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can potentially explain the B-decay anomalies if its mass is on the order of a few TeV.
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to proton decay due to the absence of diquark couplings, as dictated by the underlying
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1 Introduction

In papers [1] and [2] we have studied the phenomenology of models proposed by Chamsed-

dine, Connes, and van Suijlekom in refs. [3, 4], which are based on Connes’ noncommutative

geometry (NCG) [5, 6]. The models are characterized by a Pati-Salam (PS) gauge struc-

ture G422 = SU(4)×SU(2)L×SU(2)R with the requirement that the gauge couplings unify

at a single scale, and a scalar sector whose content and couplings are fixed by the NCG

of the models. The fermion content is the same as the Standard Model (SM) plus the

right-handed neutrinos of each generation.

The unification of gauge couplings is a distinguishing requirement of NCG based ver-

sions of the SM [7, 8], as well as its G422 extensions discussed in this paper [3, 4]. It is

due to the underlying “spectral action” having only one overall coupling, despite the fact

that the gauge groups do not unify into a single simple Lie group, that is, the model is
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not a Grand Unified Theory (GUT). Note that coupling unification is not a requirement

of canonical non-GUT G422 models found in the literature [9–13].

Another feature of the NCG-PS framework is its restricted scalar content compared

to the canonical Pati-Salam and GUT frameworks, which is appealing in terms of the

predictability of the NCG framework. The scalar content of the three NCG-PS models

proposed in refs. [3, 4] is listed in table 1 and their full SM decomposition can be inferred

from table 2. As shown in refs. [3, 4], the scalar sector is restricted due to the geometric

feature of NCG as outlined in section 4.1. In essence, as the Higgs field is the gauge field

in the discrete direction of NCG space, requiring gauge invariance in the total NCG space

puts a stronger restriction on the Higgs sector than requiring it only in Minkowski space,

hence reducing the number of free parameters and possible combination of terms in the

Higgs potential.1

The RG running in the NCG-PS framework is treated adopting the usual effective field

theory approach. The difference between the canonical and NCG based Pati-Salam models

is in the restricted scalar content of the NCG-PS formalism. The underlying noncommuta-

tive geometry, which is interpreted as the classical background, is assumed to be relevant

at the UV. The SM and PS structures are interpreted as emergent from the corresponding

underlying noncommutative geometry.2

In ref. [1], we investigated whether a 2 TeV WR boson [14–19] could be accommo-

dated within the NCG models considered, and in ref. [2] whether a 750 GeV diphoton

resonance [20, 21] could be accommodated. Due to constraints imposed on the models

by the underlying NCG, no freedom exists to adjust the models’ particle content, except

via decoupling those that exist from the renormalization group (RG) running of the gauge

coupling constants by rendering them heavy through symmetry breaking. Consequently,

though it is not difficult to find particles within the models that can be identified with the

putative WR or the diphoton resonance, we have found that lowering their masses to TeV

scales while maintaining the coupling unification condition is highly non-trivial. The hints

of the WR and diphoton resonance at the LHC have since disappeared [22–24], but our

analyses nevertheless underscore the rigidity, and consequently the predictability, of the

NCG based models.

In this paper, we continue our investigation and question whether the models could nat-

urally accommodate a TeV-scale scalar leptoquark necessary to explain the B-decay anoma-

lies observed at the LHC and elsewhere [25]. The leptoquark of interest is S1

(
3, 1, 1

3

)
321

, a

colored isoscalar with electromagnetic charge 1
3 . In order to explain the B-decay anomalies,

its mass must be in the few TeV range [26–29]. Again, it is not difficult to identify scalars

with the required quantum numbers within the NCG models, but the quantum number as-

signment alone does not necessarily guarantee that the scalars couple to lepton-quark pairs

1The fermion masses in NCG framework, as in the SM, are input in the NCG framework, which are

contained in the generalized Dirac operator that is used to construct the NCG Lagrangian. In both the

spectral Standard Model and its Pati-Salam extension, the smallness of the neutrino masses can be addressed

in the context of seesaw mechanism [7, 8].
2It is currently unknown if there are non-local degrees of freedom due to the geometric nature of the

framework that may change the RG running in a non-Wilsonian way.
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as leptoquarks should do. And again, the challenge is whether coupling unification can be

achieved or not. On this question, we recall that in the context of SU(5) GUT, the presence

of certain leptoquarks actually helps in unifying the couplings without SUSY [33, 34]. Our

study will focus on whether the field corresponding to the S1 has a similar effect in NCG

models.

Another appealing aspect of the NCG-based Pati-Salam models, pointed out in this

paper, is the proton stability. Ordinarily, in the usual Pati-Salam framework the stability

of proton is not always guaranteed in the case of S1 being light. In the NCG formalism,

on the other hand, the proton stability is ensured thanks to the absence of S1’s diquark

couplings, as dictated by the underlying noncommutative geometry.

This paper is organized as follows: In section 2 we briefly review the current status

of B-decay anomalies. In section 3 we list the various leptoquark explanations that have

been proposed in the literature, and identify the introduction of a single S1 leptoquark as

the most attractive solution. Section 4 discusses the scalar content of the NCG models and

their Yukawa couplings, and we find a unique field that would serve our purpose as the S1

leptoquark. Section 5 presents an analysis on how and whether the coupling unification

condition can be maintained when the S1 mass is a few TeV. Section 6 concludes with a

discussion of how the proton decay is, perhaps surprisingly, not a problem in our context,

as well as some concluding comments on the NCG framework and the current status of non-

commutativity in quantum gravity and string theory. We end with an appendix in which

we review the derivation of the most generic Lagrangian for scalar and vector leptoquark

interactions with Standard Model (SM) fermions.

2 B-decay anomalies

During the past few years, several disagreements between experiment and Standard Model

(SM) predictions in rare B-decays have been observed by LHCb [35–39], Belle [40–42],

and Babar [43, 44]. The decay channels in question are B+ → K+µ+µ− [35], B0 →
K∗0µ+µ− [36, 37], and B0 → D(∗)+τ−ν [38–44]. Expressed in terms of the ratios

RK(∗) =
B(B → K(∗)µ+µ−)

B(B → K(∗)e+e−)
(2.1)

LHCb reports [35–37]3

RK = 0.745 + 0.090
− 0.074 (stat)± 0.036 (syst) for 1 < q2 < 6 GeV2/c4 , (2.2)

RK∗ =

{
0.660 + 0.110

− 0.070 (stat)± 0.024 (syst) for 0.045 < q2 < 1.1 GeV2/c4

0.685 + 0.113
− 0.069 (stat)± 0.047 (syst) for 1.1 < q2 < 6.0 GeV2/c4

, (2.3)

where q2 is the invariant mass of the lepton pair in the final state. Here, the upper cut

q2
max = 6 GeV2/c4 is imposed to avoid the effects of the J/ψ and higher cc̄ resonances,

3Previous measurements of these ratios by Belle and Babar were consistent with the SM within their

larger experimental uncertainties.
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while a common lower cut q2
min for both electron and muon final states is imposed to avoid

phase space effects. In the case of RK∗ , the lower cut has been taken all the way down

to q2
min = 0.045 GeV2/c4 ≈ 4m2

µ, but the range from this q2
min to q2

max = 6 GeV2/c4

has been divided into two at q2 = 1.1 GeV2/c4 in order to isolate the contribution of

the φ resonance (B0 → φ(→ `+`−)K∗0) into the lower bin. With these bounds on q2 in

place, hadronic uncertainties have been argued to cancel in these ratios and that the SM

predictions of RK and RK∗ are unity with only O(10−4) uncertainties [45–49]. However,

it has also been argued that both QED [50] and QCD [51] corrections and uncertainties

were underestimated in these predictions. Ref. [50] argues that a more realistic set of SM

predictions is
RSM
K [1, 6] = 1.00± 0.01 ,

RSM
K∗ [1.1, 6] = 1.00± 0.01 ,

RSM
K∗ [0.045, 1.1] = 0.906± 0.028 ,

(2.4)

while ref. [51] lists

RSM
K∗ [1.1, 6] = 1.000± 0.006 ,

RSM
K∗ [0.045, 1.1] = 0.922± 0.022 .

(2.5)

Thus, the prediction that the values of RSM
K [1, 6] and RSM

K∗ [1.1, 6] are unity appears to be

fairly robust, and we find that the experimental values of RK [1, 6] and RK∗ [1.1, 6] are both

suppressed compared to their SM predictions by ∼ 2.6σ [35–37].

For the semileptonic B to D decays, the ratios

RD(∗) =
B(B → D(∗)τν)

B(B → D(∗)`ν)
, ` = e or µ , (2.6)

have been measured using a variety of techniques by Babar [43, 44], Belle [40–42], and

LHCb (RD∗ only) [38, 39]. For the denominator of the above ratios, Belle and Babar take

the average of B → D(∗)eν and B → D(∗)µν branching fractions, while LHCb uses that

for B → D(∗)µν. The world averages as of summer 2017, according to the Heavy Flavor

Averaging Group [52], are

RD = 0.407± 0.039 (stat)± 0.024 (syst) ,

RD∗ = 0.304± 0.013 (stat)± 0.007 (syst) . (2.7)

The Standard Model (SM) predictions of these ratios, on the other hand, are [53, 54]4

RSM
D = 0.300± 0.008 ,

RSM
D∗ = 0.252± 0.003 , (2.8)

and one sees that the experimental values RD and RD∗ are in excess of their SM predictions

by 2.3σ and 3.4σ, respectively [52].

These experimental results,5 taken at face value, challenge lepton flavor universal-

ity [57] and could be interpreted as signatures of new physics beyond the SM. Note that for

4See also the recent analyses in ref. [55] and ref. [56], both of which obtain slightly different values for

these ratios.
5See also ref. [25] for a recent review.

– 4 –



J
H
E
P
0
9
(
2
0
1
8
)
1
1
7

Figure 1. SM processes that contribute to B → K(∗)µ+µ−. The muons in the final states of (a)

and (b) do not have definite chirality.

new physics to account for RK(∗) < RSM
K(∗) one could either suppress the numerator or en-

hance the denominator, while for RD(∗) > RSM
D(∗) one could either enhance the numerator or

suppress the denominator. However, any new physics involving the electron is generically

highly constrained. Therefore, new physics needs to suppress the process B → K(∗)µ+µ−,

while enhancing the process B → D(∗)τντ .

3 Scalar leptoquarks

Unlike several other LHC “anomalies” that have come and gone [22–24] the persistence

of the B-decay anomalies has garnered a great deal of interest and various explanations

involving new physics have been proposed. Here, we focus our attention to those involving

scalar leptoquarks.6

As reviewed in the appendix, there exist six possible G321 = SU(3)C×SU(2)L×U(1)Y
quantum number assignments to scalar leptoquarks as listed in table 7. The corresponding

six scalar leptoquark fields are labelled S1, S̃1, S1, S3, R2, and R̃2. Their couplings to the

quarks and leptons are shown explicitly in eqs. (A.10) and (A.11) and also summarized in

the last column of table 7.

To explain the RK(∗) anomalies one needs to induce bL → sLµ
+µ− operators which

can interfere destructively with the SM processes shown in figure 1. These operators are

denoted in the literature as [60–62]7

O9 ∝
(
sLγ

µbL
)(
µγµµ

)
= 2
(
sLµR

)(
µRbL

)
+ 2
(
bCLµL

)(
µLs

C
L

)
,

O10 ∝
(
sLγ

µbL
)(
µγµγ5µ

)
= 2
(
sLµR

)(
µRbL

)
− 2
(
bCLµL

)(
µLs

C
L

)
. (3.1)

Looking through the leptoquark-quark-lepton couplings listed in eqs. (A.10) and (A.11), we

can see that in order to induce these operators at tree-level one needs S
(4/3)
3 , which induces

6For a recent general review on leptoquark-related phenomenology, see ref. [58]. The classic reference

on leptoquarks is ref. [59]. For completeness, we review the basic theoretical facts from these references in

the appendix.
7Ref. [60] uses a slightly different numbering scheme in which O9/10 are respectively denoted O8/9. The

normalizations of the operators also differ among various publications so care is necessary when comparing

the sizes of the Wilson coefficients.
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Figure 2. Possible leptoquark contributions to B → K(∗)µ+µ−.

O9 − O10 [48, 63, 64], or R
(2/3)
2 , which induces O9 + O10 [27, 48, 65]. See figures 2(a)

and 2(b). The wrong chirality operators

O′9 ∝
(
sRγ

µbR
)(
µγµµ

)
= 2
(
bCRµR

)(
µRs

C
R

)
+ 2
(
sRµL

)(
µLbR

)
,

O′10 ∝
(
sRγ

µbR
)(
µγµγ5µ

)
= 2
(
bCRµR

)(
µRs

C
R

)
− 2
(
sRµL

)(
µLbR

)
, (3.2)

which contribute to bR → sRµ
+µ−, are obtained from the exchange of R̃

(2/3)
2 , which induces

O′9 − O′10 [27, 34, 48, 63, 66–68], or S̃
(4/3)
1 , which in turn induces O′9 + O′10 [48, 63].

See figures 2(d) and 2(e). Global fits that have been performed by various groups, e.g.

refs. [48, 49, 69–71], indicate that a suppression of the Wilson coefficient C9 (the coefficient

of O9) compared to its SM value by about 25% provides the best fit.

For the RD(∗) anomalies we need an operator which interferes constructively with the

SM process shown in figure 3(a).

The required operator is(
cLγ

µbL
)(
τLγµντL

)
=
(
bCLγ

µcCL
)(
τLγµντL

)
= 2
(
bCLντL

)(
τLc

C
L

)
. (3.3)

To induce this at tree-level one needs S
(1/3)
1 [26–32] or S

(1/3)
3 [30–32] which couple to

left-handed quarks and leptons. See figure 3(b). We find the introduction of the S
(1/3)
1

leptoquark coupled to left-handed fermions particularly attractive since, as pointed out

in ref. [26], in addition to explaining the RD∗ anomalies at tree level, it can also explain

the RK(∗) anomalies at the one-loop level, the same level as the SM contributions.8 See

figure 2(c). Under closer scrutiny, it was suggested in ref. [27] that the S
(1/3)
1 model may

8See refs. [30–32] for possible two-leptoquark solutions that utilize S1(3, 1, 1
3
)321 and S3(3, 3, 1

3
)321.
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Figure 3. (a) SM and (b) possible leptoquark contributions to B0 → D(∗)+τ−ντL.

not be able to explain RK(∗) without coming into conflict with the experimental values of

the ratios

R
µ/e

D(∗) =
B(B → D(∗)µν)

B(B → D(∗)eν)
. (3.4)

However, ref. [28] argues that this constraint can be circumvented by allowing the S
(1/3)
1

mass to be a TeV or larger, the preferred mass being a few TeV.

Assuming that an S
(1/3)
1 leptoquark coupled to left-handed fermions with a mass of a

few TeV can simultaneously explain the RK(∗) andRD(∗) anomalies, we inquire whether such

a leptoquark can be accommodated within the NCG models of Chamseddine et al. [3, 4].

4 Scalar leptoquarks in unified Pati-Salam models from NCG

In this section, we list the three NCG-based unified Pati-Salam-like models proposed by

Chamseddine, Connes, and van Suijlekom in refs. [3, 4], and specify how leptoquarks can

be fit into their particle contents. We begin with a brief outline of how NCG models are

constructed, in particular, the three models of refs. [3, 4].

4.1 NCG model construction

Noncommutative geometry (NCG) generalizes the concepts of spinor bundle and principle

bundle, and manages to combine the two concepts into one in a mathematically rigorous

fashion [5]. As a result, the Dirac operator has both a continuous part and a discrete part.

The continuous part realizes the ordinary Dirac operator, and the discrete part accounts

for the representation space of the gauge algebra.

Consequently, in this framework, the most general gauge transformation includes both

a transformation along the continuous directions, which is identified with the usual gauge

transformation, and that in the discrete direction, which is not explicit in the usual field

theoretical formalism. To maintain gauge invariance of the whole action, one needs gauge

fields in both directions, which are interpreted as the ordinary gauge fields (continuous

direction) and the Higgs fields (discrete direction).

– 7 –
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It is worth noting that if one tries to interpret the space as an extra-dimension model,

the metric dimension of the extra dimension is zero, because the extra direction is discrete.

Therefore, in contrast to the usual extra-dimension models, no extra effort is required to

stabilize the two “sheets.” In what follows, we show this more concretely. The continuous

gauge fields Aµ transform in the usual way:

A′µ = uAµu
−1 − i

g
u ∂µu

−1

= Aµ + u
[
Aµ, u

−1
]
− i

g
u
[
∂µ, u

−1
]
, (4.1)

where u is an element of the gauge group, while the discrete part, the Higgs field Φ,

transforms in an analogous fashion with ∂µ replaced by a matrix commutator [D, · ],

which represents a “derivative” in the discrete direction:9

Φ′ = Φ + u
[
Φ, u−1

]
− i

g
u
[
D,u−1

]
. (4.2)

Here, the matrix u is still a transformation generated by the gauge algebra, and the matrix

D is the discrete part of the Dirac operator. In NCG, the gauge field is defined as as

the summation
∑
a[D, b], with a, b being elements of the gauge algebra, and D is the

generalized Dirac operator [6]. Putting D equal /∂ (or D), we can reproduce all properties

of /A (or Φ), respectively. Therefore, the last terms of eqs. (4.1) and (4.2) can be combined

with the gauge field that is being transformed, which guarantees that the result of the

transformation on a gauge field is still a gauge field. On the other hand, depending on

the symmetry group, one may or may not be able to write the u[Φ, u−1] term in eq. (4.2)

into the a[D, b] form. In other words, due to the presence of the u[Φ, u−1] term, the form

of a gauge field defined as
∑
a[D, b] may not be closed after a gauge transformation. To

maintain the gauge invariance, high order terms of the gauge field, arising from u[Φ, u−1],

are needed to build a covariant derivative. The requirement of vanishing u[Φ, u−1] is the

so called order-one condition [6].

It has been argued [3, 6] that the requirement of the order-one condition, together

with a Majorana mass term for right handed neutrinos, selects the SM gauge group from

G422 = SU(4) × SU(2)L × SU(2)R. Furthermore, it has been shown [3] that if one starts

with the G422 = SU(4)× SU(2)L × SU(2)R gauge group, and (partially) lifts the order-one

condition, up to three models can be constructed. To be specific, starting with G422 =

SU(4) × SU(2)L × SU(2)R, if the order-one condition is imposed on G321 = SU(3)C ×
SU(2)L × U(1)Y , i.e. if the SM gauge transformation does not generate any higher order

terms from U [Φ, U−1] that cannot be written in the
∑
a[D, b] form, one ends with Model

A of ref. [4]; if the order-one condition is lifted and if one only looks into a left-right

asymmetric subset of the moduli space of the Dirac operator, one has Model B of ref. [4];

9Apparently, Leibniz rule is satisfied by the commutator. One might think that [D, · ] cannot work as

a derivation as it is not nilpotent in general. However, in the context of cycles over a C∗ algebra where

integrals are defined using Hochschild cochains, D does work as a derivation. For details on how to calculate

such integrals, cf. refs. [5, 6].
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if the order-one condition is lifted and the full moduli space of the Dirac operator is

considered, the result is Model C of ref. [4].

We note in passing that, if one starts with G422 = SU(4)×SU(2)L×SU(2)R, it has been

observed in [4] that the breaking of this gauge symmetry can be achieved either from usual

Higgs mechanism as in refs. [1, 2], or from the use of the order-one condition [3, 72]. While

it is possible that the the order-one condition encodes the symmetry breaking pattern,

we refrain from discussing how the two seemingly different approaches could be related at

some fundamental level to achieve similar results.

4.2 The three models

The three NCG models proposed in refs. [3, 4], which we refer to as models A, B, and

C, differ in their scalar sector content, and their unbroken symmetry structure is listed in

table 1.10 As in our previous work [1, 2] we use the following notation for the symmetries:

G422D = SU(4)C ⊗ SU(2)L ⊗ SU(2)R ⊗D ,

G422 = SU(4)C ⊗ SU(2)L ⊗ SU(2)R ,

G3221 = SU(3)C ⊗ SU(2)L ⊗ SU(2)R ⊗U(1)B−L ,

G321 = SU(3)C ⊗ SU(2)L ⊗U(1)Y ,

G31 = SU(3)C ⊗U(1)em , (4.3)

where D in G422D refers to the left-right symmetry, a Z2 symmetry which keeps the left

and the right sectors equivalent. We adopt the normalization of the hypercharge Y so that

Qem = IL3 + Y = IL3 + IR3 + (B − L)/2. For comparison, the last row of table 1 lists the

scalar content of an SO(10) based G422 model studied in ref. [73], after SO(10) is broken

to G422.

When the G422 (models A and B and SO(10)) or G442D (model C) of the NCG based

models break to G321 of the SM, the scalars listed in table 1 decompose into irreducible

representations of G321 as listed in the third column of table 2. Of the fields listed there,

all the color-triplet fields have the quantum numbers of leptoquarks. For instance, the

∆R(4, 1, 2)422 field which appears in model A decomposes as

∆R(4, 1, 2)422
G422→G3321−−−−−−−−→ ∆̃R1(1, 1, 2,−1)3221 + ∆̃R3

(
3, 1, 2,

1

3

)
3221

G3221→G321−−−−−−−−→
[
∆̃R1(1, 1, 0)321 + ∆̃R1(1, 1,−1)321

]
+

[
∆̃R3

(
3, 1,

2

3

)
321︸ ︷︷ ︸

S
∗
1

+ ∆̃R3

(
3, 1,−1

3

)
321︸ ︷︷ ︸

S∗1

]
, (4.4)

10Recently, it has been argued that the incorporation of the Clifford structures in the spectral action

formalism of the noncommutative geometry yields additional scalars as well [74]. The resulting model in

that case turns out to be the Standard Model augmented by several scalars fields that carry the quantum

numbers of the leptoquarks S1 and R̃2.
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Model Symmetry Higgs Content

A G422 φ(1, 2, 2)422, Σ(15, 1, 1)422, ∆̃R(4, 1, 2)422

B G422 φ(1, 2, 2)422, Σ̃(15, 2, 2)422, ∆R(10, 1, 3)422, HR(6, 1, 1)422

C G422D φ(1, 2, 2)422, Σ̃(15, 2, 2)422, ∆R(10, 1, 3)422, HR(6, 1, 1)422,

∆L(10, 3, 1)422, HL(6, 1, 1)422

SO(10) G422 φ(1, 2, 2)422, Σ(15, 1, 1)422, ∆R(10, 1, 3)422

Table 1. The scalar content of the three NCG based unified G422 models proposed by Chamsed-

dine, Connes, and van Suijlekom in refs. [3] and [4]. The last row lists for comparison the scalar

content of the SO(10) based G422 model discussed in ref. [73], below its unification scale where

the SO(10) symmetry is broken to G422. Note that in our notation throughout the paper the sub-

scripts L and R of scalars indicate the chirality of fermions that the corresponding scalars couple

to, which is shown explicitly in section 4 through the decomposition of the interaction terms, such

as eqs. (4.26), (4.29), (4.35), and (4.37).

and we see that the two colored fields in the last line have quantum numbers corresponding

to leptoquarks S1 and S1. Fields with quantum numbers corresponding to the six lepto-

quarks S1, S̃1, S1, S3, R2, and R̃2 all occur in one model or another. However, for any of

these fields to be identifiable as leptoquarks, they must couple to quark-lepton pairs after

symmetry breaking. In the following, we look at the scalar sectors of the three models one

by one and identify the fields that can be considered leptoquarks. In particular, we will

search for a field that can be identified as S1 coupled to left-handed fermions.

4.3 Couplings between fermions and scalars

Following refs. [3, 4], we denote the SU(2)L and SU(2)R indices in the fundamental rep-

resentation respectively with un-dotted and dotted lower-case Latin letters toward the

beginning of the alphabet: e.g. a = 1, 2 and ȧ = 1, 2. Note that despite their appearance,

these are NOT spinor indices, and so complex conjugation does not take on or off dots

from the indices.11 The SU(4) index in the fundamental representation is denoted with

upper-case Latin letters toward the middle of the alphabet: e.g. I = 0, 1, 2, 3, where I = 0

is the lepton index and I = i = 1, 2, 3 are the quark-color indices.12 The fermion content

of the models is

ψaI = (ψa0, ψai) =

(
ψ10, ψ1i

ψ20, ψ2i

)
= (LL, QL) =

(
νL, uL
eL, dL

)
,

ψȧI = (ψȧ0, ψȧi) =

(
ψ1̇0, ψ1̇i

ψ2̇0, ψ2̇i

)
= (LR, QR) =

(
νR, uR
eR, dR

)
, (4.5)

11See, for instance, ref. [75].
12The authors of refs. [3, 4] use I = 1, 2, 3, 4 to label the SU(4) index, and then use I = (1, i), with

i = 1, 2, 3 to distinguish between the leptons and quarks. We instead use I = 0, 1, 2, 3, which seems more

self-evident to us.
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that is, the SM content plus the right-handed neutrinos of each generation. The generation

and spinor indices are suppressed. Complex (hermitian, Dirac) conjugation raises or lowers

both indices, e.g.

ψaI = ψaI , ψȧI = ψȧI . (4.6)

In the case of the SU(2)’s, the index can be lowered or raised using

(ε)ab , (ε†)ab , (ε)ȧḃ , (ε†)ȧḃ , (4.7)

where ε = iσ2.

The most general G422 invariant Yukawa interaction in the NCG models involving ψaI
and ψȧI can be written schematically as

LY =
(
ψȧIγ5ΣbJ

ȧI
ψ
bJ

+ ψCaIγ5H
aIbJψ

bJ
+ ψCȧIγ5H

ȧIḃJψ
ḃJ

)
+ h.c. , (4.8)

where ψC = Cψ
T

, and the couplings constants are embedded in the complex scalar fields

ΣbJ
ȧI , H

aIbJ , and H ȧIḃJ . The γ5 that appears in this expression is due to the geometry

being of even parity. The Hilbert space is Z2 graded with γ5 being the grading operator, so

that the Dirac operator is of odd degree. This is crucial in order to interpret the discrete

gauge field as the Higgs field. It is worth noting that, although seemingly originating

from a different assumption, the superconnection formalism also captures this feature, as

is shown in [76].

Since

ψC1 γ5ψ2 = ψC2 γ5ψ1 (4.9)

for any pair of anti-commuting fermionic operators ψ1 and ψ2, the HaIbJ and H ȧIḃJ

fields are respectively symmetric under the interchange of the indices (aI) ↔ (bJ) and

(ȧI)↔ (ḃJ).

As is discussed above, the way scalars couple to fermions is dictated by the generalized

gauge invariance. In eq. (4.8), ΣbJ
ȧI is the ‘connection’ that links chiral fermions to the

ones with opposite chirality, i.e. it couples an SU(2)L fermion to an SU(2)R fermion.

If a fermion is mapped to the same fermion with opposite chirality, a Dirac mass term

can be generated after symmetry breaking. On the other hand, HȧIḃJ and HaIbJ link

fermions to anti-fermions with the same chirality. When a chiral fermion is mapped to its

own charged conjugate, a Majorana mass term can be generated after symmetry breaking.

Therefore, the former gives us LR type coupling while the latter produces RR and LL

types of coupling. This is how the Yukawa interaction terms are generated as a result of

generalized gauge invariance. In particular, the NCG dictates there are only three terms,

as indicated in eq. (4.8).

The complex scalar fields ΣbJ
ȧI , HȧIḃJ , and HaIbJ can, in general, consist of the following

G422 representations:

ΣbJ
ȧI = (1, 2, 2)422 + (15, 2, 2)422 ,

HaIbJ = (6, 1, 1)422 + (10, 3, 1)422 ,

HȧIḃJ = (6, 1, 1)422 + (10, 1, 3)422 . (4.10)
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Note that 6 of SU(4) and 1 of SU(2)L (SU(2)R) are respectively anti-symmetric under

I ↔ J and a ↔ b (ȧ ↔ ḃ) rendering the (6, 1, 1)422 representation symmetric under

(aI)↔ (bJ) ((ȧI)↔ (ḃJ)). Note also that the leptoquark S1 we seek must couple to left-

handed quarks and leptons, so we can expect to find such a field embedded in the complex

scalar field HaIbJ .

Although the G422 representations listed above are most general, and all the fields are

contained in the model C, the models A and B restrict the scalar sector to the fields listed

in table 1. Since Model C is the only model which includes the field HaIbJ , it is clear that

Model C is the place where we should be looking for our S1 leptoquark. However, for the

sake of completeness, we look at the couplings of the scalar fields that appear in all three

models, and identify all the fields that correspond to one type of leptoquark or another.

4.3.1 Model A

In this model, the scalar field HaIbJ is suppressed while the fields ΣbJ
ȧI and HȧIḃJ are

decomposed as

ΣbJ
ȧI =

(
kνφbȧ + ke φ̃bȧ

)
ΣJ
I /Λ +

(
kuφbȧ + kd φ̃bȧ

)(
δJI − ΣJ

I /Λ
)
,

HȧIḃJ = k∗νR∆ȧJ∆ḃI/Λ , (4.11)

where

φ̃bȧ = (ε)ȧċ φ
ċ
d (ε†)db , ε = iσ2 . (4.12)

Note the manifest symmetry of HȧIḃJ under (ȧI)↔ (ḃJ). The fields φbȧ, ΣI
J , ∆ȧJ are those

labeled as φ(1, 2, 2)422, Σ(15, 1, 1)422, and ∆̃R(4, 1, 2)422 in tables 1 and 2. Also, kν , ke,

ku, and kd denote Yukawa coupling matrices for the neutrinos, charged leptons, up-type

quarks, and down-type quarks, respectively, while kνR is the Majorana coupling matrix

which gives Majorana masses to the right-handed neutrinos upon symmetry breaking, and

the asterisk stands for complex conjugation. In order to give mass-dimension one to all

scalar fields, we have introduced the scale Λ which is only implicit in refs. [3, 4].

Note that the above decompositions render the interactions of the scalar fields

∆̃R(4, 1, 2)422 and Σ(15, 1, 1)422 and the fermions into mass-dimension five operators, i.e.

the generalized version of the LHLH operator of the SM. To generate dimension-four op-

erators of the Yukawa or Majorana type, we must give vacuum expectation values (VEV’s)

to the scalar fields. In the current case, VEV’s are given to〈
ΣI
J

〉
= Λ δI0 δ

0
J ,

〈
∆ȧJ

〉
= w δ1̇

ȧ δ
0
J ,

〈
φbȧ
〉

= v δ1̇
ȧ δ

b
1 . (4.13)

or in the notation of table 2,

〈
Σ1(1, 1, 0)321

〉
= Λ ,

〈
∆̃R1(1, 1, 0)321

〉
= w ,

〈
φ′2

(
1, 2,−1

2

)
321

〉
=

[
v

0

]
. (4.14)

Note that φ̃bȧ and φbȧ in eq. (4.11) are not independent so 〈φbȧ〉 = v δ1̇
ȧ δ

b
1 implies 〈φ̃bȧ〉 =

v δ2̇
ȧ δ

b
2. The VEV’s Λ and w break SU(4) × SU(2)R to SU(3) × U(1)Y , while v breaks
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SU(2)L × U(1)Y down to U(1)em. So symmetry breaking generates the following mass

terms for the fermions:[
v
(
ψ1̇0kνψ

10
+ ψ2̇0keψ

20

)
+ v
(
ψ1̇ikuψ

1i
+ ψ2̇ikdψ

2i

)
+
w2

Λ
ψC 1̇0k

νRψ1̇0

]
+ h.c.

=

[
v
(
νR k

ννL + eR k
eeL

)
+ v
(
uR k

uuL + dR k
ddL

)
+
w2

Λ
νCR k

νRνR

]
+ h.c.

(4.15)

The couplings of the φ(1, 2, 2)422, ∆̃R(4, 1, 2)422, and Σ(15, 1, 1)422 fields to the fermions

can be obtained by substituting eq. (4.11) into the generic expression eq. (4.8), taking into

account eq. (4.13). First, let us take ∆ȧI = ∆̃R(4, 1, 2)422 as an example:

ψCȧIγ5H
ȧIḃJψḃJ + h.c.

=
1

Λ
ψCȧI∆

ḃIkνR∆ȧJψḃJ + h.c.

=
1

Λ

[(
LCR∆̃∗R1

)
kνR
(

∆̃∗R1LR

)
+
(
QCR∆̃∗R1

)
kνR
(

∆̃∗R3LR

)
+
(
LCR∆̃∗R3

)
kνR
(

∆̃∗R1QR

)
+
(
QCR∆̃∗R3

)
kνR
(

∆̃∗R3QR

)]
+ h.c. , (4.16)

where the lines connecting the colored fields indicate color contraction, and we have also

used the shorthand

∆̃R1 = ∆̃R1 (1, 1, 2,−1)3221 =

[
∆̃R1(1, 1, 0)321

∆̃R1(1, 1,−1)321

]
,

∆̃R3 = ∆̃R3

(
3, 1, 2, 1

3

)
3221

=

[
∆̃R3

(
3, 1,+2

3

)
321

∆̃R3

(
3, 1,−1

3

)
321

]
,

(4.17)

for the fields that ∆̃(4, 1, 2)422 decomposes into as G422 → G3221 → G321. After the SM

singlet ∆̃R1(1, 1, 0)321 develops a VEV, eq. (4.14), we find

ψCȧIγ5H
ȧIḃJψḃJ + h.c.

→ 2w

Λ

[
w

2

(
νCR k

νR νR

)
+
(
νCR k

νR νR

)
∆̃
′∗(0)
R1 +

(
νCR k

νR eR

)
∆̃
∗(1)
R1

+
(
uCR k

νR νR

)
∆̃
∗(−2/3)
R3︸ ︷︷ ︸
S

(−2/3)
1

+
(
uCR k

νR eR

)
∆̃
∗(1/3)
R3︸ ︷︷ ︸
S

(1/3)
1

+ · · ·
]

+ h.c. (4.18)

where the first term inside the brackets is the Majorana mass term for the right-handed

neutrinos, the ellipses represent dimension 5 operators, and we have used the symbols

∆̃
′∗(0)
R1 =

[
∆̃R1(1, 1, 0)321

]∗
− w ,

∆̃
∗(1)
R1 =

[
∆̃R1(1, 1,−1)321

]∗
,

∆̃
∗(−2/3)
R3 =

[
∆̃R3

(
3, 1,+2

3

)
321

]∗
,

∆̃
∗(1/3)
R3 =

[
∆̃R3

(
3, 1,−1

3

)
321

]∗
.

(4.19)
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Thus, we find that ∆̃R(4, 1, 2)422 includes the leptoquarks S1 and S1, but this S1, by

construction, only couples to uR and eR. Note also that it does not couple to diquarks.

Next, let us look at the couplings of φbȧ = φ(1, 2, 2)422 and ΣJ
I = Σ(15, 1, 1)422:

ψȧIγ5ΣbJ
ȧIψbJ + h.c.

= ψȧIγ5

[(
kνφbȧ + ke φ̃bȧ

)
ΣJ
I /Λ +

(
kuφbȧ + kd φ̃bȧ

)(
δJI − ΣJ

I /Λ
)]
ψbJ + h.c. . (4.20)

Note that if ku = kν and kd = ke, then ΣJ
I will decouple from the fermions. We are

interested in the couplings of ΣJ
I = Σ(15, 1, 1)422 to the fermions so we replace φbȧ and φ̃bȧ

with their VEV’s, and denote the shifted Σ(15, 1, 1)422 fields as

Σ0
0 = Σ1 (1, 1, 0)321 = Σ

(0)
1 = Λ + Σ

′(0)
1 ,

Σ0
i = Σ3

(
3, 1,+2

3

)
321

= Σ
(2/3)
3 ,

Σj
0 = Σ3

(
3, 1,−2

3

)
321

= Σ
(−2/3)

3
,

Σj
i = Σ8 (8, 1, 0)321 = Σ

(0)
8 .

(4.21)

We find:

ψȧIγ5

[(
kνφbȧ + ke φ̃bȧ

)
ΣJ
I /Λ +

(
kuφbȧ + kd φ̃bȧ

)(
δJI − ΣJ

I /Λ
)]
ψbJ + h.c.

→ −v
[(
ψ1̇Ikνψ1J + ψ2̇Ikeψ2J

)
ΣJ
I /Λ +

(
ψ1̇Ikuψ1J + ψ2̇Ikdψ2J

)(
δJI − ΣJ

I /Λ
)]

+ h.c.

= −v
[(
νR k

ννL + eR k
eeL

)
+
(
uR k

uuL + dR k
ddL

)]
+
v

Λ

[{
νR(δk+)νL + eR(δk−)eL

}
Σ
′(0)
1 +

{
uR(δk+)uL + dR(δk−)dL

}
Σ

(0)
8

+
{
νR(δk+)uL + eR(δk−)dL

}
Σ

(−2/3)

3
+
{
uR(δk+)νL + dR(δk−)eL

}
Σ

(2/3)
3

]
+h.c. , (4.22)

where

δk+ ≡ ku − kν , δk− ≡ kd − ke . (4.23)

Comparing with eq. (A.11), we can see that though ΣJ
I = Σ(15, 1, 1)422 does not include

fields corresponding to the leptoquark doublets R2 and R̃2, its components Σ
(2/3)
3 and

Σ
(−2/3)

3
do correspond to the following leptoquark components after the symmetry breaking

G321 → G31:

Σ
(2/3)
3 ↔ R

(2/3)
2 , R̃

(2/3)
2 ,

Σ
(−2/3)

3
↔ R

∗(2/3)
2 , R̃

∗(2/3)
2 ,

(4.24)

with their couplings determined by the Yukawa coupling matrices δk+ = ku − kν and

δk− = kd − ke . These fields also do not couple to diquarks.
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4.3.2 Model B

In Model B, the field HaIbJ is still suppressed, whereas the fields ΣbJ
ȧI andHȧIḃJ are no longer

decomposed as shown in eq. (4.11). They are treated as mass-dimension one operators, i.e.

‘fundamental’ in the language of ref. [3].

Although HȧIḃJ is treated as a dimension-one field, it is still a product representation

(4, 1, 2)× (4, 1, 2) = (10, 1, 3) + (6, 1, 1). Recall the symmetry of HȧIḃJ under (ȧI)↔ (ḃJ).

We can write

HȧIḃJ =
1

4

(
HȧIḃJ +HḃIȧJ +HḃJȧI +HȧJḃI

)
︸ ︷︷ ︸

= ∆(ȧḃ)(IJ) = ∆R(10, 1, 3)422

+
1

4

(
HȧIḃJ −HḃIȧJ +HḃJȧI −HȧJḃI

)
︸ ︷︷ ︸

= H[ȧḃ][IJ ] = HR(6, 1, 1)422

,

(4.25)

where the parentheses and brackets on the indices respectively indicate symmetrization

and anti-symmetrization. Let us look at the couplings of the two terms separately. First,

∆(ȧḃ)(IJ) = ∆R(10, 1, 3)422:

ψCȧIγ5∆(ȧḃ)(IJ)ψḃJ + h.c.

=
(
ψCȧ0∆(ȧḃ)(00)ψḃ0 + ψCȧ0∆(ȧḃ)(0j)ψḃj + ψCȧi∆

(ȧḃ)(i0)ψḃ0 + ψCȧi∆
(ȧḃ)(ij)ψḃj

)
+ h.c.

=

[(
LCR ε~τLR

)
~∆∗R1 + 2

(
QCR ε~τLR

)
~∆∗R3 +

(
QCR ε~τQR

)
~∆∗R6

]
+ h.c. (4.26)

where we use the shorthand

~∆R1 = ∆(ȧḃ)(00) = ∆R1 (1, 1, 3,−2)3221 =

∆R1(1, 1, 0)321

∆R1(1, 1,−1)321

∆R1(1, 1,−2)321

 ,
~∆R3 = ∆(ȧḃ)(0j) = ∆R3

(
3, 1, 3,−2

3

)
3221

=

∆R3

(
3, 1, 2

3

)
321

∆R3

(
3, 1,−1

3

)
321

∆R3

(
3, 1,−4

3

)
321

 ,
~∆R6 = ∆(ȧḃ)(ij) = ∆R6

(
6, 1, 3,+2

3

)
3221

=

∆R6

(
6, 1, 4

3

)
321

∆R6

(
6, 1, 1

3

)
321

∆R6

(
6, 1,−2

3

)
321

 .

(4.27)

The leptoquark fields are ~∆R3. Expanding the interaction, we find

2
(
QCR ε~τLR

)
~∆∗R3 + h.c.

=

[√
2
(
uCRνR

)
∆
∗(−2/3)
R3︸ ︷︷ ︸
S

(−2/3)
1

+
(
uCReR + dCRνR

)
∆
∗(1/3)
R3︸ ︷︷ ︸
S

(1/3)
1

+
√

2
(
dCReR

)
∆
∗(4/3)
R3︸ ︷︷ ︸
S̃

(4/3)
1

]
+ h.c.

(4.28)

Thus, the field ∆R(10, 1, 3)422 includes components corresponding to the leptoquarks S1,

S̃1, and S1. They all couple only to right-handed fermions by construction, and none of

them couple to diquarks.
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Next, let us consider the couplings of H[ȧḃ][IJ ] = HR(6, 1, 1)422. We find:

ψCȧIγ5H
[ȧḃ][IJ ]ψḃJ + h.c.

=
[(
ψCȧ0ψḃj − ψCȧjψḃ0

)
H [ȧḃ][0j] + ψCȧiψḃjH

[ȧḃ][ij]
]

+ h.c.

=

[(
LCRεQRj −QCRjε LR

)
H [1̇2̇][0j] +

(
QCRiεQRj

)
H [1̇2̇][ij]

]
+ h.c.

= 2

[(
dCRjνR − uCRjeR

)
H∗j3R︸︷︷︸
S

(1/3)
1

+ εijkuCRidRjH
∗
3Rk

]
+ h.c. (4.29)

where in the last line we have set

H3Rj = H[1̇2̇][0,j] ,

H3R
k =

1

2
εijkH[1̇2̇][i,j] → H[1̇2̇][i,j] = εijkH3R

k . (4.30)

So H3R

(
3, 1,−1

3

)
321

corresponds to leptoquark S∗1 coupled to right-handed fermions. The

field H3R

(
3, 1, 1

3

)
321

has the quantum numbers of S1, but it only couples to diquarks.

Now let us look at the other field ΣbJ
ȧI . It is also a product representation,

(4̄, 2, 1)× (4, 1, 2) = (1, 2, 2) + (15, 2, 2). The corresponding fields are denoted φ(1, 2, 2)422

and Σ̃(15, 2, 2)422. The couplings of φbȧ = φ(1, 2, 2)422 to the fermions are simply

ψȧIγ5

(
kuφbȧ + kdφ̃bȧ

)
ψ
bI

+ h.c. (4.31)

where ku,d are Yukawa coupling matrices, which will give the same masses to the quarks

and leptons upon symmetry breaking to G31. This quark-lepton symmetry is broken by

the couplings to Σ̃bJ
ȧI = Σ̃(15, 2, 2)422. They read:(

ψȧIγ5Σ̃bJ
ȧI
ψ
bJ

)
+ h.c.

= −
(
ψȧ0 Σ̃b0

ȧ0 ψb0 + ψȧi Σ̃b0
ȧi ψb0 + ψȧ0 Σ̃bj

ȧ0 ψbj + ψȧi Σ̃bj
ȧi ψbj

)
+ h.c.

= −
(
LRΣ̃†1LL +QRΣ̃†

3
LL + LRΣ̃†3QL +QRΣ̃†8QL

)
+ h.c. (4.32)

where

Σ̃1 = Σ̃1 (1, 2, 2, 0)3221 =
[

Σ̃′1
(
1, 2,−1

2

)
321

Σ̃1

(
1, 2, 1

2

)
321

]
=

[
Σ̃
′(0)
1 Σ̃

(1)
1

Σ̃
′(−1)
1 Σ̃

(0)
1

]
,

Σ̃3 = Σ̃3

(
3, 2, 2,+4

3

)
3221

=
[

Σ̃′3
(
3, 2,+1

6

)
321

Σ̃3

(
3, 2,+7

6

)
321

]
=

[
Σ̃
′(2/3)
3 Σ̃

(5/3)
3

Σ̃
′(−1/3)
3 Σ̃

(2/3)
3

]
,

Σ̃3 = Σ̃3

(
3, 2, 2,−4

3

)
3221

=
[

Σ̃′
3

(
3, 2,−7

6

)
321

Σ̃3

(
3, 2,−1

6

)
321

]
=

[
Σ̃
′(−2/3)

3
Σ̃

(1/3)

3

Σ̃
′(−5/3)

3
Σ̃

(−2/3)

3

]
,

Σ̃8 = Σ̃8 (8, 2, 2, 0)3221 =
[

Σ̃′8
(
8, 2,−1

2

)
321

Σ̃8

(
8, 2, 1

2

)
321

]
=

[
Σ̃
′(0)
8 Σ̃

(1)
8

Σ̃
′(−1)
8 Σ̃

(0)
8

]
.

(4.33)
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Only the uncolored field Σ̃1 can develop a VEV upon breaking to G31, which will only give

masses to the leptons and break quark-lepton universality. The leptoquark fields are Σ̃3

and Σ̃3: Expanding out the couplings explicitly, we find:

QRΣ̃†
3
LL =

[(
uRνL

)
Σ̃
∗(2/3)

3︸ ︷︷ ︸
R

(2/3)
2

+
(
uReL

)
Σ̃
∗(5/3)

3︸ ︷︷ ︸
R

(5/3)
2

+
(
dRνL

)
Σ̃
′∗(−1/3)

3︸ ︷︷ ︸
R̃

(−1/3)
2

+
(
dReL

)
Σ̃
′∗(2/3)

3︸ ︷︷ ︸
R̃

(2/3)
2

]
,

LRΣ̃†3QL =

[(
νRuL

)
Σ̃
′∗(−2/3)
3︸ ︷︷ ︸
R̃
∗(−2/3)
2

+
(
νRdL

)
Σ̃
′∗(1/3)
3︸ ︷︷ ︸
R̃
∗(1/3)
2

+
(
eRuL

)
Σ̃
∗(−5/3)
3︸ ︷︷ ︸

R
∗(−5/3)
2

+
(
eRdL

)
Σ̃
∗(−2/3)
3︸ ︷︷ ︸

R
∗(−2/3)
2

]
.

(4.34)

Note that though both Σ̃
∗(2/3)

3
and Σ̃

(2/3)
3 , for instance, have the quantum numbers and

couplings of the leptoquark R
(2/3)
2 , they are independent fields. Note also that these lep-

toquarks do not couple to diquarks.

4.3.3 Model C

As was discussed above, Model C is the left-right symmetrization of Model B. Besides all

the fields listed in Model B that couple to right-handed fermions, it has the counterpart

scalars that couple to left-handed fermions, HaIbJ = ∆(ab)(IJ) +H[ab][IJ ] = ∆L(10, 3, 1)422 +

HL(6, 1, 1)422, in addition to HȧIḃJ = ∆(ȧḃ)(IJ) +H[ȧḃ][IJ ] = ∆R(10, 1, 3)422 +HR(6, 1, 1)422.

The couplings of ∆L(10, 3, 1)422 and HL(6, 1, 1)422 to the fermions can be obtained from

those of ∆R(10, 1, 3)422 and HR(6, 1, 1)422, eqs. (4.26), (4.28), and (4.29), by simply replac-

ing the right-handed fermions with their left-handed counterparts. First, the couplings of

∆L(10, 3, 1)422 are

ψCaIγ5∆(ab)(IJ)ψbJ + h.c.

=

[(
LCL ε~τLL

)
~∆∗L1 + 2

(
QCL ε~τLL

)
~∆∗L3︸︷︷︸
~S3

+
(
QCL ε~τQL

)
~∆∗L6

]
+ h.c. (4.35)

Expanding the ~∆∗L3 term we obtain

2
(
QCL ε~τLL

)
~∆∗L3 + h.c.

=

[√
2
(
uCLνL

)
∆
∗(−2/3)
L3︸ ︷︷ ︸
S

(−2/3)
3

+
(
uCLeL + dCLνL

)
∆
∗(1/3)
L3︸ ︷︷ ︸
S

(1/3)
3

+
√

2
(
dCLeL

)
∆
∗(4/3)
L3︸ ︷︷ ︸
S

(4/3)
3

]
+ h.c. (4.36)

Thus, we obtain the isotriplet leptoquark S3. The couplings of HL(6, 1, 1)422 on the other

hand are

ψCaIγ5H
[ab][IJ ]ψbJ + h.c.

= 2

[(
dCLjνL − uCLjeL

)
H∗j3L︸︷︷︸
S

(1/3)
1

+ εijkuCLidLjH
∗
3Lk

]
+ h.c. (4.37)
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G422 G3221 G321

φ(1, 2, 2)422 φ(1, 2, 2, 0)3221 φ2

(
1, 2, 1

2

)
321

, φ′2
(
1, 2,− 1

2

)
321

∆̃R (4, 1, 2)422 ∆̃R1(1, 1, 2,−1)3221 ∆̃R1 (1, 1, 0)321, ∆̃R1 (1, 1,−1)321

∆̃R3

(
3, 1, 2, 1

3

)
3221

∆̃R3

(
3, 1, 2

3

)
321

, ∆̃R3

(
3, 1,− 1

3

)
321

∆R (10, 1, 3)422 ∆R1 (1, 1, 3,−2)3221 ∆R1 (1, 1, 0)321, ∆R1 (1, 1,−1)321, ∆R1 (1, 1,−2)321

∆R3

(
3, 1, 3,− 2

3

)
3221

∆R3

(
3, 1, 2

3

)
321

, ∆R3

(
3, 1,− 1

3

)
321

, ∆R3

(
3, 1,− 4

3

)
321

∆R6

(
6, 1, 3, 2

3

)
3221

∆R6

(
6, 1, 4

3

)
321

, ∆R6

(
6, 1, 1

3

)
321

, ∆R6

(
6, 1,− 2

3

)
321

∆L (10, 3, 1)422 ∆L1 (1, 3, 1,−2)3221 ∆L1 (1, 3,−1)321

∆L3

(
3, 3, 1,− 2

3

)
3221

∆L3

(
3, 3,− 1

3

)
321

∆L6

(
6, 3, 1, 2

3

)
3221

∆L6

(
6, 3, 1

3

)
321

HR/L(6, 1, 1)422 H3R/L

(
3, 1, 1,− 2

3

)
3221

H3R/L

(
3, 1,− 1

3

)
321

H3̄R/L

(
3̄, 1, 1, 2

3

)
3221

H3̄R/L

(
3̄, 1, 1

3

)
321

Σ (15, 1, 1)422 Σ1 (1, 1, 1, 0)3221 Σ1 (1, 1, 0)321

Σ3

(
3, 1, 1, 4

3

)
3221

Σ3

(
3, 1, 2

3

)
321

Σ3̄

(
3̄, 1, 1,− 4

3

)
3221

Σ3̄

(
3̄, 1,− 2

3

)
321

Σ8 (8, 1, 1, 0)3221 Σ8 (8, 1, 0)321

Σ̃ (15, 2, 2)422 Σ̃1 (1, 2, 2, 0)3221 Σ̃1

(
1, 2, 1

2

)
321

, Σ̃′1
(
1, 2,− 1

2

)
321

Σ̃3

(
3, 2, 2, 4

3

)
3221

Σ̃3

(
3, 2, 7

6

)
321

, Σ̃′3
(
3, 2, 1

6

)
321

Σ̃3̄

(
3̄, 2, 2,− 4

3

)
3221

Σ̃3̄

(
3̄, 2,− 1

6

)
321

, Σ̃′3̄
(
3̄, 2,− 7

6

)
321

Σ̃8 (8, 2, 2, 0)3221 Σ̃8

(
8, 2, 1

2

)
321

, Σ̃′8
(
8, 2,− 1

2

)
321

Table 2. The decomposition of various G422 representations into those of G3221 and G321 (SM).

The table is from ref. [2] except signs and normalizations of the charges have been changed to

conform to the more commonly used convention so that Qem = IL3 +Y = IL3 + IR3 + (B−L)/2. All

the color triplet fields have quantum numbers corresponding to some leptoquark though that does

not guarantee that they couple to lepton-quark pairs.

and we finally find the leptoquark we seek: a leptoquark S1 = H∗3L
(
3, 1, 1

3

)
321

which couples

to left-handed fermions. The field H3L

(
3, 1, 1

3

)
321

has the same quantum numbers, but this

one couples only to diquarks. Thus, we have surveyed the three NCG models and found

a unique field, H3L

(
3, 1,−1

3

)
321

in Model C, which serves the purpose of the leptoquark

S1

(
3, 1, 1

3

)
321

coupled to left-handed fermions.

5 Gauge coupling unification

In the following, we inquire whether the required unification of gauge couplings in the

NCG models can be achieved. We focus specifically on Model C since it is the only

model, among the NCG based Pati-Salam models, that contains the required leptoquark

H3L

(
3, 1,−1

3

)
321

. We find that in Model C with a light leptoquark H3L

(
3, 1,−1

3

)
321

, it
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is necessary for at least one intermediate symmetry breaking scale to exist between the

unification scale MU , the scale at which the model emerges from an underlying NCG with

a unified coupling, and the electroweak scale MZ . The gauge couplings in these models do

not unify otherwise. We consider several versions of the model with a single intermediate

scale MC (MZ < MC < MU ) as illustrative examples. There, the symmetry G422D that

Model C possesses when it emerges at MU is assumed to persist down to MC , at which

point it breaks to the G321 of the SM. Note that this specific sequence of symmetry breaking

appears to be favoured by various phenomenological bounds [77].

5.1 1-loop renormalization group running

For a given particle content, the gauge couplings evolve under 1-loop renormalization group

(RG) running in an energy interval [MA,MB] following

1

g2
i (MA)

− 1

g2
i (MB)

=
ai

8π2
ln
MB

MA
, (5.1)

where the RG coefficients ai are given by [78, 79]

ai = −11

3
C2(Gi) +

2

3

∑
Rf

Ti(Rf ) · d1(Rf ) · · · dn(Rf )

+
η

3

∑
Rs

Ti(Rs) · d1(Rs) · · · dn(Rs) . (5.2)

The summations in eq. (5.2) are, respectively, over irreducible chiral representations of

fermions (Rf ) in the second term and those of scalars (Rs) in the third. The coefficient η

is either 1 or 1/2, depending on whether the corresponding representation is complex or

(pseudo) real, respectively. C2(Gi) is the quadratic Casimir for the adjoint representation

of the group Gi, and Ti is the Dynkin index of each representation. For the U(1) group,

C2(G) = 0 and ∑
f,s

T =
∑
f,s

Y 2 , (5.3)

where Y is the U(1) charge. Particles that are heavier than MB (we assume MA < MB)

decouple from the running and do not contribute to the sums in eq. (5.2). So the values of

the RG coefficients ai change every time a symmetry breaking scale is crossed and some of

the particles acquire masses of the order of that scale.

The low energy data which we will use as the boundary conditions to the RG running

(in the MS scheme) are [80, 81]

α−1(MZ) = 127.950± 0.017 ,

αs(MZ) = 0.1182± 0.0016 ,

sin2 θW (MZ) = 0.23129± 0.00005 , (5.4)

at MZ = 91.1876± 0.0021 GeV, which translate to

g1(MZ) = 0.357419± 0.000026 ,

g2(MZ) = 0.651765± 0.000083 ,

g3(MZ) = 1.21875± 0.00825 . (5.5)
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Representation SU(2) SU(3) SU(4)

2
1

2
− −

3 2
1

2
−

4 5 − 1

2

6
35

2

5

2
1

8 42 3 −

10
165

2

15

2
3

15 280 10,
35

2
4

Table 3. Dynkin index Ti for several irreducible representations of SU(2), SU(3), and SU(4).

Different normalization conventions are used in the literature. For instance, there is a factor of 2

difference between those given in ref. [79] and those in ref. [82]. Our convention follows the former.

Notice that for SU(3), there exist two inequivalent 15 dimensional irreducible representations.

Throughout the RG running from the unification scale MU down to the electroweak scale

MZ , the coupling constants are all required to remain in the perturbative regime to justify

the use of eq. (5.1).

5.2 Does the leptoquark help coupling unification?

We first illustrate that unification of the couplings cannot be realized when no intermediate

symmetry breaking scales between MU and MZ are present. Since the symmetry just above

MZ must be that of the SM, G321, we are considering the situation in which the symmetry

of Model C breaks immediately to G321 at MU , the scale at which the model emerges with

a higher symmetry G422D from the underlying NCG.

Thus the symmetry of the models in the interval I = [MZ ,MU ] is G321, and the vector

and fermion content is just that of the SM. For the scalar content below MU , we consider

the fields coming from φ(1, 2, 2)422 and HL(6, 1, 1)422:

φ(1, 2, 2)422 → φ2

(
1, 2, 1

2

)
321

+ φ′2
(
1, 2,−1

2

)
321

,

HL(6, 1, 1)422 → H3L

(
3, 1,−1

3

)
321

+ H3L

(
3, 1, 1

3

)
321

.
(5.6)

We identify φ2

(
1, 2, 1

2

)
321

with the SM doublet, and H3L

(
3, 1,−1

3

)
321

is the scalar lepto-

quark necessary to explain the B-decay anomalies. We assume that the H3L

(
3, 1, 1

3

)
321

field, which only couples to diquarks, becomes heavy when SU(4) breaks to SU(3) and

does not survive to low energies. For the second Higgs doublet φ′2
(
1, 2,−1

2

)
321

, we have a

choice of allowing it to survive to low energies after the breaking of SU(2)R, in which case

we have a 2-Higgs doublet model (2HDM), or making it heavy and decoupling it after the

breaking.
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As the scalar content, we will therefore consider the following two cases:

I1 : φ2

(
1, 2, 1

2

)
321

the SM Higgs, H3L

(
3, 1,−1

3

)
321

I2 : φ2

(
1, 2, 1

2

)
321

the SM Higgs, φ′2
(
1, 2,−1

2

)
321

, H3L

(
3, 1,−1

3

)
321

(5.7)

The rest of the degrees of freedom are assumed to become heavy at the unification scale MU .

With this particle content, the RG coefficients are given by ai = aSM
i + ∆ai , (i = 1, 2, 3)

where

aSM
i =

[
41

6
, −19

6
, −7

]
,

∆ai =

[
1

9

(
5

18

)
, 0

(
1

6

)
,

1

6

(
1

6

)]
, (5.8)

for model I1 (I2).

The symmetry of the model G442D is broken to the symmetry of the SM G321 at MU ,

which is also the scale where it emerges from an underlying NCG. The obvious bound-

ary/matching conditions to be imposed on the couplings at MU and MZ are:

MU :

√
5

3
g1(MU ) = g2(MU ) = g3(MU ) ,

MZ :
1

e2(MZ)
=

1

g2
1(MZ)

+
1

g2
2(MZ)

. (5.9)

Using eq. (5.1) with the low energy data and boundary conditions given in eqs. (5.4)

and (5.9), the following equations are obtained.

2π

[
3− 8 sin2 θw(MZ)

α(MZ)

]
= (3a1 − 5a2) ln

MU

MZ
,

2π

[
3

α(MZ)
− 8

αs(MZ)

]
= (3a1 + 3a2 − 8a3) ln

MU

MZ
. (5.10)

Taking the ratio of these equations, which also cancels the uncertainty on MZ , yields the

condition to be satisfied for unification as

r ≡ 3a1 − 5a2

3a1 + 3a2 − 8a3

∼= 0.4656± 0.0014 . (5.11)

Using eq. (5.8) we find that the models I1 and I2 yield r1
∼= 0.56 and r2

∼= 0.54, respectively.

Neither of these values fall in the required range stated above. The latter value, r2, is

actually identical to rSM by coincidence; the modifications in both the numerator and

denominator of r2 cancel. Thus, allowing the second Higgs doublet φ′2
(
1, 2, 1

2

)
321

to survive

in model I2 does not help in unifying the couplings.

The resulting non-unification of the couplings can also be observed in figure 4, where

their RG runnings are displayed. Notice that the overall running of the couplings in Model

I1 and Model I2 are almost identical to the one in the SM due to the smallness of the

ratios ∆ai/a
SM
i . Furthermore, in the case of Model I2, the three intersection points (of any
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Figure 4. Running of the gauge couplings for the SM, Model I1, and Model I2. The vertical dotted

line correspond to the electroweak scale MZ . For α−1
1 , we plot the redefined quantity α̃−1

1 ≡ 3
5α
−1
1 .

Including the leptoquark with or without a second Higgs doublet does not make a significant

modification to the SM running in favor of unification. Therefore in the NCG framework, one needs

to consider intermediate symmetry breaking scales for these options. Note that the running of the

couplings in the case of the SM and Model I2 is almost identical due to accidental cancellations of

additional contributions in the 1-loop RG coefficients (∆ai) of Model I2.

pair of couplings out of the three), which are controlled by the combinations (3a1 − 5a2),

(3a1 − 5a3), and (a2 − a3), respectively, occur at the same scales as in the SM running

because the extra parts in these combinations, coming from ∆ai, cancel in the case of

Model I2. Although the intersection scales are the same between Model I2 and the SM,

the overall evolution of the couplings is still slightly different since each ∆ai is nonzero

in Model I2. The modification manifests itself in the values of α−1
i at each intersection

point. This is obviously an accident in the 1-loop running. Going to the 2-loop level would

most likely cause non-zero contributions in the relevant combinations ai, but these can be

expected to be extremely suppressed and hence still would not provide an overall coupling

unification.
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So far, we have assumed that the leptoquark H3L

(
3, 1,−1

3

)
321

is at the TeV-scale

and that its companion H3L

(
3, 1, 1

3

)
321

, the other color-triplet contained in HL(6, 1, 1)422,

is heavy at the unification scale MU , where the Pati-Salam structure emerges from the

underlying NCG, and where the Pati-Salam symmetry, G422D, breaks into the symmetry

of the SM, as well. We have considered two versions of this scenario depending on whether

the second Higgs doublet φ′2
(
1, 2,−1

2

)
321

, contained in φ(1, 2, 2)422 together with the SM

Higgs doublet φ2

(
1, 2, 1

2

)
321

, is light at the TeV-scale or heavy at the unification scale. We

have shown that the running of the couplings is not improved in either of these cases.

Now, we will try a relatively general strategy to look for any improvement in favor of

coupling unification. Instead of assuming that the second leptoquark, H3L

(
3, 1, 1

3

)
321

, and

the second Higgs doublet φ′2
(
1, 2,−1

2

)
321

are either at the TeV-scale or the unification scale,

we will let their masses float in between these scales in order to search for intervals of mass

values leading to direct coupling unification. Note that we still assume at this stage that

there is no intermediate symmetry breaking. Therefore, the mass values of these particles

are not dictated by a symmetry breaking mechanism but possibly by an another, yet to

be determined, mechanism or they are picked randomly by the model by sheer accident.

Note that we still keep the mass of our main leptoquark H3L

(
3, 1,−1

3

)
321

at the TeV scale,

required by the possible explanation for the B-decay anomalies. Then, eq. (5.10) changes

in the following way:13

2π

[
3− 8 sin2 θw(MZ)

α(MZ)

]
= (3a1 − 5a2)I ln

MX

MZ
+ (3a1 − 5a2)II ln

MY

MX
+ (3a1 − 5a2)III ln

MU

MY
,

2π

[
3

α(MZ)
− 8

αs(MZ)

]
= (3a1 + 3a2 − 8a3)I ln

MX

MZ
+ (3a1 + 3a2 − 8a3)II ln

MY

MX
+ (3a1 + 3a2 − 8a3)III ln

MU

MY
,

(5.12)

where MX and MY denote, respectively, the lighter and heavier mass among the sec-

ond Higgs doublet and the second leptoquark. Let us first consider the case where the

second Higgs doublet is heavier, which we call model T1 (and T2 for the opposite case).

Then, we have MY ≡ Mφ′2
and MX ≡ MH3L

. Therefore, in the fist interval (I) the ac-

tive degrees of freedom, in addition to the SM particles, come only from our TeV-scale

13The threshold corrections can be safely ignored throughout this paper. The ignored terms are in the

form of −∆fc(ai) ln (1− εc), where εc ≡
Mc −Mδc

Mc
and c = X,Y, U , labelling each term according to

the larger mass in each logarithm in eq. (5.12). ∆fc(ai) are the difference between the values of corre-

sponding combinations of ai in front of each logarithmic factor, above and below the threshold scale Mδc ,

respectively. For instance, the correction term for the first term in the first equation in eq. (5.12) becomes[
(3a1 − 5a2)II − (3a1 − 5a2)I

]
ln

MX

MδX

. From the effective field theory point of view, these terms are ex-

pected to become relevant as Mδc →Mc, or εc → 0, but then they are suppressed by a factor proportional

O(εc) due to the natural logarithm, unless ∆fc(ai) is enormous which is rarely the case in general, and

definitely not the case for the scenarios considered in this paper.
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Interval active scalar dofs for RG coefficients

model T1 (T2)

III (MU −MY ) φ2, H3L, H3L, φ′2
[
a1, a2, a3

]III
=

[
65

9
,−3,−20

3

]
II (MY −MX) φ2, H3L, H3L

[
a1, a2, a3

]II
(
φ2, H3L, φ

′
2

)
=

[
127

18

(
64

9

)
,−19

6
(−3) ,−20

3

(
−41

6

)]
I (MX −MZ) φ2 , H3L

[
a1, a2, a3

]I
=

[
125

18
,−19

6
,−41

6

]
Table 4. The Higgs content and the RG coefficients in the energy intervals for model T1,2. Recall

that all the fields above are complex.

leptoquark H3L

(
3, 1,−1

3

)
321

. In the second interval (II) we add in the second lepto-

quark, H3L

(
3, 1, 1

3

)
321

, and finally in the third interval (III), all of the degrees of freedom

are active.

Using the RG coefficients given in table 4, eq. (5.12) becomes

3270 = 110u+ y − x ,
2283 = 66u− y + x , (5.13)

where

u ≡ ln
MU

GeV
, y ≡ ln

MY

GeV
, x ≡ ln

MX

GeV
. (5.14)

Solving these equations yields

u = 31.55 , y = x− 200.63 , (5.15)

which clearly violates our necessary condition that u > y > x and hence, does not constitute

a solution for our system. Similarly for model T2, at which the second leptoquark is heavier

than the second Higgs doublet, i.e. MY ≡MH3L
and MX ≡ φ′2, eq. (5.12) reads

3270 = 110u− y + x

2283 = 66u+ y − x , (5.16)

which yields

u = 31.55 , y = x+ 200.63 , (5.17)

violating again the condition u > y > x, and thus, no acceptable solution exists in this

case as well.

Therefore, we conclude that unification of the couplings cannot be directly realized

in these scenarios. There should exist at least one intermediate symmetry breaking phase

between the unification scale MU and the weak scale, as we illustrate in the next section.
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However, we would like to note that we adopt here quite a minimalistic approach. If one

becomes willing to include more degrees of freedom in the light(er) spectrum, it is quite

likely that unification of the gauge couplings is realized with no intermediate symmetry

breaking [33, 34].

5.3 Unification with a single intermediate scale

Next, we demonstrate that the unification of the couplings in Model C with a light lepto-

quark H3L

(
3, 1,−1

3

)
321
≡ S∗1 can be realized with the introduction of a single intermediate

symmetry breaking step. According to this scenario, the Pati-Salam symmetric phase is

intact from the unification scale MU , where the Pati-Salam structure emerges from a non-

commutative geometry, down to the intermediate energy scale MC (MZ < MC < MU ), at

which the G422D symmetry spontaneously breaks down to G321 of the SM.

In Model C, the main field surviving down to low energies in addition to the SM fields

is the leptoquark H3L

(
3, 1,−1

3

)
321

, originated from the complex field HL(6, 1, 1)422. The

other leptoquark, H3L

(
3, 1, 1

3

)
321

, also contained in HL(6, 1, 1)422, is assumed to be heavy

at the scale MC . We consider two versions of this model, we call model C1 and model

C2, depending on the difference based on whether the second scalar doublet, contained in

the complex φ(1, 2, 2)422, remains heavy at the scale MC , or it becomes light and survives

down to the low energies with the other scalar doublet of the same Pati-Salam multiplet,

the SM Higgs. In the latter case, the low energy section of the model can be parameterized

as the 2HDM, augmented by the leptoquark H3L

(
3, 1,−1

3

)
321

.14

Therefore, the scalar content of the models at the TeV-scale are the same as in eq. (5.7),

while, here, we have a different sequence of symmetry breaking. The symmetry breaking

chain we consider here has been discussed in detail in our previous papers [1, 2]:

NCG
MU====⇒ G422D

MC−−−−−−→
〈∆R〉

G321 , (5.18)

where the double arrow points to the symmetry emerging from the underlying NCG, while

the single arrow denotes the spontaneous symmetry breaking in the usual way.

We label the energy intervals in between symmetry breaking scales [MZ ,MC ] and

[MC ,MU ] with Roman numerals as

I : [MZ , MC ] , G321 (SM) ,

II : [MC , MU ] , G422D . (5.19)

The generic boundary/matching conditions to be imposed on the couplings at the

symmetry breaking scales are given as:

MU : gL(MU ) = gR(MU ) = g4(MU ) ,

MC : g3(MC) = g4(MC) , g2(MC) = gL(MC) ,

1

g2
1(MC)

=
1

g2
R(MC)

+
2

3

1

g2
4(MC)

, gL(MC) = gR(MC),

MZ :
1

e2(MZ)
=

1

g2
1(MZ)

+
1

g2
2(MZ)

. (5.20)

14A study of SO(10) realization of such a model and its LHC phenomenology is currently under prepa-

ration by Aydemir et al. .
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Interval Higgs content for model C1 (C2) RG coefficients

II φ(1, 2, 2)422, Σ̃(15, 2, 2)422,

∆R(10, 1, 3)422, HR(6, 1, 1)422

[
aL, aR, a4

]II
=

[
26

3
,

26

3
,

4

3

]
∆L(10, 3, 1)422, HL(6, 1, 1)422

I φ2

(
1, 2, 1

2

)
321

(
+ φ′2

(
1, 2,−1

2

)
321

for C2

)
,
[
a1, a2, a3

]I
H3L

(
3, 1,−1

3

)
321

=

[
125

18

(
64

9

)
,−19

6
(−3),−41

6

]
Table 5. The Higgs content and the RG coefficients in the energy intervals for model C1,2. Recall

that all the fields above are complex.

Model C1 C2

UV Symmetry G422D G422D

log10(MU/GeV) 15.7 15.4

log10(MC/GeV) 13.7 13.7

α−1
U 36.9 37.0

Table 6. The predictions of models C1 and C2.

Using eq. (5.1) with the boundary conditions given in eqs. (5.4) and (5.20), one obtains

the relevant equations as the following.

2π

[
3− 8 sin2 θW (MZ)

α(MZ)

]
= (3a1 − 5a2)I ln

MC

MZ
+ (−5aL + 3aR + 2a4)II ln

MU

MC
,

2π

[
3

α(MZ)
− 8

αs(MZ)

]
= (3a1 + 3a2 − 8a3)I ln

MC

MZ
+ (3aL + 3aR − 6a4)II ln

MU

MC
,

(5.21)

where the low energy input is collected on the left hand side. The corresponding beta

coefficients for each interval are given in table 5. Additionally, the unified coupling αU at

scale MU can be obtained from

2π

αU
=

2π

αs(MZ)
−
(
aII

4 ln
MU

MC
+ aI

3 ln
MC

MZ

)
. (5.22)

The results are given in table 6 and in figure 5, where in the latter the unification

of the couplings is displayed. The difference between two models is minor, as expected.

In both models, the unification scales are far away from the Planck scale so that we can

safely ignore gravitational effects. Moreover, the value of intermediate symmetry breaking

scale, MC ' 1013.7 GeV, which is almost the same in both models, is consistent with the

current bounds coming from the proton decay searches. Since this is the scale at which the
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Figure 5. Running of the gauge couplings for models C1, and C2. The vertical dotted lines

correspond to the electroweak scale MZ , MC , and the unification scale MU . Note again that

α̃−1
1 ≡ 3

5α
−1
1 .

Pati-Salam symmetry beaks into the SM, it determines the expected mass values for the

proton-decay-mediating leptoquarks. From a naive analysis [77], it can be shown that the

current bounds on the proton lifetime [80, 83] requires MC & 1011 GeV.

We discuss the proton stability more in the next, concluding, section, in which we

address also some conceptual issues related to the NCG approach to the SM and its natural

Pati-Salam-like completion.

6 Discussion and conclusions

6.1 Discussion

Motivated by scalar-leptoquark explanations of the recently reported B-decay anomalies,

in this paper we have investigated whether the required leptoquarks can be accommodated

within unified models based on NCG. As already pointed out, such NCG-based models

have the gauge structure of Pati-Salam models, SU(4) × SU(2)L × SU(2)R, with gauge

coupling unification at a single scale. In one of the models we did find a unique scalar

leptoquark H3L(3, 1,−1
3)321, originating from the multiplet HL(6, 1, 1)422, which can po-

tentially explain the B-decay anomalies, following the phenomenological analysis of [26],

provided its mass is on the order of a few TeV. Also, the unification of couplings can

be realized with the inclusion of a single step of intermediate symmetry breaking. Note

that HL(6, 1, 1)422 is complex and decomposes into S∗1
(
3, 1,−1

3

)
321

and another field which

couples only to diquarks. In order to avoid proton decay, we suppress the mixing between

these two scalars. Furthermore, we assume that the field that couples only to diquarks is

heavy to avoid any other phenomenological consequences. These assumptions might raise

the question of naturalness, which is not different from the corresponding situation found

in generic GUT models. As explained in the discussion that follows, it is an interesting

feature of the NCG models that one obtains relatively light leptoquarks without obvious

problems associated with proton decay.
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Given the restrictive nature of the unified Pati-Salam models in the NCG framework,

we find the possible scalar leptoquark S∗1
(
3, 1,−1

3

)
321

explanation of the B-decay anomalies

particularly interesting. In particular, as pointed out in [26], this leptoquark can be used

to explain not only the violation of lepton universality in B-decays and the enhanced rates

in certain B-decays, but also the anomalous magnetic moment of the muon.

Note that a state with quantum numbers
(
3, 1,−1

3

)
321

exists in the 5 dimensional rep-

resentation of SU(5) as well, and therefore it could provide the required phenomenological

features. However, one light
(
3, 1,−1

3

)
321

state found in a non-supersymmetric framework,

does not imply unification of couplings as the SU(5) GUT theory would require. The

SO(10) picture, on the other hand, can accommodate this in a reasonable scenario (as in

refs. [73, 84]) by including intermediate symmetry breaking scales.

Similarly, unification of couplings in the NCG models could be realized by imposing

(at least) one intermediate scale. According to the scenario we considered in this paper, the

Pati-Salam symmetry, G422 = SU(4)C⊗SU(2)L⊗SU(2)R, emerges from an underlying non-

commutative geometry at a ”unification” scale MU , and stays intact down to the scale MC ,

where it is spontaneously broken to the symmetry of the SM. As discussed in the section

4 of this paper, there are three different Pati-Salam models in the NCG framework [3, 4]

depending on their scalar contents. However, only the HL(6, 1, 1)422 in Model C has the

right coupling to left-handed fermions and it leads to the phenomenologically preferred

leptoquark. And, as we discuss in the following subsection, the usual problems associated

with proton decay can be avoided.

6.2 Light colored scalars and proton decay

Proton decay is not an issue of concern in our scenario, although we have a light scalar

leptoquark H3L

(
3, 1,−1

3

)
321

(generally labeled as S∗1 in the literature) in Model C, which

possesses the right quantum numbers for it to couple to potentially dangerous diquark op-

erators. The proton stability is ensured because the underlying non-commutative geometry

does not allow these couplings to appear.

Oftentimes, the possible existence of light leptoquarks is dismissed, perhaps a bit too

quickly, since they can potentially lead to proton decay. Although the operators con-

tributing to proton decay should be carefully treated or possibly turned off in order not to

contradict the experimental evidence, the underlying mechanism responsible for possible

elimination of these operators may not be obvious at first glance. We see an example of this

in Model C. In this model, the leptoquarks H3R/L

(
3, 1,−1

3

)
321

can safely be light since their

diquark couplings are turned off by the underlying noncommutative geometry and hence do

not contribute to proton decay; their companions, on the other hand, H3R/L

(
3, 1, 1

3

)
321

(à

la the parent-multiplets HR/L(6, 1, 1)422), possess these couplings, and therefore the mixing

between them should be small. However, by looking only at the low energy behaviour of

the model, from bottom-up perspective, one observes only the absence of the corresponding

diquark couplings. From this viewpoint, there is no indication regarding the nature of the

underlying mechanism, which is the non-commutative framework in this particular case.

In general, the ordinary, non-unified, Pati-Salam-type models, have the reputation of

being safe in terms of proton stability. Although this is indeed the case in terms of the

– 28 –



J
H
E
P
0
9
(
2
0
1
8
)
1
1
7

gauge-boson-mediated contributions, the situation is not so trivial for the colored-scalar-

mediated contributions; not every scalar sector choice guarantees the apparent stability of

the proton. The most commonly chosen scalar sector in the ordinary Pati-Salam framework

accommodates a global symmetry that prevents proton decay. This scalar sector consists

of ∆R (10, 1, 3)422 and ∆L (10, 3, 1)422, in addition to the bidoublet φ (1, 2, 2)422. This is,

at first glance, very similar to the scalar sector of Model C. However, this mechanism is

due to the totally-symmetric nature of ∆L,R under SU(4), and existence of any field(s)

transforming anti-symmetrically would potentially spoil this symmetry [85]. In fact, this

is exactly what we have in Model C; the multiplets HR/L(6, 1, 1)422 reside in the totally-

anti-symmetric representations of SU(4). Fortunately enough, the restrictive nature of

the non-commutative-geometry framework happens to operate in our favor and does not

allow the proton-decay-inducing diquark couplings for our leptoquark H3L

(
3, 1,−1

3

)
321

,

thus offering a plausible explanation for the B-decay anomalies.

6.3 NCG’s pros and cons

In this paper we have discussed yet another phenomenological aspect of the hidden non-

commutative structure behind the Standard Model (and its natural Pati-Salam-like com-

pletion), that has been uncovered by Connes, Chamseddine and collaborators [8, 86]. Even

though such non-commutative framework has been pointed out for some time, in light of

the LHC’s discovery of the Higgs boson, and the fact that the NCG of the SM is precisely

relevant for the SM with the Higgs boson, we were motivated to explore other phenomeno-

logical implications of such a non-commutative approach [1, 2, 76, 87].

Note that the NCG of the SM might appear peculiar from the canonical effective field

theory point of view, because of the way the SM action is rewritten, in a Fujikawa-like

form familiar from the study of chiral anomalies in gauge theories, which introduces a

scale, not a Wilsonian cut-off, and which in turn is fixed by the existence of one overall

coupling, thus implying the unification of the three SM couplings at a GUT scale without

GUT degrees of freedom. Furthermore, the NCG scheme hides a left-right symmetric

structure which can be naturally broken to the canonical SM. Note that this is also an

unusual left-right completion. First, this non-commutative completion has a GUT-like

unification (like the NCG of the SM), which simply does not exist for the canonical left-

right symmetric models. Second, this non-commutative left-right completion of the SM is

quite constrained compared to the already existing effective field theory literature on the

subject. As emphasized in the present paper, such unified Pati-Salam structure can lead to

a unique scalar leptoquark which may potentially explain the B-decay anomalies, provided

its mass is around a few TeV, without causing any problems with proton decay.

One might wonder whether the NCG of the SM and the unified Pati-Salam models can

have a reasonable UV completion. In particular, where could the NCG originate from a UV

point of view? Here, in conclusion, we offer a few comments on this important question. We

note that if one views quantum gravity coupled to Standard Model-like matter as having

origins in string theory, then one can convincingly argue for an intrinsic non-commutative

structure in that context [88–94]. This work also suggests that the low energy theory

(such as the one described by the Standard Model and its Pati-Salam-like completion) is
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intrinsically non-commutative. In order to obtain the NCG of the SM and its Pati-Salam

completion, from such a UV point of view, what is needed is just some suitable fermionic

degrees of freedom, propagating in a background of induced gravitational and gauge degrees

of freedom (of the SM or Pati-Salam type). Then after integrating over the fermionic zero

modes the induced action of the Fujikawa form, needed by the NCG structure of the SM,

naturally emerges. Note that the usual discussion of hierarchy of scales as well as the issue

of decoupling of scales is different in this framework, which in principle allows for mixing

between short distance and long distance degrees of freedom, thus shedding new light on

the questions of naturalness and the hierarchy problem.
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A Leptoquarks

In this appendix we review the derivation of the most generic Lagrangian for scalar and

vector leptoquark interactions with Standard Model (SM) fermions. We follow the notation

of ref. [58], which updates ref. [59] with the inclusion of leptoquarks and interactions

that involve the right-handed neutrino. All quantum number assignments refer to those in

G321 = SU(3)C × SU(2)L ×U(1)Y of the SM.

At low-energies, we assume the fermionic content of the SM plus right-handed

neutrinos:

QiL =

(
3, 2,+

1

6

)
, diR =

(
3, 1,−1

3

)
, uiR =

(
3, 1,+

2

3

)
,

LiL =

(
1, 2,−1

2

)
, eiR = (1, 1,−1) , νiR = (1, 1, 0) .

(A.1)

where i = 1, 2, 3 is the generation index. From this set of fermions, let us construct the most

general quark-lepton bilinears. First, the scalars with fermion number F = 3B+L = 0 are

uiRL
j
L =

(
3̄, 2,−7

6

)
, diRL

j
L =

(
3̄, 2,−1

6

)
,

QiLe
j
R =

(
3̄, 2,−7

6

)
, QiLν

j
R =

(
3̄, 2,−1

6

)
,

(A.2)

and their hermitian conjugates. Note that the bilinears in the same column above share

the same SU(3)C × SU(2)L ×U(1)Y quantum numbers. The scalars with fermion number
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F = 2 are

QCiL εL
j
L =

(
3, 1,−1

3

)
, uCiR e

j
R =

(
3, 1,−1

3

)
, dCiR ν

j
R =

(
3, 1,−1

3

)
,

QCiL ε~τL
j
L =

(
3, 3,−1

3

)
, dCiR e

j
R =

(
3, 1,−4

3

)
, uCiR ν

j
R =

(
3, 1,+

2

3

)
,

(A.3)

and their hermitian conjugates, where ψC = Cψ
T

, and ε = iτ2 in SU(2)L isospin space

which contracts the isospin indices of two isospinors. ~τ = (τ1, τ2, τ3) are the Pauli matrices.

Note that the bilinears in the first row above share the same quantum numbers. The F = 0

vectors are

QiLγ
µLjL =

(
3̄, 1,−2

3

)
, diRγ

µejR =

(
3̄, 1,−2

3

)
, uiRγ

µνjR =

(
3̄, 1,−2

3

)
,

QiL~τγ
µLjL =

(
3̄, 3,−2

3

)
, uiRγ

µejR =

(
3̄, 1,−5

3

)
, diRγ

µνjR =

(
3̄, 1,+

1

3

)
,

(A.4)

and their hermitian conjugates. Again, the bilinears in the first row share the same quantum

numbers. The F = 2 vectors are

dCiR γ
µLjL =

(
3, 2,−5

6

)
, uCiR γ

µLjL =

(
3, 2,+

1

6

)
,

QCiL γ
µejR =

(
3, 2,−5

6

)
, QCiL γ

µνjR =

(
3, 2,+

1

6

)
,

(A.5)

and their hermitian conjugates, the bilinears in the same columns sharing the same quan-

tum numbers.

Introducing one scalar or vector leptoquark for each possible combination of quantum

numbers, the most general Lagrangian which couple leptoquarks to these bilinears can be

written down as

L = LF=2 + LF=0 , (A.6)

where

LF=2 =

[
yLL1 ij

(
QCiL εL

j
L

)
+ yRR1 ij

(
uCiR e

j
R

)
+ yRR1 ij

(
dCiR ν

j
R

)]
S1

+ ỹRR1 ij

(
dCiR e

j
R

)
S̃1 + yRR1 ij

(
uCiR ν

j
R

)
S1 + yLL3 ij

(
QCiL ε~τL

j
L

)
~S3

+

[
xRL2 ij

(
dCiR γ

µLjL

)
+ xLR2 ij

(
QCiL γ

µejR

)]
εV2µ

+

[
x̃RL2 ij

(
uCiR γ

µLjL

)
+ x̃LR2 ij

(
QCiL γ

µνjR

)]
εṼ2µ + h.c. , (A.7)

LF=0 =

[
yRL2 ij

(
uiRL

j
L

)
ε+ yLR2 ij

(
QiLe

j
R

)]
R2

+

[
ỹRL2 ij

(
diRL

j
L

)
ε+ ỹLR2 ij

(
QiLν

j
R

)]
R̃2

+

[
xLL1 ij

(
QiLγ

µLjL

)
+ xRR1 ij

(
diRγ

µejR

)
+ xRR1 ij

(
uiRγ

µνjR

)]
U1µ

+ x̃RR1 ij

(
uiRγ

µejR

)
Ũ1µ + xRR1 ij

(
diRγ

µνjR

)
U1µ + xLL3 ij

(
QiL~τγ

µLjL

)
~U3µ + h.c. . (A.8)
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leptoquark spin F = 3B + L Quantum Numbers Qem = IL3 + Y Couples to

S1 0 −2

(
3, 1,

1

3

)
1

3
LL, RR

S̃1 0 −2

(
3, 1,

4

3

)
4

3
RR

S1 0 −2

(
3, 1,−2

3

)
−2

3
RR

S3 0 −2

(
3, 3,

1

3

) (
4

3
,

1

3
,−2

3

)
LL

R2 0 0

(
3, 2,

7

6

) (
5

3
,

2

3

)
RL, LR

R̃2 0 0

(
3, 2,

1

6

) (
2

3
,−1

3

)
RL, LR

U1 1 0

(
3, 1,

2

3

)
2

3
LL, RR

Ũ1 1 0

(
3, 1,

5

3

)
5

3
RR

U1 1 0

(
3, 1,−1

3

)
−1

3
RR

U3 1 0

(
3, 3,

2

3

) (
5

3
,

2

3
,−1

3

)
LL

V2 1 −2

(
3, 2,

5

6

) (
4

3
,

1

3

)
RL, LR

Ṽ2 1 −2

(
3, 2,−1

6

) (
1

3
,−2

3

)
RL, LR

Table 7. Quantum numbers of scalar and vector leptoquarks with SU(3)C × SU(2)L × U(1)Y
invariant couplings to quark-lepton pairs. F = 3B +L is the fermion number and the hypercharge

Y is normalized so that Qem = IL3 + Y . The final column indicates the chiralities of the quark

and lepton fields that each leptoquark couples to, with the first letter of the pairs indicating the

chirality of the quark field and the second letter indicating that of the lepton field. Pairs with a bar

over them indicate that the right-handed lepton involved in the pair is a right-handed neutrino.

Here, the couplings between the vector/scalar leptoquarks and the fermions are denoted

respectively by x and y. The first subscript indicates the isospin of the leptoquark and the

latter two the generations of the fermions involved. The superscripts denote the chiralities

of the fermions, with a bar placed over the chiralities when a right-handed neutrino is

involved.15

Thus, six scalar leptoquarks S1, S̃1, S1, S3, R2, R̃2, and six vector leptoquarks U1, Ũ1,

U1, U3, V2, Ṽ2 are introduced. Of these, S1 and U1 were absent in ref. [59] since the only

lepton they couple to is the right-handed neutrino. The quantum numbers of these twelve

fields are listed in table 7. These leptoquarks can also have SU(3)C × SU(2)L × U(1)Y
invariant couplings to di-quarks as shown in ref. [58] but we will not discuss them here.

15In order to completely match the definitions of ref. [58], replace xRL2 ij by −xRL2 ij , and yLR2 ij by yLR∗2 ij

(complex conjugate).
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Note that the subscripts of the leptoquark fields indicate their isospin. So R2, R̃2, V2,

and Ṽ2 have two components each, while S3 and U3 have three components each. These

can be written out as

R2 =

[
R

(5/3)
2

R
(2/3)
2

]
, R̃2 =

[
R̃

(2/3)
2

R̃
(−1/3)
2

]
, S3 =

 S
(4/3)
3

S
(1/3)
3

S
(−2/3)
3

 ,
V2 =

[
V

(4/3)
2

V
(1/3)

2

]
, Ṽ2 =

[
Ṽ

(1/3)
2

Ṽ
(−2/3)

2

]
, U3 =

 U
(5/3)
3

U
(2/3)
3

U
(−1/3)
3

 ,
(A.9)

where the superscripts in parentheses indicate the electromagnetic charge. Expanding out

eqs. (A.7) and (A.8) in terms of these component fields, we find

LF=2 =

[
yLL1 ij

(
uCiL ejL − dCiL νjL

)
+ yRR1 ij

(
uCiR ejR

)
+ yRR1 ij

(
dCiR νjR

)]
S

(1/3)
1

+ ỹRR1 ij

(
dCiR ejR

)
S̃

(4/3)
1 + yRR1 ij

(
uCiR νjR

)
S

(−2/3)

1

+ yLL3 ij

[
−
√

2
(
dCiL ejL

)
S

(4/3)
3 −

(
uCiL ejL + dCiL νjL

)
S

(1/3)
3 +

√
2
(
uCiL νjL

)
S

(−2/3)
3

]
−
[
xRL2 ij

(
dCiR γµejL

)
+ xLR2 ij

(
dCiL γµejR

)]
V

(4/3)
2µ +

[
xRL2 ij

(
dCiR γµνjL

)
+ xLR2 ij

(
uCiL γµejR

)]
V

(1/3)
2µ

−
[
x̃RL2 ij

(
uCiR γµejL

)
+ x̃LR2 ij

(
dCiL γµνjR

)]
Ṽ

(1/3)
2µ +

[
x̃RL2 ij

(
uCiR γµνjL

)
+ x̃LR2 ij

(
uCiL γµνjR

)]
Ṽ

(−2/3)
2µ

+ h.c. , (A.10)

LF=0 =

[
−yRL2 ij

(
uiRe

j
L

)
+ yLR2 ij

(
uiLe

j
R

)]
R

(5/3)
2 +

[
yRL2 ij

(
uiRν

j
L

)
+ yLR2 ij

(
diLe

j
R

)]
R

(2/3)
2

+

[
−ỹRL2 ij

(
diRe

j
L

)
+ ỹLR2 ij

(
uiLν

j
R

)]
R̃

(2/3)
2 +

[
ỹRL2 ij

(
diRν

j
L

)
+ ỹLR2 ij

(
diLν

j
R

)]
R̃

(−1/3)
2

+

[
xLL1 ij

(
uiLγ

µνjL + diLγ
µejL

)
+ xRR1 ij

(
diRγ

µejR

)
+ xRR1 ij

(
uiRγ

µνjR

)]
U

(2/3)
1µ

+ x̃RR1 ij

(
uiRγ

µejR

)
Ũ

(5/3)
1µ + xRR1 ij

(
diRγ

µνjR

)
U

(−1/3)

1µ

+xLL3 ij

[√
2
(
uiLγ

µejL

)
U

(5/3)
3µ +

(
uiLγ

µνjL − diLγ
µejL

)
U

(2/3)
3µ +

√
2
(
diLγ

µνjL

)
U

(−1/3)
3µ

]
+h.c. . (A.11)

where we have added superscripts indicating the electromagnetic charges to the isosinglet

fields also.
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[66] D. Bečirević, S. Fajfer and N. Košnik, Lepton flavor nonuniversality in b→ s`+`− processes,

Phys. Rev. D 92 (2015) 014016 [arXiv:1503.09024] [INSPIRE].

[67] D. Bečirević, S. Fajfer, N. Košnik and O. Sumensari, Leptoquark model to explain the

B-physics anomalies, RK and RD, Phys. Rev. D 94 (2016) 115021 [arXiv:1608.08501]

[INSPIRE].

[68] F.S. Queiroz, K. Sinha and A. Strumia, Leptoquarks, Dark Matter and Anomalous LHC

Events, Phys. Rev. D 91 (2015) 035006 [arXiv:1409.6301] [INSPIRE].

[69] S. Descotes-Genon, L. Hofer, J. Matias and J. Virto, Global analysis of b→ s`` anomalies,

JHEP 06 (2016) 092 [arXiv:1510.04239] [INSPIRE].

[70] F. Mahmoudi, T. Hurth and S. Neshatpour, Present Status of b→ s`+`− Anomalies, Nucl.

Part. Phys. Proc. 285-286 (2017) 39 [arXiv:1611.05060] [INSPIRE].

– 37 –

http://www.slac.stanford.edu/xorg/hfag/semi/fpcp17/RDRDs.html
https://doi.org/10.1103/PhysRevD.85.094025
https://arxiv.org/abs/1203.2654
https://inspirehep.net/search?p=find+EPRINT+arXiv:1203.2654
https://doi.org/10.1140/epjc/s10052-016-4509-7
https://doi.org/10.1140/epjc/s10052-016-4509-7
https://arxiv.org/abs/1607.00299
https://inspirehep.net/search?p=find+EPRINT+arXiv:1607.00299
https://doi.org/10.1007/JHEP12(2017)060
https://arxiv.org/abs/1707.09977
https://inspirehep.net/search?p=find+EPRINT+arXiv:1707.09977
https://doi.org/10.1007/JHEP11(2017)061
https://arxiv.org/abs/1707.09509
https://inspirehep.net/search?p=find+EPRINT+arXiv:1707.09509
https://doi.org/10.1103/PhysRevLett.114.091801
https://doi.org/10.1103/PhysRevLett.114.091801
https://arxiv.org/abs/1411.0565
https://inspirehep.net/search?p=find+EPRINT+arXiv:1411.0565
https://doi.org/10.1016/j.physrep.2016.06.001
https://arxiv.org/abs/1603.04993
https://inspirehep.net/search?p=find+EPRINT+arXiv:1603.04993
https://doi.org/10.1016/S0370-2693(99)00014-3
https://doi.org/10.1016/S0370-2693(99)00014-3
https://inspirehep.net/search?p=find+J+%22Phys.Lett.,B191,442%22
https://doi.org/10.1016/0550-3213(89)90078-3
https://doi.org/10.1016/0550-3213(89)90078-3
https://inspirehep.net/search?p=find+J+%22Nucl.Phys.,B319,271%22
https://doi.org/10.1016/0550-3213(95)00029-R
https://inspirehep.net/search?p=find+J+%22Nucl.Phys.,B393,23%22
https://doi.org/10.1103/PhysRevD.52.186
https://arxiv.org/abs/hep-ph/9501281
https://inspirehep.net/search?p=find+EPRINT+hep-ph/9501281
https://doi.org/10.1103/PhysRevD.90.054014
https://arxiv.org/abs/1408.1627
https://inspirehep.net/search?p=find+EPRINT+arXiv:1408.1627
https://doi.org/10.1007/JHEP11(2017)109
https://arxiv.org/abs/1708.06161
https://inspirehep.net/search?p=find+EPRINT+arXiv:1708.06161
https://doi.org/10.1007/JHEP08(2017)104
https://arxiv.org/abs/1704.05835
https://inspirehep.net/search?p=find+EPRINT+arXiv:1704.05835
https://doi.org/10.1103/PhysRevD.92.014016
https://arxiv.org/abs/1503.09024
https://inspirehep.net/search?p=find+EPRINT+arXiv:1503.09024
https://doi.org/10.1103/PhysRevD.94.115021
https://arxiv.org/abs/1608.08501
https://inspirehep.net/search?p=find+EPRINT+arXiv:1608.08501
https://doi.org/10.1103/PhysRevD.91.035006
https://arxiv.org/abs/1409.6301
https://inspirehep.net/search?p=find+EPRINT+arXiv:1409.6301
https://doi.org/10.1007/JHEP06(2016)092
https://arxiv.org/abs/1510.04239
https://inspirehep.net/search?p=find+EPRINT+arXiv:1510.04239
https://doi.org/10.1016/j.nuclphysBPS.2017.03.008
https://doi.org/10.1016/j.nuclphysBPS.2017.03.008
https://arxiv.org/abs/1611.05060
https://inspirehep.net/search?p=find+EPRINT+arXiv:1611.05060


J
H
E
P
0
9
(
2
0
1
8
)
1
1
7

[71] W. Altmannshofer, C. Niehoff, P. Stangl and D.M. Straub, Status of the B → K∗µ+µ−

anomaly after Moriond 2017, Eur. Phys. J. C 77 (2017) 377 [arXiv:1703.09189] [INSPIRE].

[72] A.H. Chamseddine and A. Connes, Why the Standard Model, J. Geom. Phys. 58 (2008) 38

[arXiv:0706.3688] [INSPIRE].

[73] U. Aydemir and T. Mandal, LHC probes of TeV-scale scalars in SO(10) grand unification,

Adv. High Energy Phys. 2017 (2017) 7498795 [arXiv:1601.06761] [INSPIRE].

[74] M.A. Kurkov and F. Lizzi, Clifford Structures in Noncommutative Geometry and the

Extended Scalar Sector, Phys. Rev. D 97 (2018) 085024 [arXiv:1801.00260] [INSPIRE].

[75] T. Takeuchi, Special relativity, in Encyclopedia of applied high energy and particle physics,

R. Stock eds., Wiley-VCH, New York U.S.A. (2009), pg. 47.

[76] U. Aydemir, D. Minic, C. Sun and T. Takeuchi, Higgs mass, superconnections and the

TeV-scale left-right symmetric model, Phys. Rev. D 91 (2015) 045020 [arXiv:1409.7574]

[INSPIRE].

[77] G. Altarelli and D. Meloni, A non supersymmetric SO(10) grand unified model for all the

physics below MGUT , JHEP 08 (2013) 021 [arXiv:1305.1001] [INSPIRE].

[78] D.R.T. Jones, The Two Loop β-function for a G1 ×G2 Gauge Theory, Phys. Rev. D 25

(1982) 581 [INSPIRE].

[79] M. Lindner and M. Weiser, Gauge coupling unification in left-right symmetric models, Phys.

Lett. B 383 (1996) 405 [hep-ph/9605353] [INSPIRE].

[80] Particle Data Group collaboration, C. Patrignani et al., Review of Particle Physics, Chin.

Phys. C 40 (2016) 100001 [INSPIRE].

[81] SLD Electroweak Group, DELPHI, ALEPH, SLD, SLD Heavy Flavour Group, OPAL, LEP

Electroweak Working Group and L3 collaborations, S. Schael et al., Precision electroweak

measurements on the Z resonance, Phys. Rept. 427 (2006) 257 [hep-ex/0509008] [INSPIRE].

[82] R. Slansky, Group Theory for Unified Model Building, Phys. Rept. 79 (1981) 1 [INSPIRE].

[83] Super-Kamiokande collaboration, V. Takhistov, Review of Nucleon Decay Searches at

Super-Kamiokande, in Proceedings of 51st Rencontres de Moriond on Electroweak

Interactions and Unified Theories, La Thuile Italy (2016), pg. 437 [arXiv:1605.03235]

[INSPIRE].

[84] U. Aydemir, SO(10) grand unification in light of recent LHC searches and colored scalars at

the TeV-scale, Int. J. Mod. Phys. A 31 (2016) 1650034 [arXiv:1512.00568] [INSPIRE].

[85] R.N. Mohapatra and R.E. Marshak, Local B-L Symmetry of Electroweak Interactions,

Majorana Neutrinos and Neutron Oscillations, Phys. Rev. Lett. 44 (1980) 1316 [Erratum

ibid. 44 (1980) 1643] [INSPIRE].

[86] A.H. Chamseddine and A. Connes, The Spectral action principle, Commun. Math. Phys. 186

(1997) 731 [hep-th/9606001] [INSPIRE].

[87] U. Aydemir, D. Minic and T. Takeuchi, The Higgs Mass and the Emergence of New Physics,

Phys. Lett. B 724 (2013) 301 [arXiv:1304.6092] [INSPIRE].

[88] L. Freidel, R.G. Leigh and D. Minic, Noncommutativity of closed string zero modes, Phys.

Rev. D 96 (2017) 066003 [arXiv:1707.00312] [INSPIRE].

[89] L. Freidel, R.G. Leigh and D. Minic, Intrinsic non-commutativity of closed string theory,

JHEP 09 (2017) 060 [arXiv:1706.03305] [INSPIRE].

– 38 –

https://doi.org/10.1140/epjc/s10052-017-4952-0
https://arxiv.org/abs/1703.09189
https://inspirehep.net/search?p=find+EPRINT+arXiv:1703.09189
https://doi.org/10.1016/j.geomphys.2007.09.011
https://arxiv.org/abs/0706.3688
https://inspirehep.net/search?p=find+EPRINT+arXiv:0706.3688
https://doi.org/10.1155/2017/7498795
https://arxiv.org/abs/1601.06761
https://inspirehep.net/search?p=find+EPRINT+arXiv:1601.06761
https://doi.org/10.1103/PhysRevD.97.085024
https://arxiv.org/abs/1801.00260
https://inspirehep.net/search?p=find+EPRINT+arXiv:1801.00260
https://doi.org/10.1103/PhysRevD.91.045020
https://arxiv.org/abs/1409.7574
https://inspirehep.net/search?p=find+EPRINT+arXiv:1409.7574
https://doi.org/10.1007/JHEP08(2013)021
https://arxiv.org/abs/1305.1001
https://inspirehep.net/search?p=find+EPRINT+arXiv:1305.1001
https://doi.org/10.1103/PhysRevD.25.581
https://doi.org/10.1103/PhysRevD.25.581
https://inspirehep.net/search?p=find+J+%22Phys.Rev.,D25,581%22
https://doi.org/10.1016/0370-2693(96)00775-7
https://doi.org/10.1016/0370-2693(96)00775-7
https://arxiv.org/abs/hep-ph/9605353
https://inspirehep.net/search?p=find+EPRINT+hep-ph/9605353
https://doi.org/10.1088/1674-1137/40/10/100001
https://doi.org/10.1088/1674-1137/40/10/100001
https://inspirehep.net/search?p=find+J+%22Chin.Phys.,C40,100001%22
https://doi.org/10.1016/j.physrep.2005.12.006
https://arxiv.org/abs/hep-ex/0509008
https://inspirehep.net/search?p=find+EPRINT+hep-ex/0509008
https://doi.org/10.1016/0370-1573(81)90092-2
https://inspirehep.net/search?p=find+J+%22Phys.Rept.,79,1%22
https://arxiv.org/abs/1605.03235
https://inspirehep.net/search?p=find+EPRINT+arXiv:1605.03235
https://doi.org/10.1142/S0217751X16500342
https://arxiv.org/abs/1512.00568
https://inspirehep.net/search?p=find+EPRINT+arXiv:1512.00568
https://doi.org/10.1103/PhysRevLett.44.1644.2
https://inspirehep.net/search?p=find+J+%22Phys.Rev.Lett.,44,1316%22
https://doi.org/10.1007/s002200050126
https://doi.org/10.1007/s002200050126
https://arxiv.org/abs/hep-th/9606001
https://inspirehep.net/search?p=find+EPRINT+hep-th/9606001
https://doi.org/10.1016/j.physletb.2013.06.044
https://arxiv.org/abs/1304.6092
https://inspirehep.net/search?p=find+EPRINT+arXiv:1304.6092
https://doi.org/10.1103/PhysRevD.96.066003
https://doi.org/10.1103/PhysRevD.96.066003
https://arxiv.org/abs/1707.00312
https://inspirehep.net/search?p=find+EPRINT+arXiv:1707.00312
https://doi.org/10.1007/JHEP09(2017)060
https://arxiv.org/abs/1706.03305
https://inspirehep.net/search?p=find+EPRINT+arXiv:1706.03305


J
H
E
P
0
9
(
2
0
1
8
)
1
1
7

[90] L. Freidel, R.G. Leigh and D. Minic, Modular Spacetime and Metastring Theory, J. Phys.

Conf. Ser. 804 (2017) 012032 [INSPIRE].

[91] L. Freidel, R.G. Leigh and D. Minic, Quantum Spaces are Modular, Phys. Rev. D 94 (2016)

104052 [arXiv:1606.01829] [INSPIRE].

[92] L. Freidel, R.G. Leigh and D. Minic, Metastring Theory and Modular Space-time, JHEP 06

(2015) 006 [arXiv:1502.08005] [INSPIRE].

[93] L. Freidel, R.G. Leigh and D. Minic, Quantum Gravity, Dynamical Phase Space and String

Theory, Int. J. Mod. Phys. D 23 (2014) 1442006 [arXiv:1405.3949] [INSPIRE].

[94] L. Freidel, R.G. Leigh and D. Minic, Born Reciprocity in String Theory and the Nature of

Spacetime, Phys. Lett. B 730 (2014) 302 [arXiv:1307.7080] [INSPIRE].

– 39 –

https://doi.org/10.1088/1742-6596/804/1/012032
https://doi.org/10.1088/1742-6596/804/1/012032
https://inspirehep.net/search?p=find+J+%22J.Phys.Conf.Ser.,804,012032%22
https://doi.org/10.1103/PhysRevD.94.104052
https://doi.org/10.1103/PhysRevD.94.104052
https://arxiv.org/abs/1606.01829
https://inspirehep.net/search?p=find+EPRINT+arXiv:1606.01829
https://doi.org/10.1007/JHEP06(2015)006
https://doi.org/10.1007/JHEP06(2015)006
https://arxiv.org/abs/1502.08005
https://inspirehep.net/search?p=find+EPRINT+arXiv:1502.08005
https://doi.org/10.1142/S0218271814420061
https://arxiv.org/abs/1405.3949
https://inspirehep.net/search?p=find+EPRINT+arXiv:1405.3949
https://doi.org/10.1016/j.physletb.2014.01.067
https://arxiv.org/abs/1307.7080
https://inspirehep.net/search?p=find+EPRINT+arXiv:1307.7080

	Introduction
	B-decay anomalies
	Scalar leptoquarks
	Scalar leptoquarks in unified Pati-Salam models from NCG
	NCG model construction
	The three models
	Couplings between fermions and scalars
	Model A
	Model B
	Model C


	Gauge coupling unification
	1-loop renormalization group running
	Does the leptoquark help coupling unification?
	Unification with a single intermediate scale

	Discussion and conclusions
	Discussion
	Light colored scalars and proton decay
	NCG's pros and cons

	Leptoquarks

