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1 Introduction

It has been demonstrated that heterotic M-theory [1, 2] and E8 × E8 heterotic string

theory have vacuum states that, at low energy, can give rise to phenomenologically viable

models of N = 1 supersymmetric particle physics. Examples of such vacua include [3–7]

and [8–13]. Furthermore, these theories can lead to new inflationary scenarios for the early

universe, as well as concrete mechanisms for alternative approaches to cosmology, such as

“bouncing” cosmologies via heterotic five-branes, see [14–17] for recent results. Hence, it is

imperative to move beyond the four-dimensional low energy limits of these theories and to

address, and solve, the fundamental questions that arise from their compactification from

higher-dimensions. Perhaps the foremost of these issues involves calculating the effective

potential energies of the compactification moduli and, specifically, to demonstrate 1) that

their vacua are stable and 2) the exact mechanism for the spontaneous breaking of N =

1 supersymmetry. Considerable progress has been made in presenting mechanisms for

computing the potential energy and stabilizing the Kähler and complex structure moduli

arising from the compactification on a Calabi-Yau threefold [18–21]. Similarly, stabilizing

the moduli of bulk space five-branes in heterotic M-theory vacua has been discussed in [22].
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However, as we will now outline in detail, it has been much more difficult to calculate the

potentials for the moduli associated with the holomorphic vector bundles on the Calabi-

Yau threefold. Such bundles are required, amongst other things, to produce realistic low

energy particle spectra.

Let us be more specific. In compactifications of the heterotic string, moduli fields

corresponding to deformations of the vector bundle V can only be stabilized through non-

perturbative contributions to the superpotential. These contributions are generated by

worldsheet instantons; that is, strings wrapping holomorphic, isolated, genus-zero (or ra-

tional) curves in the internal space X [23, 24]. For viable model building it is imperative,

therefore, to construct compactification scenarios in which these instanton contributions

give rise to a non-vanishing superpotential. The main challenge in this endeavor is the

dependence of the instanton path integral on the Calabi-Yau metric. Despite significant

efforts [25–43], it is usually impossible to determine the explicit form of the instanton contri-

butions due to the limited methods available to write down the metric in explicit models.

However, parts of the superpotential can be computed algebraically. Schematically, the

superpotential contribution of strings wrapping an isolated rational curve Γ is [30]

W (Γ) = exp(i AC(Γ))
Pfaff(DF )√

det(DB)
. (1.1)

The argument of the exponential factor is the “complexified” area AC of the curve, and

only depends on the Kähler moduli. In the fraction, the denominator comes from integrat-

ing over the bosonic degrees of freedom in the worldsheet path integral and is independent

of the vector bundle moduli. The numerator comes from integrating over the fermions.

Specifically, it is the Pfaffian of the Dirac operator coupled to the restriction of the vector

bundle V to the curve Γ. While the denominator cannot be computed explicitly, it is

known [30] that the full expression vanishes if and only if the Pfaffian vanishes. Unlike for

the bosonic determinant, the Pfaffian can be calculated with algebraic methods developed

in [33, 34]. Therefore, the full vector bundle moduli dependence of the instanton contri-

bution (1.1) can be determined algebraically up to a non-zero prefactor. However, this

unknown prefactor turns out to be essential for determining the “full” superpotential; that

is, the instanton contributions summed over all isolated rational curves in X.

The reason for this is due to a result of Beasley and Witten. Using a “residue theo-

rem” [36], these authors have shown that, for vacua satisfying certain explicit properties

which we list below, the worldsheet instanton contributions to the superpotential arising

from different isolated rational curves with the same complexified area AC, that is, curves

in the same homology class, must sum to zero. Because, in general, the instanton contri-

bution to the superpotentials of individual curves can and will be non-zero, the vanishing

of their sum over a homology class has to be the result of non-trivial cancellations due to

the prefactors. It follows that any heterotic vacuum that satisfies the assumptions of the

Beasley-Witten theorem will have a vanishing superpotential for the vector bundle moduli

and, hence, be physically unstable. Therefore, to obtain an acceptable heterotic compact-

ification, one must show that it violates at least one of the Beasley-Witten assumptions.
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Formulated in the context of this paper, these assumptions can be stated as follows:

1) The compactification space X is a complete intersection Calabi-Yau (CICY) threefold

within a higher-dimensional toric ambient space A.

2) X is “favorable” [44] with respect to the ambient space; that is, the Kähler form ωX on

X is the restriction ω|X of the Kähler form ω on A.

3) The holomorphic vector bundle V on X is the restriction W |X of the vector bundle W

on the ambient space A.

There have already been a number of heterotic vacua presented in which assumptions

1) and 2) have been violated. As a consequence, one obtained a non-vanishing instanton

superpotential for the vector bundle moduli. The first such example was constructed in [38–

40] and [42]. This result was generalized to a large number of other vacua in [43] which,

due to their unfavorable embedding in their ambient spaces and, hence, their violation of

assumption 2), also had non-zero superpotentials. However, in all of these examples, the

vector bundle descended by restriction to the relevant threefold and, therefore, assumption

3) of the Beasley-Witten theorem was never violated. Thus, to further explore possible

scenarios in which there is a viable mechanism for moduli stablization, an obvious question

is: can a non-vanishing superpotential for vector bundle moduli be generated on a threefold

X that has a favorable toric embedding, thus satisfying assumptions 1) and 2) of the

Beasley-Witten theorem, but for which assumption 3) is violated?

The most straightforward setting, in which this question can be definitively answered,

is on manifolds X that have a single isolated genus-zero curve E within its homology class

[E ]. In this case, there is only a single contribution to the superpotential generated by [E ],

which vanishes if and only if the corresponding Pfaffian does. Thus, the validity of the

residue theorem can be explicitly verified/disproved using algebraic methods [33, 34] to

calculate the Pfaffian. The purpose of this paper is to demonstrate that on such manifolds,

we can indeed construct a broad class of vector bundles whose associated Pfaffians are non-

zero. Hence, they present a set of toy models for heterotic compactifications with known

non-vanishing superpotentials. In fact, a subset of such vacua were already constructed,

and their non-vanishing superpotentials calculated, in [33, 34]. In this paper we extend and

clarify those results. Having done this, we will then demonstrate that in this class of vacua,

the vector bundle V on X explicitly cannot descend from a vector bundle on the ambient

space — thus violating assumption 3) of the Beasley-Witten theorem and explaining why

the superpotential does not vanish.

To this end, we will first review in section 2 the construction of suitable vector bundles

via spectral covers on elliptically fibered Calabi-Yau threefolds. We will show that generic

elliptic fibrations over del Pezzo surfaces have homology classes with a single isolated, genus-

zero curve. In section 3 we then discuss the algebraic method of computing Pfaffians, and

demonstrate for toy spectral cover bundles that the superpotential is explicitly non-zero.

It turns out that these models have underlying Calabi-Yau geometries that actually satisfy

the Beasley-Witten assumptions. To resolve the apparent tension with the residue theorem,

we argue in section 4 that our toy models violate assumption 3) of the theorem through
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the bundle construction. This argument opens up a novel, algebraic perspective on the

residue theorem, which we will highlight in section 5 together with other future directions.

2 Spectral covers and elliptic threefolds over del Pezzo surfaces

In this section, we first review the construction of stable vector bundles on elliptic fibrations

via spectral data. Then we will present a class of elliptic fibrations with isolated rational

curves that are unique in their homology class.

2.1 Spectral cover vector bundles

Throughout these notes, we will consider Calabi-Yau manifolds X
π→ B that are elliptically

fibered over complex surface B. A distinct feature of elliptic fibrations is the existence of

a global section σ : B → X, called the zero section, which can be viewed as an embedding

of the base B into X.

On elliptically fibered Calabi-Yau manifolds, stable vector bundles with SU(n) struc-

ture group can be constructed in terms of spectral data [45–47]. It consists of the spectral

cover C ⊂ X together with the line bundle N on C. The cover C is a divisor in X which is of

degree n over the base B. That is, the restriction πC = π|C : C → B of the elliptic fibration

is an n-sheeted branched cover. This means that the homology class of C in H4(X,Z) must

be of the form

[C] = nσ + π−1η , (2.1)

where η is a curve class on the base. We will restrict ourselves to spectral covers satisfying

some additional properties. First, we require that it is an effective class in H4(X,Z). This

means that C is an actual surface in X. Equivalently, this means that η is an effective curve

in H2(B,Z). Second, we impose that C is a smooth irreducible surface. These conditions

guarantee that the associated vector bundle is stable. Finally, we demand that the spectral

cover is positive.

Let us discuss these conditions more explicitly following [48, 49]. The set of all effective

classes in H2(B,Z) is called the Mori cone of B. If the Mori cone is generated by the curves

Ck ∈ H2(B,Z) then a generic effective curve is of the form

η =
∑
k

akCk , (2.2)

where ak are non-negative integers. The irreducibility of the spectral cover can be deter-

mined via intersection theory. For example, if the base is a del Pezzo surface dPr, the

spectral cover is irreducible if and only if the following conditions are satisfied [49]:

1) η · E ≥ 0 for any generator E of the Mori cone

2) η − nKB is effective in B, with KB the anti-canonical divisor of B .
(2.3)

Finally, the spectral cover is positive if its intersection with every effective curve in X

is positive.
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The spectral cover can also be defined by an explicit equation. For this we describe X

as a hypersurface in a P2-bundle over B given by the Weierstrass equation

y2z = x3 + g2xz
2 + g3z

3 . (2.4)

For X to be Calabi-Yau, the P2 fiber coordinates [x : y : z] and the coefficients g2, g3 have

to be sections of the following line bundles [46]:

x ∈ H0(B,OB(2KB)) , y ∈ H0(B,OB(3KB) , z ∈ H0(B,OB)

g2 ∈ H0(B,OB(4KB)) , g2 ∈ H0(B,OB(6KB)) .
(2.5)

In terms of these variables the spectral cover can be represented as the zero set of the

equation

f = a0Z
n + a2XZn−2 + a3YZn−3 + · · ·+

{
anX

n/2 , for even n

anX
n−3Y , for odd n

(2.6)

where x = XZ, y = Y and z = Z3. The parameters a0, . . . , an are sections of the following

line bundles:

ak ∈ H0(B,O(kKB + η)) , k = 0, . . . , n . (2.7)

For simplicity we will later consider the case n = 3 in which the equation for the spectral

cover takes the simple form

f = a0z + a2x+ a3y . (2.8)

In addition to the spectral cover it is necessary to specify a line bundle N on C. For

SU(n) bundles, one can assume that N is a restriction of a line bundle on X [45, 47, 48]

(which, to simplify notation, we will again denote by N ), whose first Chern class1 has

to be

c1(N ) = n

(
1

2
+ λ

)
σ +

(
1

2
− λ

)
π−1(η) +

(
1

2
+ nλ

)
π−1(KB) , (2.9)

where λ is, a priori, a rational number. Since c1(N ) must be an integer class, it follows

that either

n is odd , λ = m+
1

2
(2.10)

or

n is even , λ = m, η = KB mod 2 , (2.11)

where m ∈ Z.

1Here and throughout these notes, we will denote characteristic classes by their Poincaré-dual homology

classes, and cup products by their dual intersection products.

– 5 –



J
H
E
P
0
9
(
2
0
1
8
)
1
1
1

Given a spectral cover C and a line bundle N , satisfying the above properties, one can

now uniquely construct an SU(n) vector bundle V on X via the so-called Fourier-Mukai

transformation,

V = π1∗(π
∗
2N ⊗P) , (2.12)

where π1 and π2 are the two projections of the fiber product X ×B C onto the two factors

X and C, and P is the Poincaré line bundle on X ×B C. To gain some intuition for the

Fourier-Mukai transformation, we note that the restriction of V to the elliptic fiber is a

sum of n degree zero line bundles Li. On an elliptic curve, such a line bundle is always

dual to a divisor of the form Qi − p, where p is the origin, i.e., the point marked by the

zero section. For a spectral cover bundle, the n points Qi are precisely the intersection of

the n-sheeted cover C with the elliptic fiber. For completeness, we collect the Chern classes

of such spectral cover bundles:

c1(V ) = 0 ,

c2(V ) = π−1(η) · σ − n3 − n
24

(
π−1(KB)

)2
+
n

2

(
λ2 − 1

4

)
π−1

(
η · (η − nKB)

)
,

c3(V ) = 2λσ · π−1
(
η · (η − nKB)

)
.

(2.13)

We refer the reader to the original papers [45–47] for details.

As was discussed in the previous section, the Pfaffian depends on the vector bundle

moduli. For the spectral cover bundles under consideration the moduli come from two

sources: the parameters of the spectral cover C and the moduli of the line bundle N . The

general formula for the number of moduli of V was derived in [48, 50]:

n(V ) = (h0(X,OX(C))− 1) + h1(X,OX(C)) , (2.14)

where the first term gives the parameters of the spectral cover and the second term gives

the moduli of the line bundle. If the spectral cover is chosen to be positive, it was shown

in [48] that hi(X,OX(C)) = 0, i > 0 and the second term in (2.14) is zero. Then the

bundle moduli come only from the parameters of the spectral cover ak in eq. (2.7). Since

the spectral cover equation (2.6) is homogeneous in the parameters it follows that the

moduli space of V is the projective spaceM(V ) = Ph0(X,OX(C))−1 and the Pfaffian in (3.6)

is naturally a homogeneous polynomial on M(V ).

2.2 Elliptic fibrations with isolated rational curves

In the rest of the paper we will consider a special class of Calabi-Yau threefolds which are

elliptically fibered over del Pezzo surfaces dPr, r = 1, . . . , 9. They have the feature that

they contain a natural set of isolated (or, more precisely, infinitesimally rigid) genus-zero (or

rational) curves. These arise as a set of blow-ups of P2 at r ≤ 8 points in general position.

For r = 9, the nine points have to be at the common roots of two cubics in P2. Each

such blow-up introduces an irreducible curve with an independent class Ei, i = 1, . . . , r in

– 6 –
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H2(dPr,R). Including the hyperplane class ` that is inherited from the P2, the dimension

of H2(dPr,R) is r + 1. The intersection numbers of these curves are given by

` · ` = 1 , ` · Ei = 0 , Ei · Ej = −δij . (2.15)

The Chern classes of dPr are

c1(dPr) = KdPr = 3`−
r∑
i=1

Ei , c2(dPr) = 3 + r , (2.16)

where the anti-canonical class KdPr ≡ Kr satisfies Ei ·Kr = 1, K
2
r = 9− r ≥ 0. The Mori

cone — the set of effective curves — of del Pezzo surfaces with r ≥ 2 is generated by curves

E with

E2 = −1 , E ·Kr = 1 . (2.17)

For dP1, the generators are E1 and `− E1, of which only E1 satisfies (2.17).

For any dPr, all curves E satisfying (2.17) are all isolated genus-zero curves which are

unique in their homology class. The genus is related to the degree of canonical bundle of E,

which in turn can be computed via adjunction: g = 1 + 1
2 deg KE = 1 + 1

2E · (E−Kr) = 0.

To see that they are isolated, or more precisely, infinitesimally rigid, note that, as curves

embedded inside a surface, the degree of the rank one normal bundle NE/dP is simply given

by the self-intersection number of the curve, which is E2 = −1. Since E has genus 0, i.e., is

a P1, this yields NE/dP = OE(−1). Because its cohomologies are zero, there are no normal

deformations of E, hence it is infinitesimally rigid. Finally, let us assume that there exists

another curve E′ in the same class [E] as E. Since [E] · [E] = −1 it follows that E ·E′ = −1.

Since both E and E′ are effective genus-zero curves it is possible if and only if E = E′ (two

distinct effective curves inside a surface always have a non-negative intersection number

unless one of them is reducible and contains the other). So E is unique in its homology

class in H2(dPr,R).

Given these isolated rational curves on the base B = dPr, we can now use the zero

section σ of a generic elliptic fibration to obtain such curves in X. The attribute generic is

important here, because over del Pezzo surfaces, generic elliptic fibrations are smooth and

have no reducible fibers. In terms of the Weierstrass equation (2.4) of X, it means that

the coefficients g2/3 have to be generic sections of their respective line bundles.

In this setting, the surface Σ = π−1(E) is smooth as well. Clearly, Σ is also elliptically

fibered by π|Σ : Σ→ E. Inside it, we define the curve

E = σ · Σ . (2.18)

Since σ defines a copy of the base inside X, E is simply E inside this copy and obviously

has genus 0. It is easy to see that E is isolated in X. We have already shown above that E

is rigid in the base, i.e., the normal bundle in the base direction is O(−1). The zero section

σ is also rigid and has no deformations along the fiber direction. This means that E viewed

as a curve in Σ has normal bundle O(−1). Hence, the normal bundle of E viewed as a curve

– 7 –
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in X is an extension of OE(−1) by OE(−1). The space of possible non-trivial extensions is

given by H1(E ∼= P1,O) = 0 which means that the normal bundle is the trivial extension

OE(−1)⊕OE(−1). Hence, E infinitesimally rigid inside X.

Finally, to see that E is unique in its homology class, we first show that the elliptically

fibered surface Σ is a rational elliptic surface,2 i.e., an elliptically fibered surface that is

birational to P2. Equivalently, it is a smooth elliptic fibration over P1 with generically 12

singular I1 fibers. For our surface Σ, the singular fibers are inherited from the threefold X

and hence sit at the intersection of E with the discriminant ∆ ≡ 4 g3
2 + 27 g2

3 = 0 of the

Weierstrass model (2.4) describing X. For generic choices of g2/3 over B = dPr, the generic

fiber over ∆ = 0 is an I1 fiber. On the base B = dPr, the curve ∆ = 0 has class 12K.

Using the fact that E, as a generator of the Mori cone, intersects Kr once, we conclude

that Σ has precisely 12 singular fibers of type I1. Since the base of Σ is E ∼= P1, this proofs

that Σ is a rational elliptic surface. By construction (2.18), our curve E is the restriction

of global section of X, so it is also a section Σ. It is well-known that a section on a rational

elliptic surface has self-intersection −1. Hence,

−1 = E ·Σ E = E ·Σ (σ|Σ) = E ·X σ . (2.19)

Let us now assume that there is another irreducible curve E ′ in the same homology class

as E . Then it is clear that the push-forwards onto the base must also be homologous, i.e.,

[π(E)] = [π(E ′)] = [E]. Since we have shown above that [E] has the unique representative

E on B, it follows that π(E ′) = E. Therefore, E ′ must be a curve inside Σ = π−1(E) as

well. Inside Σ, we can again use the argument that two irreducible distinct curves inside a

surface must have non-negative intersection number: E ·Σ E ′ ≥ 0. However, we can again

interpret the intersection as one inside X:

0 ≤ E ′ ·Σ E = E ′ ·Σ (σ|Σ) = E ′ ·X σ
[E ′]=[E]

= E ·X σ , (2.20)

which is clearly a contradiction to (2.19). Therefore, E has to be unique in its homol-

ogy class.

To conclude, we have shown that any curve E in dPr with self-intersection number −1

and intersecting KdPr at one point is an isolated rational curve. Lifting it with the zero

section into a generic elliptic fibration X → dPr, as in (2.18), gives rise to a holomorphic,

isolated, genus-zero curve E which is unique in its homology class. The existence of such

curves makes these manifolds very attractive for constructing heterotic compactifications

with non-zero superpotentials, as we will discuss now.

3 Heterotic compactifications with non-zero superpotentials

Having established the underlying geometry and bundle construction, we now turn our

attention to the computation of superpotentials in heterotic models. Before discussing

explicit examples, we will first review the non-perturbative contribution of worldsheet

instantons to the heterotic superpotential.

2In fact, a rational elliptic surface is another name for a dP9 surface. Here, the dP9 is not the base of

the elliptic fibration, but appears as a surface inside the elliptic threefold.
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3.1 The general structure of the non-perturbative superpotential

As extensively studied in a variety of papers [23, 24, 29–32], the effective low-energy field

theory of the heterotic string contains a non-perturbative superpotential for moduli fields

which is generated by worldsheet/open membrane instantons. The structure of the instan-

tons, as well as the structure of the N = 1 supermultiplets, is slightly different in weakly

and strongly coupled heterotic string theories. However, the superpotential has the same

general form. For concreteness, we will discuss the weakly coupled case where the super-

potential is generated by strings wrapping holomorphic curves Γ in the compactification

space X. As shown in [23, 24], the path integrals of these strings vanish due to additional

fermionic modes unless Γ is an isolated genus-zero curve. The superpotential is then de-

termined by the classical Euclidean worldsheet action evaluated on the instanton solution

and by the 1-loop determinants of the fluctuations around this solution.

Concretely, let Γ be a holomorphic, isolated, genus-zero curve in X. Then the general

form of the superpotential contribution generated by a string wrapping Γ is [30, 42]

W (Γ) = exp

[
−A(Γ)

2πα′
+ i

∫
Γ
B

]
×

Pfaff(∂̄VΓ(−1))

[det′(∂̄OΓ
)]2[det(∂̄OΓ(−1))]2

× χ(Γ) . (3.1)

The expression in the exponent is the classical Euclidean action evaluated on Γ. The first

term A(Γ) is the area of the curve given by

A(Γ) =

∫
Γ
ωX , (3.2)

where ωX is the Kähler form on X. The second term contains the heterotic B-field which

in this expression can be taken to be a closed 2-form. Then we can expand

ωX =

h1,1∑
I=1

tIωI , B =

h1,1∑
I=1

φIωI , (3.3)

in a basis ωI of (1, 1) forms on X, I = 1, . . . , h1,1(X). Defining the complexified Kähler

moduli T I = φI + i tI

2πα′ , the exponential prefactor becomes

eiAC(Γ) ≡ eiαI(Γ)T I
with αI(Γ) =

∫
Γ
ωI . (3.4)

Note that the vectors αI(Γ) depend only on the homology class [Γ] ∈ H2(X,R) of the curve

Γ, and are linearly independent for curve classes that are linearly independent in H2(X,R).

The second factor in eq. (3.1) is the one-loop contribution which depends on the stable

holomorphic vector bundle V on X. The Pfaffian in the numerator is the square root

of the determinant of the Dirac operator on the curve Γ, twisted by the vector bundle

VΓ(−1) = V |Γ ⊗ OΓ(−1). It comes from integrating out the fermions in the worldsheet

path integral. In general, it is a holomorphic function in the bundle moduli of V and the

complex structure moduli of X. In the denominator, det′(∂̄OΓ
) and det(∂̄OΓ(−1)) come from

integrating over bosonic fluctuations and do not depend on V .
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For completeness we have also included the factor χ(Γ) associated with torsion. In

general, the second homology group of X is of the form

H2(X,Z) = Zk ⊕Gtor , k > 0 , (3.5)

where Zk represents the free part and Gtor = Tors(H2(X,Z)) is a finite abelian group which

represent the torsion part. The origin of the factor χ(Γ) lies in the subtleties surrounding

the B-field [30]. Simply speaking, the field strength H = dB need not to be zero in

integer cohomology H3(X,Z) and can have a non-trivial torsion class. The value of [H]

in Tors(H3) corresponds to a discrete choice of the heterotic vacuum. By Poincaré-duality

and the universal coefficient theorem, Tors(H3) ∼= Tors(H2) = Gtor on a threefold. Then

the factor χ(Γ) is the “relative difference” between [H] and the torsion class of Γ arising

from a proper treatment of the factor exp( i
∫

ΓB). As the (imaginary) exponential of the

so-called torsion linking number, χ(Γ) can be interpreted as a character of the abelian

group Gtor, which is always non-zero. Since the models we consider have Gtor = 0, all

χ’s are equal and we will drop them in the following, although we will comment on their

significance in section 4.1.

In general, a given homology class [Γ] ∈ H2(X,R) contains more than one holomorphic,

isolated, genus-zero curve. The number n[Γ] of such curves is computed by the (genus-

zero) Gromov-Witten invariant. All such curves in the same homology class have the same

exponential exp(iAC([Γ])). However, the 1-loop determinants are in general different. To

find the superpotential contribution, W ([Γ]), associated with the class [Γ] we have to sum

over all holomorphic, isolated, genus-zero curves Γj in this class.

W ([Γ]) = eiAC([Γ])

n[Γ]∑
j=1

Pfaff(∂̄VΓj
(−1))

[det′(∂̄OΓj
)]2[det(∂̄OΓj

(−1))]2︸ ︷︷ ︸
W (Γj)

. (3.6)

Note that the full superpotential W =
∑

[Γ]W ([Γ]) is dominated by the contributions from

classes with small areas due to the exponential suppression exp(iAC([Γ])) ∼ exp(−A([Γ])).

For heterotic model building, it would be desirable to have a non-vanishing superpo-

tential generated by worldsheet instantons in order to stabilize the bundle moduli in the

low energy effective theory. An algebraic procedure for computing Pfaff(∂̄VΓj
(−1)) has been

developed in [33, 34]. A non-zero Pfaffian implies [30] that the full contribution W (Γj) of

a single curve is non-vanishing. However, the determinant factors in the denominator de-

pend on Calabi-Yau metric, which makes their computation impossible without differential

geometry methods. Given that these are still largely unknown for Calabi-Yau manifolds,

we cannot in general rule out that different non-zero contributions do not cancel each other

in the sum (3.6). In fact, for a broad class of models, a “residue theorem” [36] by Beasley

and Witten proves such a cancellation for all homology classes.

Therefore, the simplest examples in which we can make definitive statements about the

(non-)vanishing of the superpotential are on Calabi-Yau geometries which have homology

classes with a single isolated genus-zero curve — examples which we have constructed in

the previous section. If we can show that the contributions of such a curve is non-zero,
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then there cannot be any cancellations.3 Since the (non-)vanishing of W (Γ) for a single

curve Γ is equivalent to the (non-)vanishing of Pfaff(∂̄VΓ(−1)), we will now discuss how to

compute it for spectral cover bundles V on threefolds that are elliptically fibered over del

Pezzo surfaces.

3.2 A general method for computing the Pfaffian

As was explained in [30, 33, 34], the zero modes of Pfaff(∂̄VΓ(−1)) are global sections of

VΓ(−1), that is elements in H0(Γ, VΓ(−1)). The existence of such sections depends on the

complex structure and, in particular, on the bundle moduli of V . Therefore, as a function

on the bundle moduli space M(V ), Pfaff(∂̄VΓ(−1)) = 0 if and only if the cohomology group

H0(Γ, VΓ(−1)) 6= 0. Hence, our goal is to understand the dependence of its dimension

h0(Γ, VΓ(−1)) on the bundle parameters.

Recall from last section that we are working on an elliptically fibered Calabi-Yau

π : X → B = dPr, with a vector bundle V specified by spectral data (C,N ). We are

interested in the case when the curve Γ is the lift E of one of the exceptional curves E in

dPr by the zero section σ of X. Just like in the previous section, let us denote by Σ = π−1E

the lift of the curve E to X and E = σ · Σ the curve of intersection with the zero section.

We also denote by CΣ = C|Σ the restriction of the spectral cover to Σ and NΣ = N|Σ the

restriction of the line bundle N to Σ. Note that CΣ is a spectral cover of the elliptically

fibered surface Σ with covering map πCΣ = π|Σ : CΣ → E. It was shown in [34] that the

vector bundle V restricted to the curve E (or any other curve sitting in the zero section σ)

is given by

V |E = πCΣ∗(NΣ|CΣ) . (3.7)

Using a Leray spectral sequence we then obtain

h0(E , V |E(−1)) = h0(E , πCΣ∗(NΣ|CΣ)⊗OE(−1)) = h0(CΣ,NΣ(−FΣ)|CΣ) , (3.8)

where FΣ is the elliptic fiber of Σ and NΣ(−FΣ) ≡ NΣ ⊗ OΣ(−FΣ). To compute the last

term we consider the short exact sequence

0→ NΣ(−FΣ − CΣ)
fΣ→ NΣ(−FΣ)

r→ NΣ(−FΣ)|CΣ → 0 . (3.9)

Here r is the restriction map and fΣ is multiplication by a section which vanishes precisely

on CΣ. Such a section is given by fΣ = f |Σ, where f is the spectral cover equation (2.6).

Note that fΣ depends on the parameters of the spectral cover restricted to Σ, that is on

the moduli of the vector bundle V . The computation simplifies when the bundle satisfies

H0(Σ,NΣ(−FΣ − CΣ)) = H0(Σ,NΣ(−FΣ)) = 0 , (3.10)

3As mentioned previously, the vectors αI([Γ]) are linearly independent for linearly independent homol-

ogy classes [Γ]. Hence the exponential prefactors exp(i αI([Γ])T I) are in general independent functions

of the Kähler moduli T I for independent homology classes and cannot cancel even if the Pfaffians are

linearly dependent.
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which will be the case in the explicit examples presented below. Then the cohomology

sequence of (3.9) yields

0→ H0(CΣ,NΣ(−FΣ)|CΣ)→ H1(Σ,NΣ(−FΣ − CΣ))
fΣ→ H1(Σ,NΣ(−FΣ))→ . . . . (3.11)

Hence, H0(CΣ,NΣ(−FΣ)|CΣ) arises as the kernel of the linear map fΣ which can be repre-

sented by a matrix. In examples of interest fΣ is a square matrix, i.e., h1(Σ,NΣ(−FΣ −
CΣ)) = h1(Σ,NΣ(−FΣ)). Then H0(CΣ,NΣ(−FΣ)|CΣ) 6= 0 if and only if

detfΣ = 0 . (3.12)

The determinant det fΣ, like fΣ, depends on the parameters of spectral cover equation

f = 0. Therefore it defines a holomorphic section of a line bundle on the moduli space

M(V ) of the vector bundle V . By (3.8), the vanishing locus of this section in M(V ) is

where the Dirac operator acquires a zero mode, and is hence the same as the Pfaffian

divisor, i.e., the divisor in M(V ) where Pfaff(∂̄VE (−1)) = 0:

{Pfaff(∂̄VE (−1)) = 0} = {det fΣ = 0} ⊂ M(V ) (3.13)

This means that Pfaff(∂̄VE (−1)) is a section of the same line bundle as det fΣ with same

vanishing locus. Therefore, they have to be the same section up to a constant factor:

Pfaff(∂̄VE(−1)) ∼ det fΣ . (3.14)

The proportionality constant depends on the Calabi-Yau and bundle metrics and hence

cannot be computed in our algebraic approach. However, if det fΣ is not identically zero

we conclude that Pfaff(∂̄VE (−1)) is non-zero. Since E is the only isolated genus-zero curve

in its homology class, it also implies that the superpotential (3.11) is non-zero.

3.3 Examples with non-zero Pfaffians

3.3.1 dP1

Let us choose the base of X to be the first del Pezzo surface dP1. Examples with B = dP1 =

F1 were extensively studied in [33, 34, 48] and we refer to these paper for additional details.

The Mori cone of dP1 is spanned by the two curves E and `−E, where, to recall, E is

the blown up P1 and ` is the hyperplane divisor.4 Their intersection numbers are (2.15):

E2 = −1 , (`− E)2 = 0 , E · (`− E) = 1 . (3.15)

The only isolated curve in dP1 is E, so the isolated curve in X of interest is E = σ ·π−1E =

σ · Σ. We will choose the rank of the vector bundle to be three, which means that the

spectral cover is of the form

C = 3σ + π−1η , η = aE + b(`− E) . (3.16)

4In [33, 34, 48] E was denoted by S and `− E was denoted by E .
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The spectral cover is effective if and only if a, b ≥ 0. As was discussed previously, C is an

irreducible surface if η·E is non-negative and η−3KdP1 is effective. Using eqs. (2.15), (2.16)

we find that it is equivalent to the following conditions

b ≥ a , a ≥ 6 , b ≥ 9 . (3.17)

Finally, to find positive spectral covers we demand that C intersects positively all effective

curves in X. A basis of effective curves in X is given by F , σ ·π−1E, σ ·π−1(`−E), so that

it is enough to demand that C intersects these three curves positively. Since C is a triple

cover of the base it intersects the elliptic fiber in three points, C ·F = 3. The intersection of

C with the remaining two curves can be computed using the formula σ · σ = −σ · π−1KdP1

for the zero section σ of a Weierstrass model. This yields the following conditions:

b− a > 3 , a > 6 . (3.18)

Now let us specify the line bundle N on X. For this we will choose the parameters λ

to be 3
2 . Then we obtain

CΣ = 3σΣ + (b− a)FΣ , NΣ = OΣ(6σΣ + (5− b+ a)FΣ) , (3.19)

where σΣ = σ|Σ for Σ = π−1E. Let us now choose b − a = 5 which is consistent with the

spectral cover being effective, irreducible and positive. Then we get

CΣ = 3σΣ+5FΣ ,

NΣ =OΣ(6σΣ) , NΣ(−FΣ) =OΣ(6σΣ−FΣ) , NΣ(−FΣ−CΣ) =OΣ(3σΣ−6FΣ) .
(3.20)

This particular case was one of the examples studied in detail in [33, 34]. We will not

repeat the calculations since they are rather long and technical. Instead, we simply state the

results, which show that the spectral cover fΣ as well as the vector spaces H1(Σ,NΣ(−FΣ−
CΣ)) and H1(Σ,NΣ(−FΣ)) can be parametrized in terms of homogeneous polynomials on

the curve E = P1. The Pfaffian is non-zero and is given by a degree 20 polynomial

Pfaff(∂̄VE(−1)) ∼ P4 , (3.21)

where

P = χ2
1χ3φ

2
3 − χ2

1χ2φ3φ4 − 2χ1χ
2
3φ3φ1

− χ1χ2χ3φ3φ2 + χ2
2χ3φ1φ3 + χ3

1φ
2
4

− 2χ3χ
2
1φ2φ4 + χ1χ

2
3φ

2
2 + 3χ1χ2χ3φ1φ4

+ χ1χ
2
2φ2φ4 + χ3

3φ
2
1 − χ2χ

2
3φ1φ2 − χ3

2φ4φ1 .

(3.22)

The variables χi, φj are parameters of the spectral cover, restricted to E. We refer to [33, 34]

for details and other examples.
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3.3.2 dP2

Let us now choose the base B to be dP2. The Mori cone is spanned by the three curves E1,

E2, `−E1−E2. Note that all three curves have self-intersection −1 and intersectKdP2 ≡ K2

at one point. We can use any of them to construct an isolated curve E = σ ·π−1E which is

unique in its homology class on X. For concreteness, let us choose E = E1. As before, let

us choose the rank of the vector bundle to be three, so that the spectral cover is given by

C = 3σ + π−1η , η = aE1 + bE2 + c(`− E1 − E2) . (3.23)

The spectral cover is effective if and only if a, b, c ≥ 0. To find irreducible spectral covers

we demand that η − 3K2 is effective as well as

η · E1 ≥ 0 , η · E2 ≥ 0 , η · (`− E1 − E2) ≥ 0 . (3.24)

Using (2.15), (2.16) we obtain the following conditions for C to be irreducible

a ≥ 6 , b ≥ 6 , c ≥ 9 ,

c ≥ a , c ≥ b , a+ b ≥ c .
(3.25)

To find positive spectral covers we demand that C intersects positively all effective curves

in X. For this it is enough to consider a basis of effective curves F , σ · π−1E1, σ · π−1E2,

σ · π−1(`− E1 − E2), yielding the following conditions

c− a > 3 , c− b > 3 , a+ b− c > 3 . (3.26)

To describe the line bundle N we again make the choice λ = 3
2 . Restricting C and N to

Σ = π−1E1 we obtain

CΣ = 3σΣ + (c− a)FΣ , NΣ = OΣ(6σΣ + (5− c+ a)FΣ) . (3.27)

If we choose c−a = 5 which is consistent with the spectral cover being effective, irreducible

and positive, we find that CΣ andNΣ are the same as in eq. (3.20). Since the sequence (3.11)

depends only on CΣ, NΣ and not on any additional data of X or V we conclude that the

calculation of the Pfaffian for this case is the same as in the previous subsection yielding

the same non-vanishing result (3.21), (3.22).

3.3.3 dP3

Now let us choose the base B = dP3. The Mori cone of dP3 is spanned by the six curves

Ck ∈ {E1, E2, E3, `− E1 − E2, `− E2 − E3, `− E1 − E3} , (3.28)

which have self-intersection number −1 and intersect KdP3 ≡ K3 at one point. We can use

any of them to construct an isolated curve E = σ · π−1E which is unique in its homology

class. As before, let us choose E = E1 and the rank of the vector bundle to be three, so

that the spectral cover is given by

C= 3σ+π−1η ,

η=n1E1+n2(`−E1−E2)+n3E2+n4(`−E1−E3)+n5(`−E2−E3)+n6E3 .
(3.29)
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The spectral cover is effective if and only if all nk ≥ 0. To find irreducible spectral covers

we demand that η − 3K3 is effective as well as

η · Ck ≥ 0 , (3.30)

where the curves Ck are given in (3.28). Explicit calculations give the following conditions

nk ≥ 3 , k = 1, . . . , 6 ,

n2 + n4 ≥ n1 , n1 + n3 ≥ n2 , n2 + n5 ≥ n3 ,

n1 + n6 ≥ n4 , n3 + n6 ≥ n5 , n4 + n5 ≥ n6 .

(3.31)

The positivity conditions in this case are

n2 + n4 > n1 + 3 , n1 + n3 > n2 + 3 , n2 + n5 > n3 + 3 ,

n1 + n6 > n4 + 3 , n3 + n6 > n5 + 3 , n4 + n5 > n6 + 3 .
(3.32)

With λ = 3
2 , we have

CΣ = 3σΣ + (n2 + n4 − n1)FΣ , NΣ = OΣ(6σΣ + (5− n2 − n4 + n1)FΣ) . (3.33)

If we choose n2 + n4 − n1 = 5 which is consistent with the spectral cover being effective,

irreducible and positive, we find that CΣ and NΣ are the same as in eq. (3.20). Hence, this

case yields a non-vanishing Pfaffian given by the expression identical to (3.21), (3.22).

Clearly, many such examples with a non-vanishing Pfaffian and, hence, a non-zero

superpotential, can be found by appropriately choosing the spectral cover and the line

bundle, and performing calculations along the lines of [33, 34]. Unfortunately, even a slight

change of the integers for the curve η, of the rank of the vector bundle, or of the parameter

λ in the line bundle N quickly makes the number of spectral cover parameters and the

size of the matrix fΣ very large. In general, the Pfaffian in these models is a high degree

polynomial depending on a large number of parameters.

The same analysis as above can also be performed to study vector bundles on other

del Pezzo surfaces with r > 3. However, the Mori cone for r > 3 is generated by quite a

large number of curves (see e.g. [49] for details) which makes the conditions for the spectral

cover to be irreducible and positive combinatorially cumbersome. Furthermore, del Pezzo

surfaces for r ≤ 3 are always toric. As we will see momentarily, this actually implies that

in all our examples, the Calabi-Yau threefold X can be embedded “favorably” into an

ambient toric variety. In this geometric setting, Beasley and Witten have shown [36] that

for a broad class of heterotic compactifications, the superpotential generated by a homology

class of curves actually vanishes — which is clearly not the case in our examples. In the

following, we will resolve this apparent conflict by arguing that it is not the geometry but,

rather, our vector bundles that do not fall into the category they have considered.

4 Evading the Beasley-Witten residue theorem

In [36] (also see the earlier papers [25, 26, 28, 35]) Beasley and Witten showed that under

certain assumptions the collective superpotential contribution (3.6) of all curves within
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the same homology class vanishes. Formulated as a residue theorem, it heavily restricts

phenomenologically viable model building with such models. Since our examples do not

have vanishing superpotential, they cannot satisfy all of the assumptions required by the

theorem. In the following, we shall see that it is not the geometry — that is, the Calabi-

Yau threefold X — but, rather, the choice of vector bundle that allows the Beasley-Witten

theorem to be violated.

4.1 The residue theorem

To begin with, let us briefly review the assumptions that go into the proof of the residue

theorem. Let X
i
↪→ A be a complete intersection Calabi-Yau manifold in the ambient space

A which is toric. Additionally, we assume that the stable vector bundle V on X is obtained

as a restriction of a stable vector bundle W on A, V = W |X . It was shown by Beasley

and Witten that if these assumptions are satisfied the sum (3.6) of all superpotential

contributions from isolated rational curves vanishes for any homology class. This result

was interpreted in [36] as a residue theorem. By formulating the worldsheet instanton

as a “half-linear” sigma model, they could show that the superpotential contributions

of individual curves within the same homology class can be interpreted as residues of a

meromorphic function on the moduli space. Within their assumptions, the moduli space

is compact, and hence the sum of residues must vanish.

The description through a sigma model makes the necessity of a toric ambient space

A ⊃ X with a stable parent vector bundle apparent. As was pointed out in [42], however,

the analysis of Beasley and Witten actually implicitly assumes that the Kähler form ωX
on X is obtained as a restriction, ωX = ωA|X , of the ambient space Kähler form ωA.

If the Calabi-Yau manifold is favorable [44], that is, the entire second cohomology of X

descends from the ambient space — or, equivalently, H1,1(X,R) = i∗(H1,1(A,R)) — then

this assumption is indeed satisfied for all choices of Kähler form ωX . In this setting, the

cancellation of instanton contributions holds for curves that are homologous on A.

The first attempts to evade the residue theorem were carried out within the context of

a Schoen threefold X̃ very similar to, but not quite identical with, that of the “heterotic

standard model” introduced in [3–5]. This threefold is a CICY inside A = P2 × P2 × P1

with h1,1(A) = 3. Since the Schoen famously has h1,1(X̃) = 19, this embedding cannot

be favorable.5 Because of that, it was shown [42] that indeed, after introducing a vector

bundle, the superpotential is non-zero in this case. This observation was strengthened by

the results of [43], where several completely different heterotic vacua were presented with

non-vanishing instanton superpotentials, all due to an unfavorable embedding.

A more subtle way of obtaining a non-zero superpotential is to consider threefolds X

with non-trivial torsion in H2(X,Z). As discussed in section 3.1, this can lead to a different

torsion factor χ for curves in the same real homology class [Γ] ∈ H2(X,R) which can spoil

the cancellation among contributions within [Γ]. Such a threefold has been constructed

in [38–40], which was obtained as a Z3 × Z3 quotient of the same Schoen manifold X̃

5In fact, it was shown in [51] that the Schoen cannot be embedded favorably in any product of projec-

tive spaces.
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discussed above. Due to the quotient, one has Tors(H2(X,Z)) = Z3 × Z3. By solving

for the Gromov-Witten invariants of this quotient threefold, it was shown that a subset

of these torsion classes each contained only a single isolated curve. In the presence of a

vector bundle, it was shown [42] that each such curve contributed a non-zero instanton

which, furthermore, did not cancel when summed together. The appearance of torsion in

the quotient actually can be traced back to the non-favorability of the covering Schoen

threefold X̃. Through the quotient, the “non-favorable” curves classes of X̃ — that is,

curves Poincaré-dual to those Kähler forms that did not come from the ambient space —

manifest themselves through Tors(H2) 6= 0.

Given that our examples indeed produce non-vanishing superpotentials, one might

suspect that they fall into this class of non-favorable models. However, as we will now

show, the Calabi-Yau threefolds we considered in the previous section can be embedded

favorably into a toric ambient space.

4.2 Favorable embedding of the Weierstrass model

Our geometric setup — X being a generic elliptic fibration over a toric del Pezzo surface

dPr, r ≤ 3 — satisfies the assumptions of the residue theorem, namely that X has a favor-

able toric embedding. In fact, such an embedding is naturally provided by the Weierstrass

equation (2.4). This equation defines a hypersurface in the projective bundle

A = P(K
⊗2
B︸︷︷︸
∼x

⊕K⊗3
B︸︷︷︸
∼y

⊕ OB︸︷︷︸
∼z

)
φ−→ B . (4.1)

Because of the trivialization property of fiber bundles, A is smooth if B is. Furthermore,

if B is toric, then A is also a toric space (see e.g. [52]). These conditions are satisfies for

B = dPr with r ≤ 3. Smooth toric spaces have a particularly simple (co-)homology. First,

all (co-)homology groups of odd degree are zero. For even degrees, we start with Hd−2(A,R)

with d = dimRA, which is generated by toric divisor. All higher homology groups are then

generated by intersection products of these divisors modulo homological equivalence.

For the case at hand, the toric ambient space A has r + 2 independent divisors: be-

cause A is a fiber bundle over B = dPr, the r + 1 independent divisors of B pull-back to

independent divisors of A. In addition, there is the “hyperplane” class S of the fiber P2;

in terms of equations it is linearly equivalent to the vanishing locus of a linear polynomial

in the fiber coordinates [x : y : z]. Therefore, we have

H6(A,R) = (RS)⊕ φ−1(H2(B,R))

Poincaré-dual
=⇒ H2(A,R) = (RPD(S))⊕ φ∗(H2(B,R)) .

(4.2)

To determine H4(A) ∼= H4(A), we have to take the intersection product (cup product

for cohomology) of (4.2). For that, the only additional input we need to know is that

S · S is homologous to S · φ−1(DB) ∈ S · φ−1(H2(B,R)) for some divisor DB in the base,

whose specific form is irrelevant. Keeping in mind that divisors on B intersect each other

at points, over which the P2-fiber of A defines a 4-cycle class Φ, we have

H4(A,R) = H6(A,R) ·H6(A,R) = S · φ−1(H2(B,R))⊕ (RΦ) ∼= H4(A,R) . (4.3)
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Turning to the elliptic fibration, recall that a generic Weierstrass model X
π→ B inside

this ambient space is smooth and has no reducible fibers. Furthermore, it also has a trivial

Mordell-Weil group. As a consequence, the Shioda-Tate-Wazir theorem [53] implies that

the space of divisors of X is spanned by the zero section σ and vertical divisors, i.e.,

pull-backs from the base. An important feature of the Weierstrass model,

y2z = x3 + g2xz
2 + g3z

3 , (4.4)

is that the zero section σ, marking the point [x : y : z] = [0 : 1 : 0] on the elliptic fiber,

can be viewed as one of the three points of intersection in the P2 fiber of A between the

Weierstrass equation and a hyperplane, e.g. x = 0. Therefore, the divisor class S ∈ H6(A)

restricts to 3σ ∈ H4(X). Since A and X share the same base, the vertical divisors of X are

obviously restrictions of divisors on A as well. We have thus just shown that all divisors,

and by Poincaré-duality also all Kähler classes of X arise as restrictions from A. In fact,

their dimension agree, so H4(X,R) ∼= H6(A,R). Hence, X ⊂ A is favorable.

For the subsequent discussion, it is useful to explicitly determine the 2-cycles on X as

well. Since X is a threefold, 2-cycles are dual to divisors. The independent classes are

H2(X,R) = σ · π−1(H2(B,R))⊕ (RF ) , (4.5)

where F is the class of the elliptic fiber. Note that this is again isomorphic to the restriction

of 4-cycle classes (4.3) on A, since S|X = 3σ and Φ|X = F .

4.3 Evading the residue theorem with irreducible spectral cover bundles

Since the geometry satisfies the assumptions of the Beasley-Witten residue theorem, the

only possible explanation why our examples have non-vanishing superpotentials is that

the bundles we consider do not arise as a restriction of a stable vector bundle on a toric

ambient space. For the “natural” choice of ambient space in terms of the P2 bundle of the

Weierstrass model, this can indeed be shown explicitly.

At first glance, one might be surprised that our spectral cover constructions are so

restrictive. After all, any stable bundle V on an elliptic fibration X can be Fourier-Mukai-

transformed into spectral data (C,N ). The crucial property of our examples is that C is

irreducible and smooth. With this assumption, the second Chern class takes the schematic

form (see (2.13))

c2(V ) = σ · π−1(D1) + π−1(D2 ·D3) = σ · π−1(D1) + k F (4.6)

for some divisors Di ∈ H2(B), and k = D2 ·D3 as intersection number in B.

Let us assume that there is a stable rank n vector bundle W on A that restricts to

V on X. Then, we necessarily have to have c2(W )|X = c2(V ). However, as we have

elaborated above, H4(A), in which (the Poincaré-dual of) c2(W ) lives, is isomorphic to

H2(X) 3 PD(c2(V )). Hence, we must have

c2(W ) =
1

3
S · φ−1(D1) + kΦ . (4.7)
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Now consider the restriction of W to the fiber Φ of A, which gives rise to a stable bundle

on Φ ∼= P2. In general, the second Chern class of a bundle on P2 is simply (Poincaré-dual

to) a collection of points. In our case, the number of these points is

c2(W |Φ) = Φ · c2(W ) = φ−1(pt) · (Σ · φ−1(D̃1) + k φ−1(pt)) = 0 . (4.8)

Furthermore, because we have SU(n) bundles, c1(V ) = 0, which because of the particular

embedding also implies

c1(V ) = c1(W ) = 0 =⇒ c1(W |Φ) = 0 . (4.9)

By the Donaldson-Uhlenbeck-Yau theorem, a stable rank n bundle on P2 with trivial

first and second Chern classes has to be a sum of n trivial line bundles. However, in our

setup, this would imply that the restriction of the bundle V to the elliptic fiber of X is

also trivial:

V |F = (W |X)|F = (W |Φ︸︷︷︸
trivial

)|F . (4.10)

However, the spectral cover bundle is by construction non-trivial on the elliptic fiber F : it

restricts to a sum of n non-trivial, degree-zero line bundles F , which is specified by the n

points on F marked by the n-sheeted cover C. We therefore arrive at the conclusion that

there cannot be a stable vector bundle W on A which restricts V .

Thus, the spectral cover models we presented in the previous section do not satisfy the

Beasley-Witten assumptions with respect to the favorable toric embedding X ⊂ A. This is

consistent with our result that the Pfaffians on Γ and, therefore — because Γ was unique

in its homology class — the superpotential, is non-zero.

Note that our argument for the bundle not extending to the ambient space A is limited

to this particular choice of toric embedding. For example, if there is another favorable

embedding X ⊂ A′, where h1,1(A′) > h1,1(X), then the Chern-classes of a putative bundle

W ′ on A′ which restricts to V can have terms which restrict trivially on X. Thus, just

knowing the Chern-classes of V on X would not allow us to make any predictions about

the structure of W ′. In such a setting, one must find other arguments to disprove the

existence of W ′. In fact, given the validity of the residue theorem, one could view the

superpotential itself as an obstruction of V to extend to a bundle W on any favorable

toric embedding. In the case of threefolds X where curve classes have unique isolated

representatives, this would establish an explicit connection between the Pfaffian and the

cohomology classes that parametrize the obstruction. This could open up a novel, algebraic

approach to understanding — and also evading — the Beasley-Witten theorem.

5 Summary and outlook

In this paper we have presented a class of toy models for 4D heterotic compactifications

that have a non-zero superpotential for the vector bundle moduli. The compactification

spaces are Calabi-Yau threefolds that are elliptically fibered over del Pezzo surfaces dPr.
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By lifting the exceptional curves on dPr with the zero section of the fibration, we obtain

a set of holomorphic, isolated genus-zero curves E which are unique in their homology

class. On these spaces, we then construct stable vector bundles V using spectral data

(C,N ). Employing the algebraic methods developed in [33, 34], we compute the associated

Pfaffian factors for string instantons on the curves E , showing explicitly that they do not

vanish. Since these curves are the only isolated genus-zero representatives within their

homology class, the full superpotential generated by that class has to be non-zero.

Naively, this seems to be in contradiction with the residue theorem of Beasley and

Witten, which guarantees, under certain assumptions, the cancellation of all superpotential

contributions from homologous curves. Indeed, as we have shown, some of our Calabi-Yau

manifolds do satisfy the assumptions that they can be favorably embedded into a toric

ambient space. However, the paradox is resolved because the vector bundles we considered

do not fall into the category that Beasley and Witten considered; that is, they are not

restrictions of vector bundles on the toric ambient space.

One caveat of our analysis is that we have restricted ourselves to a single embed-

ding space, which for elliptic fibrations is always a natural choice. A valid concern is if

there could be other favorable toric embeddings that have a vector bundle on the ambient

space that does restrict to the bundle on the Calabi-Yau threefold. Our approach does

not straightforwardly extend to such cases, and one would have to analyze them one by

one, perhaps using different arguments than those presented in section 4.3. From another

perspective however, the scenarios analyzed here might shed light on an algebraic inter-

pretation of the residue theorem, at least on geometries with isolated rational curves that

are unique in their homology class. Our findings suggests that the non-vanishing of the

superpotential could be understood as an obstruction for the vector bundle V to extend

to any favorable toric embedding space. It would be interesting to quantify these ob-

structions and relate them to the Pfaffian, thereby explicitly arguing against V extending

to other possible toric embeddings. Another exciting direction along the same lines is to

analyze the superpotential in the dual F-/M-theory setting [54–58]. In particular, recent

advances [59–64] on heterotic/F-theory duality uses toric embeddings of the compactifica-

tion spaces, which is therefore naturally tied to the Beasley-Witten theorem. Since in the

dual F-theory the bundle data is also geometrized, one might hope that this could provide

a more direct algebro-geometric approach to the residue theorem.
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