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1 Introduction

Flavor physics is one of the most powerful probes of physics beyond the Standard Model

(SM) [1, 2]. Recently, several discrepancies between the SM predictions and the experi-

mental measurements have been observed in b → c and b → s semi-leptonic transitions.

The measured observables that can be used to test the lepton-flavor universality (LFU) are

theoretically rather clean, because the involved hadronic uncertainties are cancelled to a

large extent. Thus, the anomalies observed in these decays would suggest intriguing hints

for LFU violating New Physics (NP) beyond the SM.

The LFU violating observables we first consider are the ratios RD(∗) , which are de-

fined as

RD(∗) ≡
B(B̄ → D(∗)τ ν̄)

B(B̄ → D(∗)`ν̄)
, (1.1)

with ` = e or µ, and have been measured by the BaBar [3, 4], Belle [5–8], and LHCb [9–11]

collaborations. The latest world-averaged results compiled by the Heavy Flavor Aver-

aging Group (HFLAV) [12] read: RD∗ = 0.306 ± 0.013(stat) ± 0.007(syst) and RD =

0.407± 0.039(stat)± 0.024(syst), which indicate a combined deviation from the SM values

RSM
D∗ ≈ 0.26 [13–16] and RSM

D ≈ 0.30 [14, 16–19] at the level of 4σ. Thus far, feasible NP

scenarios based on model-independent analyses [13, 20–32] as well as model-dependent con-

structions such as leptoquarks [33–42] and two-Higgs-doublet models (2HDM) [35, 43–46]
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have been extensively studied towards an explanation of the RD(∗) anomalies. In particular,

the general 2HDM of type-III (2HDM-III) with tree-level flavor-changing neutral current

(FCNC) can address the RD(∗) anomalies [44–46], but suffers severe constraint from the

B−c lifetime [38, 47–49].

On the other hand, the LFU violating observables RK(∗) , which are defined as

RK(∗) ≡
B(B̄ → K(∗)µ+µ−)

B(B̄ → K(∗)e+e−)
, (1.2)

have also been reported by the LHCb collaboration, giving RK = 0.745+0.090
−0.074(stat) ±

0.036(syst) in 1 6 q2 6 6 GeV2 [50], RK∗ = 0.66+0.11
−0.07(stat) ± 0.03(syst) in 0.045 6

q2 6 1.1 GeV2 and 0.69+0.11
−0.07(stat) ± 0.05(syst) in 1.1 6 q2 6 6.0 GeV2 [51], where q2 is

the dilepton invariant mass squared. The RK result deviates from the SM value RSM
K =

1.00± 0.01 [52–54] in the same q2 region at the level of 2.6σ, while the RK∗ measurements

deviate from the SM predictions1 by 2.1 ∼ 2.3σ for the first and 2.4 ∼ 2.5σ for the second

q2 region, depending on the theoretical predictions used [51]. The RK(∗) deficits stir up

both model-independent global analyses [53, 55–68] and model-dependent NP constructions

such as the Z ′ models [69–80] and the leptoquark models [33–37, 81–84]. It is generally

found that reasonable explanations for the RK(∗) anomalies at the second q2 region can

be achieved, while the resolution to the RK∗ deficit at the first q2 region requires more

involved NP scenario [64, 66]. Therefore, we will not consider the latter in this paper.

While the RD(∗) anomalies can be improved in the 2HDM-III with a particular up-quark

Yukawa texture [46], the same scenario cannot address the RK(∗) deficits, because the

resulting Wilson coefficients C2HDM
9,10 (see eqs. (50), (51) in ref. [46]) are universal for all

lepton flavors. However, keeping further the electron and/or neutrino Yukawa couplings of

both Higgs doublets in a general 2HDM-III can lead to lepton-flavor non-universal C2HDM
9,10 ,

and hence provide a viable resolution to the RK(∗) anomalies, as shown for example in

ref. [85].

Besides the above two intriguing anomalies, there is another clear NP signature ob-

served in neutrino oscillations that indicates nonzero neutrino masses [86]. The massive

neutrinos, no matter how small their masses are, cannot be generated in the SM due to the

absence of right-handed neutrino states as well as the requirement of renormalizability. In

neutrino physics, there exist many interesting models that can address the neutrino mass

problem, such as the type I-III seesaw models,2 the inverse seesaw (ISS) model [87–89],

as well as the low-scale type-I seesaw (LSS-I) model [90–95]. Given that the 2HDM-III

considered in ref. [46] has the potential to accommodate the RD(∗) anomalies, while the res-

olution to the RK(∗) deficits based on the same framework requires new degrees of freedom,

we will consider in this paper a unified scenario where the LSS-I mechanism is embedded

into the 2HDM-III and discuss the compatibility of neutrino mass generation along with

the explanation towards the RK(∗) deficits.

Our paper is organized as follows. We begin in section 2 with a brief overview of the

2HDM-III, and then revisit the RD(∗) anomalies, demonstrating that the current world-

1The theoretical predictions for the ratio RK∗ can be found in ref. [51] and references therein.
2We refer to the review [86] and references therein for these three different seesaw models.
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averaged results can be addressed at 2σ level without violating the bound B(B−c → τ−ν̄) 6
30%. In section 3, we combine the 2HDM-III with the LSS-I mechanism, and discuss

the relevant neutrino mass problem and the lepton-flavor violating constraints from the

processes `i → `jγ. In section 4, we determine the Wilson coefficients in the direction

CNP
9µ = −CNP

10µ < 0, providing therefore an explanation for the RK(∗) deficits at 1σ level.

Finally, our conclusions are made in section 5.

2 General 2HDM-III and RD(∗) anomalies

2.1 Framework of general 2HDM-III

In the 2HDM [96, 97], an additional scalar doublet with hypercharge +1 is introduced to

the SM field content. The most general scalar potential with a softly-broken Z2 symmetry

can be written as

V = m2
1Φ†1Φ1 +m2

2Φ†2Φ2 − (m2
12Φ†1Φ2 + H.c.) +

λ1

2
(Φ†1Φ1)2 +

λ2

2
(Φ†2Φ2)2

+ λ3Φ†1Φ1Φ†2Φ2 + λ4Φ†1Φ2Φ†2Φ1 +

[
λ5

2
(Φ†1Φ2)2 + H.c.

]
. (2.1)

If CP conservation is imposed further on the potential, the parameters m2
12 and λ5 would

be real. The two scalar doublets are usually parametrized as

Φa =

 ϕ+
a

1√
2

(va + φa + iχa)

 , (2.2)

and the two vacuum expectation values satisfy v =
√
v2

1 + v2
2 = 246 GeV. The physical

mass eigenstates are obtained from rotations of the weak-interaction basis in the follow-

ing way: (
H

h

)
=

(
cosα sinα

− sinα cosα

)(
φ1

φ2

)
, (2.3)

(
G(G±)

A(H±)

)
=

(
cosβ sinβ

− sinβ cosβ

)(
χ1(ϕ±1 )

χ2(ϕ±2 )

)
, (2.4)

with tan β = v2/v1. Here G and G± denote the Goldstone bosons, and H±, H(h) and A

are the physical charged, scalar and pseudoscalar Higgs bosons, respectively.

The generic Yukawa Lagrangian in the 2HDM-III is given by

−Lint = QL(Y u
1 Φ̃1 + Y u

2 Φ̃2)uR +QL(Y d
1 Φ1 + Y d

2 Φ2)dR + EL(Y `
1 Φ1 + Y `

2 Φ2)eR + H.c..

(2.5)

Here, Φ̃i = iτ2Φ∗i with τ2 being the Pauli matrix; QL and EL denote the left-handed quark

and lepton doublets, respectively; uR, dR and eR are the right-handed singlets. The physical

eigenstates of fermions are obtained by performing the rotations fL,R = V f
L,R f

′
L,R, where

– 3 –
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the primed fields denote the weak eigenstates. After transforming to the mass-eigenstate

basis, the Lagrangian in eq. (2.5) gives rise to the tree-level scalar-mediated FCNCs.

A common way to parametrize these scalar-mediated FCNC effects is to define:

Xf
i ≡

1√
2
V f
L Y

f
i V

f †
R , (2.6)

where for i = 1, f = u and for i = 2, f = `, d. A systematic analysis for the effective

couplings Xf
i has been given in ref. [98]. It is found that all entries of Xd,`

2 are severely

constrained by various flavor processes. For Xu
1 , on the other hand, there are only tight

constraints on the first two generations, while O(1) Xu
1,32 and Xu

1,33 are still allowed, which

has also been found in refs. [85, 99]. Based on these observations, we will show in the

subsequent sections that Xu
1,32 and Xu

1,33 are crucial for accommodating the RD(∗) and

RK(∗) anomalies, respectively.

2.2 Revisiting the RD(∗) resolution in the 2HDM-III

In the 2HDM-III, new scalar and pseudoscalar operators generated by the exchanges of

charged Higgs bosons H± will contribute to the tree-level b → cτ ν̄ transitions.3 The

corresponding effective Hamiltonian is given by

Heff =
4GFVcb√

2
(CSLOSL + CSROSR) , (2.7)

with

OSL = (c̄PLb) (τ̄PLν) , OSR = (c̄PRb) (τ̄PLν) , (2.8)

where PR,L = (1± γ5)/2 are the chiral projection operators.

Under the 2HDM-III, the ratios RD and RD∗ can be expressed in terms of their SM

counterparts, respectively, as [13, 45, 100, 101]:

RD = RSM
D

[
1 + 1.5 Re (CSR + CSL) + 1.0|CSR + CSL|2

]
,

RD∗ = RSM
D∗
[
1 + 0.12 Re (CSR − CSL) + 0.05|CSR − CSL|2

]
. (2.9)

The pseudoscalar operator, with the corresponding coefficient CP = CSR−CSL, contributes

also to the purely leptonic decay B−c → τ−ν̄, with the corresponding branching ratio

given by

B(B−c → τ−ν̄) = τBc

G2
F |Vcb|2mBcm

2
τf

2
Bc

8π

(
1− m2

τ

m2
Bc

)2 ∣∣∣∣∣1 +
m2
Bc

(mb +mc)mτ
CP

∣∣∣∣∣
2

, (2.10)

where fBc is the B−c decay constant, τBc the B−c lifetime, and mb,c the MS quark masses.

The constraint from the B−c lifetime [38, 47–49] requires B(B−c → τ−ν̄) 6 30%,4 which is

3As the Wilson coefficients of these operators are proportional to the mass of the final-state lepton, we

will assume that only the tauonic modes are affected significantly by these operators.
4Here, to be more conservative, we do not adopt the more stringent constraint B(B−

c → τ−ν̄) 6
10% obtained in ref. [49], because this bound depends on the widespread theoretical values used for

B(B−
c → J/ψ`ν̄).
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obtained as follows [47, 48]: as the total width of the Bc meson is distributed among modes

induced by the partonic transitions c̄ → s̄ūd (47%), c̄ → s̄`ν̄ (17%), b → cūd (16%), b →
c`ν̄ (8%) and b→ cc̄s (7%) [102], one can infer that only 6 5% of the experimentally mea-

sured width is attributed to the tauonic mode, including the scalar NP contribution. How-

ever, due to the sizable theory uncertainties in this estimate, 0.4 ps 6 τBc 6 0.7 ps [102],

such a constraint can be relaxed up to a 6 30% of the total width if the longer lifetime

τBc = 0.7 ps is taken as an input for the SM calculation, as suggested firstly in ref. [47].

This results in the conservative bound B(Bc → τν) 6 30%, as is now commonly used in

the literature.

Based on the allowed regions for the couplings Xf
i [98], a particular texture of Xu

1 was

first considered in ref. [45] to address the RD(∗) anomalies:

Xu
1 ≡

1√
2
V u
L Y

u
1 V

u†
R =

 0 0 0

0 0 0

0 εtc εtt

 . (2.11)

Recently, such a scenario is re-analyzed more thoroughly in ref. [46], concluding that it is

possible (impossible) to accommodate the 1σ region of RD(∗) suggested by Belle (HFLAV)

under the constraint B(B−c → τ−ν̄) 6 30%. However, we will show explicitly that, under

the same constraint, the current world-averaged results for RD(∗) [12] could be addressed

at 2σ level, based on the above Xu
1 texture.

At this point, it is interesting to mention that the measured differential distributions

dΓ(B̄ → D(∗)τ ν̄)/dq2 by BaBar [4] and Belle [5, 103] can also provide complementary

information to distinguish different NP models; see for example refs. [48, 104]. However,

as pointed out in refs. [46, 48], both of the two collaborations’ results still have large

uncertainties and rely on the theoretical models. Therefore, we will not consider these q2

distributions as a further constraint throughout this paper.

To demonstrate that the current world-averaged RD(∗) results can be accommodated at

2σ level under the constraint from B(B−c → τ−ν̄) 6 30%, we calculate the relevant Wilson

coefficients in a particular 2HDM-III framework where Y d
1 = 0, Y `

2 = 0 and the up-quark

FCNC is determined by eq. (2.11). In this case, only the coefficient CSL is significant in

the large tan β regime, with its size being given by

CSL(MH±) ' Vtb
Vcb

tanβ

M2
H±

vmτ εtc, (2.12)

evaluated at the NP scale µH = MH± . Evolving it down to the b-quark mass scale, we

get [35]:

CSL(mb) =

[
αs(mt)

αs(mb)

]−12/23 [αs(MH±)

αs(mt)

]−4/7

CSL(MH±). (2.13)

When considering the SM predictions for RD(∗) , it should be pointed out that the soft-

photon corrections to the decays B̄0 → D+τ−ν̄ and B− → D0τ−ν̄ relative to the ones with

muon final state can lead to 4.4% and 3.1% enhancements in RSM
D+ and RSM

D0 , respectively,

which are larger than the current lattice-QCD uncertainty of RSM
D [105]. Bearing this in

– 5 –
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Figure 1. The allowed regions of εtc obtained from a 2σ-level fit of the current world-averaged

RD(∗) results, under the constraint B(B−c → τ−ν̄) 6 30%, with three different charged-Higgs boson

masses and tan β = 50.

mind, we will adopt therefore the 2σ ranges of the arithmetic averages for RSM
D(∗) from

ref. [12] in our analysis.

To fit the 2σ ranges of the current world-averaged RD(∗) results, we choose εtc as a

free complex parameter and vary the charged-Higgs boson masses while fix tan β = 50.

The SM parameters, if not stated otherwise, are taken from ref. [106] as follows: GF =

1.166× 10−5 GeV−2, αs(MZ) = 0.118, mt = 173.21 GeV, mb(mb) = 4.18 GeV, mc(mc) =

1.27 GeV, mτ = 1.78 GeV, MBc = 6.275 GeV, τBc = 0.507 ps, fBc = 0.434 GeV [107],

|Vcb| = 0.041, and |Vtb| = 0.999. The result is shown in figure 1. We can see that the

constraint on εtc becomes more severe with smaller MH± . Note that a negative Re(εtc) is

required, because only CSL plays the significant role in the fit and the dominant contribu-

tion to RD∗ comes from the interference term (see eq. (2.9)). Generically, the magnitude

|εtc| is bounded at 0.1− 0.2.

We conclude therefore that the RD(∗) anomalies can be addressed at 2σ level without

violating the bound from B(B−c → τ−ν̄) 6 30% in the 2HDM-III. In the remaining

sections, we will turn our attention to the neutrino mass as well as the RK(∗) anomalies in

the same framework but with the LSS-I mechanism embedded into it.

3 2HDM-III embedded with the LSS-I mechanism

3.1 Review of the LSS-I model

The ISS [87–89] and LSS-I [90–95] models are the two popular candidates which allow for

the low-scale heavy neutrino mass and the sizeable light-heavy neutrino mixing. In both of

the two cases, the tiny neutrino mass is accounted for by a softly U(1)-symmetric breaking

– 6 –
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term. From the consideration of minimality, we will only discuss the LSS-I model, as the

ISS model requires three more fermion singlets.

In the LSS-I model, at least two right-handed neutrino singlets should be introduced

beyond the SM field content, to generate the phenomenologically viable pattern of neutrino

masses. Such a minimal scenario with two right-handed neutrino singlets can be found e.g.

in refs. [92, 108]. Here we will consider the three-generation case. The neutrino Yukawa

interaction is now given by

ELY
νH̃NR +

1

2
N
c
RMRNR + H.c., (3.1)

where H is the SM Higgs doublet and NR the right-handed neutrino singlet accompanied

by a Majorana mass matrix MR. After the spontaneous symmetry breaking, it leads to a

full 6× 6 neutrino mass matrix:

−1

2
nLMν n

c
L + H.c.. (3.2)

Here nL = (νL, N
c
R)T . The mass matrix Mν can be block-diagonalized by a 6 × 6 unitary

matrix Uν defined in the following way [94]:

UνTMν U
ν ≡

(
UTνν UTNν
UTνN UTNN

)(
0 MD

MT
D MR

)(
Uνν UνN
UNν UNN

)
'

(
mν 0

0 MR

)
, (3.3)

with the Dirac neutrino mass matrix MD = vY ν/
√

2. The light neutrino mass matrix

mν ' −MDM
−1
R MT

D and the heavy Majorana neutrino mass matrix MR can be further

diagonalized by the 3× 3 unitary matrices ŨP and VR, respectively; i.e.,

m̂ν ≡ Ũ †P mν Ũ
∗
P , M̂N ≡ V †RMR V

∗
R, (3.4)

where m̂ν ≡ diag(m1,m2,m3) and M̂N ≡ diag(M1,M2,M3) denote the light and heavy

neutrino mass eigenvalues, respectively.

As pointed out in ref. [91], the tiny neutrino mass can be induced by nearly degenerate

heavy neutrinos with mass around TeV scale. Earlier in ref. [90], another scenario where

three heavy neutrinos are nearly degenerate due to a softly SO(3)-symmetric breaking

term was proposed to realize the electroweak-scale resonant leptogenesis and the small

neutrino mass. In both of these two cases, however, the light-heavy neutrino mixing which

is encoded in U∗νN 'MDM
−1
R [94] cannot reach O(1) due to the indirect constraints from

the low-energy precision data, such as the electroweak precision observables and the LFU

tests [109–112]. As a consequence, the severely restricted UνN cannot provide a solution to

the RK(∗) anomalies via the neutrino-mediated box diagrams [113]. Therefore, we have to

introduce additional neutrino Yukawa interactions so as to provide an explanation for the

RK(∗) deficits. In the next two subsections, we will illustrate that the additional neutrino

Yukawa couplings can reach O(1) in the 2HDM-III framework.

– 7 –
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3.2 2HDM-III with electroweak-scale heavy neutrinos

In the same spirit of ref. [91], we consider the following Yukawa Lagrangian added to

eq. (2.5):

−LN = EL(Y ν
1 Φ̃1 + Y ν

2 Φ̃2)NR +
1

2
N
c
RMRNR + H.c.. (3.5)

In the basis where the charged-lepton mass matrix is diagonal, we assume that the two

Yukawa matrices Y ν
1,2 and the right-handed neutrino mass matrix MR have respectively

the following textures:

Y ν
1 =

 x1 0 0

x2 0 0

x3 0 0

 , Y ν
2 =

 0 0 y1

0 0 y2

0 0 y3

 , MR =

 0 M 0

M µ 0

0 0 M3

 . (3.6)

From the group-theoretical perspective, these textures manifest a global U(1) symmetry

under the charge assignments: L(N1) = −L(N2) = 1, L(N3) = 0, L(EL) = 1, L(Φ1) = 0

and L(Φ2) = −1. To avoid the scalar-mediated FCNC in the charged-lepton sector, we

can assign to the right-handed charged leptons the U(1) charges as: L(eR) = L(µR) =

L(τR) = 1. On the other hand, we do not consider explicit U(1) charge assignments for the

quarks, because the explicit flavor-symmetry construction should now not only generate the

needed FCNC texture given by eq. (2.11), but also produce the already-known pattern of

the Cabibbo-Kobayashi-Maskawa mixing matrix [114, 115], which would become extremely

nontrivial. Instead, we will assume that the Yukawa interactions in the quark sector are

U(1) invariant. In this case, the parameters µ in eq. (3.6) and m2
12 in eq. (2.1) (with λ5 = 0)

become the only sources to break softly the U(1) symmetry.

The light neutrino mass matrix is now given by

mν ' −MDM
−1
R MT

D =

A B C

B D E

C E F

 , (3.7)

with

A =
v2x2

1 µ cos2 β

2M2
− v2y2

1 sin2 β

2M3
, B =

v2x1x2 µ cos2 β

2M2
− v2y1y2 sin2 β

2M3
,

C =
v2x1x3 µ cos2 β

2M2
− v2y1y3 sin2 β

2M3
, D =

v2x2
2 µ cos2 β

2M2
− v2y2

2 sin2 β

2M3
,

E =
v2x2x3 µ cos2 β

2M2
− v2y2y3 sin2 β

2M3
, F =

v2x2
3 µ cos2 β

2M2
− v2y2

3 sin2 β

2M3
. (3.8)

As the above neutrino mass matrix is of rank two, only two massive neutrinos are predicted

in the considered scenario. Under the conditions that (i) tan β � 1, (ii) the parameter µ

is small, and (iii) M3 � M ' O(v), the sub-eV neutrino mass can be easily produced,

without tuning the Yukawa couplings xi and yi to be extremely small. Explicitly, we find

that the following set of parameters

xi ∼ O(1), yi ∼ O(10−2), tanβ ∼ O(50),

M ∼ O(102) GeV, M3 ∼ O(1010) GeV, µ ∼ O(10−7) GeV, (3.9)

– 8 –
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would induce mν ∼ 0.1 eV.5 Furthermore, the heavy Majorana neutrinos have mass eigen-

values M̂N = diag(M − µ/2,M + µ/2,M3). This indicates that the first two generations

form a pseudo-Dirac neutrino [91, 117] with mass splitting proportional to µ, while the third

one is considered to decouple from the 2HDM-III field content when M3 �M ' O(v).

We now make remarks on the choice of the parameter set given by eq. (3.9). The non-

decoupled heavy neutrinos are assumed to reside at the electroweak scale, so that they can

be produced directly at the high-energy colliders, providing therefore experimental tests

for the LSS-I mechanism [118–127]. One of the intriguing properties of the parameter µ in

our case is that it is not necessary to be extremely small,6 because it is now accompanied

by cos2 β, the value of which is preferred to be small in light of the RD(∗) resolution

within the 2HDM-III. Therefore, the hierarchy issue (µ � M) can be relaxed to a large

extent [128, 129].

For the couplings xi, as will be discussed in section 4, an O(1) x2 is required to address

the RK(∗) anomalies. Such a muon-philic coupling also receives the indirect constraints

studied in refs. [109–112] for the light-heavy neutrino mixing parameters, but its contribu-

tions to the one-loop self-energy corrections of the W/Z bosons were found to be negligible

with electroweak-scale heavy neutrinos [111]. Following the analysis made in ref. [112], we

find that the contributions up to the one-loop order can be formally expressed as

η` +
|xi|2

16π2
Sa(M,MH± ,MH,A), (3.10)

where η` represent the tree-level light-heavy neutrino mixing parameters, which are con-

strained to be of O(10−3) [112], while Sa(M,MH± ,MH,A) denote the one-loop scalar func-

tions. One can see that large xi may still be possible as their contributions are suppressed

by the loop factor 1/(4π)2. At the same time, without any cancellations between the tree-

level and one-loop contributions,7 we find that Sa(M,MH± ,MH,A) cannot exceed O(1)

for |xi| ' O(1), which can be readily satisfied with electroweak-scale neutrinos and Higgs

bosons, say, M ' O(100 GeV) and MH 'MA 'MH± ' O(200 GeV).

As stressed in ref. [112], the lepton-flavor violating transitions `i → `jγ give one of

the most severe constraints on the light-heavy neutrino mixing parameters. Thus, we will

consider such constraints on the xi parameters with x2 ' O(1) in the next subsection.

Specifically, we will analyze the process τ → µγ, while the more severe constraint from

µ→ eγ that sets bound on the product x1x2 can be simply avoided if x1 → 0 [112, 132].

5Realistic neutrino mass generation via the seesaw mechanism within the 2HDM framework has also

been considered e.g. in ref. [116].
6In the ISS and LSS-I models, the scale of µ usually depends on the preference for the non-decoupled

heavy neutrinos as well as the neutrino Yukawa couplings.
7If there exists cancellations to some extent, the constraints on xi can be further diluted. The cancellation

scenario in which the light-heavy neutrino mixing parameters are allowed to be enhanced can be found e.g.

in refs. [110, 111, 130, 131].
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Figure 2. Constraint from the ratio B(τ → µγ) defined by eq. (3.11). Left: (MH± , |x3|) contours

with different heavy neutrino masses. Right: (M, |x3|) contours with different charged-Higgs boson

masses. The regions below the curves are allowed by the current data.

3.3 τ → µγ constraint

In our scenario, the ratio between the decay width of τ → µγ with respect to that of

τ → µνν̄ is given by

B(τ → µγ) ≡ Γ(τ → µγ)

Γ(τ → µνν̄)

=
s4
W

384π3αem

M4
W

M4
H±
|x2x3|2

[
2λ3 + 3λ2 − 6λ2 log(λ)− 6λ+ 1

(λ− 1)4

]2

, (3.11)

where λ = M2/M2
H± , sW = sin θW with θW being the weak mixing angle, and αem is the

fine-structure constant. In the above result, we have neglected the small Yukawa couplings

in the charged-lepton part.

Fixing x2 = 1, we show in figure 2 the contours in the (MH± , |x3|) (left) and

(M, |x3|) (right) planes, respectively. The regions below the curves are allowed by the

experimental data with the inputs taken from ref. [106] as follows: sin2 θW = 0.2315,

MW = 80.385 GeV, B(τ → µγ) . 4.4 × 10−8 and B(τ → µνν̄) = 0.17. We can see from

figure 2 that |x3| is required to be small in order to comply with the τ → µγ constraint.

However, |x3| can still increase when M or MH± becomes larger.

Finally, we discuss the neutrino mixing parameters observed in the neutrino oscillation

experiments. It was noticed that viable neutrino mixing pattern can be reproduced with

x1 = 0 [91]. In this limit, the well-known tri-bimaximal mixing pattern (see e.g. the

review [133]) with an inverted mass hierarchy m2 > m1 > m3 = 0 can be obtained if

x2 = x3, y2 = y3 and D = (A+B)/2 (see eqs. (3.7) and (3.8)), which is motivated by the

analysis made in ref. [92]. Certainly, the tri-bimaximal mixing pattern should be modified

in order to generate nonzero reactor angle (see e.g. the updated global fit for the neutrino

– 10 –
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oscillation data [134]), which, however, cannot be realized in the x1 = x3 = 0 limit.8 For

specific parameter choices, we refer to ref. [91] for details.

4 RK(∗) deficits in the 2HDM-III embedded with the LSS-I mechanism

4.1 Theoretical RK(∗) explanation

In our analysis, we will focus only on the following subsets of operators which are directly

responsible for the transition b→ sµ+µ− [135]:

O7 =
e

16π2
mb (s̄σµνPRb)F

µν , O′7 =
e

16π2
mb (s̄σµνPLb)F

µν , (4.1)

O9 =
αem

4π
(s̄γµPLb) (µ̄γµµ) , O′9 =

αem

4π
(s̄γµPRb) (µ̄γµµ) , (4.2)

O10 =
αem

4π
(s̄γµPLb) (µ̄γµγ5µ) , O′10 =

αem

4π
(s̄γµPRb) (µ̄γµγ5µ) . (4.3)

Thus far, there are extensively model-independent analyses on the Wilson coefficients

C
(′)
7,9,10 by fitting to the RK(∗) deficits as well as the various available data on b → s`+`−

and b → sγ transitions, such as the (differential) branching ratios B(B → K(∗)µ+µ−)

and B(Bs → φµ+µ−), the (optimised) angular observables in B0 → K∗0µ+µ− and Bs →
φµ+µ−, and the branching ratio of the inclusive decay B → Xsµ

+µ− [53, 55–59, 61–68]. It

is consistently found that the NP in the muon sector is preferred, whereas no preference for

the NP in the electron mode was favored [53, 55–59, 61–68]. Through the one-dimensional

fits, it is found that the most preferred scenarios fall into the following three directions: (I)

CNP
9µ < 0, (II) CNP

9µ = −CNP
10µ < 0, and (III) CNP

9µ = −C ′NP
9µ < 0. However, the scenario (III)

predicts RK = 1 and hence cannot explain the RK(∗) deficits simultaneously. In ref. [66],

it is further found that the scenario (II) can provide a better fit in light of the LHCb

measurement of RK∗ [51]. Accordingly, we will investigate if this interesting scenario could

be reproduced in our framework.

In our scenario, the Wilson coefficients C ′7,9,10 will receive a suppression factor 1/ tanβ,

which can be also seen from refs. [46, 98]. Although a sizeable C7 can be generated in our

scenario, it is severely constrained by the inclusive decay B → Xsγ.9 Hence only C9,10 are

relevant to our discussion for the RK(∗) anomalies. We find that the Feynman diagrams

depicted in figure 3 can give sizeable contributions to CNP
9µ = −CNP

10µ < 0, which is favored

by the scenario (II). The dominant contribution comes from the third diagram with two

charged Higgs bosons running in the loop, because the vertex H±Nµ∓ allows a sizeable

coupling (O(1)) while the W±Nµ∓ coupling is constrained to be O(10−2) [109–112]. To

this end, for simplicity, we will consider only the contribution coming from this diagram.

After a direct calculation, the corresponding Wilson coefficients are given by

CNP
9µ = −CNP

10µ =
v4

32s2
WM

4
W

∑
i=c,t

|εti|2 |x2|2 I(x, y, zi), (4.4)

8We thank the referee for pointing out this unrealistic limit.
9In ref. [136], we have shown explicitly that C7 can be significantly reduced due to a destructive can-

cellation if a nonzero εct is introduced in eq. (2.11), especially in the case for a relatively light charged

Higgs boson.
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Figure 3. Box diagrams contributing to b → sµ+µ− transition in the 2HDM-III embedded with

the LSS-I mechanism.

with εti given by eq. (2.11). The scalar function I(x, y, zi) is defined as

I(x, y, zi) =
y2 log (x/y)

(x− y)2(y − zi)
+

z2
i log (x/zi)

(x− zi)2(zi − y)
− x

(x− y)(x− zi)
, (4.5)

where x = M2
H±/M

2
W , y = M2/M2

W , and zi = m2
i /M

2
W . Here we have neglected the

mass splitting between the two non-decoupled heavy Majorana neutrinos. The decoupled

Majorana neutrino, on the other hand, does not play any role in the box diagrams because

its couplings to the 2HDM fields are suppressed by the inverse of its mass.

Finally, we need to mention that there are also contributions from the Z- and γ-penguin

diagrams, giving rise to the lepton-flavor universal Wilson coefficients CNP
9` and CNP

10` , with

` = e, µ, or τ . However, using the formulae given in ref. [46], we have checked numerically

that these contributions are small for MH± ' 500 GeV, |εtc| 6 0.5, and |εtt| 6 1. Hence we

will not consider these contributions in the following numerical analysis.

4.2 Numerical RK(∗) analysis

The free parameters in eq. (4.4) are εtc,tt and x2, together with the heavy neutrino mass

M and the charged-Higgs boson mass MH± . However, as shown in figure 1, there exists a

strong correlation between εtc and MH± stemming from the RD(∗) fits. Therefore, we choose

three typical values of (|εtc|,MH±): (0.08, 300 GeV), (0.14, 400 GeV), and (0.21, 500 GeV)

with tan β = 50 in our numerical analysis.

In figure 4, we plot the (x2, εtt) plane (assuming x2 > 0) by using the 1σ range of the

Wilson coefficients CNP
9µ = −CNP

10µ < 0 obtained through a global fit to the RK(∗) deficits

as well as the various available data on b → s`+`− and b → sγ transitions. Here we have

fixed M = 200 GeV as the scalar function (eq. (4.5)) is insensitive to the neutrino mass

around the electroweak scale. As can be seen from figure 4, O(1) x2 and |εtt| are required

to account for the RK(∗) deficits. When the other eight box diagrams depicted in figure 3

are also taken into account with a sizeable W±Nµ∓ coupling [112], the required sizes of x2

and |εtt| can both be reduced. However, these contributions are not explicitly taken into

account when making the plots in figure 4, because in this case more parameters would

be involved.

It should be pointed out that the parameters εtt and MH± are also tightly constrained

by the Bs−B̄s mixing and the b→ sγ transitions, with the findings that εtt . 1 for MH± .
500 GeV [98, 137], which are compatible with the ones required for explaining the RK(∗)

deficits. Thus, our scenario can provide an explanation for the RD(∗) and RK(∗) anomalies,
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Figure 4. Constraint on the parameters x2 and εtt using the 1σ range of the Wilson coefficients

CNP
9µ = −CNP

10µ < 0 obtained through a global fit to the RK(∗) deficits as well as the various available

data on b→ s`+`− and b→ sγ transitions [67].

while complying with these tight constraints. On the other hand, the O(1) coupling x2,

besides its contribution to RK(∗) , also contributes to the muon g−2 dominantly at the one-

loop level. However, this contribution is only of O(10−10) for MH± & 100 GeV [138], which

is smaller than the current experimental data [106] by an order of magnitude. It is therefore

difficult to provide a resolution to the muon g−2 excess in the same scenario. In a follow-on

paper [136], we will show that large contributions to the muon g − 2 can come from the

two-loop Barr-Zee type diagrams. If the muon g− 2 excess is attributed to these two-loop

Barr-Zee contributions, large εtt and relatively light charged Higgs boson would be required.

In this case, the constraints from Bs − B̄s mixing and b → sγ transitions would become

very severe. However, with a nonzero εct introduced to Xu
1 (see eq. (2.11)) [85, 98, 99, 139],

the muon g − 2 anomaly can still be addressed while the constraints from these processes

are satisfied at the same time [136].

Finally, it should be mentioned that, due to the presence of O(1) parameters x2 and

εtt, the decay modes H+ → tb and H+ → µN can have large branching ratios, depending

on the explicit mass spectrum of heavy neutrino, top quark and charged Higgs boson.

For the H+ → tb decay, a recent search performed at the LHC has put upper limits

on the cross section times branching ratio σ(pp → tbH+) × B(H+ → tb) for MH± =

200 − 2000 GeV [140]. As for the H+ → µN decay, the detection of the final states relies

on the decay products of the heavy neutrinos and hence would involve the free light-

heavy neutrino mixing parameters. If this decay mode dominates the charged Higgs boson

decays, it can provide a new way to test the low-scale seesaw mechanism [118–127]. On

the other hand, the branching ratio of H+ → τ+ν can also be large for tan β ' O(50).

If the decay H+ → τ+ν dominates the charged Higgs boson decays, a lower limit on the

charged Higgs boson mass applies with MH± > 80 GeV [141]. Upper limits on σ(pp →

– 13 –
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tbH+) × B(H+ → τ+ν) have also been obtained for MH± = 90 − 2000 GeV [142] and

MH± = 180 − 600 GeV [143], respectively. Following the discussions made explicitly in

refs. [46, 85, 144], which are sufficient for the current purpose, we have found that all these

experimental bounds can be satisfied by the parameter regions allowed by the RD(∗) and

RK(∗) anomalies. As a further nonzero εct needs to be introduced to Xu
1 in order to provide

a resolution to the muon g − 2 excess while complying with the tight constraints from

the B-physics observables [136], we plan to perform a detailed study of the direct LHC

constraints on the charged and neutral scalars at nonzero values of εtt, εtc and εct, as well

as the neutrino Yukawa couplings in an upcoming paper.

5 Conclusions

Based on the structure of the 2HDM-III that has been proposed to address the RD(∗)

anomalies, we have considered a unified scenario where right-handed heavy neutrinos are

introduced to the model, so as to generate small neutrino masses and, at the same time,

provide reasonable explanation for the RK(∗) anomalies.

Our main conclusions can be summarized as follows: within the 2HDM-III, the current

world-averaged results for the ratios RD(∗) can be accommodated at 2σ level, under the

constraint from B(B−c → τ−ν̄) 6 30%. For the light neutrino mass problem, only two

massive neutrinos are produced with the sub-eV scale being accounted for by (i) two nearly

degenerate Majorana neutrinos with mass around the electroweak scale, (ii) a decoupled

heavy Majorana neutrino with mass around 1010 GeV, and (iii) a large tan β with value

around O(50). For the RK(∗) anomalies, we found that a muon-philic neutrino Yukawa

coupling as well as a new top-quark Yukawa coupling, with both of their sizes being of

O(1), are required to reproduce the 1σ range of the Wilson coefficients in the direction

CNP
9µ = −CNP

10µ < 0. Such a large neutrino Yukawa coupling indicates that the coupling

in the electron channel should be largely suppressed so as to comply with the constraint

from µ → eγ while the coupling in the tauonic channel is less constrained from τ → µγ,

particularly for heavier charged Higgs boson and right-handed neutrinos.
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