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1 Introduction

Scalar field theories are useful in studying phase transitions and critical phenomena. A large

number of these models have been applied to different condensed matter systems to extract

the critical exponents [1, 2]. The simplest example among them, the φ4 theory, can be used

to study phase transitions with Z2 symmetry breaking, which includes the Ising model [3].

The critical exponents calculated in field theories are usually based on certain per-

turbation methods, such as the ǫ-expansion [3] or the large N expansion (see [71] and

references therein). As a non-perturbative method, the conformal bootstrap program [4, 5]

has proven to be useful in studying two dimensional conformal field theories. It has played

an important role in the classification of two dimensional “minimal models” [6]. In higher

dimensions, significant progress was made in the seminal work of [7]. There has been a

revival of this program since then. An incomplete list of works on the conformal bootstrap

and related topics is [8–70].

The numerical bootstrap is applicable even in regions where neither the ǫ-expansion

nor large N works very well. For the three dimensional Ising model, it has provided the

most precise critical exponents so far [72–74]. For the perturbative regions, the bootstrap

result was also shown to agree with the field theory result. For example, the numerical
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bootstrap for the scaling dimensions of operators in the critical O(N) vector model [75, 76]

agrees perfectly with the large N calculation based on the scalar theories [71]. The Borel

resummation of ǫ-expansion series for scaling dimensions of operators in the critical Ising

model also agrees with the bootstrap result [77].

We will study scalar field theories admitting conformal fixed points whose large N

behaviour is controlled by another CFT with central charge of order one. The specific

models that we will study are closely related to the continuum limit of the Potts model [78].

We would like to first consider a scalar theory with quartic interaction in 4− ǫ dimensions.

The model was referred to as a “restricted Potts model”, and was used as an intermediate

step to study the continuum limit of the Potts model [79]. This model was also recently

revisited in [80]. Its Lagrangian is given by

L =
1

2
∂µφ

i∂µφi +
g1
8
dijmdklmφiφjφkφl +

g2
8
(φiφi)2 (1.1)

The scalars φi transform in the n = N − 1 dimensional representation of the symmetric

group SN . The totally symmetric tensor dijk is invariant under the action of SN . The name

“restricted Potts model” is due to the fact that besides SN , it also preserves an extra Z2

symmetry under which all the scalars change their signs. Its symmetry group is therefore

slighter bigger than the SN symmetry of the original Potts model. Suppose we turn on

the a trilinear interaction 1
3!dijkφ

iφjφk, the Z2 symmetry is broken and one gets the model

which describes the continuum limit of the Potts model. The second model that we will

consider is a φ3 theory in 6− 2ǫ dimensions, given by

L =
1

2
∂µφ

i∂µφi +
g

6
dijkφ

iφjφk (1.2)

It can also be used to study the Potts model. In close to six dimensions, quartic interactions

of scalars are irrelevant. The φ4 terms in (1.1) can be neglected. The N -state Potts model

is known to undergo a first order phase transition for large enough N . In accord with this

fact, this φ3 theory is known to have a non-unitary fixed point at imaginary coupling g.

The model (1.1) is known to have two extra fixed points other than the free fixed point

and the O(N) invariant fixed point where symmetry is enhanced [79]. In section 2, we look

at their operator spectrum to set up the background for the later numerical bootstrap study.

Taking the large N limit of the ǫ-expansion series for anomalous dimensions and comparing

with the corresponding series in the Ising model, it can be seen that the scaling dimensions

of all the operators that we have studied approach a limit fixed by the scaling dimensions

of operators in the critical Ising model. The non-unitary fixed point of (1.1), on the other

hand, has a largeN limit whose operator spectrum is fixed by the Lee-Yang edge singularity.

We then employ the numerical bootstrap method to study CFTs with SN ⊗Z2 global

symmetry. We observe that in three dimensions, there indeed exist a series of kinks,

whose locations at large N approach a point given by the scaling dimension of the spin

operator σ and the thermal operator ǫ in the critical Ising model. This confirms the large

N behaviour predicted by the ǫ-expansion. Setting N = 4, we are able to observe the

famous cubic anisotropic fixed point [81–84] with three component spins. Interestingly, the

scaling dimensions of ∆φ and ∆S do not agree with the O(3) invariant Heinsberg model,
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as opposed to the prediction in [85]. As a byproduct of our numerical bootstrap study, we

also discover a series of new kinks. We are, however, not able to identify them with any

CFTs with Lagrangian descriptions. By doing the numerical bootstrap with S3 symmetry

in two dimensions, we also show that the “minimal models” of W3 algebra saturate the

numerical bootstrap bound. These results are presented in section 3.

2 Renormalization of scalar theories

2.1 “Restricted Potts model” → Ising model

For the restricted Potts model (1.1), the invariant tensor dijk can be constructed explicitly

according to [79]. It is possible to define a set of “vielbeins” eαi with α = 1 . . . N and

i = 1 . . . N−1 through a recursion relation. These vielbeins tell us how a hypertetrahedron

with N vertices can be embedded in N − 1 dimensional space. From a group theory point

of view, the N -dimensional representation is reducible, N = 1 ⊕ n. Take N = 3 as an

example, the three vielbeins

e1 =

(√
3

2
,−1

2

)

, e2 =

(

−
√
3

2
,−1

2

)

, e3 = (0, 1). (2.1)

form an equilateral triangle. The symmetric group S3 consists of all SO(2) rotations that

keep this triangle invariant. Using eαi , the totally symmetric tensor is defined as

dijk =
∑

α

eαi e
α
j e

α
k , (2.2)

The details of the two loop calculation of (1.1) are summarised in appendix A, which is

based on the general formula in [86]. In principle, it is easy to extend the result to three

loops using the result of [80]. We will however only focus on the two loop results.

The beta functions of this model have, in total, four fixed points

free theory : g1 = g2 = 0,

critical O(n) point : g1 = 0, g2 6= 0,

P1 : g1 6= 0, g2 6= 0,

P2 : g1 6= 0, g2 6= 0, (2.3)

since SN ⊗ Z2 is a subgroup of O(n), with n = N − 1. The O(n) invariant fixed point

is also present. We will focus on the two extra new fixed points P1 and P2. The scaling

dimensions of the operators we have studied are given in table 1 and table 2. The quadratic

operators fall into various irreps of the symmetry group SN (they are clearly Z2 even), as

n⊗ n → S⊕A⊕ n⊕ T′. (2.4)

Remember that the product of two vector representations of the O(n) group can be de-

composed into three irreducible representations following n ⊗ n → S ⊕ A ⊕ T. S denotes

the O(n) singlet representation, A denotes the antisymmetric tensor representation, and
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Operator Z2 ∆ ∆n→∞

φ ∈ n − (A.5) ∆Ising
σ

φ2 ∈ S + (A.6) D −∆Ising
ǫ

φ4 ∈ S, 1st + (A.9) 2× (D −∆Ising
ǫ )

φ4 ∈ S, 2st + (A.9) ∆Ising
ǫ′

φ2 ∈ n + (A.7) ∆Ising
ǫ

φ2 ∈ T′ + (A.8) 2×∆Ising
σ

Table 1. Scaling dimensions of low-lying operators at the fixed point P1.

Operator Z2 ∆ ∆n→∞

φ ∈ n − (A.5) ∆Ising
σ

φ2 ∈ S + (A.6) ∆Ising
ǫ

φ4 ∈ S, 1st + (A.10) 2×∆Ising
ǫ

φ4 ∈ S, 2st + (A.10) ∆Ising
ǫ′

φ2 ∈ n + (A.7) ∆Ising
ǫ

φ2 ∈ T′ + (A.8) 2×∆Ising
σ

Table 2. Scaling dimensions of low-lying operators at the fixed point P2.

T’ denotes the symmetric traceless representation. For SN , because of the existence of the

invariant tensor dijk, the T representation of O(n) branches into n and T ′. It is interesting

to observe that for both fixed points, the scaling dimensions of low lying operators in the

large N limit can be expressed in terms of the Ising model spectrum.

2.2 The spectrum of (de)coupled CFTs

We should mention that the large N behaviour can already be partially inferred from

combining the result of [80] and the much earlier work of [87, 88] on cubic anisotropic

systems. We will explain this point in the present section, and try to better understand

the large N limit.

In [80], another φ4 theory was studied, whereby the model was obtained by replacing

the dijmdklm in (1.1) with

Qijkl =

{

1, if i = j = k = l,

0, otherwise.
(2.5)

This model has a long history of being studied [81–84, 89–91], and certain critical exponents

are known up to six loops [92]. It preserves a symmetry group which is the generalized
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symmetric group S(2, N) = SN ⊗ ZN
2 . Like (1.1), it also has four fixed points

free theory : g1 = g2 = 0,

critical O(N) point : g1 = 0, g2 6= 0,

cubic anisotropic point : g1 6= 0, g2 6= 0,

N -fold product of Ising Models : g1 6= 0, g2 = 0. (2.6)

It was shown in [80] that certain numbers that appear in the renormalization calculations of

both models have the same large N limit (see section 5.1.2), and therefore the two models

approach the same limit at large N → ∞.

It is straightforward to work out the spectrum of the N -fold product of CFTs. Suppose

a certain CFT preserves the symmetry group G, then N decoupled copies of this CFT

preserve the symmetry group G ≀ SN = SN ⊗ GN . The symbol “≀” stands for wreath

product, which can be viewed as a shorthand notation. The group GN acts independently

on each copy of the CFTs, while the SN group interchanges them. Let’s first consider only

operators which are invariant under the whole group G ≀ SN . Suppose the composite CFT

has the following conformal primary operators which are invariant under the action of G,

O1, O2, O3, . . . . (2.7)

The N -fold product then has the following operators which are also invariant under SN

permutations,

O1 =
1√
N

∑

i

Oi
1, O2 =

1√
N

∑

i

Oi
2, O3 =

1√
N

∑

i

Oi
3, . . . , (2.8)

where space-time indices are suppressed for simplicity. The index i enumerates the CFT

copies. Picking two operators from the same copy, take O1 and O2 as an example, one can

easily make SN invariant operators of the following form

1√
N2 −N

∑

i 6=j

Oi
1O

j
2. (2.9)

The coefficient in front of the operators is due to normalization. For operators with non-

zero spin, the space-time indices need to be arranged properly for them to have definite

spin. The condition i 6= j ensures that the composite operator is made of operators from

two different copies of the CFTs, so that it would not be renormalised. The summation

over i 6= j pairs ensures SN invariance. If O1 and O2 are scalars, we can also construct the

following operators

[O1O2]n=0,l=1 =
1√

N2 −N

∑

i 6=j

∆2(∂µO
i
1)O

j
2 −∆1O

j
1(∂µO

i
2).

[O1O2]n=1,l=0 =
1√

N2 −N

∑

i 6=j

(

∆1

2∆1 + 2−D
(∂2Oi

1)O
j
2

−∂µO
i
1∂

µOj
2 +

∆2

2∆2 + 2−D
Oi

1(∂
2Oj

2)

)

.

. . . . (2.10)
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We have borrowed the notation [O1O2]n,l for double trace operators in the AdS/CFT

context [93–96]. The scaling dimensions of these operators are simply ∆ = ∆1+∆2+2n+l.

The derivatives acting on the operators are carefully arranged so as to ensure that they

are conformal primaries. The procedure of choosing an appropriate derivative structure

is exactly the same as constructing conformal primaries for “generalized free fields”, as

studied in [95]. One can also follow it to construct “double trace” conformal primaries

with higher spin and twist. Even though we are not aware of it appearing anywhere in the

literature, a similar procedure should exist for constructing double trace operators made of

operators with non-zero spins. It is also interesting to look at the 4-pt function consisting

of identical scalar operators,

〈O(x1)O(x2)O(x3)O(x4)〉

=
1

N2

∑

i,j,k,l

〈Oi(x1)O
j(x2)O

k(x3)O
l(x4)〉

=
1

N2

∑

i=j 6=k=l

1

x2∆O

12 x2∆O

34

+
1

N2

∑

i=k 6=j=l

1

x2∆O

13 x2∆O

24

+
1

N2

∑

i=l 6=j=l

1

x2∆O

14 x2∆O

23

+
1

N2

∑

i=j=k=l

〈OOOO〉

=

(

1− 1

N

)(

1

x2∆O

12 x2∆O

34

+
1

x2∆O

13 x2∆O

24

+
1

x2∆O

14 x2∆O

23

)

+
1

N
〈OOOO〉. (2.11)

The condition i = j 6= k = l in the second line makes sure that Oi and Oj come from

the same CFT copy, while Ok and Ol comes from a different copy. Its contribution to

the four-point function therefore reduces to a product of two-point functions. The leading

term in the 1
N

expansion clearly factorises into disconnected two-point functions. It is

equivalent to the boundary four-point function given by a free massive scalar with AdS

massm2L2 = −∆Ising
ǫ (D−∆Ising

ǫ ) [93, 95]. The sub-leading behaviour receives contributions

from both a disconnected piece and a connected piece, which are given by the four-point

function of the composite CFT, as denoted by 〈OOOO〉.
Specialising to the Ising model, the first three S-channel operators with spin-0 and

lowest scaling dimensions are

1√
N

∑

i ǫ
i, ∆ = ∆Ising

ǫ

1√
2N2−2N

∑

i 6=j ǫ
iǫj , ∆ = 2×∆Ising

ǫ

1√
N

∑

i ǫ
′i, ∆ = ∆Ising

ǫ′ . (2.12)

They have the same scaling dimension as the S-channel operators1 at the fixed point P2.

See table 2. The leading operator in the n-channel is simply ǫi (after projecting out the
∑

i ǫi which is SN invariant). These operators will be important for our later conformal

bootstrap study.

1“S-channel operators” is short for operators transforming in the singlet representation of SN .
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At the cubic anisotropic fixed point of (2.5), the effective Lagrangian becomes [82],

g1 = gIsing +O
(

1

N

)

, g2 = O
(

1

N

)

. (2.13)

The action of the model becomes N copies of the Ising model action plus certain O( 1
N
)

corrections. It can be shown that this is also true for both the fixed point P1 and P2 of (1.1).

At large N , the renormalization is clearly dominated by the Ising model coupling, which

explains why the scaling dimensions of the Ising operators appear in the spectrum. Explicit

comparison of their operator spectrum shows that P2 approaches the N -fold product of

Ising models, which lives in the UV, while P1 approaches the IR cubic anisotropic fixed

point.

The IR fixed points fit into the class studied by Victor Emery in [88]. Their critical

exponents are related to Ising critical exponents by [82, 88, 97]

η = ηIsing +O
(

1

N

)

, ν =
νIsing

1− αIsing
+O

(

1

N

)

, and α =
αIsing

1− αIsing
+O

(

1

N

)

.

(2.14)

Translated into operator dimensions, this means

∆φ → ∆Ising
σ , and ∆φ2∈S → D −∆Ising

ǫ , (2.15)

agreeing exactly with table 1. What’s more, operators like

1√
N

∑

i

ǫi (2.16)

self average as in the critical O(N) vector model [71]. Their four-point functions are ex-

pected to factorise in the large-N limit as in (2.11). The spectrum of S-channel operators

should be exactly the same as the N -fold product of Ising models and also fall into the

categories of “single trace operators”, “double trace operators” and so on. The only mod-

ification that one needs to make is the replacement,

∆Ising
ǫ → D −∆Ising

ǫ . (2.17)

Notice that in table 1 an operator with D−∆Ising
ǫ is found to be accompanied by a “double

trace” operator with the scaling dimension 2 × (D − ∆Ising
ǫ ). The IR fixed point can be

reached from the UV fixed point of the decoupled Ising model by turning on the double

trace deformation
∑

i 6=j ǫ
iǫj . This type of flow at large N was studied in the early days of

the AdS/CFT correspondence [98–102]. The replacement (2.17) corresponds to the change

of boundary conditions for the scalar field in AdS, and does not change its mass since

M2
AdSL

2 = −∆(D − ∆). The exact same phenomenon happens for O(N) vector models.

At the free theory limit, the scaling dimension of the first O(N) singlet operator is given by

∆[
∑

i φ
iφi] = 1, while at the critical O(N) point, its dimension is given by ∆ = D− 1 = 2,

plus 1
N

corrections.
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Operator ∆ ∆n→∞

φ ∈ n (A.12) ∆Lee-Yang
φ

φ2 ∈ S (A.12) D −∆Lee-Yang
φ

φ3 ∈ S (A.12) ∆Lee-Yang
φ3

Table 3. Scaling dimensions for continuum N-state Potts from φ3 theory.

2.3 Potts model → Lee-Yang singularity

Before closing this section, we briefly mention the large N behaviour of the scalar

model (1.2), the continuum limit of N -state Potts models. The theory has a non-unitary

fixed point at generic N . It was pointed out in [103] that the N = 1 limit of the N -state

Potts model gives the percolation model. Based on this fact, people have been using (1.2)

to calculate the critical exponents of the percolation problem [104, 105]. The three loop

renormalization for operator dimensions is summarised in table 3 (see appendix A.2 for

more details). By taking the N → ∞ limit, it is clear that the scaling dimensions of opera-

tors are fixed by the spectrum of the Lee-Yang edge singularity CFT. It can also be shown

that the coupling constant at large N is given by

g = gLee-Yang +O
(

1

N

)

. (2.18)

By the same argument as in the previous section, operators that are invariant under SN

should fall into the categories of “single trace operators”, “double trace operators” and so

on. The explicit ǫ-expansion result shows that the single trace spectrum is given by the

spectrum of the Lee-Yang edge singularity, with the replacement

∆Lee-Yang
φ → D −∆Lee-Yang

φ . (2.19)

3 Bootstraping CFTs with SN or bigger symmetry

3.1 Bootstraping CFTs with SN ⊗ Z2 symmetry

In this section, we show that the fixed point P1 studied in the previous section can be

observed in numerical bootstrap. Conformal bootstrap is based on crossing symmetry and

unitarity. Crossing symmetry means that the following two ways of computing four-point

functions should lead to equivalent results

〈φi(x1)φj(x2)φk(x3)φl(x4)〉 = 〈φi(x1)φj(x2)φk(x3)φl(x4)〉. (3.1)

The lines connecting the operators denote how the operator product expansion (OPE) is

performed. This is true for any conformal field theories. Unitarity on the other hand

requires all the OPE coefficients λO1O2O3
to be real.

By assuming certain conditions on the spectrum of operators that appear in the OPE

φi × φj ∼
∑

O

O, (3.2)
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XX

0.505 0.510 0.515 0.520 0.525 0.530 0.535 0.540
1.0

1.1

1.2

1.3

1.4

1.5

Δϕ

Δ
n

Figure 1. Numerical bootstrap bound on the scaling dimensions of the first n-channel scalar

operators in CFTs with SN ⊗ Z2 symmetry (small ∆φ region). Yellow, red, green and blue curves

are for N = 4, 6, 10, 100 respectively. The black cross denotes the scaling dimension of Ising model

operators (∆Ising
σ ,∆Ising

ǫ ). The bounds are obtained at Λ = 19.

and testing the positivity of λ2
φφO, one can then check whether such an assumption is

consistent with unitarity and crossing symmetry. We will leave the details of how this

method was implemented in appendix B. The conditions that we have assumed for the

spectrum are:

• the external operator φi has scaling dimension ∆φ,

• the first spin-0 operator in the n-channel has scaling dimension greater than or equal

to ∆n,

• all the other operators that appear in φi × φj have scaling dimensions greater than

or equal to the unitarity bound.

We have scanned a certain region of the (∆φ,∆n) plane and the result is presented in

figure 1. The result is obtained by setting Λ = 19, with the range of spins chosen to be

l ∈ {1, . . . 25} ∪ {49, 50}. The region above the curves is excluded, which means there are

no unitary CFTs with the assumed spectrum.

For large enough N , a clear kink can be observed in the numerical bootstrap curve.

The appearance of kinks in numerical bootstrap is a strong indication of the existence

of a conformal field theory. More interestingly, as N increases, the location of the kink

approaches the point (∆Ising
σ ,∆Ising

ǫ ), as denoted by the black cross in figure 1. This confirms

the prediction from the previous section.

From table 1 and 2, it is clear that (∆φ,∆n) should approach (∆Ising
σ ,∆Ising

ǫ ) for both

fixed points P1 and P2. We can introduce one extra condition on the assumed spectrum:

• The first spin-0 operator in the S-channel has scaling dimension greater than or equal

to ∆n + 0.1.

– 9 –
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1.0
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1.5

Δϕ

Δ
n

Figure 2. Numerical bootstrap bound on the scaling dimensions of the first n-channel scalar

operators in CFTs with S4 ⊗ Z2 symmetry (small ∆φ region). The dashed line is calculated at

Λ = 19, while the solid line is calculated at Λ = 27. If Λ is further increased, the change of the

bounds is no long visible by naked eyes.

At large enough N , this assumption would clearly exclude point P2, while preserving P1.

Notice that for the fixed point P1, the leading S-channel operator has scaling dimension

D−∆Ising
ǫ ≈ 1.5874. While for P2, the leading S-channel operator has dimension ∆Ising

ǫ ≈
1.4126. We have checked that the S100 curve has no significant change after introducing this

condition. This shows that the fixed point P1 is located around the kink. At N = 100, since

the two fixed points are very close to each other in the (∆φ,∆n) plane, it not clear which one

of them sits closer to the original bootstrap curve when the above condition is not imposed.

The N = 4 case deserves some special attention. The symmetry group S4 ⊗ Z2 is

isomorphic to S3 ≀ Z2 = S3 ⊗ Z3
2 [79]. The two groups clearly have the same order as

4! × 2 = 3! × 23 = 48. This means that the “restricted Potts model” (1.1) with N = 4 is

equivalent to the cubic anisotropic model (2.5) with N = 3. From figure 1 itself, it is not

clear whether there is a CFT saturating the bootstrap bound or not, since there is no clear

kink in the N = 4 curve. One can study the corresponding extremal functional [107], as

shown in figure 3. The functional is obtained by setting the n-channel gap to saturate the

bound on ∆n computed at Λ = 27 (which is shown in figure 2).

Clearly the functional is discontinuous at around ∆φ = 0.5179(2). Just like for the 3D

Ising model [73], we can treat (∆φ,∆S) = (0.5179(2), 1.495(6)) as our prediction for the

scaling dimensions of the corresponding operators. The red error bars are the estimation of

the operators’ dimensions in the three dimensional O(3) invariant Heisenberg model using

the Monte Carlo method [106]. An analysis of the six loop perturbative calculation in

the cubic anisotropic model and in the O(3) invariant Heisenberg model shows that their

(∆φ,∆S) should agree with each other to high precision [85]. Our non-perturbative result

from numerical bootstrap, however, shows this might not be the case.2 We should emphasis

2This difference was noticed recently in [108].

– 10 –



J
H
E
P
0
9
(
2
0
1
8
)
1
0
3

0.510 0.515 0.520 0.525 0.530 0.535 0.540

0.4

0.6

0.8

1.0

1.2

1.4

1.6

Δϕ

Δ
S

0.515 0.516 0.517 0.518 0.519 0.520
1.40

1.45

1.50

1.55

1.60

Figure 3. The extremal functional obtained by minimizing the central charge and setting the

n-channel gap to saturate the bound on ∆n computed at Λ = 27, while the extremal functional

itself is calculated at Λ = 23. The darker yellow and blue dots are the first and second operators

respectively appearing in the extremal functional. The red error bars are the scaling dimensions of

corresponding operators in the O(3) invariant Heisenberg model obtained using the Monte Carlo

Method [106]. We have checked that suppose one increase Λ at which the extremal functional is

calculated, the change of dots is no long visible by naked eyes.

here we have assumed that the discontinuity in the extremal functional is caused by the

cubic anisotropic fixed point rather than an unknown CFT. This assumption need to be

confirmed by measuring the critical exponents of the cubic anisotropic fixed point using

either Monte Carlo simulation, especially by measuring the scaling dimension ∆n explicitly.

3.2 Other bootstrap results: unidentified kinks

The study in the previous section was focused on the region where ∆φ was close to the

unitarity bound. It is straight forward to extend the result to the region with much higher

∆φ. This is presented in figure 4. Surprisingly, for large enough N , we can again observe

some kinks in the numerical bootstrap curve. Similar kinks can be found on the bootstrap

curve obtained by bounding the S-channel operators in O(N) invariant CFTs [109]. Unlike

the CFTs in the previous section, we are not able to find Lagrangian descriptions for them.

Instead, we will show that these kinks pass some consistency checks for them to actually be

CFTs. Any full-fledged conformal field theory necessarily contains the energy momentum

tensor in its spectrum. There should be a spin-2 operator saturating the unitarity bound.

If the kinks we observe correspond to actual CFTs, they should not survive when a gap

is introduced for the spin-2 operators in the S-channel. This fact is tested by adding the

following condition on the assumed spectrum

• the first spin-2 operator in the S-channel has scaling dimension greater than or equal

to 3.05,

Taking the N = 10 curve as an example, the allowed region for (∆φ,∆n) is presented

in figure 5. The solid line corresponds to the result without the above condition, while
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Figure 4. Numerical bootstrap bound on the scaling dimension of the first n-channel scalar operator

in CFTs with SN ⊗ Z2 symmetry (large ∆φ region). Yellow, red, green and blue curves are for

N = 4, 6, 10, 100 respectively. The curves are obtained at Λ = 23.
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Δ
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Figure 5. Numerical bootstrap bound on the scaling dimension of the first n-channel scalar operator

in CFTs with S10⊗Z2 symmetry. The solid line corresponds to bounds without a spin-2 gap, while

the dashed shows the result when a small gap for the spin-2 operator in the S-channel is introduced.

for the dashed line, the above condition is included. Clearly, when the gap for the spin-

2 operator is imposed, the curve moves downward, showing that the energy momentum

tensor is present in the spectrum.

3.3 Other bootstrap results: “minimal models” of W3 algebra

The crossing equations we derived in appendix B apply to CFTs with SN ⊗Z2 symmetry.

The method can also be easily generalized to study CFTs with SN symmetry, simply by

changing the assumptions on the spectrum to be
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Figure 6. Numerical bootstrap bound on the scaling dimension of the second n-channel scalar

operator in CFTs with S3 symmetry. The crosses correspond to minimal models with W3 algebra.

The first cross to the left is the 3-state Potts model.

• the external operator φi has scaling dimension ∆φ,

• the first spin-0 operator in the n-channel has scaling dimension ∆φ, while the second

spin-0 operator in the n-channel has scaling dimension greater than or equal to ∆′
n,

• all other operators that appear in φi × φj have scaling dimensions greater than or

equal to the unitarity bound.

Notice since dijm is an invariant tensor of the SN group (which is not invariant under

SN ⊗ Z2), the scalar operator φi would appear in its own OPE, φi × φj ∼ dijkφ
k.

We have studied the allowed region of (∆φ,∆
′
n) for CFTs with S3 symmetry in two

space-time dimensions. This result is presented in figure 6. We found that “minimal

models” of W3 algebra, as classified in [110], saturate the unitarity bound. The W3 algebra

is an extension of the Virasoro algebra introduced by Zamolodchikov in [111]. It contains

the Virasoro algebra as a subalgebra. Besides the usual spin-2 operators Ln, the W3

algebra contains spin-3 operators Wn which satisfy non-trivial commutation relations with

Ln and among themselves. Like for the Virasoro algebra, “minimal models” here means

the fusion rules of the models consist of a finite number of irreducible representations of

W3. It was shown in [110] that all these models have a global Z3 symmetry, therefore,

taking into account complex conjugation of complex scalars, one gets the symmetric group

S3 = Z3 ⊗Z2. The central charges of these models and the scaling dimensions of their W3
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irreducible representations are given by

Cp = 2

(

1− 12

p(p− 1)

)

(3.3)

∆

[

Φ

(

n m

n′ m′

)

]

=
1

12p(p+ 1)

(

3((p+ 1)(n+ n′)− p(m+m′))2

+ ((p+ 1)(n− n′)− p(m−m′))2 − 12

)

, (3.4)

where m,n,m′, n′ and p are positive integers whose ranges are n+ n′ ≤ p− 1, m+m′ ≤ p

and p ≥ 4. The horizontal and vertical axis in figure 6 corresponds to operators with

∆φ = 2×∆

[

Φ

(

1 2

1 1

)

]

=
2(p− 3)

3(p+ 1)
, and ∆′

n = 2×∆

[

Φ

(

1 3

1 1

)

]

=
4(2p− 3)

3(p+ 1)
, (3.5)

respectively. They satisfy

∆′
n =

5

2
∆φ + 1, (3.6)

which saturates the numerical bootstrap bound. It was discovered in [112] that minimal

models of the Virasoro algebra also saturate the numerical bootstrap bound for CFTs with

Z2 symmetry. It is interesting to observe that minimal models of the W3 algebra also share

the same feature. It would be interesting to extend this result to other W-algebras.

4 Discussion

We have shown that there exist two series of conformal fixed points approaching the

(de)coupled Ising model and the Lee-Yang edge singularity respectively in the large N

limit. It would be interesting to understand whether it is possible to replace the large

N limit by other CFTs such as the XY-model, Heisenberg model, etc. A naive guess is

the following. The CFTs that approach the Lee-Yang edge singularity have the symmetry

group SN ⊗ 1, while the CFTs that approach the Ising model have the symmetry group

SN ⊗ Z2. It is therefore natural to consider scalar models with symmetry group SN ⊗ G,

as a candidate for large N CFTs that approach a CFT with symmetry group G. We leave

this for future investigation.

In section 3.1, we have shown that one can observe the fixed point P1 in the numerical

bootstrap curve. It would be interesting to study its spectrum more carefully. The best

way to do this is probably by first studying the possibility of isolating this fixed point using

mixed correlator bootstrap, along the lines of [74, 76, 113, 114]. For the N = 4 special case,

a further comparison with experiment or Monte Carlo would also be interesting. It is also

desirable to try to extract the O(1/N) corrections to the operator dimensions and compare

them with our numerical bootstrap result. Since the O(1/N) effect receives contributions

from all orders in the ǫ-expansion, a proper resummation is necessary. Finally, it would be

interesting to investigate the possibility of performing a proper large-N calculation like in

the O(N) vector model (see [71] for a review).
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Before we close, let’s think about the large N (de)coupled CFTs in the context of

the AdS/CFT correspondence. As explained in section 2.2, the large N spectrum of

(de)coupled CFTs naturally breaks down into the categories of “single trace operators”,

“double trace operators” and so on. It is not yet clear what are the necessary and sufficient

conditions for a CFT to have a weakly coupled dual description in AdS [93, 94, 96, 116–

118]. As conjectured in [93], besides large N factorization, any CFT with an Einstein-like

local bulk dual description must also have a large gap for all single trace operators with

spin higher than 2. This is clearly not the case for the large N limit of decoupled CFTs.

As shown in section 2.2, the operators that can be interpreted as “single trace” operators

are simply the S-channel operators of the component CFT, which clearly contains oper-

ators with arbitrary spin. If the dual theory indeed exists, it should be more similar to

Vasiliev’s higher spin theory [119, 120]. However, since the CFT operators do not saturate

the unitarity bound, higher spin symmetry is clearly broken in this case.

Acknowledgments

We would like to thank Youjin Deng, Zhijin Li, Ziyang Meng, Vladislav Vaganov and

Yi Pang for helpful discussion and comments. The work of NS is supported by ITP-

CAS. The numerical computations in this work are partially supported by HPC Cluster of

SKLTP/ITPCAS.

A Renormalization of scalar field theory

A.1 3-loop renormalization of generic φ4 theory in 4 − ǫ dimensions

Suppose a group preserves a totally symmetric invariant tensor dijk, one can define the

following constants {T2, T3, T5, T71, T72} as [105]

di1i3i4di2i3i4 = T2δi1i2

dii1i2dji1i3dki2i3 = T3dijk

dii1i2dji3i4dki5i6di1i3i5di2i4i6 = T5dijk

dii1i2dji3i4dki5i6di1i3i7di2i5i8di4i6i9di7i8i9 = T71dijk

dii1i2dji3i4dki5i6di1i3i7di2i5i8di4i8i9di6i7i9 = T72dijk . (A.1)

Using the general formula summarised in [86], we can calculate the scaling dimensions of op-

erators in 4−ǫ up to two loop order. For a scalar field theory given by the Lagrangian (1.1),

we get the beta function

β1 = −ǫg1 +
1

C

[

A1g
2
1 +A2g1g2 +A3g

2
2 +A4g

3
1 +A5g

2
1g2 +A6g1g

2
2 +A7g

3
2

]

β2 = −ǫg2 +
1

C

[

B1g
2
1 +B2g1g2 +B3g

2
2 +B4g

3
1 +B5g

2
1g2 +B6g1g

2
2 +B7g

3
2

]

(A.2)

with the coefficient given by table 4.
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A1 16π2nT 2
2 +96π2nT3T2+256π2nT 2

3 +64π2nT5−288π2T 2
2 −192π2T3T2+512π2T 2

3 +128π2T5

A2 192π2nT2+384π2nT3−384π2T2+768π2T3

A3 0

A4 nT 3
2 +2nT3T

2
2 −20nT 2

3 T2−8nT5T2−64nT 3
3 −32nT3T5−32nT71+30T 3

2 +92T3T
2
2 +88T 2

3 T2

+16T5T2−128T 3
3 −64T3T5−64T71

A5 −32nT 2
2 −112nT3T2−192nT 2

3 −48nT5+256T 2
2 +64T3T2−384T 2

3 −96T5

A6 −5n2T2−10n2T3−72nT2−184nT3+164T2−328T3

A7 0

B1 128π2T 3
2 +320π2T3T

2
2 −128π2T 2

3 T2−128π2T5T2

B2 64π2nT 2
2 +128π2nT3T2−128π2T 2

2 +256π2T3T2

B3 16π2n2T2+32π2n2T3+96π2nT2+320π2nT3−256π2T2+512π2T3

B4 −16T 4
2 −76T3T

3
2 −112T 2

3 T
2
2 +32T3T5T2+64T71T2

B5 −5nT 3
2 −20nT3T

2
2 −20nT 2

3 T2−86T 3
2 −240T3T

2
2 +56T 2

3 T2+96T5T2

B6 −44nT 2
2 −88nT3T2+88T 2

2 −176T3T2

B7 −9n2T2−18n2T3−24nT2−120nT3+84T2−168T3

C 256π4 (nT2+2nT3−2T2+4T3)

Table 4. Coefficients that appear in β function.

The anomalous dimensions are given by

γφ =
g22(n+ 2) + g21T

2
2 + 2g1T2 (g1T3 + 2g2)

1024π4
,

γφ2∈S =
16π2 (g2(n+ 2) + 2g1T2)− 3

(

g22(n+ 2) + g21T
2
2 + 2g1T2 (g1T3 + 2g2)

)

256π4
,

γφ2∈n =
(g1T2 + 2g1T3 + 2g2)

16π2

−g22(n+ 6) + g21
(

T3T2 + 6T 2
3 + 2T5

)

+ 8g2g1 (T2 + T3)

256π4
,

γφ2∈T ′ =
1

256π4(n− 2)(n+ 1)

(

− g22((n− 2))(n+ 1)(n+ 6)− 4g1g2
((

n2 + n− 6
)

T2

)

+32π2 (g1(n− 2)T2 − 2g1nT3 + g2(n− 2)(n+ 1))

+g21
(

4n
(

3T 2
3 +T5

)

+ (6− 7n)T 2
2 − 4(n− 3)T3T2

)

)

. . . . (A.3)

Since the symmetric group SN also preserves a totally symmetric invariant tensor dijk,

they fall into the type of models that can be calculated using the above formulas. Using

the explicit construction of dijk in [79], it is easy to calculate the constants that appear

in (A.1), they are

T2 =
(n− 1)(n+ 1)2

n3
,

T3 =
(n− 2)(n+ 1)2

n3
,
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T5 =

(

(n− 2)2 + 1
)

(n+ 1)4

n6
,

T71 =
(n+ 1)6

(

(n+ 1)3 − 9(n+ 1)2 + 29(n+ 1)− 32
)

n9
,

T72 =
(n− 2)(n+ 1)6

(

(n+ 1)2 − 6(n+ 1) + 11
)

n9
. (A.4)

Plugging them into (A.2), solving β1 = β2 = 0, we find the four fixed points in (2.3). The

free fixed point is not renormalised. For other points, we can use (A.3) to get the spectrum.

For φ, we have

∆
O(N)
φ = 1− ǫ

2
+

(n+ 2)ǫ2

4(n+ 8)2
+ . . . ,

∆P1

φ = 1− ǫ

2
+

(

n2 + 8n+ 7
)

ǫ2

108(n+ 3)2
+ . . . ,

∆P2

φ = 1− ǫ

2
+

(

n4 − 9n3 + 31n2 − 45n+ 22
)

ǫ2

108 (n2 − 5n+ 8)2
+ . . . . (A.5)

For the quadratic operator in the S-channel, we have

∆
O(N)
φ2∈S = 2− 6ǫ

n+ 8
+

(n+ 2)(13n+ 44)ǫ2

2(n+ 8)3
+ . . .

∆P1

φ2∈S = 2− (n+ 7)ǫ

3n+ 9
−

(

19n4 − 182n3 + 672n2 + 2614n+ 1741
)

ǫ2

162(n− 5)(n+ 3)3
+ . . .

∆P2

φ2∈S = 2− 2
(

n2 − 6n+ 11
)

ǫ

3 (n2 − 5n+ 8)
+

+
ǫ2

162(n− 5) (n2 − 5n+ 8)3

(

19n7 − 293n6 + 2058n5 − 8724n4 + 23565n3

−38823n2 + 34622n− 12424

)

+ . . . (A.6)

For the quadratic operator in the n-channel, we have

∆
O(N)
φ2∈n = 2 +

(

2

n+ 8
− 1

)

ǫ+

(

−n2 + 18n+ 88
)

ǫ2

2(n+ 8)3
+ . . .

∆P1

φ2∈n = 2− 2(n+ 4)ǫ

3(n+ 3)
+

(

19n4 + 208n3 − 318n2 − 1616n− 1109
)

ǫ2

162(n− 5)(n+ 3)3
+ . . .

∆P2

φ2∈n = 2− 2
(

n2 − 5n+ 9
)

ǫ

3 (n2 − 5n+ 8)
+

ǫ2

162(n− 5) (n2 − 5n+ 8)3

(

19n7 − 379n6 + 3200n5

−15310n4 + 45287n3 − 82423n2 + 84478n− 37176

)

+ . . . (A.7)

For the quadratic operator in the T’-channel, we have

∆
O(N)
φ2∈T ′ = 2 +

(

2

n+ 8
− 1

)

ǫ+

(

−n2 + 18n+ 88
)

ǫ2

2(n+ 8)3
+ . . .
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∆P1

φ2∈T ′ = 2 +

(

2

3(n+ 3)
− 1

)

ǫ−
(

−3n4 + 112n3 + 102n2 + 864n+ 1741
)

ǫ2

162(n− 5)(n+ 3)3
+ . . .

∆P2

φ2∈T ′ = 2 +

(

2

3 (n2 − 5n+ 8)
− 1

)

ǫ

+
ǫ2

162(n− 5) (n2 − 5n+ 8)3

(

3n7 − 57n6 + 548n5 − 2938n4 + 9239n3

−17917n2 + 21242n− 12424

)

+ . . . . (A.8)

The scaling dimension of the quartic operator can be calculated using the eigenvalue of the

matrix ∂βi

∂λj
. For P1, the final result turns out to be

∆P1

φ4∈S, 1st = 4− 2(n+ 7)ǫ

3(n+ 3)

−
(

19n5 + 167n4 − 602n3 + 3430n2 + 13127n+ 8947
)

ǫ2

81(n− 5)(n+ 3)3(n+ 7)
+ . . .

∆P1

φ4∈S, 2nd = 4 +

(

17n3 + 165n2 + 855n+ 1139
)

ǫ2

27(n+ 3)2(n+ 7)
+ . . . (A.9)

while for the point P2

∆P2

φ4∈S,1st = 4− 4
(

n2 − 6n+ 11
)

ǫ

3 (n2 − 5n+ 8)

+
(n− 1)ǫ2

81(n− 5) (n2 − 6n+ 11) (n2 − 5n+ 8)3

(

19n8 − 388n7 + 3583n6

−19740n5 + 71463n4 − 174366n3 + 278375n2 − 262778n+ 110744

)

+ . . .

∆P2

φ4∈S, 2nd = 4 +
ǫ2

27 (n2 − 6n+ 11) (n2 − 5n+ 8)2

(

− 13402 + 23259n− 17709n2

+7572n3 − 1920n4 + 273n5 − 17n6

)

+ . . . (A.10)

It is useful to record the renormalization of the Ising model here for comparison [2]:

∆Ising
σ = 1− ǫ

2
+

ǫ2

108
+ . . . ,

∆Ising
ǫ = 2− 2

3
ǫ+

19

162
ǫ2 + . . . ,

∆Ising
ǫ′ = 4− 17

27
ǫ2 + . . . . (A.11)

A.2 3-loop renormalization of generic φ3 theory in 6 − 2ǫ dimensions

Three loop renormalization of generic φ3 theory in D = 6 − 2ǫ was studied by [104, 121].

The four loop result was obtained more recently in [105, 122], where they have also studied

the renormalization of the Potts model and the Lee-Yang edge singularity. The authors

did not present the result for the N -state Potts model with generic N , but rather focused
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on the N → 1 limit to study the percolation problem. For the reader’s convenience, we will

note the generic N result here. Plugging (A.4) into the formulas in [105], one can easily get

∆φ = 2− 2(5n− 11)ǫ

3(3n− 7)
− 2(n− 1)

(

43n2 − 171n+ 206
)

ǫ2

27(3n− 7)3

+
(n− 1)ǫ3

243(3n− 7)5

(

15552n4ζ(3)− 8375n4 − 129600n3ζ(3) + 68025n3

+466560n2ζ(3)− 210179n2 − 829440nζ(3) + 300903n

+580608ζ(3)− 187238

)

,

∆φ2∈S = 4− 8(n− 4)ǫ

3(3n− 7)
+

2
(

43n3 − 247n2 + 857n− 653
)

ǫ2

27(3n− 7)3

+
1

243(3n− 7)5
ǫ3
(

− 15552n5ζ(3) + 8375n5 + 28512n4ζ(3)− 66665n4

−207360n3ζ(3) + 163514n3 + 1467072n2ζ(3)

−224126n2 − 2887488nζ(3) + 450911n+ 1614816ζ(3)− 332009

)

,

∆φ3∈S = 6 +
2
(

−125n2 + 544n− 671
)

ǫ2

9(3n− 7)2
+

ǫ3

81(3n− 7)4

(

38880n4ζ(3) + 36755n4

−316224n3ζ(3)− 319602n3 + 1187136n2ζ(3) + 1123920n2 − 2265408nζ(3)

−1831190n+ 1687392ζ(3) + 1097253

)

. (A.12)

We also note here the renormalization for the Lee-Yang edge singularity for comparison,

setting

T2 = T3 = T5 = T71 = T72 = 1, (A.13)

one gets

∆φ = 2− 10ǫ

9
− 86ǫ2

729
+

(

64ζ(3)

243
− 8375

59049

)

ǫ3 +O(ǫ4),

∆φ3 = 6− 250ǫ2

81
+

(

160ζ(3)

27
+

36755

6561

)

ǫ3 +O(ǫ4). (A.14)

It is not necessary to present the dimension of ∆φ2 , since it is the conformal descendant

of φ. As fixed by the equation of motion �φ ∼ φ2, its dimension is ∆φ2 = ∆φ + 2.

B Bootstrap with SN symmetry

Using the “vielbeins” eαi , besides dijk defined in (2.2), one can also define the following

invariant tensor carrying four indices

Qijkl =
∑

α

eαi e
α
j e

α
k e

α
l , (B.1)

They satisfy

dijmdklm =
n+ 1

n
Qijkl −

(n+ 1)2

n3
δijδkl (B.2)
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and

dikldjkl =
(n− 1)(n+ 1)2

n3
δij . (B.3)

The product of two n-dimensional representations can be decomposed as

n⊗ n → S⊕A⊕ n⊕ T′.

Compared with the product rule for the rotational group O(n), n⊗ n → S⊕A⊕T, the T

representation of the O(n) group is further decomposed into n⊕ T′, due to the existence

of dijk. One can also define the following linear independent invariant tensors

P
(1)
ijkl =

1

n
δijδkl,

P
(n)
ijkl =

n3

(n− 1)(n+ 1)2
dijmdklm,

P
(T ′)
ijkl =

1

2
δilδjk +

1

2
δikδjl −

1

n
δijδkl −

n3

(n− 1)(n+ 1)2
dijmdklm,

P
(A)
ijkl =

1

2
δilδjk −

1

2
δikδjl. (B.4)

Suppose vi1 and vi2 are two vectors carrying indices in the n-dimensional representation of

SN , the tensor

P
(I)
ijklv

k
1v

l
2 (B.5)

transforms in the irreducible representation “I” of the SN group. It can be checked that

these projectors satisfy the following relations

P
(I)
ijmnP

(I)
nmkl = P

(I)
ijkl,

P
(I)
ijklδilδjk = dimI . (B.6)

where dimI stands for the dimension of the representation I.

A four-point function in CFTs with SN global symmetry can be written as

〈φi(x1)φj(x2)φk(x3)φl(x4)〉 =
1

x
2∆φ

12 x
2∆φ

34

∑

I

P
(I)
ijkl

(

∑

O∈I
λ2
Og∆O,lO(u, v)

)

where I ∈ {1+, n+, T ′+, A−}. (B.7)

Here I± denotes operators with even(odd) spin and transforms in the irreducible repre-

sentation “I” of SN . See [123] for the reason behind the spin choice. Also g∆O,lO(u, v) is

the conformal block which encodes all the kinematics of conformal field theories, which is

universal for any CFTs. The dynamical information specific to each CFT, on the other

hand, is widely believed to be encoded in the OPE coefficients and the spectrum. An ana-

lytical expression for the conformal block in even dimensions was calculated in [124, 125].

Operator product expansions are convergent for conformal field theories, and four-point

functions should not depend on how the OPE is preformed, so

〈φi(x1)φj(x2)φk(x3)φl(x4)〉 = 〈φi(x1)φj(x2)φk(x3)φl(x4)〉. (B.8)
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From this equality we get the following crossing equations

∑

I

∑

O∈I
λ2
φφO

~V
(I)
∆O,lO

(u, v) = 0 , with I ∈ {1+, n+, T ′+, A−} , (B.9)

where

~V
(1+)
∆O,lO

(u, v) =















0

0
F
n

−H
n















, ~V
(n+)
∆O,lO

(u, v) =















F

0
F

1−n

H
n−1















, (B.10)

~V
(T ′+)
∆O,lO

(u, v) =















−F
F
2

F(n2−n+2)
2(n−1)n

H(n2−n−2)
2(n−1)n















, ~V
(A−)
∆O,lO

(u, v) =















0

−F
2

F
2
H
2















. (B.11)

Here F and H are short for F∆,l and H∆,l, defined by

F∆,l =
v∆φG∆,l(u, v)− u∆φG∆,l(v, u)

u∆φ − v∆φ
,

H∆,l =
v∆φG∆,l(u, v) + u∆φG∆,l(v, u)

u∆φ + v∆φ
. (B.12)

The logic for numerical bootstrap is to look for a linear functional α such that

α(~V
(1+)
0,0 ) = 1 ,

α(~V
(I)
∆,0) ≥ 0 , for ∆ ≥ D − 2

2
, I ∈ {1+, n+, T ′+} ,

α(~V
(n+)
∆,0 ) ≥ 0 , for ∆ ≥ ∆n ,

α(~V
(I)
∆,l ) ≥ 0 , for ∆ ≥ l +D − 2 , (l = 2, 4, 6, 8, 10 . . . ) and I ∈ {1+, n+, T ′+},

α(~V
(A−)
∆,l ) ≥ 0 , for ∆ ≥ l +D − 2 , (l = 1, 3, 5, 7, 9 . . . ) . (B.13)

This realises the conditions imposed on the operator spectrum in section 3.1 to study con-

formal field theories with SN ⊗Z2 symmetry. If such a functional can be found, then there

is no way for (B.9) to be satisfied with all the λ2
O’s being positive. Therefore we conclude

that a unitary CFT with SN ⊗Z2 symmetry and ∆φ must have at least one scalar operator

whose dimension is less than ∆n. For readers interested in the implementation of numerical

bootstrap, we refer them to [126] and references therein. The numerical computations in

this work were performed using the SDPB package [126]. For the approximation of the

conformal blocks, we partially used the code from JuliBoot [127].

Before proceeding, let’s recall the dimensions of each representation to be,

dimS = 1, dimn = n, dimA =
n(n− 1)

2
, dimT ′ =

n(n+ 1)

2
− 1− n. (B.14)
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For n = 2, hence S3 group, dimT ′ = 0, one can check that P
(T ′)
ijkl = 0, and

P
(S)
ijkl =

1

2
δijδkl,

P
(n)
ijkl =

1

2
δilδjk +

1

2
δikδjl −

1

2
δijδkl =

8

9
dijmdklm,

P
(A)
ijkl =

1

2
δilδjk −

1

2
δikδjl. (B.15)

which are the same projectors as for the SO(2) group. Using these projectors, we can

derive the following crossing equations

∑

I

∑

O∈I
λ2
φφO

~V
(I)
∆O,lO

(u, v) = 0 , with I ∈ {1+, n+, A−} , (B.16)

with

~V
(1+)
∆O,lO

(u, v) =









0

F

H









, ~V
(n+)
∆O,lO

(u, v) =









F

0

−2H









, ~V
(A−)
∆O,lO

(u, v) =









−F

F

−H









(B.17)

These are exactly the same crossing equations that were used for bootstrapping O(2)

invariant CFTs in [75]. However, when studying conformal field theories with S3 symmetry,

since dijm is an invariant tensor of the S3 group (which is not invariant under SO(2)), the

scalars φi would appear in its own OPE, φi × φj ∼ dijkφ
k. We need to search for a linear

functional α satisfying (B.13) plus one extra condition

α(~V
(n+)
∆φ,0

) ≥ 0. (B.18)

This is the numerical bootstrap program used in section 3.3.

Open Access. This article is distributed under the terms of the Creative Commons
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