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presence of such vacuum energy in the inner cores of neutron stars occurs in new QCD

phases at large densities, with the vacuum energy appearing in the equation of state for a

new phase. This in turn leads to a change in the internal structure of neutron stars and

influences their tidal deformabilities which are measurable in the chirp signals of merging

neutron stars. By considering three commonly used neutron star models we show that for

large chirp masses the effect of vacuum energy on the tidal deformabilities can be sizable.

Measurements of this sort have the potential to provide a first test of the gravitational

properties of vacuum energy independent from the acceleration of the Universe, and to

determine the size of QCD contributions to the vacuum energy.
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1 Introduction

The recent observations of gravitational waves (GW’s) from the merger of neutron stars

(NS’s) by LIGO/Virgo [1] along with the corresponding electromagnetic observations of the

resulting kilonova have reverberated across most areas of physics and astronomy. From the

point of view of particle physics the most important consequence of GW170817 and future

merger events is our new ability to directly examine the properties of the QCD matter

forming the inner layers of NS’s, allowing us to use NS’s as laboratories for fundamental

physics [2–4]. This might also open up new avenues to testing the gravitational properties

of vacuum energy (VE) which may also get at the heart of some of the deepest puzzles in

fundamental physics [5].

It has long been speculated that there may be a new phase of nuclear matter at the

core of the NS’s [6–9]. If such a phase indeed exists it is expected to be accompanied by a

jump in VE [10] of order Λ4
QCD (where ΛQCD ∼ 200 MeV is the usual QCD scale) making

NS’s the only known objects where VE might make up a non-negligible fraction of the total

mass. Therefore studies of the interior structure of NS’s can also probe the gravitational

properties of VE, possibly shedding light on some of the most interesting open questions

in physics: it could provide verification of the equivalence principle for VE. This would be

the first test independent of those obtained from the cosmic acceleration of the Universe.

Acceleration of the Universe provides information on VE in the low-temperature low density

phase of the SM, while NS’s could probe a low temperature but very high density phase

if it exists in their cores. This could allow us to isolate the QCD contribution to ordinary

VE and probe its gravitational properties.
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Alongside the exciting advent of the gravitational wave observation era shepherded in

by LIGO/Virgo, the Neutron star Interior Composition ExploreR (NICER) mission will

soon measure masses and radii of several millisecond pulsars [11–13]. These measurements

as well as the chirps from the inspiral of merging neutron stars can provide information

about the equation of state (EoS) of dense nuclear matter. The chirps in particular are

sensitive to the tidal deformability of NS’s as they approach each other [14–18]. There

has already been considerable work on constraining the EoS using the new LIGO/Virgo

data [19–23].

There exists an extensive literature focused on trying to put bounds on the nuclear EoS

at high densities from neutron star measurements (see for example [24–30]). Some recent

theoretical work has focused on modeling possible new phases at the cores of neutron stars

by using quasi-particle quarks rather than neutrons to provide the simplest description

of the microscopic physics [31–47]. Further work has been done using NS’s to constrain

“beyond the Standard Model” physics [2–4].

In this paper we will assume that there is only Standard Model physics involved in

the composition of neutron stars, and we will not try to model the microphysics of the

putative new phase. Our main goal is to investigate the observable effects of the presence

of VE on the GW signal as well as the mass versus radius curve of NS’s, possibly providing

new experimental probes of VE. To achieve this we will parameterize the effect of the new

phase with a jump in the ground state energy due to a QCD phase transition assumed at

the core [5, 45–50]. This new phase would appear at a critical pressure of order pc ∝ Λ4
QCD,

and is expected to also lead to a change of VE [10] of order ∆Λ ∝ Λ4
QCD. We will follow

the conventional models for NS’s where the EoS is divided into 7 layers, but we modify the

innermost layer to take the effect of the phase transition and the appearance of VE at the

core into account. Previous studies treat all 7 layers as simple polytropic fluids, but this is

expected to be a poor fit to an inner core exhibiting the physics of a new phase of QCD,

where the vacuum energy does not vanish. We will then evaluate the tidal Love numbers

for such models, varying over the value of the vacuum energy at the core. One important

consequence of the new phase (along with the presence of vacuum energy) is that the jump

conditions at the boundary of the inner core have to be modified from those traditionally

used in NS simulations [45–50]. We will explore the effect of a difference in energy densities

of the two phases that includes a discontinuous, density independent term reflecting the

absence of the low density QCD contribution to VE [5]. We will present several models of

NS cores and estimate the effect of VE on tidal Love numbers. We find that VE can have

a significant effect on NS merger waveforms with high chirp masses, so that such events

serve as a probe of the physics of vacuum energy.

While vacuum energy is found to have a significant effect on waveforms, there are cur-

rently significant uncertainties both in terms of experimental waveform data and in terms

of theoretical expectations for parameters describing the equation of state. Disentangling

the effect of the QCD vacuum energy from other high density physics is currently not

yet possible, however, the future of gravity wave observation holds great promise in terms

of obtaining multiple independent measurements of neutron star observables, significantly

tightening constraints on the equation of state of QCD. Additionally, progress may be
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made on the theory side — QCD is a complete microscopic theory, therefore its high den-

sity behavior can be uniquely determined from first principles. The ultimate goal is to use

neutron stars as new astrophysical laboratories for studying physics at the density frontier,

and determining whether the SM (plus classical gravity) agrees with data, or whether new

exotic (gravitational or particle) physics is necessary to explain the observations.

The paper is organized as follows. In section 2 we present the models we use for nuclear

matter in the interior of NS’s, along with a detailed discussion of the treatment of the phase

transition at the boundary of the innermost layer. Section 3 contains the description of

the tidal deformability of NS’s. The results of our simulations and the effects of VE on the

NS observables are given in section 4: we show the mass versus radius curves and the tidal

deformabilities for three different well-studied NS models and the effects of VE on those

observables. Finally we conclude in section 5.

2 Modeling high density QCD

The main difference between our work and that of previous studies of tidal deformability

of NS’s is that we will fully account for a phase transition to an exotic phase of QCD in

the innermost core region of NS’s. Crucially, we take into account the Standard Model

expectation that there is a constant shift Λ, independent of baryon number density, in

the ground state energy relative to the surrounding layers parametrizing the change in VE

due to the phase transition. In the ordinary phase of QCD the nonperturbative conden-

sates of quarks and gluons make contributions [10] of order (100 MeV)4 to the VE. These

contributions, along with those from other sectors of the SM, are canceled by the “bare”

cosmological constant down to the observed cosmological constant of order (meV)4:

ΛSMvac
QCD + ΛSMother + Λbare ' (10−3 eV)4 . (2.1)

The origin of the mechanism leading to this cancelation remains unknown. In an exotic

phase of QCD the QCD contributions to the VE will have order one modifications and

hence the precise cancelation will no longer apply:

Λexotic
QCD + ΛSMother + Λbare ' ∆Λ , (2.2)

where ∆Λ is the shift in the QCD vacuum energy due to the phase transition. Hence in the

absence of a dynamical adjustment mechanism, Standard Model physics predicts a density

independent shift in the energy of the exotic phase compared to the ordinary phase, which

will serve as a new effective cosmological constant term for this phase. An estimate of the

difference between the VE of the exotic phase and the ordinary vacuum is given by nuclear

saturation density: |∆Λ| ∼ Λ4
QCD [5]. Such a phase change is strongly suspected to occur

at high chemical potential, with theoretical evidence arising from truncated diagrammatic

expansions and other approximate methods [36–39]. The phase change is in fact part of

the standard picture of the QCD phase diagram. For many plausible descriptions of the

matter in the outer portions of the star, nuclear saturation density is approached near the

core of the densest NS’s, making it quite possible that the most massive NS’s contain cores
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with an exotic phase. In this section, we give a description of how one can model the

QCD equation of state at various pressures, with particular attention paid to the phase

transition that may occur in the innermost region.

2.1 Modeling the outer layers

The physics of neutron stars is an extremely rich field, and there are many details that

go into modeling the different regions of NS’s. Such an analysis is well beyond the scope

of this work, however there are methods for coarse-graining these complexities to obtain

an approximate equation of state for nuclear matter up until the phase transition we are

interested in. Such an approximation is sufficient for the purposes of making predictions for

gravitational wave signals. The most common methodology for modeling the high density

nuclear physics region outside the exotic phase core is to separate the neutron star into

multiple layers, with each layer satisfying a non-relativistic polytropic equation of state.

The parameters of the polytrope are fixed either by matching conditions or by fitting results

from more detailed studies.

We follow this established methodology and model the nuclear fluid and its corre-

sponding EoS as a piecewise polytrope where the boundaries between each layer are set by

a given value of the pressure. Following previous work [29, 30] we will parametrize the EoS

with a total of 7 layers. The Israel junction conditions [51] require that the pressure must

always be continuous between layers, even if each side of the boundary is separated by a

first order phase transition. It is traditional to parameterize the EoS by assuming that the

pressure is given by a power of the mass density ρ(r) = mnn(r) rather than a power of the

energy density (as would be natural for a high-density, relativistic fluid). Since we want to

efficiently compare our results with the existing state of the art simulations (some of which

have been used as benchmarks for the LIGO/Virgo analysis) we will bow to this tradition

and parametrize the EoS as

p = Kiρ
γi , pi−1 ≤ p ≤ pi , (2.3)

where i ∈ {1, . . . , 7} for Ki, γi and i ∈ {1, . . . , 6} for pi. The pressures, pi, dividing the

various layers have a one to one correspondence with the boundaries in the mass density:

ρi. The Einstein equations contain the energy density, which is related to the mass density

via the first law of thermodynamics: d(ε/ρ) = −p d(1/ρ). Integrating the first law together

with (2.3) yields the corresponding energy density:

ε = (1 + ai)ρ+
Ki

γi − 1
ργi , (2.4)

where the ai are integration constants. Note that the appearance of the ai parameters is a

consequence of using a polytropic ansatz for the mass density. Naively, one would think that

using a relativistic polytropic ansatz for the energy density would have led us to a relation

with one less free parameter. However another thermodynamical condition, continuity of

the chemical potential, would have forced us to reintroduce the baryon number density,

and therefore to bring back another parameter. So these simply correspond to different
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parametrizations of the EoS, and we adopt the one described above in order to follow the

traditional approach.

By using 7 layers we have introduced a large number of parameters (γi,Ki and ai).

Most of those can be determined by continuity of various quantities at the layer boundaries.

For the outer 6 layers we assume the continuity of the energy density at the boundaries,

which allows us to determine the ai’s:

ai =
ε(ρi−1)

ρi−1
− 1− Ki

γi − 1
ργi−1i−1 . (2.5)

If the K1 constant for the outermost layer is known, then the other Ki values (except for

the innermost layer) can be determined by the continuity of the pressure:

Ki = Ki−1ρ
γi−1−γi
i−1 , i ∈ {2, . . . , 6} . (2.6)

For the outermost layer, the “crust”, we have p0 = 0. Requiring that limρ→0
ε
ρ = 1

(physically this means that the edge of the star is ordinary non-relativistic matter) implies

that a1 = 0. Thus the parameterization of the EoS of the NS for the outer layers will

require us to specify the critical pressures pi, all the polytropic exponents γi as well as the

outermost polytropic constant K1, while all other parameters will be determined by the

continuity conditions.

2.2 Modeling the core and the effect of VE

For the last layer, we use an equation of state that incorporates physics associated with a

change in the QCD vacuum state due to high density. There are two effects expected at

this phase transition: a vacuum energy term Λ in the fluid that is independent of baryon

number density, and a jump in energy density across the boundary. Unlike in the outer

layers, in the exotic phase the nature of the baryonic states may be very different from the

usual zero temperature baryons. Since QCD conserves baryon number, for the innermost

layer it is more natural to use baryon number density n in place of the mass density as the

variable parametrizing the EoS for the central core (p > p6). In this case, the equation of

state can be written as:

p = K̃7n
γ7 − Λ , (2.7)

ε = ã7n+
K̃7

γ7 − 1
nγ7 + Λ . (2.8)

Note that the vacuum energy appears with the opposite sign in the energy density and

pressure, just as with the cosmological constant. Our goal is to see how sensitive neutron

star observables are to the VE shift Λ.

To keep the form of the EoS unchanged in the various layers we can introduce the

density ρ = mnn where mn is the ordinary neutron mass, and use this rescaled number

density for the innermost layer. We can easily see that in terms of this rescaled density

the EoS will have the same form as for the outer layers:

p = K7ρ
γ7 − Λ , (2.9)

ε = (1 + a7)ρ+
K7

γ7 − 1
ργ7 + Λ , (2.10)
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where K7 = K̃7/m
γ7
n , (1 + a7) = ã7/mn are just redefinitions of the unknown constants

parametrizing the EoS for the inner layer. We adopt this notation in order to stay close to

the standard formalism used in the literature.

Let us now examine in detail the continuity (or jump) of the various quantities at the

phase boundary between the sixth and the seventh (innermost) layer. The Israel junction

conditions [51] still require that the pressure be continuous:

K7ρ
γ7
+ − Λ = K6ρ

γ6
− = p6 , (2.11)

but due to the appearance of the Λ term this now requires a jump in ρ(r) from ρ+ to

ρ− (where ρ− = ρ6) and consequently also in ε(r) from ε+ to ε−. Since QCD conserves

baryon number, another quantity that we need to require to be continuous is the chemical

potential µ (that is we are assuming chemical equilibrium at the phase boundaries with

conserved baryon number). The chemical potential at zero temperature is given by

µ =
ε+ p

n
, (2.12)

where n is again the baryon number density. This relation holds even if the VE is nonzero.

Therefore the jumps from ε+ to ε− and from ρ+ and ρ− (in our convention ρ+ = mnn+
and ρ− = mnn−) are related to each other by

ε+ + p6
ρ+

=
ε− + p6
ρ−

. (2.13)

The convexity of the free energy
(
∂2F
∂V 2

)
T,N

> 0 can be translated to
(
∂p
∂n

)
T,N

> 0. This

latter form implies that the number density increases with pressure, yielding ρ+ ≥ ρ−.

This condition together with the continuity of the chemical potential tells us that the jump

in energy density should also be positive, i.e. ε+ ≥ ε−.

A typical phase transition will have both ∆ε and Λ non-vanishing, and this scenario is

the focus of our studies. We choose to parametrize the jump in energy density such that

it is proportional to the absolute value of the shift in VE:

ε+ − ε− = α|Λ| . (2.14)

For each value of γ7, α, and Λ, this condition, together with continuity of the chemical

potential, fixes the values of K7 and a7. This parametrization of the phase transition has

the advantage that the Λ = 0 limit reproduces the results obtained in the literature since

both the mass density and the energy density become continuous in this case. In principle,

α could be taken to be zero, isolating the effects of vacuum energy from a jump in the

energy density, corresponding to a second order phase transition. Here we will assume that

the phase transition is first order with an accompanying jump in most quantities across

the phase boundary and take α > 0. A final consistency condition is that both the full

pressure and the partial pressure of the fluid, K7ρ
γ7 , must be positive. This implies that

Λ must satisfy −p6 < Λ.

– 6 –
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3 Modeling neutron stars

After presenting the relevant physics of the dense QCD matter forming the interior of the

NS we are now ready to review the usual method for calculating the structure of the interior

of the NS. GW emission observed by LIGO/Virgo originates from the inspiral phase, when

the stars are far apart relative to their radii. In this stage of the merger, the NS’s are still

well approximated by nearly spherically symmetric static objects, with deviations described

by a linear response in an expansion in spherical harmonics. In this paper we will ignore the

effects of NS angular momentum but plan to further investigate that in a future publication.

First we briefly review the equations relevant for the spherically symmetric solution and

then present an overview of the perturbations due to the gravitational field of the other NS.

3.1 Spherically symmetric solutions

At lowest order, the stars are spherically symmetric, and their mass distribution is given

by the solution to the Tolman-Oppenheimer-Volkoff (TOV) equations [52, 53]. These

equations are easily derived by starting with a spherically symmetric metric ansatz

ds2 = eν(r)dt2 −
(

1− 2Gm(r)

r

)−1
dr2 − r2dΩ2 , (3.1)

and using the associated Einstein equations assuming a spherically symmetric fluid distri-

bution with pressure p(r) and energy density ε(r). The resulting TOV equations are:

m′(r) = 4πr2ε(r) , (3.2)

p′(r) = − p(r) + ε(r)

r (r − 2Gm(r))
G
[
m(r) + 4πr3p(r)

]
, (3.3)

ν ′(r) = − 2p′(r)

p(r) + ε(r)
, (3.4)

where ′ denotes differentiation with respect to the radial coordinate r. The TOV metric

provides the unperturbed solution around which the gravitational field of the second star

will introduce perturbations that can be dealt with using a multipole expansion. From the

solution to these equations, one obtains the internal structure of the star: the mass as a

function of radius, as well as the thicknesses and masses of the various layers.

3.2 Tidal distortion and Love numbers

In a neutron star binary, each neutron star experiences gravitational tidal forces due to the

other. This force squeezes the stars along the axis passing through both of their centers,

and deforms the stars, inducing a quadrupole moment. The size of this induced quadrupole

moment is determined by the structure of each neutron star, which can be characterized

by its compactness and the stiffness of the EoS. These in turn depend on the physical

properties of the dense QCD matter as described by its EoS discussed in the previous

section. The effect of the induced quadrupole on gravitational wave data is to change

the power emission as a function of time and frequency. Thus LIGO data on NS inspirals

– 7 –
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contains information about this tidal deformability, which depends on the equation of state

of the matter making up the stars.

A common way to describe the deformability of a star is through the Love number. Love

numbers were originally introduced in the study of Newtonian tides [54]. The application

of Love numbers to gravitational waves produced in neutron star inspirals was initiated

in refs. [14, 15], and further generalized in [55–57]. Detailed studies of the prospects for

gravitational wave detection were provided in [16–18].

In the local rest frame of one star a small tidal field can be described in terms of a

Taylor expansion of the Newtonian gravitational potential, or the time-time component

of the metric tensor. There are two contributions, one from the effect of the distant star,

and the other from the induced quadrupole moment. At large distances (using Cartesian

coordinates, xi) gtt takes the form [16]

1 + gtt
2

≈ GM

r
+

3GQij
2r5

xixj − 1

2
Eijxixj . . . (3.5)

Here Eij parametrizes the external tidal gravitational field, and Qij is the induced

quadrupole moment. Both matrices are traceless and symmetric. To linear order in the

response, the induced quadrupole is determined by the tidal deformability, λ, defined by

Qij = −λ Eij . (3.6)

One can then define a dimensionless quantity k2 by

k2 =
3

2

Gλ

R5
, (3.7)

where R is the radius of the neutron star. This is referred to as the l = 2 tidal Love

number, and is the main physical observable. The advantage of this parametrization is

that the Love number does not vary much with the size of the star, with typical Love

numbers ranging from k2 = 0.001 to k2 = 1 as masses and equations of state are varied.

In order to determine k2, one performs the perturbative expansion of the solutions

to the Einstein equations in the presence of an external gravitational field assuming a

multipole expansion. Thus inside and near the star we will write the metric perturbation

as an expansion in spherical harmonics Y m
l . Due to the axial symmetry around the axis

connecting the centers of the two stars, m is zero, and since the tidal deformation is

dominantly quadrupolar, with no dipole, the leading contribution is at l = 2 [16]. Hence

the full perturbed metric gαβ + hαβ (where gαβ is the metric from (3.1)) is written as

hαβ = diag
(
eν(r)H(r), eµ(r)H(r), r2K(r), r2 sin2 θK(r)

)
Y 0
2 (θ, φ) , (3.8)

where eµ(r) and eν(r) are the functions in the solution to the unperturbed spherically

symmetric metric (3.1):

eµ(r) = (1− 2Gm(r)/r)−1 , (3.9)

ν ′(r) = − 2p′(r)

p(r) + ε(r)
, (3.10)

– 8 –
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and the Einstein equations relate the functions K and H:

K ′(r) = H ′(r) +H(r)ν ′(r) . (3.11)

Inserting the perturbed metric into Einstein’s equations results in a second order differential

equation for H(r):

H ′′ = 2Heµ

{
−2πG

[
5ε+ 9p+

dε

dp
(ε+ p)

]
+

3

r2
+ 2G2eµ

(
m(r)

r2
+ 4πrp

)2
}

+
2

r
H ′eµ

{
−1 +

Gm(r)

r
+ 2πGr2(ε− p)

}
.

(3.12)

To find solutions, one starts with a series expansion of H very near the core of the

star, at small r:

H(r) = a r2 +O
(
r4
)
. (3.13)

The linear term drops out since the solution must be regular at r = 0. The size of the coef-

ficient a is linearly proportional to the size of the external perturbation, Eij , and is not an

intrinsic property of the star, as is clear from the fact that it is simply a normalization coeffi-

cient for the solution to the linear ODE for H. One can thus pick this coefficient arbitrarily

in numerically solving for H. The l = 2 tidal Love number, on the other hand is an intrinsic

property, and the value for a drops out in calculating it. The value for k2 can be calculated

once H is found, and matched at large r onto the metric ansatz in eq. (3.5). It is given by

k2 =
8C5

5
(1− 2C)2[2 + 2C(y − 1)− y]

×
{

2C[6− 3y + 3C(5y − 8)] + 4C3[13− 11y + C(3y − 2) + 2C2(1 + y)]

+ 3(1− 2C)2[2− y + 2C(y − 1)] log(1− 2C)
}−1

,

(3.14)

where C is the compactness parameter GM/R, and y is obtained from the solution to H

evaluated on the surface of the star:

y =
RH ′(R)

H(R)
. (3.15)

Another dimensionless quantity, known as the dimensionless tidal deformability, is often

found in the literature. It is obtained from the definition of k2 by factoring out the C5 in

front:

λ̄ =
2k2
3C5

=
λ

G4M5
. (3.16)

4 Results and fits

We are now ready to present our results for the effects of adding a VE component to the

innermost layer. We will use several different benchmark EoS’s for modeling the NS’s

and investigate the consequences of the presence of VE in each of those cases. Two of

the EoS’s are more “conservative” in the sense that the maximum stable NS mass that

– 9 –
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SLy AP4 Hebeler

K1 9.27637× 10−6 See [30]

p1 (0.348867)4

p2 (7.78544)4 See [30]

p3 (10.5248)4

p4 (40.6446)4 (41.0810)4 (72.2274)4

p5 (103.804)4 (97.1544)4 (102.430)4

p6 (176.497)4 (179.161)4 (149.531)4

γ1 1.58425

γ2 1.28733

γ3 0.62223

γ4 1.35692

See [30]

γ5 3.005 2.830 4.5

γ6 2.988 3.445 5.5

γ7 2.851 3.348 3

Table 1. The parameters used for each EoS. The exponents γi are dimensionless, the various pres-

sures have units of MeV4, and K1 is in units of MeV4−4γ1 . The Hebeler et al. parametrization [30]

uses a semi-analytic expression which is not piecewise polytropic in the outer region of the star,

and thus cannot be displayed in the table.

can be achieved just barely goes above 2M� (the maximum NS mass observed thus far is

M = (2.01±0.04)M�). The two more conservative models are the AP4 [58] and SLy [27, 28]

EoS’s, which were also used as benchmarks by LIGO/Virgo [1]. We also consider the less

restrictive model of Hebeler et al. [30] which permits larger masses, up to nearly 3M�. For

the AP4 and SLy models we use the piecewise polytropic parametrization for all 7 layers

provided by Read et al. [29]. We have tabulated the corresponding parameters in table 1.

While the model of Hebeler et al. also uses a piecewise polytropic EoS for the innermost

three layers, for the outer four layers corresponding to the crust they use a semi-analytic

expression. In their parametrization, the outer crust is modeled by the BPS EoS [59, 60]

assuming β equilibrium,1 followed by a layer for which chiral EFT (valid up to the nuclear

saturation density around 0.18 baryons/fm3) is used to obtain the EoS. This semi-analytic

expression is consistent with the piecewise polytropic approach of AP4 and SLy.

Varying the EoS leads to more or less compact NS’s, whose deformability will also

change. The compactness of the NS can be characterized by the radius of a NS with a

fixed mass. The deformability describes how much the NS reacts to the presence of the

gravitational field of the second NS in the binary merger event and is characterized by

the tidal deformability. In the first subsection, we present our results for the mass versus

1β-equilibrium corresponds to equal rates of neutron decay and proton capture of electrons.
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radius, M(R), curves of neutron stars with different nuclear EoS’s including the effect of

VE, while in the second, we study the tidal deformability and comment on the potential

for LIGO/Virgo to discern between models with different assumptions about the change

in VE in exotic phases of QCD.

4.1 M(R) results

We first present the results for the mass versus radius curves for the three different bench-

mark equations of state, whose parameters are displayed in table 1. These three bench-

marks cover a realistic range of possible EoS’s, with a wide variation in the maximum

possible stable neutron star mass. We take care not to violate basic constraints on the

behavior of high density QCD matter. For example, when pressures near the center of the

star become very large, and relativistic effects dominate, one must ensure that the equation

of state does not violate causality. Causality requires that the speed of sound in the fluid

does not exceed the speed of light:

vs =

√
dp

dε
≤ 1 . (4.1)

However, using simple EoS models this condition is often violated for very large central

pressures. Such violation does not imply the instability of the NS, but is rather an indication

that the ansatz for the EoS is no longer a good approximation of the underlying nuclear

physics in that region. Such causality violation would never arise in the true QCD equation

of state at very high densities.

The true stability condition for the central pressures that a neutron star can support

is given by
∂M

∂pcenter
> 0 . (4.2)

This constraint arises from considerations of radial pulsation modes of the star, and is

directly associated with stability of the fundamental mode of oscillation [61]. The relation

in eq. (4.2) above can be violated when the jump in the energy density is too large [48]:

ε+ − ε− ≥
1

2
ε− +

3

2
p6 . (4.3)

Above this bound, the mass of the NS no longer increases with increasing core pressure,

and the NS is unstable [42–50].

We note that the condition in eq. (4.2) can be satisfied for two stars of the same

mass, but different internal pressures [62–64], corresponding to different phases in the core

of the star. In such cases, the critical energy density jump exceeds that in eq. (4.3) at

the transition. However, even with this instability, one sometimes finds for p > p6, that

there is a disconnected class of solutions that does not exceed the bound in eq. (4.2). The

possibility then arises that some of the exotic, disconnected solutions have the same masses

as some of the normal, lower pressure solutions.

Which of the two conditions, causality or monotonicity, will limit the central pressure

depends on the EoS. For AP4 and SLy, the limit is set by causality. This bound can be
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Figure 1. Mass versus radius curves corresponding to the stiff parametrization of Hebeler et al. [30]

with α = 3. Dotted curves in the plot on the left correspond to unstable configurations violating

eq. (4.2). Positive values of Λ are shown in the plot on the left, and negative ones on the right.
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(a) SLy EoS.
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(b) AP4 EoS.

Figure 2. M(R) curves for the SLy and AP4 equations of state for various Λ values on the seventh

layer. For all the curves, the proportionality constant α in the jump equation (2.14) is chosen to

be α = 3. The gray region shows the allowed mass range of the heaviest neutron star, with mass

(2.01± 0.04)M�.

avoided by modifying the EoS via a “causal extension” [30] into the regions where the

pressure exceeds the maximal value set by the causality bound. For the models we are

working with, we have found that this extension simply flattens out the curves at the point

where causality is violated, and hence does not change the value of the maximum mass

significantly. For this reason we have chosen not to make this modification and ended the

curves at the point where the speed of sound reaches unity.

The M(R) curve and the effect of VE for the Hebeler et al. EoS [30] are shown in

figure 1. Each curve is obtained by varying the pressure at the center of the star but

keeping all of the other parameters fixed. We have fixed α = 3 in this plot, as well as all

those that follow.2 When the central pressure is greater than p6, the value of Λ becomes

2Taking α to be small reduces the change in the curves relative the Λ = 0 case, however small values

of α are not representative of most phase transitions, which are typically accompanied by a change in the

energy density as well as the vacuum energy.
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relevant and the other curves depart from the behavior of the Λ = 0 case. Dotted parts of

the curves correspond to unstable regions, i.e. solutions of the TOV equations in which the

stability condition (4.2) is violated. The shaded region represents the most massive neutron

star measured to date, with a mass of (2.01± 0.04)M� [65]. Notice that for some positive

values of Λ, i.e. when the jump in energy density is big enough according to eq. (4.3), we

find a second stable region which is disconnected from the main branch, as discussed above.

This means that for a given mass, there are two possible types of stars, one with no exotic

phase in the core, and another with a significant portion of the star in the new phase.

This gives rise to interesting effects, both for M(R) curves and in GW observables. For

example, assuming that the Λ = (165 MeV)4 curve is the correct one, it would be possible

to observe two 2M� neutron stars with significantly different radii. That is, there are two

stable configurations for stars with the same mass. It is quite interesting that the physics

of QCD may allow for a plethora of different compact objects, with population numbers

depending on the conditions of their formation.

Our procedure for introducing the VE for this model is the following. In order to

make sure that all values of Λ considered here are compatible with a neutron star mass

of (2.01 ± 0.04)M�, we stop the next-to-innermost polytropic region as soon as the mass

reaches 2.00M�. This corresponds to choosing a critical pressure p6 ≈ (150 MeV)4. Once

the critical pressure is reached, we transition into the innermost polytropic region with

a nonzero VE, and we allow for the central pressure to be as high as possible without

violating the causality bound.

Next we present results for the AP4 [58] and SLy [27, 28] EoS models. The M(R) curves

for the AP4 and SLy models with different values of the VE in the innermost layer are shown

in figure 2. One can again see that up to a certain critical mass, the curves corresponding

to different Λ’s in the innermost layer do coincide with each other. The reason for this is

that below this mass the central pressure is not high enough to enter the exotic high density

phase of QCD. The critical pressure for the phase transition to occur is set by p6 which is an

input of the model. For the AP4 and SLy models, p6 ≈ (179 MeV)4 and p6 ≈ (176 MeV)4

respectively which correspond to a critical mass of approximately 1.6M� for both models.

The plots for all three EoS’s show that the maximal mass of the neutron star decreases

for both positive and negative values of VE. This is a generic feature of neutron star models

with phase transitions with vacuum energy in our study, and is due to the jump in the

energy density across the phase transition. This conclusion is similar to that obtained in

previous works that study phase transitions without vacuum energy [66].

4.2 Tidal deformabilities and LIGO/Virgo

Let us now discuss NS observables from GW’s emitted during the merger of NS’s. The

frequency versus time behavior of the waveform of the emitted gravitational wave, usually

expressed in terms of the “gravitational wave phase” appearing in the Fourier transform of

the chirp, can be determined by an expansion in relativistic effects, starting at Newtonian

order, and proceeding to post-Newtonian corrections in the velocity. At dominant Newto-

nian order, where the two NS’s are approximated by point masses, the waveform depends
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only on a particular combination of the masses called the chirp mass:

M = µ3/5M
2/5
tot =

(M1M2)
3/5

(M1 +M2)1/5
, (4.4)

where µ is the reduced mass of the system [67]. For the recently observed merger event,

GW170817, the chirp mass was measured to be M = 1.188+0.004
−0.002M�.

Since this is the dominant contribution to the waveform, the chirp mass can be de-

termined quite accurately. However, the individual masses must be extracted from higher

order velocity corrections to the waveform, and are thus more difficult to constrain. At

higher order, spin-couplings are important as well, and without information about the stars’

rotational speeds and axes, precise extraction of the masses is impossible. This information

is in principle retrievable from measurements of the waveform, but is difficult as it relies

on data near the end of the inspiral, where current experiments lose sensitivity, and where

full numerical simulation of the merger event may be necessary [68].

At present, the individual masses can only be estimated by using the chirp mass and

some assumptions for the angular rotation frequency of the stars. For GW170817 in the

low-spin case, the estimated mass range is 1.36–1.60M� for the heavy star and 1.17–1.36M�
for the light star, while for the high-spin case, there is considerably more possible variation

in the masses: 1.36–2.26M� for the heavy star and 0.86–1.36M� for its less massive partner.

Similarly, it is not yet possible to measure individual tidal deformabilities. However, it

is possible to constrain a weighted combination of the individual masses and deformabilities

through their contribution to the gravitational wave phase at order v5. This so-called

“combined dimensionless tidal deformability” is defined as

Λ̃ =
16

13

(M1 + 12M2)M
4
1 λ̄1 + (M2 + 12M1)M

4
2 λ̄2

(M1 +M2)5
. (4.5)

For the recent event GW170817, the current constraint placed on Λ̃ is ≤ 800 for the low-spin

assumption and ≤ 700 for the high-spin case. In the low-spin case, the neutron star masses

are probably too low to contain an exotic QCD phase, and thus event GW170817 would

not contain information about VE. Of course, this may not be the case for future merger

events, which may involve heavier NS’s. In the high-spin case, however, the inner core could

be in the exotic phase, and the constraints from GW170817 are relevant for studying VE.

The rest of this section contains our results for the effects of VE on the tidal deforma-

bilities, which will be presented in a series of plots. Each plot will be presented both for

the Hebeler et al. EoS, which allows for larger NS masses and hence larger effects from

VE, as well as for the AP4 and SLy EoS’s, which cut NS masses off at 2M� and thus have

smaller VE effects.

• Figure 3 shows the individual tidal deformabilities of both NS’s and the effect of VE

using the Hebeler et al. EoS.

• Figure 4 translates the effects of VE into a fractional shift of the combined tidal

deformability Λ̃. This plot shows that the effect of VE can be as large as 70% and is

generically sizable for the case of the Hebeler et al. EoS.
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• Figures 5, 6, 7 repeat the same analyses for the AP4 and SLy EoS’s, where we see

that the deviations are generically smaller, but can still reach 25–30% for larger chirp

masses.

• Figures 8, 9 emphasize the role of the chirp mass: they show the maximal achievable

effect of VE as the chirp mass is increased. We can see that observing events with

chirp masses above 1.6–1.8M� will be key to observing the effects of VE.

• Figure 10 shows the effect of VE on GW170817 (assuming the Hebeler EoS) where

it can significantly change the allowed region of NS masses one would infer from the

constraint on the tidal deformability.

The EoS parametrization of Hebeler et al. [30] allows for large possible deviations in

the tidal deformability when a VE term is added to the central core in the new phase. In

figure 3, we show the effect of varying the VE term for a selection of three different input

chirp masses. The curves are obtained by fixing the chirp mass M at a few representative

values and then scanning over the mass of the heaviest star, M1. Typically it is found that

the heavier the star, the smaller the tidal deformability. This is largely due to the fact that

more massive stars typically have smaller radii, and thus respond less to external tidal fields.

We note that the Λ = (165 MeV)4 curve in the third plot is composed of two separate

branches, corresponding to the two separate stable stars with equal masses but different

radii as explained in the previous section. The branch with the highest values of λ̄2 cor-

responds to only the most massive star laying in the disconnected branch of the M(R)

curve, while in the other case both stars in the binary would come from the disconnected

branch. Part of the reason why the deviations from the Λ = 0 curve are significant here

can be found directly in figure 1. Since there the maximum mass for the Λ = 0 curve is

close to 3M�, the curves that correspond to a nonzero Λ can depart significantly without

being excluded by the measurement of the most massive neutron star, (2.01± 0.04)M�.

As we are most interested in the changes brought about by considering non-vanishing

VE, it is useful to introduce a variable that quantifies the relative shift in Λ̃ due to VE:

δ ≡ Λ̃− Λ̃0

Λ̃0

, (4.6)

where Λ̃0 is the value of Λ̃ obtained by taking the VE term to zero.

The deviation as a function of the heavy star mass, M1, for the Hebeler et al.

parametrization is shown in figure 4. The negative values for δ mean that introducing

a VE term lowers the value of Λ̃. In order to isolate as much as possible the effects that

a nonzero value of Λ has on the internal structure of the stars, we are comparing each

point in a given curve with the corresponding event on the Λ = 0 curve that has the same

neutron star masses. Therefore, any deviation in the value of Λ̃ comes entirely from the

change in the tidal deformabilities, λ̄i.

Even with the more conservative SLy and AP4 models one still finds large deviations in

Λ̃ for events with larger chirp masses. The case of the (smaller) chirp mass corresponding

to GW170817 is displayed in figure 5, and the deviations in deformability are small. This
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Figure 3. Tidal deformabilities for the Hebeler et al. parametrization with α = 3. Each plot

corresponds to a different chirp mass. Dotted parts of the curves with Λ = (165 MeV)4 correspond

to unstable configurations. In all cases, the deviation from the Λ = 0 curve is significant.

is because the combined deformability is typically dominated by the contribution from the

less massive star, which does not contain a core in the new phase where VE plays a role.

However for higher chirp masses the effect of vacuum energy can be sizable even for the

SLy and AP4 EoS’s, as shown in figures 6 and 7. As the chirp mass increases more of the

star contains the new phase, and eventually both stars typically contain cores in the new

phase, yielding the increased sensitivity to VE. The high chirp mass we have chosen for

these figures corresponds, if the stars are of equal mass, to individual masses of 1.9M�,

approaching that of the most massive NS observed to date. One can see that for this case

the deviation can be as large as 37%, even for these more conservative equations of state.

Since the chirp mass is the most accurately measured property of the NS merger, it is

worthwhile to examine the dependence of δ (characterizing the sensitivity to VE) on the

chirp mass. In figures 8 (Hebeler) and 9 (AP4 and SLy) we plot Λ̃max
0 and δmax as a function

of the chirp mass. The superscript expresses the fact that, when evaluating the quantities

in eqs. (4.5) and (4.6), the mass of the heavy star is kept fixed at the maximal value allowed

by the corresponding fixed value of Λ. Fixing one of the stars to have maximal mass will

generically (though not always) give the largest VE effect on Λ̃. The important result of

the plots is that the deviation increases substantially above a certain chirp mass denoted by
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(f) M = 2−1/52.0M� ≈ 1.74M�.

Figure 4. Plots on the right show the relative deviation of the combined dimensionless tidal

deformability, Λ̃, as a function of the heaviest star mass for the Hebeler et al. parametrization with

α = 3 for various values of the chirp mass. Plots on the left show Λ̃ for vanishing VE for the same

chirp masses. Dotted parts of the curves correspond to unstable configurations. The disconnected

branches associated with two stable NS configurations allow for the largest deviations.
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Figure 5. Tidal deformability curves for a neutron star binary with SLy and AP4 EoS’s. The

chirp mass is taken to be M = 1.188M�, which is the same value as in GW170817. λ̄1 and

λ̄2 correspond to the dimensionless tidal deformability parameters for the heavy and light stars,

respectively. Each curve is obtained by varying the heavy star mass while holding the chirp mass

fixed. The α-parameter of (2.14) is chosen to be α = 3.
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(b) M = 1.65M�.

Figure 6. Plot of the deviation of the combined dimensionless tidal deformability as a function of

the heavy star mass for the SLy EoS with different values for the chirp mass. M = 1.188M� is the

same as the one of GW170817, while M = 1.65M� corresponds to a chirp mass where if the two

NS masses are equal they have a mass of 1.9M�. For the smaller chirp mass the effect is rather

small, however for a higher chirp mass the effect can be as large as 38%. The α-parameter of (2.14)

is again chosen to be α = 3.
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Figure 7. Plot of the deviation of the combined dimensionless tidal deformability as a function

of the heavy star mass for the AP4 EoS with different values for the chirp mass. Plots on the left

show the value of Λ̃, while plots on the right show the fractional deviation, δ. The chirp mass

M = 1.188M� is the same as the one of GW170817, while M = 1.65M� corresponds to a chirp

mass where if the two NS masses are equal they have a mass of 1.9M�. For the smaller chirp mass

the effect is rather small, however for a higher chirp mass the effect can be as large as 25%. Again

the α-parameter of (2.14) is chosen to be α = 3.

the vertical gray line in the plots. This threshold corresponds to the chirp mass for which

the lighter star mass also reaches the critical mass for the phase transition. Therefore, the

large deviation can be understood from the fact that both stars are in the new phase.

In our final plot in figure 10, we display the limits that GW170817 places on VE

assuming the Hebeler et al. parametrization. In particular, we note that including a VE

term significantly changes the allowed range of the individual masses for the high-spin

assumption. The effect is less pronounced for the SLy and AP4 models. As more data

on NS mergers are collected with some of those corresponding to mergers of more massive

stars, strong limits could be placed on the EoS of dense nuclear matter. This will especially

be true once the sensitivities for probing the tidal contributions to the gravitational wave

phase further improve.

The future outlook is difficult to extrapolate, but promising. At present, due to the

sensitivity of the experiments, the limited statistics, and the number of parameters involved

in the simulations, it is not possible to precisely and unambiguously determine from NS
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Figure 8. Dependence on the chirp mass in the Hebeler et al. parametrization, keeping the

heaviest star mass fixed at M1 = 2.27M� (the maximum value for the Λ = (150 MeV)4 curve). The

left plot shows the corresponding value of the combined tidal deformability for the Λ = 0 curve.

The right plot represents the relative deviation of the combined tidal deformability by turning on

Λ = (150 MeV)4 and is a measure of how the effect of VE potentially increases with the chirp mass.
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Figure 9. Dependence on the chirp mass in the AP4 and SLy parametrizations, keeping the

heaviest star mass fixed at M1 = 1.98M� (the maximum value for the Λ = (120 MeV)4 curve). The

chirp mass range is from M = 1.188M� to M≈ 1.72M�, where the latter corresponds to the case

when both stars have masses M1,2 = 1.98M�. The left plot shows the corresponding value of the

combined tidal deformability for the Λ = 0 curves. The right plot represents the relative deviation

of the combined tidal deformability and is a measure of how the effect of VE potentially increases

with the chirp mass. The vertical gray line denotes the chirp mass at which the light star mass

reaches the critical mass for the phase transition.

measurements the vacuum energy contribution to the QCD equation of state. However, the

constraints that are placed in the coming years will depend strongly on currently uncertain

characteristics of NS binaries or NS-black hole mergers that will be captured by upcoming

data-taking runs at LIGO and other GW observatories [69]. Constraints will depend upon

masses, spins, and branch populations in cases where there are multiple configurations with

the same mass. In addition, the sensitivities of the experiments will evolve, and may be able

to better capture higher order contributions to the waveforms. This will help single out the

different contributions to the observable quantities, for example distinguish the effects of
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Figure 10. Combined tidal deformability Λ̃ as a function of the heavy star mass M1 for the Hebeler

et al. parametrization with α = 3. The chirp mass is the same as in the event GW170817. The

figure shows the upper bounds set by the LIGO/Virgo analysis and demonstrates how a nonzero

value of Λ can affect the allowed mass range.

vacuum energy from the rest of the EoS parameters, once the uncertainties on masses, radii

and tidal deformabilities are reduced. Finally, utilization of neutron stars as laboratories to

study very high density physics and VE depends crucially on a precise theoretical calcula-

tion of the QCD equation of state at high densities [70]. Such a calculation is certainly very

difficult, mainly due to technical challenges rather than conceptual ones. Taking an opti-

mistic viewpoint on these issues leads us to the conclusion that neutron star mergers can tell

us about the interface of gravity and quantum field theory in a regime never before tested.

5 Conclusions

In this paper, we have argued that neutron star mergers can be a valuable tool for testing

new phases of QCD at large densities, in particular for finding the contribution of a VE

term in exotic high density phases. To study the effects of such a new phase on neutron star

observables, we have started with the conventional 7-layer parametrization of the EoS, then

assumed a nonzero value for the VE in the innermost layer leading to a jump in the energy

density. For the three benchmark models we have chosen, we have calculated the M(R)

curves and tidal Love numbers for different values of the VE. By using those results, we

have obtained individual tidal deformabilities and calculated the combined dimensionless

tidal deformability parameter which can be constrained by neutron star mergers observed in

gravitational wave observatories. We have found that for larger chirp masses, the nonzero

VE at the innermost core can have an O(1) effect on the combined dimensionless tidal

deformability parameter, hence future observations of neutron star merger chirps can place
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strong limits on the EoS of dense nuclear matter. We have also shown that for some

parameters, introducing a nonzero VE can create a disconnected branch of stable neutron

star solutions allowing the possibility of having two neutron stars of the same mass with

significantly different radii. This possibility is unique to EoS’s which have a phase transition

at the core, hence it is a smoking gun for new phases of QCD.
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