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1 Introduction

F-theory [1, 2] is a strongly coupled generalization of type IIb string theory that allows for

a varying axio-dilaton in the internal space, including regions where the string coupling

constant is O(1). The power of F-theory lies in the fact that it geometrizes 7-branes, by

promoting the axiodilaton to be the complex structure of an elliptic curve fibered over the

physical internal space B, so that seven-branes in F-theory are described by a Calabi-Yau

elliptic (or genus-one) fibration X → B. The singularities of the elliptic fibration encode the

positions and types of 7-branes, and provides the fundamental geometric data to compute

the gauge group, matter, and other physical content of the low-energy effective theory.

Understanding an F-theory compactification is often done by smoothing the elliptic

Calabi-Yau X in some fashion. One well-studied approach is to resolve the singularities

associated with seven-brane in X via a series of blowups and small resolutions [3–11] to ob-

tain a smooth Calabi-Yau fourfold X]. Compactification of M-theory on X] corresponds to

the Coulomb branch associated with a seven-brane gauge theory. However, this Coulomb

branch arises only via a circle compactification of the original theory; it does not exist in

the F-theory limit and, though very useful, it is nevertheless indirect. Another approach

is to deform [12–19] the complex structure of X to obtain a smooth Calabi-Yau X[, which

typically corresponds to a rank-reducing Higgsing of the gauge group. This has the ad-

vantage that this branch of the moduli space exists in the F-theory limit, and also in the

associated M-theory compactification in one dimension less.

However, from the point of view of gauge theory this seems rather strange: why must

the gauge group be broken in order to understand the unbroken theory? Of course, it need

not: it is only a matter of mathematical and technical convenience, and in general doing so

will miss some of the physics of the unbroken theory. More specifically, the mathematical

techniques for studying F-theory on singular spaces X are simply not as well-developed

as on its smoothings, and dimensional reduction of M-theory on a singular space X is not

well understood in general.1

We will therefore study F-theory directly in cases where X has non-isolated singulari-

ties, which corresponds to having a non-abelian gauge group G on seven-branes. Progress

in this direction, rather than studying F-theory on a smoothing of X that breaks G, seems

critical for a number of reasons:

• Naturalness. It seems much more natural to study a gauge theory directly, rather

than via its broken phases. The unbroken phase arises for singular X.

• Moduli space obstruction. The singular theory may exist at the intersection of multi-

ple branches of moduli space, and by moving to the deformation or resolution some

other branches may be obstructed, for example those corresponding to T-branes [20].

1One case that is well understood are those related to weakly-coupled IIb orientifolds with non-abelian

D7-brane configurations: the corresponding elliptically-fibered Calabi-Yau X is still singular, but we un-

derstand the theory well due to the associated string theory, and not the M-theory compactification on the

singular space.
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• Calabi-Yau smoothing is often impossible. There is increasing evidence that typical

X have both non-Higgsable clusters (see, e.g., [21–24]) and terminal singularities [25],

which forbid passing to smooth Calabi-Yau varieties by complex structure deforma-

tion and Kähler resolution, respectively.

Some excellent progress has already been made in this direction [26]. However, it also seems

that there are many essential questions in F-theory that have yet to be answered from the

point of view of the singular geometry that are intrinsic to its non-abelian gauge sectors.

In this paper we present a conceptually clean result that derives well-known F-theoretic

phenomena, but in F-theory on a singular space.2 Our tool will be string junctions that

begin on a probe D3-brane and end on 7-branes in singular F-theory geometries, which we

motivate using a result from the math literature. This builds critically on the theory of

topological string junctions [15–19, 27]. Specifically, we will derive the existence of non-

simply-laced gauge groups on seven-branes, which correspond to non-simply-laced flavor

symmetries on the D3-brane, from monodromy actions on the 3-7 string junctions.

The existence of such non-simply-laced symmetry groups, including the exceptional

examples F4 and G2, is a classic result in F-theory. It is well understood from the per-

spective of the smooth resolution X], where monodromy action on the generic Kodaira

fiber dictates the non-simply-laced structure. This monodromy action begins to act when

the non-abelian fiber transitions from split to semi-split or non-split, which corresponds to

Higgsing from a simply-laced group to a non-simply-laced group; in both cases the analysis

is done by passing to the M-theory Coulomb branch [2, 3] in one dimension less. Sim-

ilarly, in complex structure deformations to a smooth Calabi-Yau X[, corresponding to

the Higgs branch, monodromy action on string junctions can give rise to non-simply-laced

groups [15, 28].

Our analysis on singular spaces relies heavily on one critical observation: in deform-

ing from

Xsl −→ Xnsl, (1.1)

i.e. from the singular space associated with a simply-laced group to that of a non-simply-

laced group, new non-trivial loops in the D3 moduli space appear, due to a generic splitting

of I1 loci.3 It is precisely the monodromy action associated to these loops that will reduce

the gauge algebra from simply-laced to non-simply-laced, via an action on the charge and

representations of the strings. This occurs in every example that we study and presents

a new technique for understanding 4d N = 1 SCFTs with non-simply-laced flavor sym-

metries, such as those studied in [29]. Since this observation arises only from Higgsing

a simply-laced group to a non-simply-laced group, without resolving or deforming to a

smooth manifold, it could also be understood as the origin of non-simply-laced groups in

the F-theory limit.4

2By this we mean that the elliptic fibration X has non-isolated singularities and has non-abelian seven-

branes, but its base B, which make up the extra dimensions of space, is smooth.
3Such deformations are from specialized loci to generic regions in moduli space that preserve the Kodaira

fiber.
4Non-simply-laced algebras also arise in heterotic compactifications [30], including those with F-theory
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We emphasize at the outset that there are two different notions of “splitting” that

we will use. One is the splitting in Kodaira’s sense, determined by whether there is an

outer-automorphism of the Dynkin diagram corresponding to the fibration structure. The

other is the splitting associated to the creation of the new closed loops in the D3 brane

moduli space, which we will make precise below. When a Kodaira fiber becomes non-

split (or semi-split), the I1 locus becomes split near the seven-brane, and a simply-laced

group is broken to a non-simply-laced group. The two notions of splitting should be clear

from context.

This paper is organized as follows. In section 2 we analytically compute various ge-

ometric monodromies, including those associated with I1 locus splitting, using a simple

technique. In section 3 we review string junctions on deformed spaces, discuss aspects

of them on singular spaces, and how monodromy reduction to non-simply laced algebras

occurs on singular spaces.

2 Analytic computation of geometric monodromies

The crux of our analysis is that under a deformation from split non-abelian fiber to non-

split non-abelian fiber over a divisor D, the intersection of the I1 locus with D can split,

thereby providing new non-trivial loops in the vicinity of the seven-brane. These new paths

can provide new monodromy actions on 3-7 string junctions as a D3-brane traverses the

loop, and we will find that such monodromy actions reduce the symmetry algebra to one

that is non-simply-laced.

Our analysis proceeds in two steps: we first compute the relevant monodromies around

irreducible I1 loci that arise in the deformation from split non-abelian fiber to non-split

non-abelian fiber, and then compute the induced monodromy action on representations

of the gauge algebra, which arise from string junctions ending on the non-abelian seven-

branes. In this section, we first explain the I1 splitting phenomenon as we move from

split non-abelian fiber to non-split non-abelian fiber, and then present a simple technique

for analytically determining the vanishing cycles associated to seven-branes with Kodaira

I1 fibers. We will end this section with the computation of geometric monodromies in a

number of examples.

2.1 The central observation: splitting I1 loci

An elliptic curve can be regarded as a double cover of P1 with four punctures at which the

double cover is ramified. In a Weierstrass model, which takes the form

y2 = x3 + fx+ g , (2.1)

three of the punctures are manifest as the roots of the cubic x3 + fx+ g = 0, denoted by

x1, x2 and x3, while the fourth root lies at infinity. In an elliptic fibration over a base B,

X
π−→ B , (2.2)

duals [2]. It would be interesting to understand how our reduction from simply-laced to non-simply-laced

algebras relates to a dimensional truncation of the charge lattice [30] in heterotic constructions.
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the positions of the three punctures vary as we move around on the base manifold B of

the fibration. The requirement that X is Calabi-Yau then implies that f ∈ Γ(−4KB) and

g ∈ Γ(−6KB), where −KB is the anticanonical bundle of B.

At a point uD on the discriminant locus

∆ = 4f3 + 27g2 = 0 , (2.3)

the elliptic curve degenerates, i.e. π−1(uD) is a singular fiber, where at least two of

{x1, x2, x3} have collided. If we move to a point p, slightly away from the discriminant locus,

and take a loop around a component of the discriminant locus, this will induce a non-trivial

map on {x1, x2, x3}, which in turn induces a monodromy action on H1(Ep,Z), where

Ep := π−1(p) , (2.4)

is the smooth elliptic curve above p. If the singular fiber above the discriminant component

is of Kodaira type I1, then only two of the roots of the cubic become degenerate upon

approaching this I1 component. If we take p sufficiently close to such a locus, two of the

roots will be nearly collided, and upon encircling the nearby I1 locus those two roots swap.

This swap precisely determines the Picard-Lefschetz monodromy on H1(Ep,Z) associated

with traversing the loop.

Now note that, as a function of f , there are three solutions to the equation ∆ ≡
4f3 + 27g2 = 0, when restricted to a local patch of the base manifold B (where f and g

can be treated locally as ordinary functions on B). These roots take the form:

f1 = −3

(
−1

2

)2/3

g2/3 , (2.5)

f2 = −3g2/3

22/3
, (2.6)

f3 =
3 3
√
−1g2/3

22/3
, (2.7)

where here and henceforth when we indicate a cube root, we mean the principal cube

root, i.e. the one with least non-negative argument. Upon traversing a loop around an

I1-component of the discriminant locus two of the roots {x1, x2, x3} are swapped, where

the particular choice of roots is determined by which one of the three solutions to ∆ = 0

(as a function of f) is realized at a given point uD ∈ {∆ = 0}. Which two in {x1, x2, x3}
swap also determines the vanishing cycle.

Non-simply-laced gauge groups can only be realized in F-theory when dimC(B) ≥ 2,

i.e., in six-dimensional compactification or lower, and therefore in any local patch the

Weierstrass model depends on multiple complex coordinates. To engineer a gauge group

we will consider a singular Weierstrass model with a non-abelian seven-brane at z = 0, for

local coordinates {z, ti} on the base

f = f(ti; z),

g = g(ti; z).
(2.8)
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Figure 1. An I1 locus intersects the stack of 7-branes at z = 0.

(a) ε = 0

ε 6=0−−−−→

(b) ε 6= 0

Figure 2. Splitting of the I1 locus associated with the deformation to ε 6= 0 that transitions the

simply-laced gauge algebra to the non-simply-laced one.

The discriminant locus then must take the form

∆ = zN∆R(ti; z) , (2.9)

where ∆R(ti; z) = 0 is called the residual discriminant locus, whose generic fiber is of

I1-type.5 The fiber generically becomes more singular along intersections of z = 0 and

∆R = 0, as depicted in figure 1.

Whether or not the gauge group is simply-laced depends on whether or not the associ-

ated Kodaira fiber is split. For a detailed explanation of this phenomenon see [3] (though

we will realize the same phenomenon from different techniques). In each model we study

we consider a single-parameter family of deformations, parameterized by an appropriate

parameter ε, which interpolates between split and non-split Kodaira fibers. To distinguish

between these cases we will use the notation ∆R(t; z; ε) for the residual discriminant. We

choose the parameter ε such that when ε = 0 there is no outer-automorphism on the fiber,

and therefore when ε = 0 the fiber type is split and the gauge algebra is simply-laced, and

when ε 6= 0 it is non-simply-laced.

On the other hand, when ε 6= 0 and the fiber becomes non-split, each component on the

z = 0 hyperplane such that ∆R(t; 0; 0) = 0 can split (and at least one does) into multiple

5In some cases, such as those with non-Higgsable clusters, there can be additional non-I1 factors, in

which case we still denote the I1-locus as ∆R(t; z). For any model with dimC(B) > 2 there will be multiple

ti, but for our analysis it will be sufficient to consider D as a small disk transverse to I1 loci, parameterized

by a single complex coordinate t.

– 6 –
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Figure 3. For IVns and IV ∗
ns, upon turning on δ, the residual discriminant intersection further

splits into 2 components along the z = δ plane. The monodromy induced by a path around both,

which coalesces into the monodromy around a single component in the z = 0 plane, is the one

relevant for reducing to the gauge algebra.

components on the z = 0 plane, which are a set of solutions to ∆R(t; 0; ε) = 0. In this

sense the split vs. non-split issue for the I1 loci has opposite meaning from the non-abelian

7-brane loci, as turning on ε 6= 0 such that the non-abelian fiber becomes non-split has the

effecting of splitting the I1 loci into multiple components. This scenario is schematically

shown in figure 2. This is the critical observation for our analysis, and so we place it in a

little box:

A deformation ε 6= 0 that changes the non-abelian 7-brane fiber from split

to non-split can split the I1 loci intersections with the 7-brane into mul-

tiple components. This splitting provides new loops in D, and traversing

these loops gives the corresponding monodromy action that reduces the

symmetry algebra.

The fiber is singular along the non-abelian 7-brane locus D, given by z = 0, which

makes directly probing D difficult. We will bypass this issue by focusing on a nearby

hyperplane z = δ, δ ∈ C, with |δ| infinitesimal, in a sense we make precise below. In the

examples that we study the non-trivial behavior of taking z = δ 6= 0 is the possibility of

further splitting of the components of {z = 0}∩{∆R = 0}. For type I∗0 and I∗1 , each of the

marked points for ε 6= 0 remains separated but does not further split. For type I4, IV , IV ∗,

each of the components further splits into either three (for I4) or two (for IV and IV ∗)

components on the z = δ plane. The behavior for IVns and IV ∗ns is shown schematically

in figure 3. We would like to emphasize that the splitting that arises from moving away

from the z = 0 plane is not the splitting we are interested in, as it does not exist on the

non-abelian 7-brane itself. On the other hand, the splitting that occurs by taking ε 6= 0

does exist on the non-abelian 7-brane, and such a splitting will be our focus. We therefore

will consider loops that encircle all components of an I1 fiber which collapse to a single

component on the z = 0 hyperplane.

While there are multiple ways of interpreting the physics of these extra monodromies,

a convenient viewpoint is that of a D3 probe. We consider 3-7 strings stretched from the

D3 brane to the 7-brane, and vice versa. The action of the monodromy on these states has

– 7 –
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Figure 4. The red dot represents the D3-brane probe. There is a 3-7 string connecting the D3-

brane and the non-abelian seven brane at z = 0. The dashed circle represents the loop around

one pair of the splitting roots P1 and P2 where the I1 locus intersect the z = δ plane. Note that

the precise location of the D3-brane and the shape of the loop are irrelevant as long as they all lie

within a small neighborhood of P1 and P2.

a natural interpretation in terms of string junctions, and these states thus serve as building

blocks for more general configurations, such as string junctions with ends on multiple 7-

branes, which can be obtained by gluing together 3-7 junctions. For a D3 brane at z = δ,

with |δ| small, the 3-7 string from the D3-brane to the non-abelian 7-brane is massive but

light, and massless states arise from taking δ → 0.The gauge symmetry of the seven-brane

is seen as a flavor symmetry from the D3 probe viewpoint, which will allow us to compute

the corresponding representation using string junctions on the singular space. By bringing

the D3-brane around the new loops that appears when ε 6= 0 one finds an action on the

3-7 strings that does not exist in the undeformed geometry, and the monodromy can be

read off using the analytic technique of section 2.2. We will show that this can induce

a monodromy not only on the electromagnetic charge of the 3-7 string under the U(1)

carried by the D3-brane, but also the non-abelian flavor representation. In such a case,

since the loop can be taken arbitrarily small, the states should be identified and one must

quotient by the monodromy action, giving rise to a non-simply-laced flavor algebra on the

D3-brane, or alternatively a non-simply-laced gauge algebra on the seven-brane. For type

IV and IV ∗ the picture is schematically shown as in figure 4. In table 1 we present the

cases that will be discussed in this work, which provides more than enough flavor to see

the general picture.

2.2 A simple technique for determining vanishing cycles of I1 fibers

As we saw in the previous section moving from split to non-split fiber above the non-abelian

7-brane along z = 0 splits the I1 loci on z = 0 into multiple components. As we wish to

compute the monodromy action upon encircling the components of this split I1 locus we

will derive a simple method to read off the corresponding vanishing cycles. We begin with

a general observation on the structure of the roots of the cubic v(x) := x3 + fx + g that

appears in the Weierstrass equation. The roots take the form

x1 = − 2
1
3 f

3
1
3 (
√

3
√

∆− 9g)
1
3

+
(
√

3
√

∆− 9g)
1
3

2
1
3 3

2
3

, (2.10)
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x2 =

(
1 + i

√
3
)
f

2
2
3 3

1
3 (
√

3
√

∆− 9g)
1
3

−
(
1− i

√
3
)

(
√

3
√

∆− 9g)
1
3

2× 2
1
3 3

2
3

, (2.11)

x3 =

(
1− i

√
3
)
f

2
2
3 3

1
3 (
√

3
√

∆− 9g)
1
3

−
(
1 + i

√
3
)

(
√

3
√

∆− 9g)
1
3

2× 2
1
3 3

2
3

. (2.12)

We immediately see that the discriminant of the elliptic curve ∆ naturally enters the

expressions of the roots, which will allow us to simply expressions below.

Let us restrict to a small disc D in the base with complex coordinate u, then ∆ ∈
Γ(−12KB) becomes a polynomial function ∆D := ∆|D of u that depends on the choice

of disc. Then ∆D = (u − u1)(u − u2) · · · (u − un) where ui’s are the points where the

fiber degenerate, and we do not assume that the ui’s are distinct. We will see that upon

looping around any ui, with an I1 fiber above, some pair of roots {xi, xj} swaps. We

now select an arbitrary ui with I1 fiber above, say u1, and investigate the behavior of the

cycles of the elliptic curve upon carrying it around u1. We consider a change of variables

uB = u− u1 which we parameterize in polar coordinates as uB = λeiθ. Then ∆ ∼ C0λe
iθ

where θ ∈ [0, 2π) parameterizes a loop around u1 and C0 is a finite term which does not

become small. For our purpose it suffices to treat C0 as a constant since any non-constant

part of C0 will be of order at least ∼ O(λ), and we will see our results depends only on

the behavior at order ∼ O(λ
1
2 ) or lower. We will set C1 = C

1
2
0 and ρ = λ

1
2 for notational

convenience, but we will continue to use θ because it parameterizes the actual loop in

the base.

After the substitution and approximation the three roots become:

x1 =
(−9g +

√
3C1e

iθ
2 ρ)1/3

3
√

2× 32/3
−

(23)1/3f

(−9g +
√

3C1e
iθ
2 ρ)1/3

,

x2 =

(
1 + i

√
3
)
f

22/331/3(−9g +
√

3C1e
iθ
2 ρ)1/3

−
(
1− i

√
3
)

(−9g +
√

3C1e
iθ
2 ρ)1/3

24/3 × 32/3
,

x3 =

(
1− i

√
3
)
f

22/331/3(−9g +
√

3C1e
iθ
2 ρ)1/3

−
(
1 + i

√
3
)

(−9g +
√

3C1e
iθ
2 ρ)1/3

24/3 × 32/3
.

(2.13)

Now we can expand with respect to ρ,6 and only keep the terms up to O(ρ) so that the

above roots are further simplified to:

x1 =− 21/3f

3(−g)1/3
+

(
−g
2

)1/3

+
C1e

iθ
2

(
2f(−g)1/3 − 3(2)1/3g

)
27× 22/3

√
3(−g)5/3

ρ+O(ρ2),

x2 =
3i22/3

(√
3 + i

)
(−g)1/3g − 2i(2)1/3

(√
3− i

)
f(−g)2/3

12g

+
C1e

iθ
2

(
3(2)1/3

(
1− i

√
3
)
g − 2i

(√
3− i

)
f(−g)1/3

)
54× 22/3

√
3(−g)5/3

ρ+O(ρ2),

6In general ε is dimensionful, and so we are really expanding in ε/εa, where the εa are the other relevant

scales in the Weierstrass model, but we find the same results as simply naively expanding in the parameter ε.
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Fiber type I4 IV IV ∗ I∗0 I∗1
Split SU(4) SU(3) E6 SO(8) SO(10)

Outer-automorphism Z2 Z2 Z2 Z2 S3 Z2

Non-split Sp(2) Sp(1) F4 SO(7) G2 SO(9)

Table 1. Simply-laced and non-simply-laced Lie algebras that are analyzed in this paper.

x3 =
2i(2)1/3

(√
3 + i

)
f(−g)2/3 + 3i22/3

(√
3− i

)
(−g)4/3

12g

+
C1e

iθ
2

(
2i
(√

3 + i
)
f(−g)1/3 + 3(2)1/3

(
1 + i

√
3
)
g
)

54× 22/3
√

3(−g)5/3
ρ+O(ρ2).

In fact, it will be sufficient to concentrate on the O(1) parts of these three expressions,

which we refer to as A1, A2 and A3, respectively.

As an example consider A1 − A2, which sets the O(1) distance between x1 and x2.

We have:

A1 −A2 =
24/3

(
−3− i

√
3
)
f + 3× 22/3

(
3− i

√
3
)

(−g)2/3

12(−g)1/3
. (2.14)

Recall that ∆D = (4f3 + 27g2)|D and we are expanding around one of the zero points of

∆D, and so ∆D ∼ O(λ) = O(ρ2). Since this is smaller than the ρ-dependent parts of the

roots in equation 2.13 we can set 4f3 = −27g2 to leading order, without losing the leading

ρ-dependence of the roots. Hence we can solve the equation 4f3 = −27g2 for f , and the

solutions take the form of eqs. (2.5)–(2.7). For instance, one can explicitly check that,

when equation (2.7) holds, we have A1 −A2 = 0, and hence we obtain x1 − x2 ∼ ρe
iθ
2 .

There are two crucial pieces of information that we wish to extract from the above

result. The first is to notice that the limit ρ→ 0 corresponds to approaching the I1 seven-

brane at z = u1, where x1 → x2; that is, x1 and x2 collide. The second is encoded in the

e
iθ
2 part. While the small parameter ρ sets the order such that the above approximations

can be systematically performed, the taking θ from zero to 2π swaps x1 and x2; such

a swap occurs when the elliptic curve is brought around a small circle centered at the

point satisfying equation (2.7) . This swap corresponds precisely to the Picard-Lefschetz

monodromy of traversing the loop around this I1 locus, and this technique gives an efficient

way to read off the vanishing cycle and compute the corresponding monodromy matrix.

A similar analysis may be performed for the x1-x2 swap and the x2-x3 swap. The former

happens when the elliptic curve is brought around the point where eq. (2.5) holds while

the latter at where eq. (2.6) holds.

2.3 Monodromy action in examples

In this section we will study concrete examples where the fiber of a non-abelian 7-brane

becomes non-split via a deformation. Our analysis in this section will be the relevant

geometric analyses for the reduction of simply-laced gauge algebras to non-simply laced

ones; this fact, and our naming conventions for each example, will be justified in the

corresponding subsections in section 3. We begin with the most computationally tedious

example, which will allow us to demonstrate our technique in full detail.
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2.3.1 Type I∗
0s: SO(8) → G2

To obtain the Weierstrass model for G2 we will start from the Weierstrass model for SO(8).

The latter is obtained when x3 + fx+ g factorizes into three pieces. We can in general let

x3 + fx+ g = (x+Bz + Cz)(x−Bz)(x− Cz). (2.15)

So that:
f = −B2z2 −BCz2 − C2z2

g = B2Cz3 +BC2z3
(2.16)

Here and henceforth capital letters denote generic holomorphic functions of z and t in the

local geometry, whose precise forms are not crucial, and are example-dependent. To break

SO(8) to G2 model we can simply add a term to both f and g so to so that the l.h.s. of

eq. (2.15) can no longer be factorized. The simplest such terms for f and g are the terms

that are linear in ε and vanish to order 2 and 3 in z, respectively. Hence the Weierstrass

model for SO(8)→ G2 is:

f = −B2z2 −BCz2 − C2z2 + F1z
2ε+ F2z

3,

g = B2Cz3 +BC2z3 +G1z
3ε+G2z

4,
(2.17)

where the gauge group is SO(8)for ε = 0 and G2 for ε 6= 0. Taking z = δ 6= 0, the residual

discriminant ∆R takes the form:

∆R(t; δ; ε) = 27
(
B2C +BC2 +G1ε+ δG2

)2 − 4
(
B2 +BC + C2 − F1ε− δF2

)3
(2.18)

Solving ∆R(t; 0; 0) = 0 for B, there are three double roots at B = −2C, B = −1
2C, B = C.

After turning on ε, a direct computation shows that each of the three double roots splits

to a pair of simple roots.7 Since all of the roots split, one expects that the geometric

monodromy action could be different for each pair, which may be important in obtaining

a larger group of automorphisms of SO(8). In this case turning on δ does not introduce

further splitting due to the fact that after turning on ε each of the three double roots

already splits into two simple roots, and hence no further splitting can occur, due to the

structure of the polynomial ∆R.

To compute the monodromy, we will apply the method derived in section 2.2. There

are three pairs of solutions to the equation ∆R(t; δ; ε) = 0. If we approach an arbitrary

root BR of ∆R(t; δ; ε) = 0, the solutions to the equation x3 + fx+ g = 0 become:

x1 =
3
√√

BtW + V

3× 3
√

2
−

3
√

2U

3 3
√√

BtW + V
,

x2 =

(
1 + i

√
3
)
U

3 22/3 3
√√

BtW + V
−
(
1− i

√
3
)

3
√√

BtW + V

6 3
√

2
,

x3 =

(
1− i

√
3
)
U

3× 22/3 3
√√

BtW + V
−
(
1 + i

√
3
)

3
√√

BtW + V

6 3
√

2

(2.19)

7We will often avoid listing roots such as these because of the lengthy nature of the expressions.
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where U = −3B2δ2 − 3BCδ2 − 3C2δ2 + 3δ2F1ε + 3δ3F2, V = −27B2Cδ3 − 27BC2δ3 −
27δ3G1ε−27δ4G2, Bt ≡ B−BR = ρeiθ, ρ is a small parameter, and W ∝ δ3 is a complicated

function whose exact form is irrelevant.

Before we perform any perturbative expansions, it is easy to see that x1, x2 and x3
are all proportional to δ. Since z ∼ δ ≡ δ0e

iθ, we know immediately that bringing the

D3-brane along a loop around the z = 0 plane, i.e., the stack of the 7-branes, will lead to a

geometric monodromy action that corresponds to a 2π rotation of the three roots. This 2π

rotation corresponds to a monodromy −I2×2 matrix acting on (p, q)-cycles, or alternatively

the (p, q)-charges of string junctions. The reason for this is that the orientation of the 1-

cycles is determined in the double cover of the x-plane, and so a 2π rotation in the x-plane

corresponds to a π rotation in the double cover, which reverses the orientation of the 1-

cycles in the double cover. This fact which will play an important role in our subsequent

discussions; see [19] for a detailed discussion.

We now expand the above solution with respect to ρ. Keeping only the lowest order

in ρ we obtain:

x1
δ

=
22/3V 2/3 − 2 3

√
2U

6 3
√
V

+
√
ρe

i
2
θW

(
2 3
√

2U + 22/3V 2/3
)

18V 4/3
,

x2
δ

=

(
1 + i

√
3
)
U

3× 22/3 3
√
V
−
(
1− i

√
3
)

3
√
V

6 3
√

2
+
√
ρe

i
2
θ

(
−
(
1 + i

√
3
)
UW

9× 22/3V 4/3
−
(
1− i

√
3
)
W

18 3
√

2V 2/3

)
,

x3
δ

=

(
1− i

√
3
)
U

3× 22/3 3
√
V
−
(
1 + i

√
3
)

3
√
V

6 3
√

2
+
√
ρe

i
2
θ

(
−
(
1− i

√
3
)
UW

9× 22/3V 4/3
−
(
1 + i

√
3
)
W

18 3
√

2V 2/3

)
.

(2.20)

It is easy to show that 4U3 + V 2 ∝ ∆R(Bt; δ; ε) ∼ O(ρ), and so at leading order in

O(ρ
1
2 ), 4U3 + V 2 = 0. There are three solutions to this equation:

U1 = −
(
−1

2

)2/3

V 2/3, (2.21)

U2 = −V
2/3

22/3
, (2.22)

U3 =
3
√
−1V 2/3

22/3
. (2.23)

We now substitute these relations between U and V back into eq. (2.20) and investigate

the behavior of the set of roots {x1, x2, x3}. If BR ∈ B is a solution to ∆R(t; δ; ε) = 0

where the relation given by eq. (2.21) holds, then x1 − x2 ∝
√
ρe

i
2
θ, and so dragging the

D3-brane probe along a loop around such a BR induces a swap of the roots x1 and x2. By

the same logic, it is easy to show that when BR is a solution such that eq. (2.22) holds

there is an x2-x3 swap and when BR is such that eq. (2.23) holds there is an x1-x3 swap.

Recall that in each case there is also an overall 2π rotation, in addition to the swap.

One possible complication is whether these are indeed three different swaps since, e.g.,

an x1-x2 swap in some local patch may become, say, an x1-x3 swap in some other local patch

if there is a nontrivial transition function between patches. However, our entire analysis

is a local one, and the (arbitrary) chosen ordering of the three roots {x1, x2, x3} does not
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Figure 5. A picture of the G2 case for the elliptic fibration over the z = δ plane while ε 6= 0.

U1, U2 and U3 are three regions such that eq. (2.21), (2.22) and (2.23) hold to the order O(ρ
1
2 ),

respectively. In these regions the fiber becomes nearly degenerate. The red dot represents the root

x1, the green dot x2 and the blue dot x3. The central node on the z = δ plane is at arbitrary

position as long as it is away from the region where the fiber becomes degenerate.

change when moving around on the z = δ plane. It is simple to verify this numerically.

The configuration is schematically shown in figure 5.

Note that in this case all the three possible swaps between {x1, x2, x3} are realized,

and therefore the precise correspondence between particular loops and vanishing cycles is

not important for computing monodromy actions on string junctions. This will not be the

case in general, and we will see that the explicit correspondence between swaps, and the

relations between U and V , are crucial in the string junction computations.

2.3.2 Type I∗
0ss: SO(8) → SO(7)

After analyzing the SO(8) → G2 case it is natural to consider monodromy reduction

SO(8)→ SO(7).

The Weierstrass model takes the form:

f = Az2ε−B2z2 −BCz2 − C2z2 + Fz3, (2.24)

g = ABz3ε+ACz3ε+B2Cz3 +BC2z3, (2.25)

for which:

∆R(t; δ; ε) = 27(B + C)2(Aε+BC)2 − 4
(
−Aε+B2 +BC + C2 − δF

)3
. (2.26)

The roots of x3 + fx+ g = 0 can be written in the same form as in the G2 case, given

in equation 2.19. In this case U , V and W take the form:

U = 3Aδ2ε− 3B2δ2 − 3BCδ2 − 3C2δ2 + 3δ3F,

V = −27ABδ3ε− 27ACδ3ε− 27B2Cδ3 − 27BC2δ3.
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Here W ∼ δ3W0, where the precise form of W0 is unimportant. Again there an overall mul-

tiplicative factor of δ in the xi, which indicates the presence of an −I2×2 monodromy action.

The difference between the SO(7) case and G2 case lies in the pattern of how the roots

of ∆R(t; δ; ε) = 0 split after turning on ε. Let us focus on the z = 0 plane. There are again

three double roots of ∆R(t; 0; 0) = 0 at B = −2C, B = −1
2C and B = C. After turning on

ε only the double root at B = C split into two distinct roots B = C±
√
Aε. The other two

double roots move a small amount but remain degenerate, i.e. they do not split. Therefore,

the still-degenerate double roots do not contribute additional monodromy action on the

string junctions.

Again we can consistently set 4U3 + V 2 = 0 to leading order. The three solutions to

this equation again correspond to a swap of x1-x2, x2-x3 or x1-x3, respectively; however,

only one of the three swaps is relevant because the pair of the roots that provide a new

geometric monodromy action are at B = C ±
√
Aε. Substituting these expressions of

B into the expressions of U and V , we find that the corresponding relation is given by

equation (2.23), which is realized at both of these two new roots. Therefore, the geometric

monodromy action induced by looping around one of these two roots corresponds to an

x1-x3 swap. Of course, there is a freedom of relabeling x1, x2 and x3, so that when we say

the geometric monodromy action corresponds to an x1-x3 swap, we have fixed the labeling

by a choice of vanishing cycle along the non-abelian 7-brane, as will be made clear in our

discussion of string junctions in section 3.

2.3.3 Type IV : SU(3) → Sp(1)

Let us now consider type IVs and IVns fibers. The Weierstrass model takes the form:

f = Fz2,

g = z2
(
G1ε+G2z +M2

)
for which we have:

∆R(t; δ; ε) = 4δ2F 3 + 27
(
G1ε+ δG2 +M2

)2
(2.27)

Solving for the roots of x3 + fx + g = 0 we again find the same structure, U , V and W

defined as:
U = 3Fδ2,

V = 27(−δ2G1ε−G2δ
3 − δ2M2).

(2.28)

Again we have W ∼ δ3W0. Immediately we can see a difference between this case and

the G2 and SO(7) cases: there is no overall multiplicative δ factor for each root. Instead,

the leading order overall multiplicative factor is δ
2
3 . This represents an overall rotation

of {x1, x2, x3} upon traversing a loop around the z = 0 plane; instead of a 2π rotation,

we find a 4
3π rotation. There is still the relation 4U3 + V 2 = 0 and each of its three

solutions corresponds to one of the three different swaps. However, unlike the previous

cases, there is an ambiguity in which of the three swaps is realized at different components

of ∆R(t; δ; ε) = 0.
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In this case, there is a fourfold root M = 0 to the equation ∆R(t; 0; 0) = 0. After

turning on ε, the fourfold root splits into to two double roots M = ±i
√
G1ε. After turning

on δ each of the double roots splits further into two simple roots. These four simple roots

are located at

M = ±
(
± 2iF

2
3 δ

3
√

3
−G1ε−G2δ

) 1
2

. (2.29)

Substituting these expressions of M into equation 2.28, it is straightforward to see which

of relations between U and V are realized. The relations realized at M = ±
(
± 2iF

2
3 δ

3
√
3
−

G1ε − G2δ
) 1

2 are U3, U1, U3 and U1, for the combinations {+,+}, {+,−}, {−,+}, and

{−,−}, respectively, where U1 = −
(
−1

2

) 2
3 V

2
3 and U3 =

3√−1
2
2
3
V

2
3 . One can show that U3

corresponds to an x1-x3 swap and U1 to x1-x2 swap, so that for each pair of the simple

roots, which in the δ = 0 limit recombines back into a double root, the monodromy action

is a combination of an x1-x3 swap and an x1-x2 swap.

In a string junction analysis, if the SL(2,Z) matrix acting on the asymptotic charges

of the string junctions corresponding to x1-x2 swap is M1 and to x1-x3 is M3, then the

total monodromy matrix acting on the asymptotic charge is M1 ·M3. We will make this

point clearer in section 3.

2.3.4 Type IV ∗: E6 → F4

This case is structurally very similar to the type IV case in the above section. The

Weierstrass model is:

f = Fz3,

g = z4(εG1 + δG2 +M2) ,

for which we have:

∆R(t; δ; ε) = 4δF 3 +27G2
1ε

2 +54δεG1G2 +54G1M
2ε+27δ2G2

2 +54δG2M
2 +27M4. (2.30)

It is straight forward to show that pattern of the splitting of the roots is the same as in the

type IV case, and the geometric monodromy actions realized in this case are also identical

to those of the type IV case. The only difference that lies between type IV ∗ and IV is

that in this case there is an overall multiplicative δ
4
3 factor instead of a δ

2
3 factor, and so

upon encircling the z = 0 plane there is an overall 8
3π rotation. The rest if the analysis is

identical to the IVs → IVns case.

2.3.5 Type I∗
1 : SO(10) → SO(9)

In this case we use a Tate model to obtain the Weierstrass model:

f = − 1

48
A4

1z
4 +

1

48
z3
(
−8A2

1A2 + 24A1A3 + 48A4

)
− A2

2z
2

3
,

g =
A6

1z
6

864
+

1

864
z4
(
48A2

1A
2
2 − 144A1A2A3 − 288A2A4 + 216A2

3 + 864A64ε
)

+
1

864
z5
(
12A4

1A2− 36A3
1A3 − 72A2

1A4 + 864A65

)
+

2A3
2z

3

27
.
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As usual the roots of x3 + fx+ g = 0 have the same structure as before, although with a

different form of U , V and W . After turning on ε the roots of ∆R(t; δ; ε) = 0 split from

a double root at A3 = 0 to two simple roots at A3 = ±2i
√
A64ε. However, there is a

subtlety in this model: after turning on δ, there are two more roots appearing because of

the presence of the higher order terms in A3 when δ 6= 0. These two extra roots does not

introduce any additional monodromy, as they do not exist in the limit δ → 0.

It is easy to show that there is an overall multiplicative δ factor in the roots of x3 +

fx + g = 0, which corresponds to a 2π rotation, as before. It also not hard to show that

x1−x3 ∝
√
δ so that there is also an extra x1-x3 swap while looping around the z = 0 plane.

Proceeding as before, it is not hard to show it is U3 that is realized in the neighborhood of

one of the relevant simple roots of ∆R(t; δ; ε) = 0, and so that in this case the geometric

monodromy action is an x1-x3 swap.

2.3.6 Type I4: SU(4) → Sp(2)

Finally we consider type I4. The Weierstrass model is:

f = −6Pz
(
Gε+M2

)
− 3

(
Gε+M2

)2 − 3P 2z2,

g = 6P 2z2
(
Gε+M2

)
+ 6Pz

(
Gε+M2

)2
+ 2

(
Gε+M2

)3
+ 2P 3z3 +Qz4,

for which we have:

∆R(t; δ; ε) = 4G3ε3 + 12δG2Pε2 + 12M4(Gε+ δP ) + 12M2(Gε+ δP )2

+ 12δ2GP 2ε+ 4M6 + 4δ3P 3 + δ4Q.

The solutions to x3 + fx+ g = 0 have the same structure as before. In this case, we have:

U = −G2ε2 − 2GM2ε− 2δGPε−M4 − 2δM2P − δ2P 2,

V = 2G3ε3 + 6G2M2ε2 + 6δG2Pε2 + 6GM4ε+ 12δGM2Pε

+ 6δ2GP 2ε+ 2M6 + 6δM4P + 6δ2M2P 2 + 2δ3P 3 + δ4Q,

and again 4U3 + V 2 vanishes to leading order.

In this case it can easily be shown that there is no multiplicative δ factor in the solutions

to x3+fx+g = 0, and so there is no overall rotation of the configuration of the roots when

bringing the elliptic fiber along a loop around the z = 0 plane. A higher order analysis

shows that x1−x3 ∝ δ2, and therefore although there is no overall rotation of {x1, x2, x3},
x1 rotates around x3 by 4π, and so x1 and x3 get swapped four times in this process.

In this case the solution to ∆R(t; 0; 0) = 0 is a sixfold root M = 0. Turning on ε, M = 0

splits into two threefold roots M = ±i
√
Gε. Upon turning on δ each of the threefold roots

splits further into three distinct roots. In the order we chose, the U roots that are realized

are U1, U3 and U2. Therefore the swaps on the x roots are first an x1-x2 swap, then an

x1-x3 swap, and finally an x2-x3 swap. The combined monodromy action is then an x1-x3
swap, but this is not the whole story. Recall the swap is realized not via a Z2 action, but

instead via a π rotation of the two roots involved. One can then see that there is also an
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overall 2π rotation in addition to the x1-x3 swap upon encircling a loop enclosing the three

roots that, in the δ = 0 limit ,recombine into a single threefold root.

This presence of this overall 2π rotation is manifest in the δ = 0 limit while keep ε

non-zero. In this limit the x roots consists of a simple root xs = −2(M2+Gε) and a double

root xd = M2 +Gε. In this limit the solutions to ∆R(t; δ; 0) = 0 are M = ±i
√
Gε, and so

that by the same logic as in the δ 6= 0 case we can still expand the x roots around one of

these two solutions. We therefore let M = ρeiθ ± i
√
Gε where ρ is a small parameter, and

keep only the lowest order terms in ρ. We obtain x1,3 = 2iρeiθ
√
Gε, x2 = −4iρeiθ

√
Gε, of

which the relevant factor is ρeiθ. This demonstrates there is an overall 2π rotation of the

configuration of x roots. Note in this limit, the x1-x3 swap can not readily be seen, but

the presence of the overall 2π rotation is much more transparent.

Remark. We want to point out a fact that will be important in the string junction

analysis later that, in both the I∗1 and the I4 cases, it is the same x1-x3 swap that appears

in both the monodromy action corresponding to a loop around the z = 0 plane and around

a loop enclosing one of the relevant simple roots of ∆R(t; δ; ε) = 0 in the I∗1 case, or one

of the two pairs of the splitting threefold roots of ∆R(t; δ; ε) = 0 when turning on ε in the

I4 case. We will see this piece of information is extremely useful in obtaining the physical

consequence of the geometric monodromy action, i.e., the corresponding SL(2,Z) matrix

acting on the asymptotic charges of the string junctions.

3 String junctions, monodromy, and non-simply-laced algebras

Having thoroughly analyzed the geometric monodromy in a number of examples, we now

discuss the physical implications. The central qualitative fact derived in the previous sec-

tion is that the ε-deformations, which transition between Kodaira split fibers and Kodaira

non-split (or semi-split) fibers, can split I1 loci in the vicinity of the seven-brane, creating

new loops that may be traversed. These new loops allow for new monodromy actions that

were not present prior to the ε deformation, and we now analyze that monodromy action

on the symmetry algebra.

In particular, we consider a D3-brane that can traverse those loops. Upon returning to

its original position the monodromy action may give rise to an action, and thus reduction,

of its 3-7 string spectrum. The flavor symmetry G of the 3-7 strings corresponds to the

gauge symmetry on the non-abelian seven-brane, and we will see that the monodromy

induces a non-trivial map on the representations realized by 3-7 strings, which in turn

induces an outer automorphism on G. We will demonstrate this in all of our examples,

and in all cases the result matches known results from the M-theory Coulomb branch

description of F-theory. We emphasize, however, that we obtain the results on the singular

space, without deformation or resolution to a smooth variety. Our methods will be partially

justified below, and will be fully justified in [31].

3.1 String junctions on deformed spaces

We begin by reviewing the now standard story of string junctions on deformed elliptic

fibrations. See [12–14] for early physics work on string junctions, [15–17] for realizations in

explicit Weierstrass models, based on a rigorous geometric and topological treatment [18].
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Geometric setup. Consider a Calabi-Yau elliptic fibration X as defined in section 2.

Recall that there is a projection map

X
π−→ B (3.1)

and that it may be written as a Weierstrass model

y2 = x3 + fx+ g , (3.2)

where f ∈ Γ(O(−4KB)) and g ∈ Γ(O(−6KB)). The discriminant of the cubic v3(x) =

x3 + fx+ g in x is

∆ = 4f3 + 27g2 . (3.3)

We choose a point p ∈ B such that Ep := π−1(p) is a smooth elliptic curve. By studying

the roots of the cubic, as discussed in section 2, we may easily define a basis on H1(Ep,Z).

Neither the section nor the Weierstrass equation are necessary for the existence of the

string junction picture [18], but it does help facilitate computations.

Suppose X is a small deformation away from a model with non-I1 Kodaira fiber at the

locus {z = 0} ⊂ B, which itself has only I1 fibers. The N (p, q) seven-branes (I1 fibers)

coalesce into the non-abelian seven-brane when the deformation is turned off. Let us call

the locations of these I1 fibers pi, with i = 1, . . . , N. It is then natural to choose p at z = 0

and to compute the vanishing cycles of the I1 fibers by following straight line paths from p

to pi. Given an ordering of loops around the pi that are topologically equivalent to a loop

around the whole configuration determines an ordered set of vanishing cycles

Z = {γ1, · · · , γN} . (3.4)

Following γi from the pi back to p creates a cigar, or Lefschetz thimble or “prong”, in the

geometry, which define elements

Γi ∈ H2(X,Ep) . (3.5)

We can also take linear combinations of the prongs

J =
∑
I

JiΓi ∈ H2(X,Ep) , (3.6)

and these objects are string junctions, which can be thought heuristically as linearly com-

binations of the prongs. Of course, such objects, which are chains in the geometry that

may have a boundary at Ep, can also be defined for any point p, as long as the fiber above

it is a smooth elliptic curve.

We must also discuss boundaries and a pairing. The boundary map is known as an

asymptotic charge,

a : H2(X,Ep)→ H1(Ep,Z) , a(J) = ∂J . (3.7)

The asymptotic charge of each prong is the vanishing cycle

γi := a(Γi) ∈ H1(Ep,Z) . (3.8)
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Following successive loops from p around each of the pi determines an ordered set of

vanishing cycles. Now suppose that X is a surface. In this case there is a natural pairing

(·, ·) : H2(X,Ep)×H2(X,Ep)→ Z , (3.9)

that becomes the topological intersection product on closed classes. Given the ordered set

of vanishing cycles Z, this may be computed as described in [15, 16, 18]. We will simply

present the results in examples.

This topological structure is physically relevant. If a D3-brane is at p, then p gains

a physical meaning via the worldvolume theory on the D3-brane. The asymptotic charge

of a string junction ending on the D3-brane is the charge under of the junction under the

U(1) on the D3-brane. These 3-7 strings may also be in representations of the Lie algebra

G associated with the deformed Kodaira fiber, to which we now turn.

Representation theory. Let us recall some basic facts of the representation theory

associated with string junctions. First, for any deformation of the type described, with a

non-abelian seven-brane whose Kodaira fiber has associated simply-laced algebra g, there

is a distinguished set of junctions

R := {J ∈ H2(X,Ep) | (J, J) = −2, a(J) = 0}. (3.10)

that has

|R| = dim(g)− rk(g). (3.11)

Closer inspection shows that there are natural decomposition into “positive” and “negative”

elements of R, and there always exists a set

SR = {α1, . . . , αrk(g)} (3.12)

of rk(g) positive elements of R that generate all other positive elements as non-negative

linear combinations. These are the characteristics of simple roots; elements of SR are

“simple root junctions” and elements of R are “root junctions”. Another non-trivial check

is that

(Ag)ij = −(αi, αj) , (3.13)

is the Cartan matrix of g .

To study more general representations, it is useful to have a map from junctions to

their Dynkin labels

T : ZN → Zrk(g) , (3.14)

where we remind the reader that the Dynkin labels are the basis of Zrk(g) in which the

simple roots of g are represented by the associated row in the Cartan matrix. Of course,

T is a matrix, and noting its definition and that

(Ag)ij = −(SR)t · I · SR , (3.15)

then we have

T = −(SR)t · I , (3.16)
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with SR the N × rk(g) matrix formed from the simple root junctions and I the N × N
matrix associated with the pairing (· , ·). Concretely,

I = −1 +
1

2
(U + U t) , (3.17)

where U is an upper triangular matrix such that Umn = γm · γn with m < n and both in

the set {1, . . . , N}. This data will be computed explicitly in examples.

String junctions in representations other than the adjoint can also be obtained. In

fact, string junctions may be realized for arbitrary Lie algebra representations [14], but

we emphasize that this does not imply that all Lie algebra representations are realized by

string junctions in compact F-theory geometries. For instance, symmetric tensor products

arise in a particularly natural way [15]. For the purposes of this paper, it will suffice to

study representations that arise via a particularly simple method: we fix the asymptotic

charge, and then find all junctions J with (J, J) = −1 that have that particular asymptotic

charge. In particular, consider the Lie algebras arising from the Kodaira fibers considered

in section 2, with associated Lie algebras and ordered sets of vanishing cycles:

Fibration Brane configuration Algebra

I4 {1, 1, 1, 1} su(4), sp(2)

IV {1, 3, 1, 3} su(3), sp(1)

IV ∗ {1, 3, 1, 3, 1, 3, 1, 3} e6, f4
I∗0 {1, 3, 1, 3, 1, 3} so(8), so(7), g2
I∗1 {1, 3, 1, 3, 1, 3, 1} so(10), so(9)

,

Here “1” refers to a 7-brane with monodromy matrix M1 and “3” to a 7-brane with mon-

odromy matrix M3 where the matrices Mi are defined in table 3, and in eq. (3.23). One

obtains the corresponding representations in table 2 by searching for all self-intersection

−1 junctions with the asymptotic charges listed in the table 2. The representation itself

is determined by using the simple root junctions to determine the highest weight junction,

and then applying the Dynkin map.

In summary, the data sufficient to determine the Lie algebra, including the set of roots

R, is the ordered set of vanishing cycles Z, the pairing (·, ·), and the notion of asymptotic

charge. This data arise naturally in the deformation, but we stress that the deformation

is not necessary if this data is otherwise available.

Group theoretical notations. In later discussions we will adopt the standard notation

of labeling the names of the representations by the corresponding nodes of the Dynkin

diagram. Although such notation is standard, since we will be using the non-standard

Cartan matrices, it is worthwhile to explain it here. Note that the Cartan matrices that

we will use in the next sections are related to the standard ones by transposing rows and

columns of the matrices, which simply corresponds to relabeling the simple roots, so that

the Cartan matrices we use are equivalent to the standard ones. To illustrate this, let us

consider the example of D5, corresponding to SO(10).
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Figure 6. The central node of D5.

Figure 7. The representation R of SO(10) with highest weight [0, 1, 0, 0, 0].

Kodaira Fiber I∗0s IV IV ∗ I∗1 I4

Gauge group SO(8) SU(3) E6 SO(10) SU(4)

Asymp. Charge (1, 0) (1,−1) (0,−1) (1, 0) (1, 0) (1, 1) (1, 0)

Representation 8v 8s 8c 3 27 16 4

Table 2. Example representations obtained by searching for all junctions J with the given asymp-

totic charge and (J, J) = −1.

The Cartan matrix we use for SO(10) is


−2 1 1 1 0

1 −2 0 0 0

1 0 −2 0 1

1 0 0 −2 0

0 0 1 0 −2

 .

We can see that the simple root associated with the first row of the Cartan matrix cor-

responds to the central node of the D5 Dynkin diagram as in figure 6. In a similar vein,

the simple roots associated with the second row and the fourth row of the Cartan matrix

correspond to the upper-right and the lower-right node of the D5 Dynkin diagram. We will

make the choice that the simple root associated with the second row of the Cartan matrix

corresponds to the upper-right node of D5.

There exists a representation R of SO(10) with highest weight [0, 1, 0, 0, 0]. As this

representation can be described with by a vector with a single entry of 1 at the second

position of the weight vector and 0’s otherwise, we can label R by node corresponding

to the simple root associated with the second row the Cartan matrix which, as we have

discussed above, is the upper-right node of D5. This is shown in figure 7.

In this manuscript we will only be concerned with representations whose highest weight

states take the form [0, . . . , 1, . . . , 0], with only a single 1 in the weight vector which are

known as fundamental representations. For a detailed introduction to this notation see [32].
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3.2 String junctions on singular spaces

We now introduce a formalism for studying string junctions on the singular space, which

is relevant here because the deformation that breaks the simply-laced algebra to the non-

simply-laced algebra leaves the variety singular, and therefore derivation of the non-simply-

laced algebra should be possible without a smoothing.

Since the data of the Lie algebra is determined by the ordered set of vanishing cycles,

the pairing, and a notion of asymptotic charge, the relevant question is how to see each on

the singular space. We will study the pairing in [31] and will instead focus on establishing

ordered sets of vanishing cycles and asymptotic charge. We will use a result from the math-

ematics literature to obtain a canonical ordered set of vanishing cycles for each Kodaira

fiber, and explain in a number of cases how they are related to ordered sets obtained in

the deformation picture.

First we establish a notion of asymptotic charge, which is straightforward. Consider a

singular elliptic fibration

X
π−→ B , (3.18)

that has a singular codimension one locus inside the discriminant,

D ⊂ ∆ , (3.19)

with Kodaira fiber F = π−1(pD) for a generic point pD ∈ D. In F-theory language, there

is a non-abelian seven-brane on D. Let p ∈ B be a point near a generic neighborhood of

D, and as before define a reference elliptic fiber

Ep := π−1(p) . (3.20)

Let C be any real curve from p to a generic point pD ∈ D. Some γ ∈ H1(Ep,Z) collapse

upon following C from p to pD, defining a thimble or prong ΓC . Then the asymptotic

charge is a(ΓC) = γ.

Critical data associated with the non-abelian seven-brane on D are its Kodaira fiber

and associated monodromy MF ∈ SL(2,Z) and its multiplicity of vanishing in the discrim-

inant, N := multD(∆). Given that this data is central to the singular elliptic fibration, it

is natural to ask whether there is a canonical way to associated a canonical ordered set of

vanishing cycles with the pair (MF , N).

To do so, we will utilize results of [33], which we now briefly review. Two particular

SL(2,Z) matrices are central to the results, which in [33] are called

U =

(
1 1

0 1

)
, V =

(
1 0

−1 1

)
. (3.21)

In the notation that will appear later,8 we have

U = M1, V = M3, (3.22)

8The use of the Mi is standard notation in the string junction literature cited throughout this manuscript.
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Kodaira Fiber MF N Minimal Normal Factorization

In

(
1 n

0 1

)
n Mn

1

II

(
0 1

−1 1

)
2 M1M3

III

(
0 1

−1 0

)
3 M1M3M1

IV

(
−1 1

−1 0

)
4 (M1M3)

2

I∗n

(
−1 −n
0 −1

)
n+ 6 Mn

1 (M1M3)
3 (= −Mn

1 )

IV ∗

(
0 −1

1 −1

)
8 M1M3(M1M3)

3 (= −M1M3)

III∗

(
0 −1

1 0

)
9 M1M3M1(M1M3)

3 (= −M1M3M1)

II∗

(
1 −1

1 0

)
10 (M1M3)

2(M1M3)
3 (= −(M1M3)

2)

Table 3. Kodaira fibers and their monodromy matrix and minimal normal factorization.

where

M1 =

(
1 1

0 1

)
, M2 =

(
0 1

−1 2

)
, M3 =

(
1 0

−1 1

)
. (3.23)

The monodromy matrix MF admits a factorization into

MF = G1 ·G2 · · ·GN , (3.24)

where each Gi is the monodromy matrix that is associated with a (p, q) seven-brane, that

is, it is of the form:

Mp,q =

(
1− pq p2

−q2 1 + pq

)
. (3.25)

However, there are different possible ordered sets of vanishing cycles, which would give

rise to different factorizations. The so-called minimal normal factorizations (m.n.f.) are

presented in table 3. It is important to note that this minimal normal factorization only

exists for the SL(2,Z) matrices associated with the Kodaira fiber types, and does not

exist for general SL(2,Z) matrices. Different factorizations are related to one another by

so-called Hurwitz moves.
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Definition. Let G be a group and let g1 . . . gk be products of elements of G. Another

such product g′1 . . . g
′
k is said to be obtained from g1 . . . gk via a Hurwitz move if for some

1 ≤ i ≤ k − 1, g′j 6= gj for j ∈ {i, i + 1} and either g′i = gi+1, g′i+1 = g−1i+1gigi+1 or g′i =

gigi+1g
−1
i , g′i+1 = gi. We will also say that an ordered set {g′1, g′2, . . . , g′k} is obtained from

another ordered set {g1, g2, . . . , gk} by applying one Hurwitz move, if the same relations

hold between g′i’s and the gi’s.

That is, a Hurwitz move does a transformation of the form

g1 . . . gigi+1 . . . gk → g1 . . . gi+1(g
−1
i+1gigi+1) . . . gk, (3.26)

or of the form

g1 . . . gigi+1 . . . gk → g1 . . . (gigi+1g
−1
i )gi . . . gk, (3.27)

i.e., gi+1 is “pulled past” gi, conjugating it in the process, or vice versa.9 This purely

algebraic definition makes sense for the monodromy on the singular space.

One theorem of [33] will be critical for us, where the possible factorization fall under

two different cases:

Theorem. Let M be a matrix that corresponds to the monodromy of a singular fiber in

an elliptic fibration. If M = G1 . . . Gr is a factorization of M in terms of conjugates of U

(i.e., in terms of M(p,q)-type matrices), then r is greater than or equal to n, the number of

factors in the m.n.f. of M . After a finite number of Hurwitz moves it is possible to obtain:

• Cases wIn − IV : G1 . . . Gr = C1 . . . Cn(V U)6s, with C1 . . . Cn the m.n.f. of M and

s = (r − n)/12.

• Cases I∗n − IV ∗: G1 . . . Gr = C1 . . . Cn(V U)6s+3, with C1 . . . Cn the m.n.f. of −M
and s = (r − n− 6)/12.

This theorem is essential for us, because it means that, given a pair (MF , N) and up

to Hurwitz moves, we can canonically choose the ordered set of vanishing cycles associated

with the minimal normal factorization, and we can do this on the singular space; in doing

so, we are automatically considering the case r = n. We will also take the associated

pairing, and in [31] we will show that the pairing is well-behaved under Hurwitz moves.

With this data motivated on the singular space, we may perform calculations there, as

well. This approach will be further justified because the new calculations in F-theory agree

with the conclusions drawn from the M-theory Coulomb branch.

It is also worth noting that the ordered set of vanishing cycles associated with the

minimal normal factorization is in many cases equivalent to the ones obtained by simple

deformations and following straight line paths to I1 fibers, see, e.g., [15, 16].

3.3 Automorphisms and non-simply-laced algebras in examples

In this section we demonstrate the monodromy reduction of string junction states under

deformation of a 7-brane fiber from split to non-split. We begin with the case of I∗0s:

SO(8)→ G2.

9In a deformation picture, Hurwitz moves can arise naturally via brane rearrangement or choosing

different paths to I1 fibers. Both induce Hanany-Witten moves on the junction basis.
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3.3.1 Type I∗
0s: SO(8) → G2

We begin by analyzing the case of SO(8) breaking to G2. The geometric monodromy action

is analyzed in section 2.3.1. Let us present data relevant to junctions in representations of

SO(8). The ordered set of seven branes at z = 0 can be chosen to be

Z = {1, 3, 1, 3, 1, 3}. (3.28)

The intersection matrix is:

I =



−1 1/2 0 1/2 0 1/2

1/2 −1 −1/2 0 −1/2 0

0 −1/2 −1 1/2 0 1/2

1/2 0 1/2 −1 −1/2 0

0 −1/2 0 −1/2 −1 1/2

1/2 0 1/2 0 1/2 −1


.

One choice of simple roots in this junction basis are:

α1 = (0, 0, 0, 1, 0,−1)

α2 = (0, 0, 1, 0,−1, 0)

α3 = (0, 1,−1,−1, 1, 0)

α4 = (1, 0,−1, 0, 0, 0).

Direct computation gives the Cartan matrix


−2 1 0 0

1 −2 1 1

0 1 −2 0

0 1 0 −2

 , (3.29)

and the Dynkin map

T =


0 0 0 1 1 −1

0 0 1 −1 −1 0

0 1 0 0 1 0

1 −1 −1 0 0 0

 .

This matrix maps weight of junctions to their Dynkin labels. By choosing an asymptotic

charge, finding all junctions of self-intersection −1 with that asymptotic charge, and using

the roots to find the highest weight, we may find certain representations of SO(8). From

appendix A.1, we recall highest weight junctions of various representations and asymptotic
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charges that will be important for us. They are:

Asymptotic Charge Highest Weight Junction Dynkin Label Representation

(1, 0) (1, 0, 0, 0, 0, 0)

[0, 0, 0, 1] 8v(1,−2) (0,−1, 0,−1, 1, 0)

(−1,−2) (0, 0,−1,−1, 0,−1)

(1,−1) (0, 0, 0,−1, 1, 0)

[0, 0, 1, 0] 8s(−1,−1) (0, 1,−1,−1, 0,−1)

(1, 1) (1, 1, 0, 0, 0, 0)

(0,−1) (0, 0, 0, 0, 0,−1) [1, 0, 0, 0] 8c

We have identified the representations according to their Dynkin labels. Of course more

representations exist, including eight-dimensional representations with different asymptotic

charges, but we have listed the data that will be relevant for our monodromy calculations.

To read off the asymptotic charge from a junction J = (J1, . . . , J6) in the basis S =

{1, 3, 1, 3, 1, 3}, where a 1-brane has asymptotic charge (1, 0) and a 3-brane has asymptotic

charge (0, 1), we sum these asymptotic charges with appropriate J coefficients, obtaining

a(J) = (J1 + J3 + J5, J2 + J4 + J6).

We now turn to the monodromy action on string junctions. Recall from section 2.3.1

that upon turning on the deformation ε 6= 0, the three loci where the I1 locus intersects

the I∗0 locus split into three pairs of roots, and we computed the geometric monodromy

associated to each of the three pairs. We found one was a double rotation of x1-x2 , another

was a double rotation of x1-x3 , and another was a double rotation of x2-x3. Such rotations

give rise to braids in the geometry. Consider a loop parametrized by a coordinate θ. As

the D3 brane encircles an I1 locus, the x-roots rotate, and the path traced out by the

roots as θ goes from 0 to 2π forms a braid. This is a braid formed by x-roots in the fiber,

but there can also be braids formed by seven-branes in the base; see [19]. To read off the

corresponding monodromy action on the homology cycles H1(Ep,Z), one carefully tracks

the action of the monodromy on the x-roots and associated orientations; see [19] for a

detailed tracking of both. The deformation ε 6= 0 splits the I1-I
∗
0 intersection locus into

three pairs, and so we may take a loop around one of them in each pair, and examine the

corresponding monodromy action on H1(Ep,Z). The actions we find take the form

M1 =

(
1 1

0 1

)
, M2 =

(
0 1

−1 2

)
, M3 =

(
1 0

−1 1

)
. (3.30)

Each of these loops around one of the points in each pair may be traversed by a D3-brane,

and we will refer to them as loop 1, loop 2, and loop 3, respectively. This monodromy

behavior persists in certain deformations to Weierstrass models that do not have non-

isolated singularities [27].

Let us traverse loop 3. Its monodromy, M3, induces a map on asymptotic charge as(
1

0

)
7→

(
1

−1

)
, (3.31)

– 26 –



J
H
E
P
0
9
(
2
0
1
8
)
1
2
9

which we see corresponds to a map on representations

8v 7→ 8s . (3.32)

Repeating the loop a second time maps 8s back to 8v, but with asymptotic charge (1,−2).

Traversing loop 2 induces a map on asymptotic charge as(
1

0

)
7→

(
0

−1

)
, (3.33)

which corresponds to a map on representations

8v 7→ 8c . (3.34)

Traversing the loop a second time transforms it back to 8v with asymptotic charge (−1,−2).

Similarly, traversing loop one maps(
0

−1

)
7→

(
−1

−1

)
(3.35)

which maps the representation as

8c 7→ 8s, (3.36)

and a second traversal maps it back to 8c, but with asymptotic charge (0,−1).

These loops can be taken arbitrarily small, and as argued we should therefore iden-

tify the associated states. The Dynkin labels of the highest weights of the three eight-

dimensional representations each mark one of the exterior node of the Dynkin diagram,

i.e., the node corresponding to the placement of its non-zero entry. This fact, together with

the monodromy action that we have derived, shows that the combined set of monodromies

around the three loops gives rise to an S3 outer-automorphism acting on D4 which, after

quotienting, gives rise to G2. This can be seen from the Dynkin diagram as identifying all

the three nodes, as shown in figure 8.

Remark. The same kind of argument can be applied to all the cases discussed in sec-

tion 2.3. The key is to identify the SL(2,Z) matrices acting on the asymptotic charges

corresponding to the geometric monodromy actions. The reduced gauge group and the mat-

ter representation after the identification therefore follow naturally from the structure of

the Dynkin digram of the relevant simply-laced Lie algebra, and the outer-automorphisms

acting on it.

3.3.2 Type I∗
0ss: SO(8) → SO(7)

The geometric monodromy action is analyzed in section 2.3.2. The data associated to

SO(8), including the simple roots, junction-to-Dynkin map, and correspondence between

(p, q) charges and representations are the same as in section 3.3.1 (see also appendix A.1

and A.2.).
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Figure 8. The outer-automorphism acting on D4 diagram of so8 leads to G2 diagram of g2.

Figure 9. The outer-automorphism acting on the D4 diagram of so8 leads to the B3 diagram

of so7.

The central difference between the SO(8) → SO(7) breaking that we study here and

the SO(8) → G2 breaking of section 3.3.1 lies in the different pattern of the splitting of

the roots. In section 2.3.2 we showed that only a single new loop arises upon deformation

from SO(8)→ SO(7), and accordingly only a single new monodromy action can arise. As

shown in section 2.3.2, the monodromy associated with the loop that appears is M3. It

induces a map on (1, 0) asymptotic charge given by(
1

0

)
7→

(
1

−1

)
(3.37)

which we see corresponds to a map on representations

8v 7→ 8s. (3.38)

Traversing the loop a second time maps back to 8v. This gives rise to a Z2 outer-

automorphism D4 that acts on the Dynkin diagram as shown in figure 9. This identifies

two of the three nodes, labeled by 8v and 8c. Quotienting by this automorphism reduces

the algebra to SO(7). The detailed correspondence between the relevant string junctions

with given asymptotic charges and matter representations is in appendix A.1 and A.2.

3.3.3 Type IV : SU(3) → Sp(1)

The geometric monodromy action relevant for the reduction SU(3) → Sp(1) was analyzed

in section 2.3.3. The ordered set of seven branes at z = 0 can be taken to be

Z = {1, 3, 1, 3}, (3.39)

in which case the intersection matrix takes the form:

I =


−1 1/2 0 1/2

1/2 −1 −1/2 0

0 −1/2 −1 1/2

1/2 0 1/2 −1

 .

– 28 –



J
H
E
P
0
9
(
2
0
1
8
)
1
2
9

One choice of simple roots in the junction basis are:

α1 = (0, 1, 0,−1)

α2 = (1, 0,−1, 0) ,

and the Cartan matrix is: (
−2 1

1 −2

)
and the Dynkin map is:

T =

(
0 1 1 −1

1 −1 −1 0

)
.

The highest weight junctions of the various representations and asymptotic charges

that will be important for us are:

Asymptotic Charge Highest Weight Junction Dynkin Label Representation

(1, 0) (1, 0, 0, 0)
[0, 1] 3

(−1,−1) (0, 0,−1,−1)

(0,−1) (0, 0, 0,−1) [1, 0] 3̄

We recognize that [0, 1] is the highest weight state of 3 and [1, 0] the highest weight state

of 3̄ (see appendix A.3 for further details).

Determining the associated SL(2,Z) monodromy is somewhat more involved. After

turning on ε, type IVs becomes type IVns. Recall that in section 2.3.3 we showed that

the monodromy action induced by looping around one of the pairs of the splitting roots of

∆R(t; δ; ε) = 0, which corresponds to an x1-x2 swap, followed by an x1-x3 swap.

There is a slight ambiguity here; a priori it is not clear if the total monodromy action

upon encircling the I1 should be M1 · M3 or M3 · M1. However, this can be fixed by

the observation that the monodromy around non-abelian 7-brane is twice the monodromy

around the I1 locus, which can be shown explicitly. In this basis of vanishing cycles, the

monodromy around the non-abelian 7-brane is (M1 ·M3)
2, and we therefore conclude the

I1 monodromy is M1 ·M3.

The I1 monodromy

M1 ·M3 =

(
0 1

−1 1

)
, (3.40)

gives the transformation on the asymptotic charge(
1

0

)
7→

(
0

−1

)
. (3.41)

This monodromy action corresponds to a map on representations 3 7→ 3̄. Traversing the

loop a second time induces another M1 ·M3 action, which maps the asymptotic charge

to (−1,−1), and brings us back to the 3 representation. This gives rise to an Z2 outer-

automorphism of A2 identifying the two nodes therefore leads to the su(2) A1 Dynkin

diagram as is shown in figure 10. That is, turning on the deformation ε 6= 0 reduces the

symmetry algebra to A1.
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Figure 10. The outer-automorphism acting on A2 diagram of su(3) leads to A1 diagram of su(2).

3.3.4 Type IV ∗: E6 → F4

The ordered set of seven branes at z = 0 can be taken to be {1, 3, 1, 3, 1, 3, 1, 3}. The

intersection matrix is:

I =



−1 1/2 0 1/2 0 1/2 0 1/2

1/2 −1 −1/2 0 −1/2 0 −1/2 0

0 −1/2 −1 1/2 0 1/2 0 1/2

1/2 0 1/2 −1 −1/2 0 −1/2 0

0 −1/2 0 −1/2 −1 1/2 0 1/2

1/2 0 1/2 0 1/2 −1 −1/2 0

0 −1/2 0 −1/2 0 −1/2 −1 1/2

1/2 0 1/2 0 1/2 0 1/2 −1


.

The simple roots in junction basis are:

α1 = (0, 0, 0, 0, 0, 1, 0,−1)

α2 = (0, 0, 0, 0, 1, 0,−1, 0)

α3 = (0, 0, 0, 1,−1,−1, 1, 0)

α4 = (0, 0, 1, 0,−1, 0, 0, 0)

α5 = (0, 1,−1,−1, 0,−1, 1, 1)

α6 = (1, 0,−1, 0, 0, 0, 0, 0),

and the Cartan matrix is: 

−2 1 0 0 1 0

1 −2 1 1 0 0

0 1 −2 0 0 0

0 1 0 −2 0 1

1 0 0 0 −2 0

0 0 0 1 0 −2


.

and the junction-to-Dynkin map is:

T =



0 0 0 0 0 1 1 −1

0 0 0 0 1 −1 −1 0

0 0 0 1 0 0 1 0

0 0 1 −1 −1 0 0 0

0 1 0 0 0 0 0 1

1 −1 −1 0 0 0 0 0


.
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Figure 11. The outer-automorphism acting on E6 diagram of e6 leads to F4 diagram of f4.

The highest weight junctions of various representations and asymptotic charges that will

be important for us take for form:

Asymptotic Charge Highest Weight Junction Dynkin Label Representation

(1, 0) (1, 0, 0, 0, 0, 0, 0, 0)
[0, 0, 0, 0, 0, 1] 27

(−1,−1) (1, 1,−1, 0,−1,−1, 0,−1)

(0,−1) (0, 1,−1,−1, 0,−1, 1, 0) [0, 0, 0, 0, 1, 0] 27

We recognize that [0, 0, 0, 0, 0, 1] as the highest weight state of 27 and [0, 0, 0, 0, 1, 0] as the

highest weight state of 27. For details see appendix A.4.

As derived in section 2.3.4, the SL(2,Z) matrix corresponding to the geometric mon-

odromy action is M1 ·M3. As the D3-brane traverses the loop, the M1 ·M3 action induces(
1

0

)
7→

(
0

−1

)
(3.42)

which corresponds to a map on representations:

27 7→ 27. (3.43)

A subsequent M1 ·M3 action from traversing the loop around the other pair of roots induces(
0

−1

)
7→

(
−1

−1

)
(3.44)

which corresponds to a map on representations:

27 7→ 27. (3.45)

This monodromy action swaps the representations 27 and 27, giving rise to a Z2 outer-

automorphism acting on E6 Dynkin diagram, as shown in figure 11. Quotienting by it

gives F4.

3.3.5 Type I∗
1 : SO(10) → SO(9)

The geometric monodromy action was analyzed in section 2.3.5. The ordered set of seven

branes at z = 0 is {1, 3, 1, 3, 1, 3, 1}. The intersection matrix is:

I =



−1 1/2 0 1/2 0 1/2 0

1/2 −1 −1/2 0 −1/2 0 −1/2

0 −1/2 −1 1/2 0 1/2 0

1/2 0 1/2 −1 −1/2 0 −1/2

0 −1/2 0 −1/2 −1 1/2 0

1/2 0 1/2 0 1/2 −1 −1/2

0 −1/2 0 −1/2 0 −1/2 −1


.
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The simple roots in junction basis are:

α1 = (0, 0, 0, 0, 1, 0,−1)

α2 = (0, 0, 0, 1,−1,−1, 1)

α3 = (0, 0, 1, 0,−1, 0, 0)

α4 = (0, 1,−1,−1, 0, 0, 1)

α5 = (1, 0,−1, 0, 0, 0, 0) .

The Cartan matrix is: 
−2 1 1 1 0

1 −2 0 0 0

1 0 −2 0 1

1 0 0 −2 0

0 0 1 0 −2

 .

and the junction-to-Dynkin map is:

T =


0 0 0 0 1 −1 −1

0 0 0 1 0 0 1

0 0 1 −1 −1 0 0

0 1 0 0 0 1 1

1 −1 −1 0 0 0 0

 .

The highest weight junctions of various representations and asymptotic charges that

will be important for us are:

Asymptotic Charge Highest Weight Junction Dynkin Label Representation

(1, 1) (1, 1, 0, 0, 0, 0, 0)
[0, 0, 0, 1, 0] 16

(3, 1) (1, 0, 1, 0, 1, 1, 0)

(2, 1) (1, 0, 1, 1, 0, 0, 0) [0, 1, 0, 0, 0] 16

We recognize that [0, 0, 0, 1, 0] is the highest weight state of 16 and [0, 1, 0, 0, 0] the highest

weight state of 16. See appendix A.5 for details.

In this case we can simply read off the monodromy matrix as M1, as the geometric

monodromy is a simple x1-x3 swap, Looping around the first root of ∆R(t; δ; ε) = 0 followed

by looping around the second, the M1 matrix acts on the asymptotic charge as:(
1

1

)
7→

(
2

1

)
(3.46)

which corresponds to a map on representations:

16 7→ 16. (3.47)

Traversing the loop around the other root in the pair of the splitting roots induces another

M1 action on the asymptotic charge:(
2

1

)
7→

(
3

1

)
(3.48)
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Figure 12. The outer-automorphism acting on D5 diagram of so(10) leads to B4 diagram of so(9).

which corresponds to a map on representations:

16 7→ 16. (3.49)

Hence the representations 16 and 16 of SO(10) are identified under this action. This

identification gives rise to a Z2 outer-automorphism acting on D5 Dynkin diagram shown

in figure 12.

This gives the expected reduction from SO(10) to SO(9).

3.3.6 Type I4: SU(4) → Sp(2)

The geometric monodromy action was analyzed in section 2.3.6. The ordered set of seven

branes at z = 0 is {1, 1, 1, 1}. The intersection matrix is:

I =


−1 0 0 0

0 −1 0 0

0 0 −1 0

0 0 0 −1

 .

The simple roots in junction basis are:

α1 = (0, 0, 1,−1)

α2 = (0, 1,−1, 0)

α3 = (1,−1, 0, 0).

The Cartan matrix is: −2 1 0

1 −2 1

0 1 −2

 .

and the junction-to-Dynkin map is:

T =

0 0 1 −1

0 1 −1 0

1 −1 0 0

 .

The highest weight junctions of various representations and asymptotic charges that

will be important for us are:

Asymptotic Charge Highest Weight Junction Dynkin Label Representation

(1, 0) (1, 0, 0, 0) [0, 0, 1] 4

(−1, 0) (0, 0, 0,−1) [1, 0, 0] 4̄
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Figure 13. The outer-automorphism acting on A3 diagram of su(4) leads to C2 diagram of sp(2).

We recognize that [0, 0, 1] as the highest weight state of 4 and [1, 0, 0] as the highest weight

state of 4̄. See appendix A.6 for further details.

In this case the geometric monodromy action an x1-x3 swap, together with an overall 2π

rotation (derived in section 2.3.6). The 7-brane configuration in this case is {1, 1, 1, 1}, and

therefore the SL(2,Z) matrix corresponding to a single 7-brane is M1. We may therefore

conclude that the total geometric monodromy action is −M1.

The I1 monodromy

−M1 =

(
−1 −1

0 −1

)
, (3.50)

then induces a transformation on the (1, 0) asymptotic charge of the string junctions(
1

0

)
7→

(
−1

0

)
, (3.51)

which corresponds to a map on representations

4 7→ 4̄ . (3.52)

Traversing a loop enclosing the other group of roots induces another −M1 action in the

asymptotic charge (
−1

0

)
7→

(
1

0

)
(3.53)

which corresponds to a map on representations

4̄ 7→ 4. (3.54)

Therefore 4 and 4̄ should be identified which corresponds to a Z2 outer-automorphism act-

ing on A3 Dynkin diagram which leads to a C2 Dynkin diagram via identifying the left-most

node and the right-most node, reducing the symmetry from SU(4) to Sp(2) as expected.

4 Discussion

We have derived a classic result in F-theory, the Higgsing of simply-laced symmetry algebras

to ones that are non-simply-laced, in F-theory on a singular space. Previously this result

has been computed by resolving or deforming to a smooth space.

The origin of the effect is simple to understand. We considered one-parameter families

of Weierstrass models with a non-abelian seven-brane on D, where for ε = 0 the symmetry

algebra is simply-laced, but for ε 6= 0 it is not. In all examples, the deformation to

ε 6= 0, which leaves the variety singular, splits the I1 locus (∆R = 0) within D, and gives

– 34 –



J
H
E
P
0
9
(
2
0
1
8
)
1
2
9

rise to new non-trivial loops in the geometry. Pulling the loop infinitesimally away from

D, we traverse it with a D3-brane. The monodromy associated with the loop induces

an action on 3-7 string junctions that gives a non-trivial map on flavor representations,

signaling the reduction of the gauge algebra that arises by quotienting by the associated

outer-automorphism.

By treating the problem directly on the singular space, we were able to isolate the

feature critical for monodromy reduction: this splitting of the I1 locus inside the seven-

brane. Performing the analysis on the singular space, however, required motivating string

junctions on the singular space. On a space smoothed by deformation, the Lie algebraic

data associated to string junctions is derived from an ordered set of vanishing cycles, a

notion of asymptotic charge, and an appropriate pairing. The notion of asymptotic charge

is also natural on the singular space, and using a result from the math literature we argued

that (up to Hurwitz moves), a canonical ordered set of vanishing cycles is, as well. We then

took the pairing that is natural from string junctions, and performed the analysis. We will

motivate the pairing on the singular space and demonstrate that it is well-behaved under

Hurwitz moves in [31].

Continued progress in understanding F-theory on singular spaces could be of broad

use, e.g., for the landscape, for its low energy effective supergravity theories, and for its

SCFT sectors. We plan on revisiting some of these issues in the future.
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A String junction data

Here we will list the relevant information of the string junctions states in the junction basis

and the junction-to-Dynkin maps that are needed for the results in the main text.

To verify our claims in section 3 we can, at zeroth order, check whether the number

of string junctions with a given asymptotic charge matches the number of the states in

the corresponding representations that we have specified. This counting is self-evident in

the computations in this section and they indeed match. The first order check is to verify

whether the spindle shaped structure of the states in a given representation is reproduced

by a string junction computation. This also becomes obvious in our computation, and the

reader can verify that such structure indeed appears. A final check would be to convert

all information in the junction basis to Dynkin basis and check if the string junctions are

indeed generated, and ordered in a manner such that the charges in Dynkin basis match

the weights of the states in the claimed representation. We have checked that this is indeed

the case.

Here we will list all the string junctions that are relevant in our discussion in section 3

and order them in a manner that both the number and the spindle shaped structure of the
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states are manifest. We will only present the highest weight states of the string junctions

in Dynkin basis, in order to keep this appendix as concise as possible. We refer to [15] for

a more in-depth discussion of the tools we utilize.

A.1 I∗
0s → I∗

0ns

We start with a (1, 0) string junction. Let us focus on one of the three splitting pairs of

the roots of ∆R(t; δ; ε) = 0. The monodromy M3 transforms it to a (1,−1) string junction.

The other M3 action will then brings it to a (1,−2) string junction. Focusing on the second

pair, we see the monodromy M2 brings it to a (0,−1) string junction. The other M2 action

will then brings it to a (−1,−2) string junction. If instead we start with a (0,−1) string

junction and encircle the second pair, the monodromy M1 brings it to a (−1,−1) string

junction. The other M1 action will then brings it back to a (0,−1) string junction.

The (1, 0) string junctions in the junction basis are:

Level Mult. Junctions

0 1 (1, 0, 0, 0, 0, 0)

1 1 (0, 0, 1, 0, 0, 0)

2 1 (0, 0, 0, 0, 1, 0)

3 2 (0, 0, 0, -1, 1, 1) (0, -1, 1, 1, 0, 0)

4 1 (0, -1, 1, 0, 0, 1)

5 1 (0, -1, 0, 0, 1, 1)

6 1 (-1, -1, 1, 0, 1, 1)

The (1,−1) string junctions in the junction basis are:

Level Mult. Junctions

0 1 (0, 0, 0, -1, 1, 0)

1 1 (0, -1, 1, 0, 0, 0)

2 1 (0, -1, 0, 0, 1, 0)

3 2 (0, -1, 0, -1, 1, 1) (-1, -1, 1, 0, 1, 0)

4 1 (-1, -1, 1, -1, 1, 1)

5 1 (-1, -1, 0, -1, 2, 1)

6 1 (-1, -2, 1, 0, 1, 1)

The (1,−2) string junctions in the junction basis are:

Level Mult. Junctions

0 1 (0, -1, 0, -1, 1, 0)

1 1 (-1, -1, 1, -1, 1, 0)

2 1 (-1, -1, 0, -1, 2, 0)

3 2 (-1, -1, 0, -2, 2, 1) (-1, -2, 1, 0, 1, 0)

4 1 (-1, -2, 1, -1, 1, 1)

5 1 (-1, -2, 0, -1, 2, 1)

6 1 (-2, -2, 1, -1, 2, 1)
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The (0,−1) string junctions in the junction basis are:

Level Mult. Junctions

0 1 (0, 0, 0, 0, 0, -1)

1 1 (0, 0, 0, -1, 0, 0)

2 1 (0, 0, -1, -1, 1, 0)

3 2 (0, -1, 0, 0, 0, 0) (-1, 0, 0, -1, 1, 0)

4 1 (-1, -1, 1, 0, 0, 0)

5 1 (-1, -1, 0, 0, 1, 0)

6 1 (-1, -1, 0, -1, 1, 1)

The (−1,−2) string junctions in the junction basis are:

Level Mult. Junctions

0 1 (0, 0, -1, -1, 0, -1)

1 1 (-1, 0, 0, -1, 0, -1)

2 1 (-1, 0, -1, -1, 1, -1)

3 2 (-1, 0, -1, -2, 1, 0) (-1, -1, 0, 0, 0, -1)

4 1 (-1, -1, 0, -1, 0, 0)

5 1 (-1, -1, -1, -1, 1, 0)

6 1 (-2, -1, 0, -1, 1, 0)

The (−1,−1) string junctions in the junction basis are:

Level Mult. Junctions

0 1 (0, 1, -1, -1, 0, -1)

1 1 (0, 0, 0, 0, -1, -1)

2 1 (0, 0, -1, 0, 0, -1)

3 2 (0, 0, -1, -1, 0, 0) (-1, 0, 0, 0, 0, -1)

4 1 (-1, 0, 0, -1, 0, 0)

5 1 (-1, 0, -1, -1, 1, 0)

6 1 (-1, -1, 0, 0, 0, 0)

The junction-to-Dynkin map is:

T =


0 0 0 1 1 −1

0 0 1 −1 −1 0

0 1 0 0 1 0

1 −1 −1 0 0 0

 .

The reader can compare the results here and the discussions in section 3.3.1.

A.2 I∗
0s → I∗

0ss

As we have discussed in section 3.3.2, the relevant junctions are those with asymptotic

charges (1, 0), (0,−1) and (−1,−2). We have demonstrated that these junctions give rise

to 8v, 8c and 8v of SO(8), and so the claim we made in section 3.3.2 that 8v is identified
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with 8c is verified. In section 3.3.2 we also claimed that the set of (1, 1) string junctions

corresponds to 8s of SO(8). We will show this is true via the same method as before.

The (1, 1) string junctions in the junction basis are:

Level Mult. Junctions

0 1 (1, 1, 0, 0, 0, 0)

1 1 (1, 0, 1, 1, -1, 0)

2 1 (1, 0, 0, 1, 0, 0)

3 2 (1, 0, 0, 0, 0, 1) (0, 0, 1, 1, 0, 0)

4 1 (0, 0, 1, 0, 0, 1)

5 1 (0, 0, 0, 0, 1, 1)

6 1 (0, -1, 1, 1, 0, 1)

The junction-to-Dynkin map is the same as in the previous section, and so one can

check this set of junctions with charge (1, 1) indeed corresponds 8s of SO(8) with the

highest weight state [0, 0, 1, 0].

A.3 IVs → IVns

Here we start with a (1, 0) string junction. The monodromy M1 ·M3 brings it to a (0,−1)

string junction. The other M1 ·M3 action will then brings it to a (−1,−1) string junction.

The (1, 0) string junctions in the junction basis are:

Level Mult. Junctions

0 1 (1, 0, 0, 0)

1 1 (0, 0, 1, 0)

2 1 (0, -1, 1, 1)

The (0,−1) string junctions in the junction basis are:

Level Mult. Junctions

0 1 (0, 0, 0, -1)

1 1 (0, -1, 0, 0)

2 1 (-1, -1, 1, 0)

The (−1,−1) string junctions in the junction basis are:

Level Mult. Junctions

0 1 (0, 0, -1, -1)

1 1 (-1, 0, 0, -1)

2 1 (-1, -1, 0, 0)

The junction-to-Dynkin map is:

T =

(
0 1 1 −1

1 −1 −1 0

)
.

In Dynkin basis we see that the highest weight junction with charge (1, 0) and (−1,−1)

is 3 : [0, 1] and that with charge (0,−1) is 3̄ : [1, 0].
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A.4 IV ∗
s → IV ∗

ns

Here we start with a (1, 0) string junction. The monodromy M1 ·M3 brings it to a (0,−1)

string junction. The other M1 ·M3 action will then brings it to a (−1,−1) string junction.

The (1, 0) string junctions in the junction basis are:

Level Mult. Junctions

0 1 (1, 0, 0, 0, 0, 0, 0, 0)

1 1 (0, 0, 1, 0, 0, 0, 0, 0)

2 1 (0, 0, 0, 0, 1, 0, 0, 0)

3 1 (0, 0, 0, 0, 0, 0, 1, 0)

4 2 (0, 0, 0, 0, 0, -1, 1, 1) (0, 0, 0, -1, 1, 1, 0, 0)

5 2 (0, 0, 0, -1, 1, 0, 0, 1) (0, -1, 1, 1, 0, 0, 0, 0)

6 2 (0, 0, 0, -1, 0, 0, 1, 1) (0, -1, 1, 0, 1, 1, -1, 0)

7 2 (0, 0, -1, -1, 1, 0, 1, 1) (0, -1, 1, 0, 0, 1, 0, 0)

8 3 (0, -1, 0, 0, 1, 1, 0, 0) (-1, 0, 0, -1, 1, 0, 1, 1) (0, -1, 1, 0, 0, 0, 0, 1)

9 2 (0, -1, 0, 0, 1, 0, 0, 1) (-1, -1, 1, 0, 1, 1, 0, 0)

10 2 (0, -1, 0, 0, 0, 0, 1, 1) (-1, -1, 1, 0, 1, 0, 0, 1)

11 2 (0, -1, 0, -1, 1, 1, 0, 1) (-1, -1, 1, 0, 0, 0, 1, 1)

12 2 (-1, -1, 1, -1, 1, 1, 0, 1) (-1, -1, 0, 0, 1, 0, 1, 1)

13 1 (-1, -1, 0, -1, 2, 1, 0, 1)

14 1 (-1, -1, 0, -1, 1, 1, 1, 1)

15 1 (-1, -1, 0, -1, 1, 0, 1, 2)

16 1 (-1, -2, 1, 0, 1, 1, 0, 1)

The (0,−1) string junctions in the junction basis are:

Level Mult. Junctions

0 1 (0, 1, -1, -1, 0, -1, 1, 0)

1 1 (0, 0, 0, 0, 0, 0, 0, -1)

2 1 (0, 0, 0, 0, 0, -1, 0, 0)

3 1 (0, 0, 0, 0, -1, -1, 1, 0)

4 2 (0, 0, 0, -1, 0, 0, 0, 0) (0, 0, -1, 0, 0, -1, 1, 0)

5 2 (0, 0, -1, -1, 1, 0, 0, 0) (-1, 0, 0, 0, 0, -1, 1, 0)

6 2 (0, 0, -1, -1, 0, 0, 1, 0) (-1, 0, 0, -1, 1, 0, 0, 0)

7 2 (0, 0, -1, -1, 0, -1, 1, 1) (-1, 0, 0, -1, 0, 0, 1, 0)

8 3 (0, -1, 0, 0, 0, 0, 0, 0) (-1, 0, 0, -1, 0, -1, 1, 1) (-1, 0, -1, -1, 1, 0, 1, 0)

9 2 (-1, -1, 1, 0, 0, 0, 0, 0) (-1, 0, -1, -1, 1, -1, 1, 1)

10 2 (-1, -1, 0, 0, 1, 0, 0, 0) (-1, 0, -1, -1, 0, -1, 2, 1)

11 2 (-1, -1, 0, 0, 0, 0, 1, 0) (-1, 0, -1, -2, 1, 0, 1, 1)

12 2 (-1, -1, 0, 0, 0, -1, 1, 1) (-1, -1, 0, -1, 1, 1, 0, 0)

13 1 (-1, -1, 0, -1, 1, 0, 0, 1)

14 1 (-1, -1, 0, -1, 0, 0, 1, 1)

15 1 (-1, -1, -1, -1, 1, 0, 1, 1)

16 1 (-2, -1, 0, -1, 1, 0, 1, 1)
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The (−1,−1) string junctions in the junction basis are:

Level Mult. Junctions

0 1 (1, 1, -1, 0, -1, -1, 0, -1)

1 1 (0, 1, 0, 0, -1, -1, 0, -1)

2 1 (0, 1, -1, 0, 0, -1, 0, -1)

3 1 (0, 1, -1, 0, -1, -1, 1, -1)

4 2 (0, 1, -1, 0, -1, -2, 1, 0) (0, 1, -1, -1, 0, 0, 0, -1)

5 2 (0, 1, -1, -1, 0, -1, 0, 0) (0, 0, 0, 1, -1, -1, 0, -1)

6 2 (0, 1, -1, -1, -1, -1, 1, 0) (0, 0, 0, 0, 0, 0, -1, -1)

7 2 (0, 1, -2, -1, 0, -1, 1, 0) (0, 0, 0, 0, -1, 0, 0, -1)

8 3 (0, 0, -1, 0, 0, 0, 0, -1) (-1, 1, -1, -1, 0, -1, 1, 0) (0, 0, 0, 0, -1, -1, 0, 0)

9 2 (0, 0, -1, 0, 0, -1, 0, 0) (-1, 0, 0, 0, 0, 0, 0, -1)

10 2 (0, 0, -1, 0, -1, -1, 1, 0) (-1, 0, 0, 0, 0, -1, 0, 0)

11 2 (0, 0, -1, -1, 0, 0, 0, 0) (-1, 0, 0, 0, -1, -1, 1, 0)

12 2 (-1, 0, 0, -1, 0, 0, 0, 0) (-1, 0, -1, 0, 0, -1, 1, 0)

13 1 (-1, 0, -1, -1, 1, 0, 0, 0)

14 1 (-1, 0, -1, -1, 0, 0, 1, 0)

15 1 (-1, 0, -1, -1, 0, -1, 1, 1)

16 1 (-1, -1, 0, 0, 0, 0, 0, 0)

The junction-to-Dynkin map is:

T =



0 0 0 0 0 1 1 −1

0 0 0 0 1 −1 −1 0

0 0 0 1 0 0 1 0

0 0 1 −1 −1 0 0 0

0 1 0 0 0 0 0 1

1 −1 −1 0 0 0 0 0


.

In Dynkin basis we see that the highest weight junction with charge (1, 0) and (−1,−1)

is 27 : [0, 0, 0, 0, 0, 1] and that with charge (0,−1) is 27 : [0, 0, 0, 0, 1, 0].

A.5 I∗
1s → I∗

1ns

Here we start with a (1, 1) string junction state. The monodromy M1 brings it to a (2, 1)

string junction. The other M1 action will then brings it to a (3, 1) string junction.

The (1, 1) string junctions in the junction basis are:

Level Mult. Junctions

0 1 (1, 1, 0, 0, 0, 0, 0)

1 1 (1, 0, 1, 1, 0, 0, -1)

2 1 (1, 0, 1, 1, -1, 0, 0)

3 2 (1, 0, 1, 0, 0, 1, -1) (1, 0, 0, 1, 0, 0, 0)

4 2 (1, 0, 0, 0, 1, 1, -1) (0, 0, 1, 1, 0, 0, 0)

5 2 (1, 0, 0, 0, 0, 1, 0) (0, 0, 1, 0, 1, 1, -1)

6 2 (1, -1, 1, 1, 0, 1, -1) (0, 0, 1, 0, 0, 1, 0)

7 2 (0, -1, 2, 1, 0, 1, -1) (0, 0, 0, 0, 1, 1, 0)

8 1 (0, -1, 1, 1, 1, 1, -1)

9 1 (0, -1, 1, 1, 0, 1, 0)

10 1 (0, -1, 1, 0, 1, 2, -1)

– 40 –



J
H
E
P
0
9
(
2
0
1
8
)
1
2
9

The (2, 1) string junctions in the junction basis are:

Level Mult. Junctions

0 1 (1, 0, 1, 1, 0, 0, 0)

1 1 (1, 0, 1, 0, 1, 1, -1)

2 1 (1, 0, 1, 0, 0, 1, 0)

3 2 (1, 0, 0, 0, 1, 1, 0) (1, -1, 2, 1, 0, 1, -1)

4 2 (1, -1, 1, 1, 1, 1, -1) (0, 0, 1, 0, 1, 1, 0)

5 2 (1, -1, 1, 1, 0, 1, 0) (0, -1, 2, 1, 1, 1, -1)

6 2 (1, -1, 1, 0, 1, 2, -1) (0, -1, 2, 1, 0, 1, 0)

7 2 (0, -1, 2, 0, 1, 2, -1) (0, -1, 1, 1, 1, 1, 0)

8 1 (0, -1, 1, 0, 2, 2, -1)

9 1 (0, -1, 1, 0, 1, 2, 0)

10 1 (0, -2, 2, 1, 1, 2, -1)

The (3, 1) string junctions in the junction basis are:

Level Mult. Junctions

0 1 (1, 0, 1, 0, 1, 1, 0)

1 1 (1, -1, 2, 1, 1, 1, -1)

2 1 (1, -1, 2, 1, 0, 1, 0)

3 2 (1, -1, 2, 0, 1, 2, -1) (1, -1, 1, 1, 1, 1, 0)

4 2 (1, -1, 1, 0, 2, 2, -1) (0, -1, 2, 1, 1, 1, 0)

5 2 (1, -1, 1, 0, 1, 2, 0) (0, -1, 2, 0, 2, 2, -1)

6 2 (1, -2, 2, 1, 1, 2, -1) (0, -1, 2, 0, 1, 2, 0)

7 2 (0, -2, 3, 1, 1, 2, -1) (0, -1, 1, 0, 2, 2, 0)

8 1 (0, -2, 2, 1, 2, 2, -1)

9 1 (0, -2, 2, 1, 1, 2, 0)

10 1 (0, -2, 2, 0, 2, 3, -1)

The junction-to-Dynkin map is:

T =


0 0 0 0 1 −1 −1

0 0 0 1 0 0 1

0 0 1 −1 −1 0 0

0 1 0 0 0 1 1

1 −1 −1 0 0 0 0

 .

In Dynkin basis we see that the highest weight junction with charge (1, 1) is 16 : [0, 0, 0, 1, 0],

that with charge (2, 1) is 16 : [0, 1, 0, 0, 0] and that with charge (3, 1) is again 16 :

[0, 0, 0, 1, 0]. We have thus verified the results in section 3.3.5.

A.6 I4s → I4ns

Here we start with a (1, 0) string junction. The monodromy −M1 brings it to a (−1, 0)

string junction. The other −M1 action will then brings it back to a (1, 0) string junction.
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The (1, 0) string junctions in the junction basis are:

Level Mult. Junctions

0 1 (1, 0, 0, 0)

1 1 (0, 1, 0, 0)

2 1 (0, 0, 1, 0)

3 1 (0, 0, 0, 1)

While (−1, 0) string junctions in the junction basis are:

Level Mult. Junctions

0 1 (0, 0, 0, -1)

1 1 (0, 0, -1, 0)

2 1 (0, -1, 0, 0)

3 1 (-1, 0, 0, 0)

The junction-to-Dynkin map is:

T =

0 0 1 −1

0 1 −1 0

1 −1 0 0

 .

In Dynkin basis we see that the highest weight junction with asymptotic charge (1, 0) is

4 : [0, 0, 1] and that with asymptotic charge (−1, 0) is 4̄ : [1, 0, 0].

B Application of our method in type II∗ fibration

To further justify our method in section 2, we apply it to type II∗ fibration to obtain

the expected seven brane configuration, giving rise to E8 gauge group. The expected

brane configuration is S = {1, 3, 1, 3, 1, 3, 1, 3, 1, 3}. Recall that we have discussed the

correspondence between the relations between U and V realized at a generic point on

the discriminant locus and the type of the seven brane along the discriminant locus. In

particular, we argued that U1 corresponds to 1 brane and U3 corresponds to 3 brane.

In terms of the U -V relations realized along the discriminant locus, we expect to see the

alternating pattern {U1, U3, U1, U3, U1, U3, U1, U3, U1, U3}. Here we are only concerned with

the alternating appearance of U1 and U3.

To separate and identify each seven brane in S and the U -V relation along its locus

we deform the Weierstrass model of type II∗:

f = f1z
4 + ε,

g = g1z
5

(B.1)

where ε is the deformation parameter. This by no means is the most general form of

deformation of the type II∗ Weierstrass model, but it will be enough for our purpose.

Again we will keep ε small so that all the I1 locus that we are interested in lie in a small

neighborhood of certain point (which we consider to be the origin of a local patch) on the
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base manifold. In particular, we can treat sections of different line bundles over this local

patch as complex functions.

The discriminant locus of out deformed type II∗ Weierstrass model is takes the form:

4f31 z
12 + 12f21 z

8ε+ 12f1z
4ε2 + 27g21z

10 + 4ε3 = 0. (B.2)

There are twelve roots which parameterize the I1 loci. One can show that there exist two

roots zR = ±3
√
3

2

√
− g21
f31

+o(ε
3
10 ) out of the twelve roots that obviously do not approach the

origin when ε→ 0 whereas all the other ten roots are of order O(ε
3
10 ), and so they collide

at the origin when ε = 0. It is then clear that it is the seven branes along these ten I1
locus that form S.

To the leading order of ε, the ten roots that are relevant are:

zR =

{
−

5
√

2
√

(−1)4/5B1

33/10
,

5
√

2
√

(−1)4/5B1

33/10
,−

5
√

2
√
B1

33/10
,

5
√

2
√
B1

33/10
,

−
5
√

2
√
− 5
√
−1B1

33/10
,

5
√

2
√
− 5
√
−1B1

33/10
,−
√

(−2)2/5B1

33/10
,

√
(−2)2/5B1

33/10
,

−
5
√

2
√
−(−1)3/5B1

33/10
,

5
√

2
√
−(−1)3/5B1

33/10

}
.

(B.3)

Here B1 = ε
3
5 (−1

g21
)
1
5 .

We can still expand the solutions to x3 + fx + g = 0 at one of the I1 locus and the

results are structurally similar to eq. (2.19):

x1 =
3
√√

AW + V

3 3
√

2
−

3
√

2U
3
√√

AW + V
,

x2 =

(
1 + i

√
3
)
U

22/3
3
√√

AW + V
−
(
1− i

√
3
) 3
√√

AW + V

6 3
√

2
,

x3 =

(
1− i

√
3
)
U

22/3
3
√√

AW + V
−
(
1 + i

√
3
) 3
√√

AW + V

6 3
√

2
.

(B.4)

Here
√
A plays the role of

√
Bt and of course U , V and W are different. Here U = f1z

4 + ε

and V = −27g1z
5. In this case the relations between U and V are slightly modified to

108U3 + V 2 = 0 near the I1 locus to the relevant order. Here we chose to modify the U -V

relation just for convenience, it is of no real significance.

We can now plug the values of zR into the expressions of U and V to see how the xi-xj
swaps are realized near each zR. If the reader stares at eq. (B.3) long enough, they should

recognize zR’s are the tenth roots of unity besides the
√
B1 factor and some multiplicative

constant. Having observed this property, we can just set B1 = 1 for simplicity since any

non-zero value of B1 will not affect the order of the roots. Changing the value of B1 can

be undone by a rotation of the reference coordinate system.

The I1 locus are shown in figure 14. Here we deliberately chose not to show the axis

to remind the reader that although in order to illustrate the configuration of the roots we
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Figure 14. The I1 locus of the deformed type II∗ model. The numbers labeling the points are the

ordinals of the roots in eq. (B.3).

have chosen a particular value for B1, the results do not depend on the chosen value, and

different choices of B1 are related by a rotation.

Applying the same method as in section 2.3 for obtaining the U -V relation, it can be

shown that the U -V relations that are realized at the ten roots in eq. (B.3) are U1, U3, U1,

U3, U1, U3, U3, U1, U3, U1, respectively.

Now it is easy see the pattern we are after, e.g., starting from the point labeled by 1

and traverse the roots in a clockwise manner, we see the alternating pattern:

{U1, U3, U1, U3, U1, U3, U1, U3, U1, U3}.

This completes our justification of the validity of our method for type II∗ fibration.
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[6] S. Katz, D.R. Morrison, S. Schäfer-Nameki and J. Sully, Tate’s algorithm and F-theory,

JHEP 08 (2011) 094 [arXiv:1106.3854] [INSPIRE].

[7] M. Esole and S.-T. Yau, Small resolutions of SU(5)-models in F-theory, Adv. Theor. Math.

Phys. 17 (2013) 1195 [arXiv:1107.0733] [INSPIRE].

– 44 –

https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1016/0550-3213(96)00172-1
https://arxiv.org/abs/hep-th/9602022
https://inspirehep.net/search?p=find+EPRINT+hep-th/9602022
https://doi.org/10.1016/0550-3213(96)00369-0
https://doi.org/10.1016/0550-3213(96)00369-0
https://arxiv.org/abs/hep-th/9603161
https://inspirehep.net/search?p=find+EPRINT+hep-th/9603161
https://doi.org/10.1016/S0550-3213(96)90131-5
https://doi.org/10.1016/S0550-3213(96)90131-5
https://arxiv.org/abs/hep-th/9605200
https://inspirehep.net/search?p=find+EPRINT+hep-th/9605200
https://doi.org/10.1016/S0550-3213(97)00283-6
https://doi.org/10.1016/S0550-3213(97)00283-6
https://arxiv.org/abs/hep-th/9611090
https://inspirehep.net/search?p=find+EPRINT+hep-th/9611090
https://doi.org/10.1007/JHEP01(2012)022
https://arxiv.org/abs/1106.3563
https://inspirehep.net/search?p=find+EPRINT+arXiv:1106.3563
https://doi.org/10.1007/JHEP08(2011)094
https://arxiv.org/abs/1106.3854
https://inspirehep.net/search?p=find+EPRINT+arXiv:1106.3854
https://doi.org/10.4310/ATMP.2013.v17.n6.a1
https://doi.org/10.4310/ATMP.2013.v17.n6.a1
https://arxiv.org/abs/1107.0733
https://inspirehep.net/search?p=find+EPRINT+arXiv:1107.0733


J
H
E
P
0
9
(
2
0
1
8
)
1
2
9
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