylinder), we may analytically continue αi to purely

imaginary Pi. The analytically continued (B.6) continues to obey the crossing equation

and unitarity, provided that poles of C(α1, α2,
Q
2 + iP )C(α3, α4,

Q
2 − iP ) in P do not cross

the P -integration contour. If a pole crosses the integration contour, the crossing invariant

4-point function would pick up a residue contribution which may violate unitarity. This is

indeed the case, as seen in section 2.2.

C The BTZ spectral density

In this section we will evaluate the modular spectral function of perturbative pure gravity,

including one-loop corrections. Restricting to τ = iβ, we can write the BTZ contribu-

tion to the reduced partition function as the modular S transformation of the vacuum
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character [39, 40]

ẐBTZ(β) = β−1/2e
4πξ
β (1− e−

2π
β )2

=

∫ ∞
2ξ

d∆ β1/2e−2πβ(∆−2ξ)ρBTZ(∆)
(C.1)

where we have used that |η(i/β)|2 = β|η(iβ)|2. Applying an inverse Laplace transform, we

can derive the BTZ spectral density

ρBTZ(∆) = 2π

2∑
n=0

CnI0

(
4π
√

(2ξ − n)(∆− 2ξ)
)
, (C.2)

where C0 = 1, C1 = −2, C2 = 1. Note that the other known saddle points of the gravi-

tational path integral, related by SL(2,Z) transformations, are always non-perturbatively

suppressed for purely imaginary τ .

Thus the perturbative pure gravity modular spectral function, obtained from the ther-

mal AdS3 and Euclidean BTZ saddle points in the gravitational path integral, can be

written as

fBTZ
mod (∆∗) =

1

ẐAdS3(β) + ẐBTZ(β)

[
ẐAdS3(β) +

∫ ∆∗

2ξ
d∆β1/2e−2πβ(∆−2ξ)ρBTZ(∆)

]∣∣∣∣∣
β=1

=
1

2
+

1

2e4πξ(1− e−2π)2

∫ ∆∗

2ξ
d∆e−2π(∆−2ξ)ρBTZ(∆).

(C.3)

We are interested in the behaviour of this function for ∆∗ in a window of size ∼ √c
about c

6 in the semiclassical limit. From the asymptotic form of the Bessel function, it is

easy to see that for y ∼ O(1), we have

ρBTZ

(
∆∗ =

c

6
+ y
√
c

)
≈ 2(1− e−2π)2

√
3

2c
e2π( c

6
+y
√
c−3y2) +O(c−1). (C.4)

Defining f̄BTZ
mod (y∗) = fBTZ

mod (∆∗ = c
6 + y∗

√
c), we end up with the modular spectral function

f̄BTZ
mod (y∗) ≈

3

4
+

1

4
Erf(
√

6πy∗), (C.5)

where we have kept only the leading terms in the semiclassical approximation. This is

the same as the spectral function one would obtain from applying the “naive” Cardy

formula (5.1).

D Details of the numerical computations

D.1 Details of the solution of the semidefinite problem

Here we provide some details of the numerical computations of the bounds on the spectral

functions, implemented using the SDPB package [32]. In practice, there are several trun-

cations that must be made. First, we must restrict to a finite basis of linear functionals

acting on the crossing equation, of total derivative order N . We must also approximate
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the Virasoro conformal blocks; we can only compute the blocks to a finite order dq in

the elliptic nome q(z) from Zamolodchikov’s recurrence relation (reviewed in appendix A).

Finally, recall that the upper and lower bounds on the spectral function are derived as

the minimal coefficients such that a certain set of positivity conditions (for instance (2.7)

or (4.5)) can be satisfied by a linear combination of derivatives of the conformal blocks or

characters evaluated at the crossing symmetric point. In practice, we can only impose the

positivity conditions on the blocks or characters of a finite set of spins in the spectrum; we

denote the maximal spin considered by smax.

The truncation on spin means that for a fixed derivative order N , we will not have taken

into account all inequalities that the coefficients in (2.7) or (4.5) must satisfy to constitute

a bound on the spectral function, leading to bounds that are in principle too strong.

Meanwhile, the truncation to finite dq introduces a controlled error into the computation

of the (derivatives of the) conformal blocks evaluated at the crossing-symmetric point.

Thus to derive bounds at a fixed N , we must ensure that both smax and dq are sufficiently

large so that a bound exists and is stable against further increasing these parameters to

within our numerical precision. It is worth emphasizing that while the truncations to finite

smax and dq are controlled approximations, when these parameters are sufficiently large

the bounds derived using a fixed derivative order N are rigorous. Of course, the optimal

bounds are obtained in the N →∞ limit.

Let us begin by discussing the bounds on the sphere four-point spectral function in the

case that there are only scalar primaries in the spectrum. Of course in this case we need not

worry about the spin truncation. We should note that in practice, the inequalities we feed

into semidefinite programming are not quite of the form (2.7), (2.9), for the simple reason

that the Virasoro blocks are not polynomials in the dimension of the internal primary. To

illustrate the procedure, we write

F12;0,∆(z, z̄) =(256qq̄)
∆
2
−ξP12(∆; q, q̄) +O(qdq , q̄dq) (D.1)

where P12(∆; q, q̄) is a binomial in q, q̄ with ∆-dependent coefficients. Derivatives of the

blocks can then be cast in terms of

∂nz ∂
m
z̄ (qq̄)

∆
2
−ξP12(∆; q, q̄)

∣∣∣
z=z̄= 1

2

=
(16e−π)∆

Q(∆)
Pn,m(∆) (D.2)

where Pn,m(∆) is a polynomial in ∆ and

Q(∆) =
∏
i

(∆−∆i)
2, (D.3)

where ∆i are the locations of the poles kept at the given order of approximation in the

computation of the Virasoro block. Importantly, the prefactor (16e−π)∆Q−1(∆) is non-

negative for unitary values of the internal dimension. The positivity conditions (2.7), (2.9)

then amount to the following

(y0,0 −Θ(∆∗ −∆))P0,0(∆) +
∑

1≤m+n≤N, odd

ym,nPm,n(∆) ≥0, ∆ ≥ 0

(w0,0 + Θ(∆∗ −∆))P0,0(∆) +
∑

1≤m+n≤N, odd

wm,nPm,n(∆) ≥0, ∆ ≥ 0.
(D.4)
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Figure 12. The upper bounds f+
N (∆∗ = 7

12 ) for c = 8, ∆φ = 7
12 as a function of the inverse

derivative order.

In the case that there are only scalar primaries in the spectrum, we must take particular

care to ensure that dq is sufficiently large, for the reason that the four-point function when

decomposed into Virasoro blocks truncated at a finite order in q would appear to have

contributions from primaries of nonzero spin. Upper and lower bounds on the spectral

function in this case can only be found numerically at a fixed derivative order N when dq
is sufficiently large. Empirically, for central charges and derivative orders in the ranges

considered in section 2.2, we find that dq = 4N is sufficient to compute stable bounds on

the spectral function. To illustrate the convergence of the bounds as the derivative order

is increased, figure 12 shows the upper bound on the spectral function fN+ (∆∗ = 7
12) as a

function of N−1 for c = 8 with the external operator dimensions at the Liouville threshold.

It is clear that we have not been able to access N sufficiently large so that extrapolation

to the N →∞ limit can be reliably performed.

Since the q-truncation order is the bottleneck for the speed of the numerical computa-

tions, this limits the range of derivative orders we are able to consider in computing bounds

on the spectral function. For this reason, it is convenient to consider bounds obtained by

further truncating the basis of linear functionals to ∂nz ∂
m
z̄ |z=z̄= 1

2
with m + n ≤ N and

either m ≤ 1 or n ≤ 1. This basis leads to weaker bounds at a fixed N , but renders bounds

at larger N accessible. For instance, as shown in section D.3, we are able to compute

bounds on the spectral function up to N = 25 with dq = N + 9 using linear functionals

in this reduced basis. However, we caution that it is not clear that the N → ∞ limit of

the bounds obtained using this reduced basis of linear functions converges to that of the

full-basis bounds.

We now turn to the bounds on the modular spectral function. The implementation of

the positivity conditions (4.5) and (4.7) proceeds similarly as in deriving bounds on the

four-point spectral function; here, for each spin one simply factors out q
∆+s

2
−ξ q̄

∆−s
2
−ξ
∣∣∣
z=z̄= 1

2

to reduce derivatives of the reduced Virasoro characters to polynomials in the primary

operator dimension. Now, although the Virasoro characters are known exactly, one must

contend with the fact that the positivity conditions can only be imposed on a finite set of

spins. Empirically, for values of the central charge up to those considered in section 4.3
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(c ∼ O(102)), the truncation smax = N + 10 is sufficient to ensure stable bounds on the

modular spectral function.

D.2 Details of the solution of the linear problem

In this subsection we discuss some details of the numerical evaluation of the inner products

relevant for solving the linear problem in section 3.1. Note that the norm of v is given by

〈v, v〉 =

∫ ∞
0

d∆C4
12;0,∆

fp(∆)

fv(∆)
. (D.5)

Finiteness of this norm requires the spectrum to be continuous and C4
12;0,∆

fp(∆)
fv(∆) to be

locally integrable and decaying sufficiently quickly. If C4
12;0,∆ gives a convergent OPE

expansion for |z| < 1, it should decay at infinity at least as 16−2∆. The decay condition is

therefore automatically satisfied if
fp(∆)
fv(∆) grows slower than 162∆.

We need also to ensure that pn,m have finite norm. The norm is

〈pn,m, pn,m〉 =

∫ ∞
0

(∂nzF12;0,∆)2(∂mz̄ F12;0,∆)2 fv(∆)

fp(∆)
d∆, (D.6)

the integrand behaves as

polynomial× (16q)2∆ fv(∆)

fp(∆)
, (D.7)

where q = e−π, and we get that the ratio fv(∆)
fp(∆) should grow slower than (16q)−2∆. We

then choose this ratio to be
fv(h)

fp(h)
= (16q)−2∆e−λ∆, (D.8)

where λ ∈ (0, 2π). We will set λ = π.

Let us describe the details of the calculation. We want to compute the Gram matrix〈
pn,m, pn′,m′

〉
. For this, we need to be able to compute integrals with the Virasoro conformal

blocks. Recalling (D.1), the inner product
〈
pn,m, pn′,m′

〉
is given by

〈
pn,m, pn′,m′

〉
=

∫ ∞
0

Pn,m(∆)Pn′,m′(∆)
e−λ∆

Q2(∆)
d∆. (D.9)

It is a standard fact that such integrals can be evaluated in terms of incomplete gamma

functions. However, we want to do this efficiently, since P and Q are high-degree poly-

nomials.25 The computation of products Pn,m(∆)Pn′,m′(∆) can be optimized by means of

fast Fourier transform. After the product is computed, it suffices to compute the integrals∫ ∞
0

∆ke−λ∆

Q2(∆)
d∆. (D.10)

To do that, we first write

Q−2(∆) =
∑
i

4∑
k=1

αi,k
(∆−∆i)k

, (D.11)

25For example, in order to do calculations for c = 8, ∆φ = c−1
12
, N = 25, it is necessary to compute the

q-expansion of the conformal blocks to the order q100 (see below). At this order degP25,0 = 679 and Q has

327 zeros.
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thus reducing the problem to the integrals of the form∫ ∞
0

∆ne−λ∆

(∆−∆i)k
d∆. (D.12)

Reduction to incomplete gamma function is immediate if we shift ∆ by ∆i. However, in

this case we need to expand (∆+∆i)
n which produces n terms, and n can be large. Instead

we write∫ ∞
0

∆ne−λ∆

(∆−∆i)k
d∆ =

e−λ∆iΓ(n+ 1)

Γ(k)

k−1∑
l=0

(
k − 1

l

)
(−λ)k−1−l∆l−n

i Γ(l − n;−∆iλ). (D.13)

Here k is bounded by 4, so we get a compact sum. The parameter n does enter into

the incomplete gamma function, but it satisfies a recursive relation which allows one to

compute it as n increases, effectively making the complexity of computation of this integral

O(1) for every value of n.

Having found the Gram matrix, it is immediate to find the coefficients of the expansion

of vN in the basis pn,m; they are given by the first row of the inverse of the Gram matrix.

Computation of PNθ∆∗ proceeds similarly, except that now we need to know all the inner

products 〈pn,m, θ∆∗〉. These can be computed just as above, shifting everything by ∆∗. In

practice, we find that the basis of pn,m is ill-conditioned and thus we need to know the

Gram matrix to a high precision. This typically demands a large q-truncation order dq.

For example, in figure 3(a) and figure 4 in section 3.1, values of dq between 60 and 100

were used. In figure 3(b), however, we needed to go to dq = 200. In general, the required

value of dq grows with N , similarly to what we observed in semidefinite problems. On the

other hand, the linear method computes faster than the semidefinite one, which allows us

to study much higher values of N .

There is a small subtlety in the computation of vN for the mixed correlator, due to

the fact that Q(∆) has a double zero at ∆ = 0, which in the case ∆1 6= ∆2 is not canceled

by zeros of Pn,m. In this case (e.g. in the figure 4) we have tried two approaches. The first

approach is introducing lower bound on the intermediate scaling dimension ∆gap below the

Liouville threshold. The second approach is to modify equation (D.8) as

fv(h)

fp(h)
= (16q)−2∆e−λ∆∆4. (D.14)

While the obtained results differ slightly at small N , already at N = 13 both provide

equally good approximations for the Liouville spectral functions in figure 4.

D.2.1 Numerical checks of completeness

Here we consider the question of completeness of the systems

Beven =
{
∂nz ∂

m
z̄ F12;0,∆|z=z̄= 1

2
, n,m ∈ Z≥0, n+m even

}
, (D.15)

Bodd =
{
∂nz ∂

m
z̄ F12;0,∆|z=z̄= 1

2
, n,m ∈ Z≥0, n+m odd

}
∪
{
F12;0,∆|z=z̄= 1

2

}
(D.16)
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Figure 13. Plots of approximation errors for n + m even. Left : EN as a function of ∆∗ for N

from 4 (green) to 28 (red) in steps of 4. Right : normalized EN as a function of N−1 for ∆∗ from

0.4 (blue) to 1.5 (red). The dashed black line is shown for comparison and has slope 1.

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Δ*0.0

0.1

0.2

0.3

0.4

EN(Δ*)
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Figure 14. Plots of approximation errors for n+m odd. Left : EN as a function of ∆∗ for N from

5 (green) to 29 (red) in steps of 4. Right : normalized EN as a function of N−1 for ∆∗ from 0.4

(blue) to 1.5 (red). The dashed black line is shown for comparison and has slope 1.

with respect to the measure described above. In both cases we attempt to approximate

the step functions θ∆∗ ' PNθ∆∗ , where PN is the projection onto the subspace spanned by

elements of either system with n+m ≤ N , and compute the residual errors

EN =
|(1− PN )θ∆∗ |2
|θ∆∗ |2

. (D.17)

We do this for a range of ∆∗ in the case of the mixed correlator with c = 8, ∆1 = ∆0, ∆2 =
12
7 ∆0. The results are shown in figure 13 for Beven and in figure 14 for Bodd, consistent with

the completeness of both bases. In the plots of EN as a function of N−1, we have rescaled

EN (∆∗) by an N -independent factor for each sample value of ∆∗ (denoted by EN ) so that

for all ∆∗ the slope of the linear fit with N−1 (which appears to be valid asymptotically

for large N) is approximately 1.

D.3 Bounds from a reduced basis of linear functionals

Here we consider the bounds on the scalar-only spectral function using the following reduced

basis of linear functionals

∂nz ∂
m
z̄ |z=z̄= 1

2
, m ≤ 1 or n ≤ 1, m+ n ≤ N. (D.18)
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Figure 15. Upper and lower bounds on the spectral function from linear functionals in the reduced

basis, assuming only scalar primaries and ∆φ = c−1
12 for c = 8 (left) and c = 30 (right). The black

curve denotes the corresponding spectral function of Liouville theory.

Figure 15 shows the reduced-basis bounds for c = 8 and c = 30 with ∆φ = ∆0. Clearly

at fixed N the bounds obtained using the reduced basis would be weaker, but due to the

simplicity of the reduced basis it is now possible to access bounds at higher N within the

same computing time. This provides a useful arena to study the convergence of the bounds

at large derivative orders, with the caveat that the N → ∞ limit of the bounds obtained

from the reduced basis are likely weaker than the optimal bounds from the most general

linear functionals. If the latter is the case, one may eventually need to relax the restriction

on min(m,n) in (D.18).
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