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10 GeV as the dark matter. The thermal relic density is determined by the interplay of

several annihilation and scattering processes between the twin neutrino, twin tau, and twin

photon, depending on the order of the freeze-out temperatures of these processes. Besides

the common coannihilation scenario where the relic density is controlled by the twin tau

annihilation, it can realize the recently discovered coscattering phase if the scattering of

the twin neutrino into the twin tau freezes out earlier than the twin tau annihilation. We

also provide a method to calculate the thermal relic density in the intermediate regime

where both coannihilation and coscattering processes contribute to the determination of

the dark matter density. We show that the right amount of dark matter can be obtained

in various scenarios in different regions of the parameter space. The current experimental

constraints and future probes into the parameter space from direct detections, cosmolog-

ical and astrophysical bounds, dark photon searches, and displaced decays at colliders,

are discussed.
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1 Introduction

The hierarchy problem and the dark matter are two main motivations for new physics

near the electroweak (EW) scale. In the standard model (SM), the Higgs field receives

large quadratically divergent contributions to its potential from the interactions with SM

particles, in particular, the top quark and weak gauge bosons. For a natural EW symmetry

breaking scale, new particles are expected to be close to the EW scale to cut off these

quadratic contributions. On the other hand, a stable weakly interacting massive particle

(WIMP) with a mass around the EW scale gives a right amount of thermal relic from

the Hot Big Bang to account for the dark matter in the universe. It is called “WIMP

miracle.” Such a dark matter particle candidate also often appears naturally in models
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which address the hierarchy problem. The most popular and most studied examples are

the supersymmetric (SUSY) extensions of SM. With a conserved R-parity, the lightest

neutralino is stable and represents a good dark matter candidate. The models that can

explain both the hierarchy problem and dark matter are particularly attractive because

they provide a link between the two mysterious problems.

The new particles related to the hierarchy problem and the WIMPs have been exten-

sively searched at various experiments. So far none of them has been discovered. The

LHC has put very strong bounds on new colored particles that can cancel the SM top loop

contribution to the Higgs mass. Except for some special cases, the bounds on the masses

of new colored particles generically exceed 1 TeV. This would imply a quite severe tuning

of the Higgs mass if the top loop is not canceled below 1 TeV. Direct searches of DM also

put strong bounds on the scattering cross sections of the DM particle with nucleons. A big

fraction of the expected region of the WIMP parameter space from typical SUSY models is

excluded, though there are still surviving scenarios. These null experimental results have

prompted people to wonder that the standard pictures such as SUSY might not be realized

at the electroweak scale in nature. Alternative solutions to the hierarchy problem and DM

where the interactions between new particles and SM particles are stealthier should be

taken more seriously.

For the hierarchy problem, the “neutral naturalness” models gained increasing atten-

tions in recent years. In these models, the top quark partners which regularize the top loop

contribution to the Higgs mass do not carry SM color quantum numbers, and hence are

not subject to the strong bounds from the LHC. The mirror twin Higgs model [1] is the

first example and is probably the stealthiest one. The twin sector particles are SM singlets

but charged under their own SU(3) × SU(2)[×U(1)] gauge group. They are related to the

SM sector by a Z2 symmetry. As a result, the mass terms of the Higgs fields of the SM

and twin sectors exhibit an enhanced SU(4) symmetry. The 125 GeV Higgs boson arises as

a pseudo-Nambu-Goldstone boson (PNGB) of the spontaneously broken SU(4) symmetry.

The twin sector particles are difficult to produce at colliders because they do not couple

to SM gauge fields. The main experimental constraints come from the mixing between

the SM Higgs and the twin Higgs, which are rather weak. The model can still be natural

without violating current experimental bounds.

The next question is whether the neutral naturalness models like the twin Higgs possess

good dark matter candidates. In the fraternal version of the twin Higgs model [2], people

have shown that there are several possible dark matter candidates [3–6]. The fraternal twin

Higgs takes a minimal approach in addressing the hierarchy problem using the twin Higgs

mechanism. In this model, the twin fermion sector only contains the twin partners of the

third generation SM fermions, since only the top Yukawa coupling gives a large contribution

to the Higgs mass that needs to be regularized below the TeV scale. The twin U(1) gauge

boson can be absent or can have a mass without affecting the naturalness. The fraternal

twin Higgs model can avoid potential cosmological problems of an exact mirror twin Higgs

model which contains many light or massless particles in the twin sector. Refs. [3, 4]

showed that the twin tau can be a viable dark matter candidate. The correct relic density

is obtained for a twin tau mass in the range of 50–150 GeV, depending on other model
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parameters. If twin hypercharge is gauged, then the preferred mass is lighter, in the 1–

20 GeV range [4]. Another possibility is asymmetric dark matter from the twin baryon

made of twin b-quarks, where the relic density is set by the baryon asymmetry in the twin

sector [5, 6].

In this paper, we explore a new scenario where the dark matter is the twin neutrino,

in the mass range ∼ 0.1–10 GeV. In previous studies of twin tau dark matter, its stability

is protected by the twin U(1)EM symmetry, which is assumed to be a good symmetry,

either gauged or global. Here we consider that the twin U(1)EM is broken so that the twin

photon acquires a mass to avoid potential cosmological problems. In this case, the twin

tau and the twin neutrino can mix so the twin tau can decay to the twin neutrino if the

twin tau is heavier. The twin neutrino, on the other hand, being the lightest twin fermion,

can be stable due to the conservation of the twin lepton number or twin lepton parity. An

interesting scenario is that if the twin photon, twin neutrino, and twin tau all have masses

of the same order around a few GeV or below, the right amount of dark matter relic density

from twin neutrinos can be obtained. The relic density is controlled by the coannihilation

and recently discovered coscattering processes [7, 8].

The coscattering phase is considered as the fourth exception in the calculation of

thermal relic abundances in addition to the three classical cases enumerated in ref. [9]. It

is closely related to the coannihilation case as both require another state with mass not

far from the dark matter mass so that the partner state can play an important role during

decoupling. The difference is that in the coannihilation phase the relic density is controlled

by the freeze-out of the annihilation processes of these particles, while in coscattering

phase the relic density is controlled by the freeze-out of the inelastic scattering of a dark

matter particle into the partner state. Because of the energy threshold of the upward

scattering, the coscattering process has a strong momentum dependence. This makes the

relic density calculation quite complicated. The standard DM calculation tools such as

micrOMEGAs [10], DarkSUSY [11], and MadDM [12] do not apply and one needs to

solve the momentum-dependent Boltzmann equations. Also, because of the momentum

dependence of the coscattering process, we find that there are parameter regions of mixed

phase, i.e., the relic abundance is controlled partially by coannihilation and partially by

coscattering. We investigate in detail the relevant parameter space and perform calculations

of the relic abundance in different phases, including situations where it is controlled by

coannihilation, by coscattering, or by both processes. The calculation in the mixed phase

is more involved and we discuss a relatively simple method to obtain the DM abundance

with good accuracies.

The twin neutrino DM does not couple to SM directly. Its couplings to matter through

mixings of the photons or the Higgses between the SM sector and the twin sector are

suppressed, so the direct detection experiments have limited sensitivities. Some of the

main constraints come from indirect detections and searches of other associated particles.

Its annihilation through twin photon is constrained by Cosmic Microwave Background

(CMB), 21cm line absorption, and Fermi-LAT data. For associated particles, the light

dark photon searches provide some important constraints and future probes.

The paper is organized as follows. In section 2 we first give a brief summary of the

fraternal twin Higgs model and its possible DM candidates. Then we focus the discussion
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on the sector of our DM scenario, i.e., the twin neutrino as the DM, and its coannihila-

tion/coscattering partners, the twin tau and the twin photon. In section 3 we enumerate

the relevant processes and discuss their roles in controlling the DM abundance in different

scenarios. Section 4 describes how to evaluate the DM relic density in different phases,

including the coannihilation phase, the coscattering phase, and the mixed phase. Some de-

tails about the calculations are collected in the appendices. Our numerical results for some

benchmark models are presented in section 5. In section 6 we discuss various experimental

constraints and future probes of this DM scenario. The conclusions are drawn in section 7.

2 Fraternal twin Higgs and light DM

The twin Higgs model postulates a mirror (or twin) sector which is related to the SM sector

by a Z2 symmetry. The particles in the twin sector are completely neutral under the SM

gauge group but charged under the twin SU(3) × SU(2) × U(1) gauge group. Due to the

Z2 symmetry, the Higgs fields of the SM sector and the twin sector exhibit an approximate

U(4) (or O(8)) symmetry. The U(4) symmetry is spontaneously broken down to U(3) by

the Higgs vacuum expectation values (VEVs). A phenomenological viable model requires

that the twin Higgs VEV f to be much larger than the SM Higgs VEV v, f/v & 3, so

that the light uneaten pseudo-Nambu-Goldstone boson (pNGB) is an SM-like Higgs boson.

(The other six Nambu-Goldstone bosons are eaten and become the longitudinal modes of

the W, Z bosons of the SM sector and the twin sector.) This requires a small breaking of

the Z2 symmetry. The one-loop quadratically divergent contribution from the SM particles

to the Higgs potential is cancelled by the twin sector particles, which are heavier than their

SM counterparts by the factor of f/v. The model can be relatively natural for f/v ∼ 3−5.

The twin sector particles are not charged under the SM gauge group so it is difficult

to look for them at colliders. However, if there is an exact mirror content of the SM sector

and the couplings respect the Z2 symmetry, there will be light particles (photon, electron,

neutrinos) in the twin sector. They can cause cosmological problems by giving a too big

contribution to Neff.1 In addition, in general one expects a kinetic mixing between two

U(1) gauge fields. If the twin photon is massless, its kinetic mixing with the SM photon is

strongly constrained. On the other hand, these light particles have small couplings to the

Higgs and hence play no important roles in the hierarchy problem. One can take a minimal

approach to avoid these light particles by only requiring the Z2 symmetry on the parts

which are most relevant for the hierarchy problem. This is the fraternal twin Higgs (FTH)

model proposed in ref. [2]. The twin sector of the FTH model can be summarized below.

• The twin SU(2) and SU(3) gauge couplings should be approximately equal to the SM

SU(2) and SU(3) gauge couplings. The twin hypercharge does not need to be gauged.

If it is gauged, its coupling can be different from the SM hypercharge coupling, as long

as it is not too big to significantly affect the Higgs potential. Also, the twin photon

can be massive by spontaneously breaking the U(1) gauge symmetry or simply writing

down a Stueckelberg mass term.

1Some solutions within the mirror twin Higgs framework can be found in refs. [6, 13–17].
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• There is a twin Higgs doublet. Together with the SM Higgs doublet there is an

approximate U(4)-invariant potential. The twin Higgs doublet acquires a VEV f � v,

giving masses to the twin weak gauge bosons and twin fermions.

• The twin fermion sector contains the third generation fermions only. The twin top

Yukawa coupling needs to be equal to the SM top Yukawa coupling to a very good

approximation so that their contributions to the Higgs potential can cancel. The twin

bottom and twin leptons are required for anomaly cancellation, but their Yukawa

couplings do not need to be equal to the corresponding ones in the SM, as long as

they are small enough to not generate a big contribution to the Higgs potential.

The collider phenomenology of the FTH model mainly relies on the mixing of the SM

and twin Higgs fields. In typical range of the parameter space, one often expects displaced

decays that constitute an interesting experimental signature. Here we focus on the DM. A

natural candidate is the twin tau. Since its Yukawa coupling needs not to be related to the

SM tau Yukawa coupling, its mass can be treated as a free parameter. It is found that a

right amount of thermal relic abundance can be obtained for a twin tau mass in the range

of 50–150 GeV if the twin hypercharge is not gauged [3, 4]. It corresponds to a twin tau

Yukawa coupling much larger than the SM tau Yukawa coupling. The requirement that

the twin tau Yukawa coupling does not reintroduce the hierarchy problem puts a upper

limit ∼ 200 GeV on the twin tau mass. A twin tau lighter than ∼ 50 GeV would generate

an overabundance which overcloses the universe. The relic density can be greatly reduced

if a light twin photon also exists, because it provides additional annihilation channels for

the twin tau. If the twin photon coupling strength is similar to the SM photon coupling,

the annihilation will be too efficient and it will be difficult to obtain enough DM. For a

twin photon coupling α̂ ∼ 0.03αEM, a right amount of relic density can be obtained for a

twin tau mass in the range of 1–20 GeV [4].

In the twin tau DM discussion, its stability is assumed to be protected by the twin

U(1)EM symmetry. However, if twin U(1)EM is broken and the twin photon has a mass,

the twin tau may be unstable and could decay to the twin neutrino if the twin neutrino is

lighter. This is because that the twin tau and the twin neutrino can mix due to the twin

U(1)EM breaking effect. On the other hand, if the twin lepton number (or parity) is still

a good symmetry, the lightest state that carries the twin lepton number (parity) will be

stable. In this paper we will assume that it is the twin neutrino and consider its possibility

of being the DM.

2.1 Twin lepton mixings

If the twin U(1)EM (or equivalently twin hypercharge) is broken, it is possible to write

down various Dirac and Majorana masses between the left-handed and right-handed twin

tau and twin neutrino fields. For simplicity, we consider the case where the twin lepton

number remains a good symmetry, which can be responsible for the stability of DM. This

forbids the Majorana mass terms.
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The twin tau and twin neutrino receive the usual Dirac masses from the twin

Higgs VEV,

−L ⊃ yτB LB H̃B τ
c
B,R + yνB LBHB ν

c
B,R + h.c.

⊃ yτBf√
2
τB,Lτ

c
B,R +

yνBf√
2
νB,Lν

c
B,R + h.c., (2.1)

where the subscript B represents the twin sector fields, and H̃B = iσ2H
∗
B transforms as

(3,2)−1/2 under the twin gauge group. The twin hypercharge breaking can be parameter-

ized by a spurion field S which is a singlet under SU(3)B × SU(2)B but carries +1 twin

hypercharge (also +1 twin electric charge). It can come from a VEV of a scalar field which

breaks U(1)B spontaneously. The radial component is assumed to be heavier than the

relevant particles (twin photon, tau, and neutrino) here and plays no role in the following

discussion. Using the spurion we can write down the following additional lepton-number

conserving mass terms,

−L ⊃ d1

Λ
SLBH̃Bν

c
B,R +

d2

Λ
S†LBHBτ

c
B,R . (2.2)

The mass matrix of the twin tau and twin neutrino is then given by

( τ cB,R νcB,R )

(
mτB µ2

µ1 mνB

)(
τB,L
νB,L

)
, (2.3)

where

mτB =
yτ̂f√

2
, mνB =

yν̂f√
2
, µ1 =

d1fS√
2Λ

, µ2 =
d2fS√

2Λ
. (2.4)

The mass matrix can be diagonalized by the rotations(
τ̂ cR
ν̂cR

)
=

(
cos θ1 sin θ1

− sin θ1 cos θ1

)(
τ cB,R
νcB,R

)
,

(
τ̂L
ν̂L

)
=

(
cos θ2 sin θ2

− sin θ2 cos θ2

)(
τB,L
νB,L

)
, (2.5)

where the mass eigenstates in the twin sector are labelled with a hat (̂ ). We assume that

the off-diagonal masses |µ1|, |µ2| � mτB −mνB so that the mixing angles θ1, θ2 are small.

This is reasonable given that µ1, µ2 arise from higher dimensional operators and require

an insertion of the twin hypercharge breaking VEV, which is assumed to be small for a

light twin photon. For our analysis, to reduce the number of independent parameters, we

further assume that one of the off-diagonal masses dominates, i.e., µ1 � µ2, so that we can

ignore µ2. In this case, we obtain two Dirac mass eigenstates τ̂ and ν̂ which are labeled by

their dominant components. The two mass eigenvalues are

m2
τ̂ ,ν̂ =

1

2

(
µ2

1 +m2
τB

+m2
νB
±
√(

µ2
1 +m2

τB
+m2

νB

)2 − 4m2
τB
m2
νB

)
, (2.6)

and the two mixing angles are given by

sin θ1 =
µ1mτB

m2
τB
−m2

νB
+ µ2

1

, sin θ2 =
mνB

mτB

sin θ1 , (2.7)
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in the small mixing angle limit. There is no qualitative difference in our result if µ1 and

µ2 are comparable except that the two mixing angles become independent.

We are interested in the region of parameter space where the twin tau τ̂ , twin neutrino

ν̂, and twin photon γ̂ have masses of the same order in the range ∼ 0.1 − 10 GeV, with

mτ̂ > mν̂ > mγ̂ . Compared with ref. [7], the twin neutrino ν̂ plays the role of χ which is the

DM, τ̂ corresponds to ψ, the coannihilation/coscattering partner of the DM particle, and γ̂

corresponds to the mediator φ. Following ref. [7], we define two dimensionless parameters,

r ≡
mγ̂

mν̂
, ∆ ≡ mτ̂ −mν̂

mν̂
, (2.8)

which are convenient for our discussion. The region of interest has r < 1 and 0 < ∆ . 1.

The mass spectrum and mixing pattern would be more complicated if Majorana masses

for the twin leptons are allowed. In addition to the standard Majorana mass for the right-

handed twin neutrino, all other possible terms can arise from higher dimensional operators

with insertions of the spurion field S (and the twin Higgs field HB), filling the 4 × 4

mass matrix of (τB,L, νB,L, τ
c
B,R, ν

c
B,R). There are four mass eigenstates and many more

mixing angles. The stability of the lightest eigenstate can be protected by the twin lepton

parity in this case. Because the twin photon couples off-diagonally to Majorana fermions,

the analysis of annihilation and scattering needs to include all four fermion eigenstates,

which becomes quite complicated. Nevertheless, one can expect that there are regions of

parameter space where the correct relic abundance can be obtained through coannihilation

and/or coscattering processes in a similar way to the case studied in this work.

3 Relevant processes for the thermal dark matter abundance

At high temperature, the SM sector and the twin sector stay in thermal equilibrium through

the interactions due to the Higgs mixing and the kinetic mixing of the U(1) gauge fields. As

the universe expands, the heavy species in the twin sector decouple from the thermal bath

and only the light species including twin photon (γ̂), twin tau (τ̂), and twin neutrino (ν̂)

survive. These light species talk to SM mainly via the kinetic mixing term, −(ε/2)FµνF̂
µν ,

between γ and γ̂. We assume that the kinetic mixing is big enough (ε & 10−9) to keep

the twin photon in thermal equilibrium by scattering off light SM leptons [7] during the

DM freeze-out. The DM abundance is then controlled by several annihilation and scatter-

ing processes.

Annihilation processes:

ν̂ν̂ → γ̂γ̂ (A), τ̂ ν̂ → γ̂γ̂ (CA), τ̂ τ̂ → γ̂γ̂ (CS).

The coupling of ν̂ to γ̂ arises from mixing with the twin tau. As a result, for small mixings

the usual annihilation process A for the ν̂ DM is suppressed by θ4
1, while the coannihilation

process CA (where the subscript A stands for asymmetric) is suppressed by θ2
1. There is

no mixing angle suppression for the coannihilation process CS (where the subscript S

represents symmetric or sterile). On the other hand, the Boltzmann suppression goes the

other way, the Boltzmann factors for the three processes are ∼ e−2mν̂/T , e−(mν̂+mτ̂ )/T , and

e−2mτ̂/T respectively.

– 7 –
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(Co)scattering process:

ν̂γ̂ → τ̂ γ̂ (S).

It is suppressed by θ2
1. Because τ̂ is assumed to be heavier than ν̂, the initial states particles

ν̂ and γ̂ must carry enough momenta for this process to happen. The coscattering process

therefore has a strong momentum dependence. Ignoring the momentum dependence for a

moment, the Boltzmann factor can be estimated to be ∼ e−(mτ̂+mγ̂)/T .

In addition, there is also the decay process

τ̂ → ν̂γ̂(∗) (D).

On-shell decay only occurs if mτ̂ > mν̂ +mγ̂ (∆ > r). In this case the inverse decay (ID)

plays a similar role as the coscattering process since both convert ν̂ to τ̂ , but the rate is

much larger. It turns out that if the (inverse) decay is open, the relic abundance is simply

determined by the coannihilation because the inverse decay process decouples later. The

majority of the parameter space we focus on has mτ̂ < mν̂ + mγ̂ (∆ < r). In this case,

the twin photon has to be off-shell then decays to SM fermions. It is further suppressed

by ε2 so it can be ignored during the freeze-out. It is however responsible for converting

the remaining τ̂ to ν̂ eventually after the freeze-out.

If the mixing is large and/or ∆ is large so that θ2
1e
−2mν̂/T > e−(mτ̂+mν̂)/T during freeze-

out, then the annihilation process A will dominate and we will have the usual WIMP

scenario. However, for such a WIMP DM lighter than 10 GeV, this has been ruled out

by the CMB constraint (see discussion in section 6). Therefore we focus on the opposite

limit θ2
1e
−2mν̂/T < e−(mτ̂+mν̂)/T , i.e., small mixing and small ∆. In this case we have

CS > CA > A in terms of rates. The coscattering process S has the same θ1 dependence

as CA, but is less Boltzmann suppressed because mγ̂ < mν̂ , so the coscattering can keep

τ̂ and ν̂ in kinetic equilibrium after CA freezes out. In this simple-minded picture, the

DM relic density is then determined by freeze-out of CS and S. Denoting their freeze-out

temperatures by TCS
and TS , then there are two main scenarios.

1. TCS
> TS : this occurs if θ2

1e
−(mτ̂+mγ̂)/T � e−2mτ̂/T during freeze-out so that CS

freezes out earlier. After that the total number of ν̂ and τ̂ in a comoving volume

is fixed. The coscattering process only re-distributes the densities between ν̂ and τ̂ ,

but eventually all τ̂ ’s will decay down to ν̂’s. The DM relic density is determined by

CS . This is the coannihilation phase. It is schematically depicted in the left panel

of figure 1.

2. TCS
< TS : in the opposite limit, S freezes out before CS , and hence stops converting

ν̂ into τ̂ . On the other hand, CS is still active and will annihilate most of the

leftover τ̂ ’s. The relic density in this case is determined by the coscattering process S.

(Remember that A has frozen out earlier.) This is the coscattering phase discovered

in ref. [7]. It is illustrated in the right panel of figure 1.

In the above discussion, we have associated each process with a single freeze-out tem-

perature. This is a good approximation for the annihilation and coannihilation processes,
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Coannihilat ion Phase

Xf HSL

HMomentum DependentL

Xf HCSL

Dark Sector Chemical Equilibrium

DM Momentum

x
=

m
D

M
�
T
~

a

Coscat tering Phase

Xf HSL

HMomentum DependentL

Xf HCSL

DM Momentum

x
=

m
D

M
�
T
~

a

Figure 1. Schematic plots of different scenarios, displayed by the freeze-out temperature and

different momentum of ν̂. Left: coannihilation phase where the DM relic density is dominantly de-

termined byCS . Right: coscattering phase discussed in ref. [7] where DM relic density is determined

by S.

but not for the coscattering process which has a strong momentum dependence. In the

coscattering phase, the processses ν̂γ̂ → ν̂γ̂, ν̂ν̂ → ν̂ν̂ are suppressed by θ4
1 and hence are

expected to freeze out earlier and cannot re-equilibrate the ν̂ momentum. Consequently,

different momentum modes in the coscattering process freeze out at different time, with

low momentum modes freeze out earlier. If θ2
1e
−(mτ̂+mγ̂)/T ∼ e−2mτ̂/T during freeze-out,

we can have a situation that coscattering of the low momentum modes freezes out ear-

lier than CS while the coscattering of the high momentum modes freezes out later than

CS . This is illustrated in the left panel of figure 2. In this case, the relic density of

low momentum modes is determined by the coscattering process and the relic density of

high momentum modes is determined by the coannihilation process CS . We have a mixed

coscattering/coannihilation phase where the relic density is determined by both S and CS .

If the masses of the twin photon and the twin neutrino are close, we have

θ2
1e
−(mτ̂+mγ̂)/T ∼ θ2

1e
−(mτ̂+mν̂)/T < e−2mτ̂/T during freeze-out from our assumption. One

expects that this belongs to the coscattering phase since TCS
< TS . However, the rates

of S and CA become comparable in this limit so we have TS ∼ TCA
> TCS

. Due to the

strong momentum dependence of S, one can have a situation depicted in the right panel of

figure 2. The coscattering of low momentum modes freezes out early, but their comoving

density is still reduced by the coannihilation CA until CA freezes out. The relic density

of high momentum modes is determined by S as in the coscattering phase. In this case

we have another mixed coscattering/coannihilation phase where the relic density is deter-

mined together by CA and S. Finally, if the mixing is not very small so that the rates of

CA and CS are not far apart, the freeze-out time of the coscattering process can even cut

through that of both CA and CS , although it can only happen in some rare corner of the

parameter space. The relic density is then determined by all three processes, with the low
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Figure 2. Schematic illustrations of the mixed coscattering/coannihilation phases. Left: the S/CS

mixed phase: for low (high) momentum modes S freezes out earlier (later) than CS . Right: the

CA/S mixed phase: for low (high) momentum modes CA freezes out earlier (later) than S.

momentum modes controlled by CA, intermediate momentum modes governed by S, and

high momentum modes determined by CS .

Due to the momentum dependence of the coscattering process, the relic density cal-

culations of the coscattering and mixed phases are more complicated. We describe the

calculation for each case in the next section.

4 Relic abundance calculations in various phases

In this section we describe the calculations of DM relic abundance in different phases.

4.1 Coannihilation

In the coannihilation phase, the coscattering process S decouples late enough to keep τ̂

and ν̂ in chemical equilibrium even after all annihilation processes freeze out, so we have

nτ̂ (T )

nν̂(T )
=
neq
τ̂ (T )

neq
ν̂ (T )

, (4.1)

where n (neq) is the (equilibrium) number density. We can simply write down the Boltz-

mann equation for the total DM number density ntot(T ) = nτ̂ (T ) + nν̂(T ) [9, 18]:

ṅtot + 3Hntot = −〈σv〉CS
(
n2
τ̂ − (neq

τ̂ )2
)
− 〈σv〉CA

(
nτ̂nν̂ − neq

τ̂ n
eq
ν̂

)
− 〈σv〉A

(
n2
ν̂ − (neq

ν̂ )2
)
.

(4.2)

It can be easily solved and is incorporated in the standard DM relic density calculation

packages. In the parameter region that we are interested, the right-handed side is mostly

dominated by the CS term.
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4.2 Coscattering

The DM density calculation in the coscattering phase is more involved and was discussed

in detail in ref. [7]. There the authors provided an approximate solution based on the

integrated Boltzmann equation:

ṅν̂ + 3Hnν̂ = −〈σv〉S (nν̂ − neq
ν̂ )neq

γ̂ . (4.3)

However, as mentioned earlier, the kinetic equilibrium of ν̂ will not be maintained dur-

ing the freeze-out of the coscattering process and different momentum modes freeze out

at different time. The simple estimate from eq. (4.3) is not always accurate. Here we

reproduce the calculation from the unintegrated Boltzmann equation to keep track of the

momentum dependence.

The unintegrated Boltzmann equation of the density distribution in the momentum

space f(p, t) for the coscattering process ν̂(p) + γ̂(k)→ τ̂(p′) + γ̂(k′) is given by

(∂t −Hp∂p) fν̂(p, t) =
1

Ep
C[fν̂ ](p, t), (4.4)

where the collision operator is defined as [7]

C[fν̂ ](p, t) =
1

2

∫
dΩkdΩp′dΩk′ |M|2[fτ̂ (p′, t)fγ̂(k′, t)− fν̂(p, t)fγ̂(k, t)](2π)4δ4

(∑
pµ
)
.

(4.5)

In the above expression dΩp = d3p/[(2π)32Ep] is the Lorentz-invariant integration measure

and |M|2 is the squared amplitude averaged over initial and summed over final state

quantum numbers.

In this phase τ̂ and γ̂ can be assumed to be in thermal equilibrium with the thermal

bath, fτ̂(γ̂) = f eq
τ̂(γ̂), from the processes τ̂ γ̂ ↔ τ̂ γ̂, τ̂ τ̂ ↔ γ̂γ̂ and γ̂ interactions with SM

fields. Using f eq
τ̂ (p′, t)f eq

γ̂ (k′, t) = f eq
ν̂ (p, t)f eq

γ̂ (k, t), the right-hand side of eq. (4.4) can be

simplifed as
1

Ep
C[fν̂ ](p, t) = [f eq

ν̂ (p, t)− fν̂(p, t)]C̃(p, t), (4.6)

where the reduced collision operator C̃(p, t) takes the form,

C̃(p, t) =
1

2Ep

∫
dΩkf

eq
γ̂ (k, t)

∫
dΩp′dΩk′ |M|2(2π)4δ4(pµ + kµ − p′µ − k′µ) (4.7)

=
1

2Ep

∫
dΩkf

eq
γ̂ (k, t)j(s)σ(s), (4.8)

with the Lorentz-invariant flux factor j(s) = 2Ep2Ek|vp − vk|. The calculation of C̃ from

the coscattering is described in appendix A.

The left-hand side of eq. (4.4) can be written as a single term by defining the comoving

momentum q ≡ p a, then eq. (4.4) becomes a first order differential equation of the scale

factor a for each comoving momentum q:

Ha∂afν̂(q, a) = [f eq
ν̂ (q, a)− fν̂(q, a)]C̃(q, a), (4.9)
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where we have written the distribution f as a function of q and a, instead of p and t.

Taking the boundary condition fν̂(q, a0) = f eq
ν̂ (q, a0) at an early time a0, the solution is

given by

fν̂(q, a) = f eq
ν̂ (q, a)−

∫ a

a0

da′
df eq
ν̂ (q, a′)

da′
e−

∫ a
a′

C̃(q,a′′)
Ha′′ da′′ . (4.10)

At early time and high temperature where C̃(q, a)� H(a), the second term on the right-

hand side can be neglected and ν̂ density is given by the equilibrium density as expected.

At late time and low temperature, C̃(q, a) � H(a), the ν̂ comoving density stops chang-

ing. For each comoving momentum q, one can find a time a′ = af (q) beyond which the

exponent is small so that the exponential factor is approximately 1. Then the final ν̂

density is roughly given by f eq
ν̂ (q, af (q)). The af (q) can be viewed as the freeze-out scale

factor for coscattering of the comoving momentum q of ν̂. It is roughly determined by

C̃(q, af (q)) ' H(af (q)).

As mentioned in the previous section, if mτ̂ > mν̂ + mγ̂ (r < ∆), the inverse decay

ν̂+ γ̂ → τ̂ plays a similar role as the coscattering process. Its contribution should be added

to the collision operator, which is calculated in appendix B. It is larger than the coscattering

contribution, as it requires less energy to produce the final state. In the parameter region

that we consider, it always makes the second term in eq. (4.10) negligible before CS freezes

out. Therefore, it goes back to the coannihilation phase if this on-shell decay is allowed.

4.3 Mixed phases

From the discussion in the previous section, mixed phases occur when TS ∼ TCS
or TS ∼

TCA
. We first consider the case TCA

∼ TS > TCS
(CA/S mixed phase). This happens

when mγ̂ ' mν̂ . Because the coannihilation process CA, ν̂(p) + τ̂(k) → γ̂(p′) + γ̂(k′), is

also important in this case, the contribution from CA to the collision operator,

C̃CA
(p, t) =

1

2Ep

∫
dΩkf

eq
τ̂ (k, t)

∫
dΩp′dΩk′ |MCA

|2(2π)4δ4(p+ k − p′ − k′), (4.11)

should be included in eq. (4.4) in addition to the coscattering contribution of eq. (4.5).

Since TCS
is assumed to be small, τ̂ stays in thermal equilibrium during the decoupling of

S and CA. In contrast to S, there is no kinematic threshold in CA, so it has very weak

momentum dependence. Hence we can treat it as a function of time/temperature only. In

eq. (4.10) we can replace C̃ by C̃S +C̃CA
and conduct the computation in the same manner

as in the coscattering phase. In this CA/S mixed phase, C̃CA
> C̃S for low momentum

modes so their freeze out temperature is determined by CA, while for high momentum

modes C̃S > C̃CA
and their contributions is given by the coscattering result, as illustrated

in the right panel of figure 2

For the other mixed phase (S/CS) where TCS
∼ TS < TCA

, the calculation is more

complicated. In this case τ̂ is no longer in thermal equilibrium with the thermal bath, fτ̂
itself is unknown, hence cannot be set to equal f eq

τ̂ . As a result, eq. (4.6) no longer holds.

Moreover, different from the usual coannihilation scenario, τ̂ and ν̂ are not in chemical

equilibrium. A complete solution requires solving the two coupled Boltzmann equations

for τ̂ and ν̂ in this case, which is numerically expensive. However, we can assume that
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τ̂ is still in kinetic equilibrium with the SM sector (i.e., has the canonical distribution

up to an unknown overall factor) due to the elastic scattering with γ̂. We can write

fτ̂/f
eq
τ̂ = Yτ̂/Y

eq
τ̂ where Yτ̂ = nτ̂/s is the comoving number density. The term in the

square bracket of eq. (4.5) can be written as:

fτ̂ (p′, t)fγ̂(k′, t)− fν̂(p, t)fγ̂(k, t) = f eq
τ̂ (p′, t)

Yτ̂ (t)

Y eq
τ̂ (t)

f eq
γ̂ (k′, t)− fν̂(p, t)f eq

γ̂ (k, t) (4.12)

= f eq
γ̂ (k, t)[

Yτ̂ (t)

Y eq
τ̂ (t)

f eq
ν̂ (p, t)− fν̂(p, t)].

This corresponds to replacing f eq
ν̂ (q, a) by (Yτ̂ (a)/Y eq

τ̂ (a))f eq
ν̂ (q, a) in eq. (4.9). The solution

eq. (4.10) is modified to [8]

fν̂(q, a) =
Yτ̂ (a)

Y eq
τ̂ (a)

f eq
ν̂ (q, a) +

∫ a

a0

da′
−d Yτ̂ (a′)

Y eq
τ̂ (a′)

f eq
ν̂ (q, a′)

da′
e−

∫ a
a′

C̃(q,a′′)
Ha′′ da′′ . (4.13)

Of course we do not know Yτ̂ (a) in advance. One way to solve this problem is to

employ the iterative method [8] which is described in appendix C. One starts with some

initial guess of Yτ̂ (a) to obtain the solution for eq. (4.13), then use that solution in the

Boltzmann equation for nτ̂ to obtain a new Yτ̂ (a), and repeat the procedure until the result

converges. We find that a good first guess is to simply take Yτ̂ (a) to be the one obtained

in the coannihilation calculation. In coannihilation, τ̂ and ν̂ are in chemical equilibrium:

Yτ̂ (a)

Y eq
τ̂ (a)

f eq
ν̂ (q, a) ' Yν̂(a)

Y eq
ν̂ (a)

f eq
ν̂ (q, a) = fCA

ν̂ (q, a) ' fCA
tot (q, a), (4.14)

where the superscript CA indicates that the result is obtained from the coanihillation-only

estimation (eq. (4.2)). Notice that in this case the first term in eq. (4.13) is simply the

contribution from coannihilation. If TS < TCS
, S will still be active when CS freezes

out, C̃(q, a′′)/(Ha′′) will be large and the second term in eq. (4.13) will be suppressed. We

obtain the correct coannihilation limit. On the other hand, if TS > TCS
, the coannihilation

CS is effective to keep Yτ̂ (a)/Y eq
τ̂ (a) ≈ 1 and eq. (4.13) returns to the coscattering result in

eq. (4.10). Using Yτ̂ (a) from the coannihalation calculation in eq. (4.13) gives the correct

results in both the coannihilation and coscattering limits. The expression interpolates be-

tween these two limits in the mixed phase and it turns out to be an excellent approximation

to the correct relic density even without performing the iterations. (See appendix C.)

For completeness, we can include the CA contribution in eq. (4.13), then this result also

applies to the case if TS cuts through both TCA
and TCS

. Figure 3 shows the differential

DM density as a function of the comoving momentum in different phases, all calculated from

eq. (4.13) including all contributions. We will use this formula for numerical calculations

of DM densities in the next section in all phases.

5 Numerical results

In this section we present the numerical calculations of the dark matter relic abundance for

various parameter choices of the model. We fix ê = 0.3 for the twin electromagnetic gauge
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Figure 3. Benchmark results for relic density calculation in the coscattering (left), mixed (central),

and coannihilation (right) phases. The red curves are the contributions from the first term of

eq. (4.13) which corresponds to a pure coannihilation calculation. The blue solid curves are due

to the coscattering contributions from the second term of eq. (4.13). The purple curves are the

total contributions. We can see that in the coscattering phase and the coannihilation phase the

total contribution is dominated by one term, while in the mixed phase both terms give comparable

contributions. The blue dashed curves are calculated from the coscattering formula of eq. (4.4).

Only in the coscattering phase the blue dashed curve approximates the correct result.
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Figure 4. Relic density for mν̂ = 1 GeV and ∆ = 0.1 and 0.18. Contours of fixed log10(Ω/ΩOBS)

values are depicted. The shaded green region indicates the mixed phase where TS ∼ TCS
. The

region to the lower right of the green band is in the coscattering phase while the coannihilation

phase is in the upper left corner. In the region to the right of the orange dashed line, CA becomes

important and it enters the CA/S mixed phase. The contours become slightly less sensitive to mγ̂

or r. The red dashed line indicates r = ∆. To its left the τ̂ ↔ γ̂ + ν̂ decay and inverse decay are

open. Their large rates keep τ̂ , ν̂ in chemical equilibrium, making this region coannihilation-like.
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coupling and calculate the DM density in units of the observed Ωobsh
2 = 0.12. All calcu-

lations are performed using eq. (4.13) including contributions from all relevant processes.

In figure 4, we consider mν̂ = 1 GeV and plot the DM density dependence on r =

mγ̂/mν̂ and the mixing angle θ1, for ∆ = (mτ̂ −mν̂)/mν̂ = 0.1 and 0.18. The contours

are in log10(ΩDM/Ωobs) and the “0” contour represents points which produce the observed

DM density. The coscattering phase sits in the lower-right region, as for small θ1 and large

r the coscattering process S is suppressed and freezes out earlier. The upper-left region,

on the other hand, belongs to the coannihilation phase. The green band separating them

corresponds to the S/CS mixed phase. The boundaries of the green band are determined

by the condition TS(q = p a = 0) = TCS
and TS(q = 25) = TCS

. The contribution to the

relic density from modes with q > 25 is small and is ignored in the coscattering calculation.

The orange vertical dashed line corresponds to TS(q = 0) = TCA
. To the right of it CA

becomes relevant and we enter the CA/S mixed phase. The DM relic density is slightly

reduced by CA compared to a pure coscattering calculation. The red vertical dashed line

indicates r = ∆. To the left of it the on-shell decay and inverse decay τ̂ ↔ ν̂γ̂ are open so

this whole region is in the coannihilation phase.

The relic density in the coannhilation phase is mostly independent of θ1 because it is

mainly controlled by CS which hardly depends on θ1. Only at larger θ1 values when CA

and A become relevant the DM relic density shows some θ1 dependence. The dependence

on r of the relic density in the coannihilation phase is also mild, as it mainly affects the

phase space of the coannihilation process. In the coscattering phase, the DM relic density

increases as ∆ increases, which can be seen by comparing the two plots in figure 4. This is

because a larger gap between mτ̂ and mν̂ requires a higher threshold momentum for γ̂ to

make S happen. Therefore the coscattering is suppressed, resulting in a larger relic density.

For mν̂ = 1 GeV, ∆ = 0.1, the observed DM density is produced in the coscattering phase,

while for ∆ = 0.18 it moves to the mixed phase or coannihilation phase.

In figures 5 and 6 we show the results for mν̂ = 100 MeV and 10 GeV. A larger DM

mass will give a larger relic density if all other parameters are fixed. Consequently for a

correct relic density we need a smaller (larger) ∆ for a larger (smaller) mν̂ . The ∆ values

are chosen to be 0.2 and 0.26 for the two plots with mν̂ = 100 MeV, and 0.04 and 0.1 for

the two plots with mν̂ = 10 GeV. The behaviors of the contours are similar to the case of

mν̂ = 1 GeV.

6 Experimental constraints and tests

In this section we discuss the current experimental constraints and future experimental

tests of this model. A comprehensive summary for this type of DM scenarios can be found

in ref. [19].

6.1 Direct detection

The dark matter ν̂ interacts with SM particles through the Higgs portal or dark photon

portal. The Higgs portal is suppressed by the Higgs mixing between the SM and twin

sectors, and the twin neutrino Yukawa coupling. The dark photon portal is suppressed
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Figure 5. Similar to figure 4, but for mν̂ = 100 MeV and ∆ = 0.2 and 0.26.

-1.1

-1.08

-1

0

2

5

8

m Ν
` = 10 GeV, e

`
= 0.3

D = Hm Τ
`-m Ν

` L�m Ν
` =0.04

0.2 0.4 0.6 0.8 1.0

-6

-5

-4

-3

-2

-1

r =m
Γ
` �m Ν

`

L
o

g
1

0
Θ

1

Log10HWDM�WobsL

0

0.02

1

2

5

8

m Ν
` = 10 GeV, e

`
= 0.3

D = Hm Τ
`-m Ν

` L�m Ν
` =0.1

0.2 0.4 0.6 0.8 1.0

-6

-5

-4

-3

-2

-1

r = m Γ
` �m Ν

`

L
o

g
1

0
Θ

1

Log10HWDM�WobsL

Figure 6. Similar to figure 4, but for mν̂ = 10 GeV and ∆ = 0.04 and 0.1.

by the kinetic mixing ε, and also the mixing angle θ1. Most current DM direct detection

experiments are based on heavy nuclei recoiling when the nuclei scatter with the DM

particles. They become ineffective for light DM less than a few GeV, but could potentially

constrain the parameter space of heavier twin neutrino region, as the Yukawa coupling also

becomes larger for a heavier twin neutrino. For mν̂=10 GeV and f/v = 3, the ν̂-nucleon

cross section is of O(10−47) cm2, which is dominated by the Higgs portal. Such ν̂ DM is

not yet constrained by recent liquid xenon DM detectors [20–22]. A conservative estimate

according to ref. [23] gives an upper limit of ∼22(60) GeV on mν̂ for f/v = 3(5).

For even lighter DM, recent upgrades/proposals of detecting DM-electron scattering

can largely increase the sensitivity for sub-GeV mass DM [24, 25]. In our model, the ν̂-e
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couplings from both the dark photon portal and the Higgs portal are highly suppressed.

The elastic cross section of ν̂ − e scattering from the dark photon portal is

σνe '
g2ê2ε2θ4

1

πm4
γ̂

(
memγ̂

me +mγ̂

)2

' 4.3× 10−38

(
ê

0.3

)2( ε

10−3

)2( θ1

10−1

)4(10 MeV

mν̂

)4(0.5

r

)4

cm2, (6.1)

where the reference values of mixing parameters ε, θ1 have been chosen close to the upper

bounds to maximize the cross section. This is not yet constrained by recent electron-

scattering experiments, including SENSEI [26], Xenon10 [27], DarkSide-50 [28]. Future

upgrades will be able to probe part of the parameter space with large mixings.

It is also worth mentioning that there are also crystal experiments based on phonon

signals coming from DM scattering off nuclei in the detector, such as CRESST-III [29].

Thanks to the low energy threshold (O(50 eV)), these experiments will also be sensitive to

the sub-GeV DM mass region. For such low DM mass, the dark photon portal becomes

important and can dominate over the Higgs portal interaction if the mixings are not too

small. However, the current constraint still can not put any bounds on mν̂ even for the

f/v=3 case. Significant progress in the future could be helpful to constrain the parameter

space for a light ν̂.

6.2 Indirect constraints induced from DM annihilation

Light DM is in general strongly constrained by indirect searches due to its high number den-

sity. WIMP models with annihilation cross section 〈σv〉 ' 10−26cm3/s and mDM . 10 GeV

have already been ruled out [30]. In our model the DM relic density is not determined by

the DM annihilation process, but by the coannihilation and coscattering processes. The

DM annihilation is dominated by ν̂ν̂ → γ̂γ̂ → 4f , which is suppressed by ê4θ4
1. An upper

bound on the DM annihilation cross section gives a constraint on the combination of the

parameters êθ1. Fermi-LAT data [31] has put an upper limit on the DM annihilation cross

section for DM heavier than 6 GeV. A stronger constraint comes from CMB observables,

which restrict the net energy deposited from DM annihilation into visible particles during

the reionization era [32]. The constraints from the Fermi-LAT and the Planck data are

plotted in figure 7. Note that the annihilation of ν̂ν̂ can produce 4e instead of 2e. This

may modify the bounds derived from the 2e final state. The total energy injection is the

same, and the 4e final state will result in more electrons but with lower energies. Ref. [33]

performed a detailed study in comparing the constrains for cascade decays with different

numbers of final sate particles. After convoluting with the energy dependence of the effi-

ciency factor feff [34], it is found that the effects due to multi-step decay is rather mild.

The constraints on the 4e and 2e final states from the Planck data are roughly the same.

On the other hand, a higher-step cascade tends to soften the spectrum and thus slightly

weakens the constraint from the Fermi-LAT result [33]. The proposed ground-based CMB

Stage-4 experiment [35] is expected to improve the constraint by a factor of 2 to 3 com-

pared to Planck. The DM annihilation after the CMB era will also heat the intergalactic
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Figure 7. The Fermi-LAT, CMB and EDGES bounds on DM annihilation rate in terms of êθ1
as a function of mν̂ . The different color curves correspond to different experiments, with the one

inferred from the EDGES to be the strongest assuming that no other effect can enhance the 21cm

line absorption. The solid curves represent the benchmark with r = 0.05 and ∆ = 0.5, where the

constraints are strongest. The dashed and dotted curves are for different choices of r and ∆. All

bounds are deduced from ee final states.

hydrogen gas and erase the absorption features of 21cm spectrum around z ' 17. The

recent measurement by the EDGES experiment instead observed an even stronger absorp-

tion than the standard astrophysical expectation [36]. If one interprets this result as a

constraint that the DM annihilation should not significantly reduce the absorption, the

observed brightness temperature then suggests an even stronger bound than the one from

CMB [37–40]. In figure 7 we also plot the most conservative constraint in terms of ê× θ1

according to ref. [37], taking the efficiency factor to be 1. For mν̂ = 1 GeV, the upper limit

for êθ1 is between 10−2 and 10−3 depending on other model parameters.2 The constraint

gets more stringent for lighter mν̂ .

2The ν̂ν̂ annihilation cross section depends on the model parameters as

〈σv〉 ∝ −
θ41 ê

4
(
1− r2

)3/2 ((
∆4 + 4∆3 − 8∆− 4

)
r2 − 2∆2(∆ + 2)2

)
32π(∆ + 1)4r2m2

ν̂ (∆2 + 2∆− r2 + 2)2
.

For a fixed mixing angle, the annihilation rate reaches its maximum around ∆ ∼ 0.5 for very small r, while

for larger r, it decreases as ∆ increases.

– 18 –



J
H
E
P
0
9
(
2
0
1
8
)
0
9
8

6.3 Constraints induced by the light twin photon

In our scenario γ̂ is the lightest twin sector particle. An on-shell γ̂ decays through its

kinetic mixing with the SM photon and there is no invisible decay mode to the twin sector.

In this case, it is well described by two parameters: the twin photon mass mγ̂ = rmν̂ and

the kinematic mixing with the SM photon ε. Experimental constraints on dark photon have

been extensively studied. Summeries of current status can be found in refs. [25, 41–43].

A lower bound on mγ̂ comes from the effective number of neutrinos (Neff) [44]. A

light γ̂ can stay in thermal equilibrium with photons and electrons after the neutrinos

decouple at T ∼ 2.3 MeV. The entropy transferred from γ̂ to the photon bath will change

the neutrino-photon temperature ratio, and therefore modify Neff . Using the results in

ref. [44] and the Planck data [30], we obtain a lower bound on mγ̂ around 11 MeV. It may

be further improved to ∼ 19 MeV by the future CMB-S4 experiment [35].

There are also many constraints on ε depending on mγ̂ . The current upper bounds

for ε mostly come from colliders, fixed target experiments and meson decay experiments,

in searching for prompt decay products. (See ref. [43] for a summary and an extended

reference list.) These experiments constrain ε . 10−3 in the mass range that we consider

(except for a few narrow gaps at the meson resonances). The lower bounds for ε come from

γ̂ displaced decays from various beam dump experiments [45–58], and also from supernova

SN1987A [59]. The Big Bang Nucleosynthesis (BBN) would also constrain the lifetime of

γ̂. However, the decay of γ̂ is only suppressed by ε and the BBN does not introduce extra

constraints for ε & 10−10 [59], which is required in this model to keep the DM sector in

thermal contact with the SM. These bounds are summarized in figure 8.

6.4 Constraints induced from τ̂ decay

As we require mν̂ > mγ̂ , the twin photon only decays to SM particles, thus τ̂ can only be

pair produced in a lab via an off-shell twin photon or from the Higgs boson decay. The

constraints from τ̂ pair production from off-shell γ̂ are weaker compared to the ones from γ̂

visible decay modes described in the previous subsection. Moreover, ν̂ pair production via

γ̂∗ will be further suppressed by θ4
1, leaving h→ ν̂ν̂/τ̂ τ̂ to be the main production channel.

At the LHC, the τ̂ produced from h/γ̂∗ will be long-lived in general, if the two-body

decay τ̂ → ν̂γ̂ is forbidden (r > ∆), because the leading three-body decay is suppressed by

θ2
1ε

2ê2e2. Assuming τ̂ and ν̂ are Dirac fermions and taking mτ̂ ' mν̂ , the current upper

bound of the Higgs invisible decay branching ratio, Br(h → invisible) < 24% [60, 61],

constrains mν̂ to be . 19 (52) GeV for f/v = 3 (5). HL-LHC is expected to improve

the Higgs invisible branching ratio measurement to 6-8% [62], which would translate to a

bound . 11 (30) GeV for mν̂ . Future e+e− colliders can probe BR(h → invisible) to the

sub-percent level [63–66]. A 0.3% measurement can constrain mν̂ down to . 2 (6) GeV for

f/v = 3 (5).

The τ̂ decay width can be expressed analytically in the small ∆ limit (1 & r � ∆):

Γτ̂→ν̂e+e− '
θ2

1∆5e2ê2ε2

60π3r4
mν̂ , (6.2)
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Figure 8. Constraints on the kinetic mixing parameter ε and the twin photon mass mγ̂ . The

green and cyan shaded regions are ruled out by lab experiments. The magenta shaded region is

the constraint from SN1897A cooling. In the red shaded region ε is too small to keep γ̂ in thermal

equilibrium with the SM. We also plot 6 benchmark models which give the correct DM relic

density from the numerical calculations in section 5. For small enough ε, models 1, 3, 4, and 6

are in the coscattering phase and model 2 is in the mixed phase. At large values of ε these model

curves turn right because the three-body (inverse) decay rate becomes large and freezes out after

the coannihilation process, driving the models into the coannihilation phase. Model 5 is in the

coannihilation phase for all ε large enough to keep γ̂ in thermal equilibrium. The ticks on each

benchmark curve represent τ̂ lifetime, starting from τ(τ̂)=1 sec and increasing by 102 each tick

below. The dashed parts of the curves are ruled out by the BBN constraint.

which strongly depends on ∆ and r. Numerically the proper decay length is given by

cτ(τ̂) ≈ 8.8× 106

Nf

(
0.2

∆

)5(10−3

θ1

)2(
0.3

ê

)2(10−3

ε

)2 ( r

0.5

)4
(

1 GeV

mν̂

)
cm, (6.3)

where Nf is the number of SM fermions that can appear in the final state. The dark sector

could be probed by searching for τ̂ displaced decays at the HL-LHC for cτ(τ̂) ∼ O(1) m [67].

Longer decay lengths may be tested at future proposed experiments, such as SHiP [68],

MATHUSLA [67], CODEX-b [69], and FASER [70].

If τ(τ̂) & O(1) second, the decays of τ̂ thermal relic will inject energy during the BBN

era and the recombination era. However, the constraint is weakened by the fact that τ̂
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only makes up a small fraction of Ω after it freezes out (Ωτ̂h
2 . 10−3), also the fact that

only a small fraction mτ̂−mν̂
mτ̂

= ∆
1+∆ of energy would be injected. The strongest bound

comes from the electromagnetic decay products and depends on the model parameters.

Typically, the lifetime of the long-lived τ̂ is only constrained by BBN to be shorter than

∼ 106 seconds [71, 72]. The extra energy injection from τ̂ decays could distort the CMB

blackbody spectrum which can potentially be captured by the proposed PIXIE mission [73].

It may give a slightly stronger bound than BBN on τ(τ̂) [71], also around 106 sec for our

typical benchmark models.

In figure 8, we also plot several benchmark points with fixed r, ∆, and θ1, that give

rise to the correct DM relic density from our numerical results in section 5. The vertical

parts indicates that the thermal relic density is mostly independent of the gauge kinematic

mixing parameter ε, as long as it can keep the DM in thermal equilibrium with SM before

freeze-out. For large values of ε, the three-body (inverse) decay rate gets larger, and can

even freeze out later than the coannihilation process CS . It drives the benchmark models

to the coannihilation phase even if it was in the coscattering or mixed phase for smaller

values of ε. This occurs for all our benchmark models except for model 5 (red line) which

is in the coannihilation phase for all ε. The transition to the coannihilation phase reduces

the DM number density, hence it needs a larger DM mass to compensate the effect. This

explains the turn of the curves at lager ε values. However, except for model 2 (orange line),

the turns occur in the region which has been ruled out by other experiments. For smaller

ε, the τ̂ lifetime becomes longer, which is constrained by the BBN bound. The region that

violates the BBN constraint is indicated by dashed lines.

7 Conclusions

The necessity of DM in the universe is one of the strongest evidences of new physics beyond

the SM. Experimental searches in various fronts so far have not revealed the nature of the

DM. For the most popular WIMP DM scenario, recent advancements in experiments

have covered significant fractions of the allowed parameter space, even though there are

still viable parameter space left. People have taken more seriously the possibility that DM

resides in a more hidden sector, and hence has escaped our intensive experimental searches.

Even in this case, it would be more satisfactory if it is part of a bigger story, rather than

just arises in an isolated sector for no particular reason. In this paper, we consider DM

coming from a particle in the twin sector of the fraternal twin Higgs model, which itself is

motivated by the naturalness problem of the SM EW symmetry breaking and non-discovery

of the colored top partners at the colliders. Although the relevant particles for the DM

relic density in our study, i.e., the twin neutrino, twin tau, and twin photon, have little

effect on the naturalness of the EW scale, they are an integral part of the full theory that

solves the naturalness problem, just like the neutralinos in a supersymmetric SM.

To obtain the correct DM relic density, the interplay of the twin neutrino, twin tau,

and twin photon is important. The DM relic density is determined by the order of the

freeze-out temperatures of various annihilation and scattering processes. It is in the coan-

nihilation phase if the twin tau annihilation freezes out earlier than the twin neutrino to
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twin tau scattering. In the opposite limit, it realizes the recently discovered coscattering

phase. There is also an intermediate regime where the DM relic density is determined by

both coannihilation and coscattering processes due to the momentum dependence of the

coscattering process. The calculation of the DM relic density in this mixed phase is more

complicated and has not been done in the literature and we provide a reasonably simple

way to evaluate it with very good accuracies.

There are many experimental constraints but none of them can cover the whole pa-

rameter space. Direct detection with nuclei recoiling can only constrain heavier DM, above

a few GeV. The experiments based on electron scattering are not yet sensitive to this

model. Future upgrades may be able to probe the region of the parameter space with

large mixings between the twin tau and the twin neutrino. Indirect constraints from DM

annihilation are more sensitive to smaller DM mass with large enough twin tau — twin

neutrino mixings. Other constraints rely on the coannihilation/coscattering partners of the

DM. Twin photon is subject to various dark photon constraints. Twin tau typically has a

long lifetime so it is constrained by BBN and CMB. Its displaced decays may be searched

at colliders with dedicated detectors or strategies. A big chunk of the parameter space

still survives all the constraints. A complete coverage of the parameter space directly is

not easy in the foreseeable future. An indirect test may come from the test of the whole

fraternal twin Higgs model at a future high energy collider, if other heavier particles in the

model can be produced.
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A Calculation of the collision operator

The evaluation of the reduced collision operator C̃ can be time consuming to achieve a high

precision. It can be simplified by performing a partial analytic integration of the phase

space, leaving a one-dimensional integral for the numerical calculation. A similar treatment

for a case with a massless initial state was done in ref. [8]. Notice that since dΩk and the

final state integrated |M|2 in eq. (4.8) are Lorentz invariant, C̃(p, t) can be evaluated in

the rest frame of ν̂. The initial state γ̂ momentum ~kr in the ν̂ rest frame is a function of

both ~p and ~k, obtained from a simple boost. In this frame, the density distribution of γ̂

is no longer spherically symmetric, but is still axially symmetric along the boost axis. In

addition, the Mandelstam variable s is a function of |~kr| only, so the integration over the

angular variables can be easily performed and the result is

C̃ =
1

2Ep

∫ ∞
krt

(kr)
2d|~kr|

(2π)22Ekr

mν̂T

|~kr||~p|

(
e

2|~kr ||~p|
mν̂T − 1

)
e
−
EpEkr

+|~kr ||~p|
mν̂T j(s)σ(s), (A.1)

where krt=
1

2mν̂

√
(m2

τ̂ −m2
ν̂)[(mτ̂ + 2mγ̂)2 −m2

ν̂ ] is the threshold momentum of γ̂ for the

upward scattering.
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B The effect of the (inverse) decay

When the decay D and the inverse decay ID [ν̂(p) + γ̂(k) ↔ τ̂(p′)] are kinematically

allowed, the effect can also be included in the collision operator by an extra term CID.

The cross section of the inverse decay takes the form:

σID =
1

j(s)

∫
d3p′

(2π)32Eτ̂
(2π)4δ4(p+k−p′)|MID(s)|2 =

1

j(s)

π

mτ̂
δ(mτ̂−

√
s)|MID|2, (B.1)

where the flux j(s) = 4Eν̂Eγ̂v. The unintegrated Boltzmann equation (4.6) now reads

Ha∂afν̂(q, a) =

[
Yτ̂ (a)

Y eq
τ̂ (a)

f eqν̂ (q, a)− fν̂(q, a)

](
C̃S + C̃CA

+ C̃ID

)
, (B.2)

with the inverse decay contribution given by

C̃ID(p, t) =
1

2Eν̂

∫
dΩkf

eq
γ̂ (k, t)σID(s)j(s) (B.3)

=
1

4π2

1

4Eν̂

π

mτ̂
|MID|2

∫
dk

k2

Eγ̂
f eq
γ̂ (k, t)

∫
d cos θ δ(mτ̂ −

√
s) (B.4)

=
1

4π2

1

4Eν̂

π

|~p|
|MID|2

∫ kmax

kmin

dk
k

Eγ̂
f eq
γ̂ (k, t) (for p 6= 0), (B.5)

where

kmax
min

=

∣∣∣∣∣12
(
p
(
∆(∆ + 2)− r2

)
±
√(

m2
ν̂ + p2

)
(∆2(∆ + 2)2 + r4 − 2 (∆2 + 2∆ + 2) r2)

) ∣∣∣∣∣.
(B.6)

Notice that the kinematic threshold of the inverse decay is lower than that of the coscat-

tering because it does not need to create a twin photon in the final state. For example, the

ratio of the γ̂ threshold momenta for p = 0 is

kT (S)

kT (ID)
=

√
∆(∆ + 2)(∆ + 2r)(∆ + 2r + 2)

|r2 −∆(∆ + 2)|
, (B.7)

which is larger than one for any ∆ and r. The interaction rate of S is hence exponen-

tially suppressed compared to the rate of ID, besides that it has an extra ê2 suppression.

Consequently ID decouples much later than S.

To compare the decoupling time between the inverse decay and the coannihilation CS ,

we can simply compare C̃ID(p = 0, t) with H(t) when CS decouples. For p = 0, C̃ID is

simplified to:

C̃ID(0, t) =
1

4π2

π

2m2
ν̂

|MID|2kf eq
γ̂ (k, t).

We find that in the parameter space that we consider with θ1 ≥ 10−6, the (inverse) decay

is still active when CS decouples. As an example, for θ1 = 10−6, ê = 0.3, r = 0.24, ∆ =

0.26, mν̂ = 0.1 GeV, ID(p = 0) decouples at x ' 48, much later than CS that decouples at

x ' 30. The difference is even larger for lower values of ∆ and r. From these comparisons,

we conclude that when r < ∆, the (inverse) decay will keep ν̂ and τ̂ in chemical equilibrium

and makes the relic density follow the coannihilation result.
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C The relic density calculation from iteration

As the coscattering process S freezes out, the assumption of chemical equilibrium between

τ̂ and ν̂ (eq. (4.1)) breaks down. As a result, the combined Boltzmann equation for τ̂ and

ν̂ eq. (4.2) no longer holds after S freezes out. In the mixed phase when TCS
and TS are

comparable, in principle one should solve the coupled Boltzmann equations for both Yν̂
and Yτ̂ . As the distribution of τ̂ remains canonical due to τ̂ γ̂ scattering, we can integrate

out the momentum dependence to obtain the integrated Boltzmann equation for nτ̂ ,

ṅτ̂ +3Hnτ̂ = −〈σv〉CS (n2
τ̂ −(neq

τ̂ )2)−〈σv〉CA (nτ̂nν̂−neq
τ̂ n

eq
ν̂ )−〈σv〉IS n

eq
γ̂

(
nτ̂ − neq

τ̂

nν̂
neq
ν̂

)
,

(C.1)

where the last term is the contribution from the inverse coscattering process τ̂ γ̂ → ν̂γ̂,

which does not have a threshold and has very weak pτ̂ dependence. The combination of

eq. (C.1) and eq. (4.13) will give the full solution of nν̂ and nτ̂ .

One way to solve the coupled equations is to use the iterative method [8]. With an

initial guess of nν̂/n
eq
ν̂ , we can obtain nτ̂/n

eq
τ̂ from solving eq. (C.1). Plugging it into

eq. (4.13) will return an improved value for nν̂/n
eq
ν̂ . Repeating this process will eventually

converges to the exact result.

We take the number densities obtained from the coannihilation calculation as our

starting point. We argued that in this case eq. (4.13) gives the correct results both in the

coannihilation limit and the coscattering limit without iterations. The only possibility of

significant deviation is when their contributions are comparable, i.e., in the mixed phase.

To examine the corrections from iterations, we perform numerical studies for the benchmark

parameters, mν̂ = 1 GeV, ∆ = 0.1, r = 0.5 and y = 0.3, with θ1 = 10−2, 10−3, 10−5, which

correspond to coannihilation, mixed, and coscattering phases respectively. We found that

the correction of nν̂ − neq
ν̂ from a single iteration is always small. The results are shown

in figure 9. The first plot represents a coannihilation-like phase. The correction due to

the coscattering contribution from the first iteration is less than 0.1%. For smaller θ1

the coscattering becomes more important one can see larger deviations in Yτ̂ , due to the

larger Yν̂ from decoupling of S. In the coscattering phase as shown in the bottom plot, the

correction of Yτ̂ at late time can be significant. However, during S freeze-out (which occurs

at x . 10 for θ1 = 10−5), τ̂ is still approximately in equilibrium, and the relic density is

mostly given by nν̂ . The correction to the total DM density is also small (O(10−6) in

this case). The largest correction from the iteration indeed happens in the mixed phase,

although it is still quite small. For θ1 ' 10−3, the correction to Ωh2 is ' 0.4% from the first

iteration. The reason for such small corrections is that Yτ̂ is not as sensitive to the early

S decoupling as Yν̂ is, therefore using Yτ̂ from the coannihilation calculation in eq. (4.13)

gives a very good approximation. Based on these results, in our numerical calculations we

simply adopt this prescription without iterations.
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Figure 9. The ratios of Yτ̂ from the first iteration and the initial input from the coannihilation

calculation for 3 benchmarks differ by the mixing angle θ1 described in the text. The top plot

corresponds to a coannihilation phase, where ν̂ and τ̂ are in approximate chemical equilibrium

during the freeze-out. The bottom plot corresponds to a coscattering phase, where τ̂ only deviates

from the initial guess after S has already decoupled, thus it is unable to affect S freeze-out. The

middle plot represents a mixed phase. In this case, the maximal deviation happens simultaneously

as S decouples, resulting in a larger iterative correction to the DM density. However, the correction

is still very small.
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