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1 Introduction

Deriving the phenomenological implications of strongly coupled Quantum Field Theories

(QFT) is hard. Any new idea or approach to inspect such strongly coupled regime deserves

to be scrutinized. The recent progress on the numerical conformal bootstrap [1–5] —

reviving the successful d = 1 + 1 conformal bootstrap [6, 7] — has lead to a revision of the

closely related S-matrix bootstrap [8, 11].

The old analytical S-matrix bootstrap approach lost momentum with the advent of

QCD and due to the difficulties of dealing with the analytic properties of the S-matrix in

d = 3 + 1 spacetime dimensions.1 For a compendium of results on the analytic properties

of the S-matrix see for instance [13]. In the present context bootstrap is synonymous

to an axiomatic approach, where out of few physical assumptions one extracts general

consequences for physical observables. For the S-matrix bootstrap approach, the input

assumptions are those of quantum mechanics, special relativity and assumptions on the

spectrum of particles encoded through analytic properties of the S-matrix elements.

Lately, there has been a number of interesting results within the S-matrix bootstrap

approach [8–10]. The key aspects that paved the way for these developments have been to,

firstly, identify an interesting and simple enough question that the bootstrap approach can

answer and, secondly, the development of a numerical approach to answer the question in

general spacetime dimensions. Specifically, ref. [9] found a rigorous analytical upper bound

on the coupling between asymptotic states of the S-matrix in d = 1 + 1 dimensions. The

existence of such upper bound was expected in higher dimensions and was demonstrated

in d = 3 + 1 by means of a numerical approach ref. [10].

Exploring the space of consistent S-matrices in d = 3 + 1 has lots of potential applica-

tions for particle physics. For a realistic set up though we would like to study S-matrices

that feature unstable resonances. The main purpose of this work is to take the first steps

towards developing this theory. The present work is entirely in d = 1 + 1 and we focus on

the 2 → 2 S-matrix element of the single stable particle of the theory. These simplifying

assumptions will allow us to derive a number of analytical results and intuition that is

important before attacking the analogous problem in d = 3 + 1.

Section 2 is mostly review and discussion of the analytic properties of the S-matrix.

Section 3 contains the main result, a bound on the 2 → 2 S-matrix elements that feature

unstable resonances. We discuss the interpretation of this bound and the implications for

the spectrum of resonances. In section 4 we perform a numerical study that matches the

analytical derivations of section 3. Crucially, the numerical approach presented in section 4

admits a generalization to d = 3 + 1 dimensions. Finally, we conclude and outline possible

directions to develop.

2 Analytic properties of the S-matrix

The main focus of this paper is to study the space of consistent S-matrices in d = 1 + 1

spacetime dimensions. For simplicity we restrict our attention to theories with only a single

1See ref. [12] for a testimony.
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stable particle of mass m. This is not crucial and the assumption can be relaxed on later

studies. We focus on the elastic 2→ 2 S-matrix element

〈p1, p2|Ŝ|p3, p4〉 ≡ 1S(pi) , (2.1)

where 1 = 〈p1, p2|p3, p4〉 captures the kinematical information. All the interesting physics

is encoded in the Lorentz scalar S which is a function of the Mandelstam variable s = (p1 +

p2)2. Note that in two spacetime dimensions the scattering is along a line and thus there

is no scattering angle. Consequently either of the Mandelstam variables t = (p1 + p3)2 or

u = (p1 +p4)2 must vanish, which together with the kinematical constraint s+t+u = 4m2,

imply that the function S in eq. (2.1) is only a function of a single variable s. This function

is further constrained by crossing symmetry

S(s) = S(4m2 − s) , (2.2)

i.e. it is symmetric under the exchange of the s and t channels (or equivalently between the

s and u channels). In the rest of this section we will review the analytic properties of S(s).

Consider the analytical continuation of S(s) into the complex s-plane. Generically

the function S(s) has branch point singularities at the minimal values of s where the

process 2 → n is kinematically allowed. For positive s, the lowest such branch point is at

s = (2m)2, the two-particle branch point. Crossing symmetry (2.2) implies the presence

of a corresponding branch point at s = 0. Generically, in the absence of extra symmetries

forbidding particle production, infinitely many branch points are expected on the real

line at the minimal values where higher-particle production is kinematically allowed. We

have illustrated the branch points at s = 4m2, 9m2 (red circles) and the crossing related

s = 0,−5m2 (red squares) in the left plot of figure 1. The physical S-matrix is obtained in

the limit

lim
ε→0+

S(s+ iε) , (2.3)

namely by approaching the real line from above without encircling any such branch points.

The physical s-plane is defined as the trivial analytical continuation of eq. (2.3) without

encircling any branch point. Pictorially, it consists of the full complex plane minus the

cuts on the real axis, see figure 1. The two key analytical assumptions on S(s) are that all

the singularities of the physical s-plane consist only of branch points on the real line;2 and

that along the real axis and below the two-particle threshold S(s) is a real function. Thus

the analytic continuation of S(s) satisfies

S∗(s) = S(s∗) , (2.4)

which is often referred to as real analyticity.3

2We assume a Z2 symmetry forbidding a cubic self-interaction of the stable particle. Such cubic self-

interaction would lead to poles at s = m2, 3m2.
3Let us note that in eq. (2.4) we have assumed that the S-matrix theory is invariant under space parity.

The general condition for the two-body S-matrix is Hermitian analyticity S∗ij(s) = Sji(s
∗) which reduces

to real analyticity only for parity invariant theories [14].
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Figure 1. Illustration of the conformal map in eq. (2.8). The complex s-plane, the left plot, is

mapped into the complex θ-strip Im θ ∈ (0, π), right plot. We have also depicted the mapping of a

dashed curve, a dotted curve and a gray grid.

The last property of S(s) follows from unitarity of the full S-matrix, implying the

following constraint on the 2→ 2 S-matrix element

S(s+ iε)S(s− iε) = f(s) with 0 6 f(s) 6 1 , (2.5)

and s > 4m2. Note that we have used real analyticity to write the modulus as |S(s+iε)|2 =

S(s + iε)S(s − iε). Recall that below the inelastic threshold s∗ (above which 2 → n,

with n > 2, processes are kinematically allowed) and above the two-particle production

threshold, unitarity is saturated

f(s) = 1 for 4m2 < s 6 s∗ . (2.6)

Typically the inelastic threshold is at the three-particle production threshold s∗ = 9m2 or

four-particle production threshold s∗ = 16m2.

Unless explicitly stated otherwise, we will refer to S(s) as the S-matrix (instead of

the 2 → 2 S-matrix element function). To summarize, the S-matrix is assumed to satisfy

crossing (2.2), real-analyticity (2.4), unitarity (2.5) and there are no singularities in the

physical s-plane but only branch points on the real line associated with the 2 → n (n > 2)

scattering processes. In order to further elucidate the analytical properties of the S-matrix

we will next review a particularly simple S-matrix. This will also serve as an excuse to

introduce the rapidity variable θ which we will use in the rest of the paper.

2.1 The θ-strip

Consider the following classic QFT example in d = 1+1: the Sine-Gordon S-matrix element

for the scattering of the lightest breather is given by [15, 16]

SSG(s) =

√
s
√

4m2 − s+m1

√
4m2 −m2

1√
s
√

4m2 − s−m1

√
4m2 −m2

1

, (2.7)

where s is the Mandelstam variable. The function SSG(s) has a pole at s = m2
1, the mass of

the next-to-lightest breather. The matrix element SSG(s) has branch points at s = 0, 4m2

– 4 –
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associated with the two-particle production threshold. These are square-root branch points

and can be resolved by the conformal map

s(θ) = 4m2 cosh2(θ/2) . (2.8)

Eq. (2.8) maps the entire physical s-plane minus the cuts on the real line into the strip

Im θ ∈ (0, π) , (2.9)

which we will refer to as the physical strip. The transformation is illustrated in figure 1.

The two-to-two S-matrix element (2.7) in the θ-strip is given by

SSG(θ) ≡ Sα =
sinh θ − sinhα

sinh θ + sinhα
, (2.10)

where sinhα = −im1/m
√

1−m2
1/(4m

2), and we defined Sα(θ) for later use.4 Eq. (2.10)

is analytic at the points θ = 0 and θ = iπ, corresponding to the original branch points of

eq. (2.7) at s = 4m2 and s = 0 respectively. The second Riemann sheet of (2.7) reached

by traversing a branch cut stemming from the two-particle branch points at s = 0, 4m2 is

mapped into Im θ ∈ (−π, 0). Note also that the lines θ = −iπ and θ = iπ are identified;

Im θ ∈ [−π, π) is the fundamental domain of eq. (2.10), which is periodic under θ ∼ θ+2πi.

The Sine-Gordon theory is very special as it is an integrable QFT. It follows that

there is no particle production and the full S-matrix factorizes into the product of 2 → 2

matrix elements. Consequently SSG(θ) is a meromorphic — and thus single valued —

function in the θ-strip Im θ ∈ [−π, π). For a generic non-integrable QFT however, one has

branch points at the inelastic thresholds s = {(3m)2, (4m)2, . . .} where the matrix elements

S2→3,4... are switched on. Those are mapped into the real line of the θ-strip. As depicted in

figure 1, they appear both in the positive and negative real axis of the θ-strip because they

can be reached from both Riemann sheets associated to the two-particle branch point.

As we have seen, the branch point at the two-particle production threshold in the

particular example eq. (2.7) is two-sheeted. It turns out that this feature is more general

and extends to non-integrable S-matrices, see appendix A for further details. The results

of this paper however do not make use of the nature of any of the branch points in the

physical s-plane.

In d = 1+1 dimensions θ has the physical interpretation of being the rapidity difference

of the incoming particles θ ≡ θ2 − θ1 where pi = (m cosh θi, m sinh θi). The S-matrix

literature in d = 1 + 1 dimensions commonly uses this variable. Thus, in the rest of the

paper we will consider the S-matrix as a function S(θ) (this is however not crucial and all

the results below can be reformulated in the s-plane). For completeness, let us recall that

crossing symmetry (2.2) in the θ-strip implies

S(θ) = S(iπ − θ) , (2.11)

real analyticity (2.4) reads

S∗(θ) = S(−θ∗) , (2.12)

4The function Sα(θ) is commonly called a Coleman-Dalitz-Dyson (CDD) factor.
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and unitarity (2.5) in the θ-strip reads

S(θ)S(−θ) = f(θ) , (2.13)

where 0 6 f(θ) 6 1 for real θ.

3 Unstable resonances

Our goal is to study QFTs with unstable particles or resonances. In this section, we first

present the operational definition of a resonance before deriving a bound for the S-matrices

that feature resonances. Finally, we discuss the interpretation of the bound in the context

of a weakly coupled QFT.

3.1 What are unstable resonances?

In perturbation theory unstable particles are often associated with complex poles. These

poles lie on higher Riemann sheets that can be reached by traversing the multi-particle

branch cuts along the real line in the θ-plane.5 The distinguishing feature of such singu-

larities is that they lead to pronounced variations of the phase of the S-matrix evaluated

along the real line. Thus, we define a resonance as an abrupt change in the phase of the

S-matrix

Re 2δ(θ) where 2iδ(θ) ≡ logS(θ) , (3.1)

without any reference to poles in higher Riemann sheets.

Abrupt variations of the phase of the S-matrix typically signal the presence of poles or

zeros of the S-matrix in the complex plane and it is up to us to classify such pronounced

features of the S-matrix. Of particular interest is when the phase of S(θ) abruptly increases

by 2π continuously and monotonically in θ. Such 2π phase-shifts stem from the presence

of a pair of zeros in the S-matrix S(θ) in the physical strip Im θ ∈ (0, π). In fact, each zero

in the physical θ strip contributes with an iπ to the total S-matrix phase shift6

2

∫ ∞
−∞

dθ ∂θδ(θ) =
∑
zeros

π . (3.2)

Due to crossing symmetry, the zeros θi of S(θ) come in pairs related by crossing S(θi) =

S(iπ − θi) = 0. In addition, by real analyticity, the roots are also pairwise related by

complex conjugation S∗(θi) = S(−θ∗i ) = 0. In many physically relevant S-matrices one

finds an approximate 2π change of the phase in a bounded span θ ∈ [θ◦ − γ, θ◦ + γ]

2∆δ ≡ 2

∫ θ◦+γ

θ◦−γ
∂θδ(θ) dθ ≈ 2π , (3.3)

where θ◦ = Re θi and γ ∼ 2 Im θi, the exact choice of the resonance region θ◦ ± γ is

somewhat arbitrary. This is the kind of resonances that we are interested in this paper.

5See appendix C.2 for an explicit example.
6See appendix B for the derivation of eq. (3.2) — this is the relativistic analog of Levinson’s theorem,

see for instance chapter XVII of [17].
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Figure 2. Left : section of the complex plane of the phase of eq. (3.5), the lines δ(iπ) ∼ δ(−iπ)

should be indentified. Right : phase-shift of eq. (3.5) localized around the position of the branch

points generated by the zeros and poles of Sex(θ).

3.1.1 Further comments

For a long-lived unstable particle associated to a long time delay, the 2π phase-shift is

highly localized and Im θi � 1. The zeros in the physical strip are accompanied by poles

which are hidden behind the multi-particle branch cuts. In terms of the θ variable the

S-matrix behaves as

e2iδ(θ) ∼ e2iδ0 θ − θi
θ − θ∗i

, (3.4)

for θ close to |θi|. The zeros and poles of S(θ) result in branch points of δ(θ). Pictorially,

this leads to a branch cut that “cuts” the real line. Then, when evaluating 2δ(θ) along the

real line the 2π phase-shift is a consequence of changing Riemann sheet of the logarithm.

As an illustration, consider the following function

Sex(θ) = Sα(θ)S−α∗(θ) , (3.5)

where Imα > 0 and Sα(θ) was defined in eq. (2.10). The function Sex(θ) is a realistic

S-matrix element because it satisfies the unitary equation, crossing symmetry and it is

real analytic.7 Sex(θ) has zeros at θ = α,−α∗ and poles at complex conjugate points as

required by unitarity Sex(θ)Sex(−θ) = 1. The left plot in figure 2 shows a section of the

fundamental domain of the complex plane of Im δ(θ) that includes the zeros and poles of

S(θ). We have depicted branch cuts connecting the zeros on the physical strip with the

poles on the lower stip θ ∈ (−π, 0). The branch cuts intersect the real line along which

the physical S-matrix is evaluated. On the right hand side we have ploted Re 2δ(θ) on

a segment along the real line. As 2δ(θ) goes through the region θ ≈ Reα, i.e. near the

location of the branch points, the function 2iδ = logS is evaluated in a higher Riemann

sheet and the imaginary part is shifted by 2π. In section 3.3 we discuss a perturbative

QFT with the same qualitative picture as the S-matrix in eq. (3.5).

7Note however that a generic product of CDD factors leads to a finite volume spectrum Ei(R) with

branch point singularities at finite volume [18, 19].
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To close up this section, let us insist that in general we will not refer to complex

poles of the S-matrix. Instead, we focus on the zeros of S(θ) in the physical θ-strip

(or physical s-plane), which are in a one-to-one correspondence with each π contribution

to the total phase-shift (3.2). This picture avoids the need to discuss the nature of the

branch points of S(θ) on the real line and the analytical continuation of the function S(θ)

around such branch points which requires a case by case analysis. Instead, it only requires

the trivial analytical continuation of S(θ) into the physical sheet which, by definition, is

always available. Note also that the operational definition of unstable resonance that we

are employing is physically meaningful because the phase-shift is experimentally accessible

(it can also be extracted from lattice Monte Carlo simulations [20]).

3.2 A bound on the S-matrix of unstable resonances

The two-dimensional S-matrix can be written as follows

S(θ) =
∏
j

Sαj (θ) exp

(
−
∫ +∞

−∞

dθ′

2πi

log f(θ′)

sinh(θ − θ′ + iε)

)
for Im(θ) ∈ [0, π) (3.6)

where ε is an arbitrarily small positive parameter and Sαj (θ) denotes a CDD factor defined

in (2.10):

Sα(θ) =
sinh θ − sinhα

sinh θ + sinhα
.

The set {αj} parametrizes the position of the zeros and poles of S(θ) in the physical strip.

As written in eq. (3.6) the set {αj} may contain repeated elements in order to account for

the correct order of the poles and zeros of S(θ).8 The function Sα(θ) saturates unitarity

Sα(θ)Sα(−θ) = 1 along the entire real line. The function f(θ) parametrizes the amount of

inelasticity, see (2.13). Eq. (3.6) will play a crucial role in our discussion below so let us

review its derivation.

3.2.1 Discussion of eq. (3.6)

Let us define φ(θ) ≡ 2i∂θδ(θ) and consider the following dispersion relation

φ(θ) =

∮
∂Cθ

dθ′

2πi

φ(θ′)

sinh(θ′ − θ)
, (3.7)

where ∂Cθ is a closed contour encircling a region Cθ where φ(θ) is regular, i.e. such that

S(θ) is holomorphic and does not vanish in Cθ. Next we apply Cauchy’s theorem and blow

the contour in eq. (3.7) to the boundary of the physical strip. In doing so, we must subtract

the zeros of S(θ) in the physical strip

φ(θ) =
∑
j

(
1

sinh(αj − θ)
+

1

sinh(iπ − αj − θ)

)

+

∫ ∞
−∞

dθ′

2πi

φ(θ′)

sinh(θ′ − θ)
+

∫ −∞+iπ

∞+iπ

dθ′

2πi

φ(θ′)

sinh(θ′ − θ)
, (3.8)

8In fact, for our particular physical set up with a single stable particle
∏
j Sαj (θ) has no poles in the

physical strip but only zeros.

– 8 –
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where the θ = 0, iπ lines are approached from above and below, respectively. In eq. (3.8),

zeros come in pairs related by crossing S(θ) = S(iπ − θ) and we have dropped the con-

tribution from the contour arcs at infinity. This can be justified by assuming that S(θ)

is polynomially bounded.9 Crossing symmetry implies φ(θ + iπ) = φ(−θ). Therefore, the

last integral in eq. (3.8) can be written as
∫∞
−∞

dθ′

2πi φ(−θ′)/ sinh(θ′ − θ) and we are led to

φ(θ) =
∑
j

(
1

sinh(αj − θ)
+

1

sinh(iπ − αj − θ)

)
−
∫ ∞
−∞

dθ′

2πi

∂θ′ log f(θ′)

sinh(θ′ − θ)
, (3.9)

where we have used φ(θ) + φ(−θ) = ∂θ log f(θ), by eq. (2.13). Finally, integrating by

parts with respect to θ′ the integral in eq. (3.9) and using S(θ) = exp
∫
dθφ(θ) we are led

to eq. (3.6).

A key point of eq. (3.6) is that the roots {αj} of the S-matrix are factored out. The

factor in eq. (2.10) shows that each zero αj in the physical strip has an accompanying pole

located at −αj in the unphysical strip Im θ ∈ (−π, 0). Note however, that this observation

does not necessarily imply that each zero αj of the S-matrix in eq. (3.6) has a pole at

−αj . Eq. (3.6) only applies in the physical strip. In order to analytically continue eq. (3.6)

into the unphysical strip we need to know the nature of the branch point singularities

on the real line. If the two-particle threshold branch point at s = 4m2 is a square-root

singularity (in the Mandelstam s-plane), then the conformal map s = 4m2 cosh2(θ/2)

resolves the singularity and we can analytically continue eq. (3.6) provided we avoid other

possible branch points on the real line. Then we may conclude that S(θ) has poles in the

unphysical strip at the same positions as the factors Sαj (θ). But again, this conclusion is

not strictly necessary.

Even if we can analytically continue the function eq. (3.6) across the branch points on

the real line, the poles of Sαj (θ) may be canceled by the exponential factor ∼ e
∫

log f/ sinh

in eq. (3.6), which at the same time can generate poles in unphysical sheets reached by

traversing higher particle production branch cuts not related to the two-particle branch

point.

3.2.2 The bound

Consider a generic point θ = θ̃ + it, with θ̃ ∈ R and t ∈ (0, π) in the physical strip. Then,

the absolute value of the S-matrix is given by

|S(θ)| =
∏
j

|Sαj (θ)| exp

(
sin t

∫ +∞

−∞

dθ′

2π

cosh(θ̃ − θ′)
| sinh(θ − θ′)|2

log f(θ′)

)
, (3.10)

where we have used Re[i sinh∗(θ − θ′)] = sin t cosh(θ̃ − θ′). Note that log f(θ) 6 0 in the

whole integration domain because 0 6 f(θ′) 6 1 on the real line. Therefore we have

|S(θ)| 6
∏
j

|Sαj (θ)| , (3.11)

9We need this kind of technical assumption to prove eq. (3.6). However, as discussed in section 3.2.3

below, this assumption is not crucial for the bound on the S-matrix that we are about to derive.
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for θ in the physical strip. Eq. (3.10) applies in the whole physical θ-strip and in particular

it implies

|S′(αi)| 6 |S′αi(αi)|
∏
j 6=i
|Sαj (αi)| , (3.12)

at the position of each zero αi in the physical strip.

We shall see in section 3.3 that there is a direct relation between |S′(αi)| and the

parameter controlling the perturbative expansion, i.e. the dimensionless coupling constant.

More precisely, we will show that S′(αi) is proportional to the ratio of the expansion

parameter and the square of the width of the resonance. Thus, for a fixed width and with

an abuse of language, we will call

S′(αi): coupling to the resonance αi , (3.13)

without reference to the actual underlying coupling constants of the possible Lagrangian

description.

3.2.3 Further comments on the bound

The derivation of (3.11) presented above explicitly accounts for inelasticity f(θ) and knowl-

edge of f(θ) results in a stronger bound than (3.11). Note, however, that the bound can

be obtained in a more general setting as follows. Consider the nowhere-vanishing function

h(θ) = S(θ)/
∏
j

Sαj (θ) , (3.14)

where the product in the denominator runs over all zeros of S(θ) with the appropriate

order. By construction, h(θ) is a holomorphic function in the physical strip and is bounded

on the boundaries Im θb = 0, π, since |Sαk(θb)| = 1 and |S(θb)| 6 1. Therefore, by the

Hadamard three-lines theorem, |h(θ)| is bounded in the physical strip by its value at the

boundary and we are led to eq. (3.11). In refs. [10, 21] a similar argument is used to bound

the residue of the poles of S(θ) on the θ ∈ [0, iπ) segment in the physical strip which are

associated with stable particles.

The simple derivation of (3.11) given above does not require the S-matrix to admit

a representation of the form (3.6). As an example of such an S-matrix of broad interest,

consider

Sg(θ) = e2g
√

cosh2(θ/2)
√

1−cosh2(θ/2) ≡ eig sinh θ , (3.15)

where g > 0. The S-matrix (3.15) does not admit a representation of the form (3.6) with

finitely many factors of Sα. In fact one can check the above S-matrix can be obtained in

the limit where we have an infinite product of Sα factors [19]:

eig sinh θ = lim
n→∞

(−1)n
n∏
j=1

Sα(θ) (3.16)

where Sα is given by (2.10) with sinhα = 2in/g. The S-matrix Sg(θ) has infinitely many

phase-shifts of the type in eq. (3.3) that can be interpreted as resonant particles [22].
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Figure 3. In the left plot, maximal coupling to the lowest mass resonance at θ1 = x + iπ/7 for

an S-matrix with a single resonance (solid black), and an S-matrix with a second resonance at

θ2 = 6 + iπ/9 (dashed light gray) and θ2 = 4 + iπ/9 (dotted darker gray). On the right, minimal

value of Re θ2 as a function of the coupling to the θ1 resonance for an S-matrix with two resonances.

This is easily explained from the infinite-product representation above: each Sα factor

accounts for a pair of (simple) zeros in the physical strip10 giving rise to a phase shift of

2π. In the limit n→∞ in (3.16) we end up with an infinite number of coincident zeros at

θ = ∞ + iπ/2, and the total (integrated) phase shift is infinite.11 The S-matrix in (3.15)

can be viewed as an integrable deformation [19, 22, 25] corresponding to the upward flow

generated by certain irrelevant operators (in the RG sense). Moreover, a special limit

of (3.15), namely limg→0 Sg, appears in the context of the effective string description of

Yang-Mills flux tubes [26].

Eq. (3.11) implies that an S-matrix with at least n zeros at {αj} has a magnitude less

than or equal to
∏n
j=1 |Sαj (θ)|, with |Sα(θ)| 6 1 for θ in the physical strip. Therefore, we

do not necessarily need to know the spectrum of unstable resonances up to arbitrarily high

energy in order to obtain a meaningful bound. Additional knowledge of UV resonances

makes the bound more stringent. This observation is key for the bounds in (3.11)–(3.12) to

be sensible from an effective low energy physics standing point where we do not necessarily

want to commit to a particularly detailed spectrum of UV resonances beyond a certain

energy cutoff. To illustrate this point we have plotted |S′(θ1)| as a function of x ≡ Re θ1

for the S-matrix S1 = Sθ1S−θ∗1 (black solid line) in the left plot in figure 3. Any other

theory which features resonances at {θ1, −θ∗1} has a coupling |S′(θ1)| which falls below this

line. For comparison, the same plot depicts |S′(θ1)| for the S-matrix S2 = Sθ1S−θ∗1Sθ2S−θ∗2
featuring a second pair of resonances at {θ2, −θ∗2}. The dotted line depicts |S′2(θ1)| for

θ2 = 4 + iπ/9 and the dashed line is plotted with θ2 = 6 + iπ/9. As can be seen from the

plots the closer the resonances are to each other the stricter the bound on |S′(θ1)| gets.

Thus, the effects of possible further heavy resonances |θ1−θj | � 1 decouples at low energy.

The latter observation suggests another interesting viewpoint on the bound (3.12): the

larger the value of |S′(θ1)|, the larger the minimum mass gap with the nearest resonance θ2.

10Higher order zeros can be factorized by point-splitting, Snα =
∏n
j=1 Sα+jε, where ε ∼ e−n.

11Other examples with infinitely many resonances are the elliptic (doubly periodic) S-matrix such as

refs. [23, 24].
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Namely, the mass gap increases monotonically as |S′(θ1)| increases. This is illustrated in

the right plot of figure 3 for S = Sθ1S−θ∗1Sθ2S−θ∗2 with θ1 = 3 + iπ/7 and Im θ2 = iπ/9 held

fixed. The black line vanishes at a positive value of S′(θ1) because below a critical coupling

there is no bound on the mass gap for a system with only two resonances {θ1, θ2}. Further

assumptions on the spectrum of possible higher mass resonances would lead to stricter

bounds on the separation Re θ1 − Re θ2.

3.3 Interpretation of the bound

Consider an effective action describing the low energy dynamics of two massive scalar fields

with a cubic interaction in two dimensions,

S =

∫
d2x

[
1

2

(
∂µπ∂µπ −m2π2 + ∂µσ∂µσ −M2σ2

)
− λ

2
σπ2 − . . .

]
, (3.17)

where · · · denote further interactions of the fields that stabilize the potential at large

field values but whose coupling constant is much smaller than λ/m2 and are therefore

inconsequential for the discussion below.

3.3.1 Perturbative S-matrix

Due to the cubic vertex in (3.17), for M > 2m the particle excitations of σ are unstable

and can decay to lighter particles. This instability manifests itself as a resonance in the

ππ → ππ scattering which can be analyzed with perturbation theory. The ππ → ππ

component of the S-matrix is given by12

S = S(s)1 =

(
1 +

iM(s)

2
√
s
√
s− 4m2

)
1 (3.18)

where the identity is the inner product of two particle states 1 = 〈p3, p4|p1, p2〉. The

amplitude M is given by the sum of the σ-exchange diagrams in the s, t and u-channel:

iM(s) = + + . (3.19)

Up to higher order loop corrections and non-perturbative effects M is given by

M(s) =
λ2

M2 + λ2

8πm2

− λ2

s−M2 −Π(s)
− λ2

4m2 − s−M2 −Π(4m2 − s)
, (3.20)

where Π(s) is the (amputated) two-point function given by

Π(s) =
λ2

2π

tanh−1
√

s
s−4m2√

s(s− 4m2)
. (3.21)

As discussed in section 2, we find that eq. (3.18) is crossing symmetric S(s) = S(4m2− s),
it is analytic in the domain 0 < |s± iε| < 4m2 and real along the real line in that domain.

12See appendix C for details.
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At the two-particle production threshold s = 4m2 there is a square-root branch point and

by crossing symmetry we find another one at s = 0.

It is convenient to resolve the square-root singularities at s = 0, 4m2 by means of the

conformal map in eq. (2.8). Henceforth we work in units such that m = 1. As a function

of θ, the S-matrix in (3.18) is single-valued and given by

S(θ) = 1+
iλ2

4 sinh θ

[
1

M2 + λ2

8π

− 1

4 cosh2
(
θ
2

)
−M2 −Π(θ)

+
1

4 sinh2
(
θ
2

)
+M2 + Π(iπ − θ)

]
,

(3.22)

where the amputated two-point function is given by

Π(θ) =
λ2

8π

θ − iπ
sinh θ

, (3.23)

for θ in the fundamental domain θ ∈ (−iπ, iπ].13

3.3.2 Zeros and poles

For M > 2 the S-matrix in eq. (3.22) has four poles and four zeros. The two s-channel

poles are located at

θ±p = ±
(
θ◦ +

λ2θ◦

16π sinh2 θ◦

)
− iλ2

16 sinh2 θ◦
, (3.24)

where θ◦ = 2 cosh−1
(
M
2

)
, and the two zeros are located at

θ±z = ±
(
θ◦ +

λ2θ◦

16π sinh2 θ◦

)
+

iλ2

16 sinh2 θ◦
, (3.25)

in the physical strip. Note that θ±z = −θ∓p , as required by unitarity. The location of the

remaining poles and zeros follow from crossing symmetry, i.e. S(θ) = S(iπ − θ), and are

located at

θc±p/z = iπ − θ±p/z . (3.26)

Let us remark that the zeros {θ±z , θc±z } lie above the real axis corresponding to the physical

sheet while the poles {θ±p , θc±p } lie below the real axis corresponding to the second Riemann

sheet of the s = 0, 4m2 branch points. Thus, the picture is qualitatively similar to the one

depicted in figure 2.

3.3.3 Bound

In order to better understand the scope of the bound (3.12) lets consider it in the context

of the perturbative example. Near the root at θ = θi one of the denominators in the

perturbative S-matrix (3.22) is of order λ2, see appendix C for details. Consequently the

dominant contribution to S′(θi) goes like λ−2. For θi = θ±z given by (3.25) we find

S′(θi) = − 2i

λ2
M2(M2 − 4) +O(λ0) , (3.27)

13Eq. (3.23) is valid in the fundamental domain θ ∈ (−iπ, iπ]. However, it can be extended to the entire

complex θ-plane by means of the identity θ− iπ = log
(

sinh θ/2−cosh θ/2
sinh θ/2+cosh θ/2

)
, valid in the fundamental domain,

where the r.h.s. is periodic in the imaginary axis direction with period θ ∼ θ + 2πi.
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thus eq. (3.12) bounds ∼M4/λ2 (in units of m = 1). The width of the resonance associated

to θi is given by

Γ = − Im Π(θ◦)/M = λ2/(4M2
√
M2 − 4) (3.28)

and hence S′(θi) can be expressed as

|S′(θi)| =
λ2

8M2Γ2
. (3.29)

Note that at this order in perturbation theory the effective perturbative parameter is given

by λeff = λ
M (as can be seen in (3.22)). In light of this observation, eq. (3.29) can be

interpreted as follows: for a resonance particle σ with a fixed width Γ, the strength of

the coupling between σ and the stable particles π is constrained to obey bound (3.12).

This indicates that for fixed width, |S′(θi)| is directly related to the coupling parameter

of the stable particles to the resonance particle θi and can therefore be (loosely) referred

to as the coupling. We remark that the bound is saturated at this order of perturbation

theory, and that higher order corrections set |S′(θi)| within the bound due to particle

production S2→4 > 0.

4 Numerical optimization

The results presented in the previous section do not admit a straightforward generalization

to higher dimensions where the analytical approach proves cumbersome. For this reason

here we present an alternative approach utilizing numerical methods which can be gener-

alized to higher dimensions. This approach can be summarized in two key steps. First,

we construct an ansatz for the S-matrix which encodes analyticity and crossing symmetry

as well as the location of the unstable resonances. The free parameters of the ansatz in-

clude the resonance coupling parameters. The second step is to maximize these coupling

parameters under the constraint of unitarity S(θ)S(−θ) 6 1 thus recovering the analytical

bound of the previous section.

In 1 + 1 dimensions the 2 → 2 S-matrix element admits a simple expansion which

we can exploit to build our ansatz. Although this ansatz does not generalize to higher

dimensions it serves as a simple framework to demonstrate how the numerical approach

outlined above is implemented. Thus we first present the numerical approach using this

ansatz before presenting a more general ansatz which can readily be generalized to higher

dimensions.

4.1 A simple S-matrix ansatz for d = 1 + 1

Let us denote by S
{θj}
ans our ansatz for the 2→ 2 S-matrix element. This ansatz is labelled

by the location of its roots in the θ-strip {θj}. To encode holomorphicity of the function

S
{θj}
ans in a domain Dθ of the θ-strip we consider a conformal map ρ from Dθ into the unit

disk. The S-matrix, viewed as a function of ρ, is therefore holomorphic inside the unit disk.

A holomorphic function inside the unit disk is analytic and therefore admits an absolutely

convergent Taylor expansion inside the disk. Thus S
{θj}
ans (ρ) can be defined via its Taylor

expansion inside the unit disk which makes holomorphicity of S
{θj}
ans (ρ(θ)) in Dθ manifest.
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Figure 4. Illustration of the conformal map in eq. (4.1) with β = iπ.

To make crossing symmetry S
{θj}
ans (θ) = S

{θj}
ans (iπ− θ) manifest we require the map ρ(θ)

to satisfy ρ(θ) = ρ(iπ − θ). Such a map can be viewed as a biholomorphic map between

the fundamental domain Im θ ∈ (0, π/2) and the unit disk. A conformal map with such

properties is given by

ρ(θ) =
sinh θ − i
sinh θ + i

. (4.1)

As illustrated in figure 4, under the map eq. (4.1) the crossing symmetric point θ = iπ/2

is mapped into the origin of the disk while the real axis is mapped to the boundary.

Since we require that the ansatz vanishes at ρθi = ρ(θi), the function

g(ρ) ≡ S{θj}ans (ρ)/
∏
j

(ρ− ρθj ) (4.2)

is nowhere vanishing and holomorphic inside the unit disk and therefore admits an abso-

lutely convergent Taylor expansion

g(ρ) = z

(
1 +

∞∑
n=1

cnρ
n

)
, (4.3)

where the overall factor is given by z ≡ g(0) > 0.

Combining (4.2) and (4.3) results in the following representation of our ansatz S-matrix

element

S
{θj}
ans (ρ) = z

∏
j

(ρ− ρθj )

(
1 +

∞∑
n=1

cnρ
n

)
, (4.4)

which is holomorphic, crossing symmetric and encodes the location of the zeros ρθj . The

parameters {z, ci} are constrained by unitary of the S-matrix eq. (4.5) but are otherwise

arbitrary real parameters.

Our next step is to maximize z over the space of the expansion coefficients {cn} in

eq. (4.4) under the constraint of unitarity. The unitarity bound along the real line in the
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θ-strip translates to an analogous bound along the boundary of the unit disk parameterized

as ρ = eiφ,

S
{θj}
ans (eiφ)S

{θj}
ans (e−iφ) 6 1 for φ ∈ [0, π] . (4.5)

Maximizing over z is tantamount to maximizing over the coupling to the resonances

∂θkS
{θj}
ans (ρθk), with the location of the roots of S

{θj}
ans held fixed. All couplings are maximized

simultaneously, as follows from (3.12).

4.1.1 Numerical results

In order to set up the numerical code to maximize over z, the series in (4.4) has to be

truncated. Therefore in the numerical code we maximize z in the truncated ansatz

S
{θj}
M (ρ) = z

∏
j

(ρ− ρθj )

(
1 +

M∑
n=1

cnρ
n

)
. (4.6)

In addition, the constraint (4.5) is imposed in a large but finite number of points on the

unit circle, namely it is evaluated at K points

φ ∈ {0, π/K, 2π/K, . . . , π} . (4.7)

The only approximation made in this implementation is in the truncation of the series

in (4.6). Convergence as M is increased is fast and even keeping the first few terms leads

to precise results.

As an example, consider

{θj} = {3 + i,−3 + i} , (4.8)

in eq. (4.6). We maximize (4.6) over z under the unitary constraint for the set of zeros

in (4.8) and we get the white lines depicted in figure 5. To obtain such result we increased

M and K until we got a convergent result, the plots shown are for {M,K} = {60, 90}. The

white lines are super-imposed over black thicker lines. These correspond to the S-matrix

theory Sex of (3.5) with α→ 3 + i

Sex(θ) = S3+i(θ)S−3+i(θ) , (4.9)

in the left plot, while in the right plot we compare with the phase-shift of Sex.14 The

numerical results have been obtained with Mathematica’s function FindMaximum. The

computation is cheap, taking O(1) min. of time and ∼ 1 Mb of memory RAM. Optimization

of S-matrices with many more resonances is also feasible and leads to equally good results.

14Recall that Sex saturates unitarity at all physical energies. In d = 3 + 1, only the trivial S-matrix

saturates unitarity at all energies, since any non-trivial S-matrix has a finite amount of particle production.

From this perspective, wether or not we can identify a Lagrangian model leading to Sex is somewhat

anecdotic and special to d = 1 + 1 physics.
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Figure 5. In the left plot solid black lines depict the imaginary part, real part and absolute value

of Sth(eiφ). Superimposed we show the imaginary part (dashed white), the real part (doted white)

and absolute value (solid white) of Sans(e
iφ). In the lower left plot, sharing the same horizontal

axis, we show the real part (dotted) and the imaginary part (dashed) of Sth(eiφ)−Sans(e
iφ). Finally

the plot to the right is a comparison of the phase of Sans (white) and Sth (black) in the θ strip.

4.2 Towards generalization to higher dimensions

It is convenient to make crossing symmetry explicit by extending S into a symmetric

function of two Mandelstam variables S(s, t) = S(t, s). An ansatz of this form is much

more suitable for generalization to higher dimensions. In 1 + 1 dimensions the physical

S-matrix is obtained by constraining S(s, t) to the plane s + t = 4m2. This function is

analytical in s and t up to the branch points on the real line.

Next, we build an ansatz S
{ωi}
ans-2(s, t) encoding analyticity, crossing, and the location

of the resonances. Similar to what we did in section 4.1 we encode analyticity in each

variable s and t by conformally mapping the domain of holomorphicity into the unit disk

and subsequently define the function as a Taylor series in the poly-disk. Such a conformal

map is provided by

ω(s) =

√
2m2 −

√
4m2 − s√

2m2 +
√

4m2 − s
. (4.10)

As we did before, we factor out the zeros of S
{ωi}
ans-2(s, t), and expand the nowhere vanishing

part in a (convergent) double-expansion whilst fulfilling all the physical assumptions,

S
{ωi}
ans-2(s, t) = z

∏
i

[ωi − ω(s)] [ωi − ω(t)]

1 +
∞∑

m,n=1

cn,m ω(s)nω(t)m

 . (4.11)

Here cm,n are symmetric and real. Eq. (4.11) can be equivalently written in the corre-

sponding θs, θt-strips. The existence of such a double expansion eq. (4.11) is easy to show

in two dimensions. To this end note that the map (4.1), with θ = 2 cosh−1
(√

s
2m

)
, has the

following convergent expansion

ρ(s) =
[
ω(s) + ω(4m2 − s)

] ∞∑
n=0

(−1)n ω(4m2 − s)n ω(s)n .

This, together with (4.4), results in the double expansion (4.11) with t = 4m2 − s.
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Evaluating S
{ωi}
ans-2(s, t) at t = 4m2 − s, and maximizing over z under the unitarity

constraint we obtain comparable results to the ones showed in figure 5. Eq. (4.11) admits

a generalization from d = 1 + 1 to d = 3 + 1 spacetime dimensions as was done in [10]. In

d = 3 + 1 there is an analogous definition of resonance presented in section 3.1, in terms of

phase-shifts and roots of the components of the S-matrix in the partial wave decomposition.

In a forthcoming publication we plan to study the space of S-matrices in d = 3 + 1 that

feature unstable resonances.

5 Summary and outlook

In this work we have found a bound on the coupling of asymptotic states to unstable

resonances, eq. (3.12), which is saturated in the limit of maximal elasticity of the 2 → 2

S-matrix element. The bound for each resonance is improved as the number of resonances

is increased, or the gap between the resonances is decreased. Therefore (3.12) can be

interpreted as setting a minimal mass gap between the resonances as a function of the

coupling to the resonances. In section 4 we have recovered the analytical results of section 3

as a numerical solution. This consists in numerically maximizing the coupling to the

resonances of the S-matrix ansatz (4.6) or (4.11) under the constraint of unitarity.

There are a number of interesting directions left to be developed. For instance, in

d = 1 + 1 spacetime dimensions, generalizing our results to systems involving many non-

trivial 2→ 2 S-matrix elements is of interest and could prove instructive for more involved

problems in higher dimensions. This would also facilitate making contact with integrable

models such as ref. [27] which have a known Lagrangian description and feature unstable

particles. Another interesting direction in d = 1 + 1 is to constrain unstable resonances

by studying the crossing symmetry constraints on four-point functions in the boundary of

AdS in d = 1 + 1 and subsequently taking the flat space limit [8].

Perhaps the most promising direction to pursue, from the particle physics point of

view, is to generalize the results obtained here to d = 3 + 1. In section 4 we have explained

a possible route towards such generalization. This avenue promises many applications

to particle physics and model building beyond the Standard Model. It would also be

interesting to study unstable particles of higher spin in the 2 → 2 scalar S-matrix element

which can be achieved via incorporating the corresponding Legendre polynomials in the

S-matrix ansatz.

A naive generalization of the bound (3.12) to d = 3 + 1 suggests that we should find

a maximal value of |S′| for unstable resonances which is saturated in the limit where the

amount of particle production is minimized. Furthermore, we anticipate an interesting

interplay between the maximal value of |S′| and the number of resonances allowed below a

given energy. For instance, in analogy to the result of section 3.2.3, in d = 3 + 1 we expect

that given the value S′(θi) of the lightest resonance there is a lower bound on the mass of

the next-to-lowest lying resonance.
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Figure 6. Analytic continuation of eq. (2.5) through the branch cut.

Acknowledgments

We thank G. Mussardo, S. Rychkov, B. van Rees and G. Villadoro for the useful discussions.

We are also grateful to J. Penedones, M. Serone and L. Vitale for the useful discussions

and comments on the draft. N.D. is supported by the PRIN project “Non-perturbative

Aspects Of Gauge Theories And Strings”.

A Nature of the two-particle branch point

Eq. (2.5) can be used to argue that the two-particle threshold branch point is a square-root

singularity, see for instance [28]. The argument goes as follows. Consider the analytical

continuation of S(s+ iε) into the second Riemann sheet by following a full anti-clockwise

rotation around s = 4m2, see figure 6. Lets call such analytically continued function G(s).

Then, under such analytical continuation, the unitary equation becomes

S(s− iε)G(s− iε) = f(s) , (A.1)

where we made use of continuity S(s − iε) = G(s + iε) (and assumed that f(s) has no

branch points). Then, by taking the ratio between eq. (2.5) and eq. (A.1) one obtains

G(s− iε) = S(s+ iε) . (A.2)

The latter equation would imply that rotating around the two-particle branch point twice

the S-matrix is invariant. Therefore, if the S-matrix has a branch point and if the branch

point is an algebraic singularity then it must be a square-root type singularity.15 A similar

result can be obtained in d = 3 + 1 dimensions [13].

B Total integrated phase-shift

The function S(θ) is meromorphic inside the physical strip Im θ ∈ (0, π). The so called

argument principle implies16 ∮
∂P

dθ

2πi
∂θ(2iδ(θ)) = Nz −Np . (B.1)

15Note that this argument alone can not exclude the possibility of two-sheeted essential singularities.
16See for instance theorem 4.1 of [29].
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where the closed contour integral encircles some region P in the physical strip and Nz

and Np are the number of zeros and poles in that region, weighted by their order. In

our particular physical set up P is inside the physical θ-strip and thus there are no poles

(Np = 0) due to stable particles.

Now, using crossing symmetry we have ∂θδ(iπ+θ) = −∂θδ(−θ) and therefore the total

phase-shift can be written as a contour integral∫ ∞
−∞

dθ ∂θδ(θ) =
1

2

∮
C
dθ ∂θδ(θ) , (B.2)

with C is a contour encircling the whole physical strip. Then, by Cauchy residue theo-

rem, (3.2) follow from (B.2). For simplicity we have assumed that S(θ) asymptotes to a

constant at θ → ±∞ so that the contribution from the segments at infinity vanishes —

this assumption can be relaxed.

C Perturbative example

In this appendix we provide further details of the perturbative QFT discussed in section 3.3.

The Feynman rules for the theory in (3.17) are

=
i

k2 −m2 + iε
, =

i

k2 −M2 + iε
, = −iλ , (C.1)

where the plain line denotes the propagator for π and the dashed line denotes the propagator

for σ. First order of business is to compute the loop corrections to propagation of σ which

is captured by the (amputated) diagram

− iΠ(k2) = (C.2)

The loop integral can be carried out explicitly and yields

Π(k2) =
i

2
(−iλ)2

∫
d2q

(2π)2

i

q2 −m2 + iε

i

(k − q)2 −m2 + iε
=
λ2

2π

tanh−1
√

k2

k2−4m2

√
k2
√
k2 − 4m2

,

(C.3)

where the limit ε → 0 was taken in the integrated function. Along the real axis and

below the two-particle threshold k2 < 4m2 the loop correction Π(k2) is real. Above the

two-particle threshold Π(k2) has a non-vanishing imaginary part

Im Π(k2) = − λ2

4
√
k2(k2 − 4m2)

θ(k2 − 4m2) . (C.4)

The latter equation can be extracted directly using Cutkosky rules.
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C.1 The perturbative S-matrix

Incorporating the loop correction to the propagator (C.3), the quantum corrected propa-

gator for σ is given by

G(k2) = =
i

k2 −M2 −Π(k2) + iε
. (C.5)

With this propagator we can readily compute the ππ → ππ component of the S-matrix.

The contributing diagram in the s-channel is

=
−iλ2

s−M2 −Π(s) + iε
= −λ2G(s) (C.6)

where s = (p1 + p2)2. In the centre of mass frame we have p1 = p4 = (p0, p1) and

p2 = p3 = (p0,−p1). Thus t = (p1 − p3)2 = 4m2 − s and u = (p1 − p4)2 = 0. The

corresponding amplitude in the t-channel amounts to −λ2G(t) = −λ2G(4m2 − s) and the

u-channel diagram yields a contribution equal to −λ2G(u) = −λ2G(0). The one-loop

amplitude — up to higher order corrections17 — is given by

iM(s) =
iλ2

M2 + λ2

8πm2

− iλ2

s−M2 −Π(s)
− iλ2

4m2 − s−M2 −Π(4m2 − s)
. (C.7)

Then, the ππ → ππ component of the S-matrix is given by

S = S(s)1 =

(
1 +

iM(s)

2
√
s(s− 4m2)

)
1 (C.8)

where the identity is the inner product of two particle states 1 = 〈p3, p4|p1, p2〉, which is

given by

1 = (2π)24E1E2

(
δ(p1

1 − p1
3)δ(p1

2 − p1
4) + δ(p1

1 − p1
4)δ(p1

2 − p1
3)
)
, (C.9)

and the extra factor multiplyingM(s) arises from the identity (2π)2δ(2)(p1 +p2−p3−p4) =

1/(2
√
s
√
s− 4m2).

A few remarks regarding S(s) defined in (C.8) are in order. As we will demonstrate

below, the above S-matrix has complex poles hidden behind a branch cut stemming from

the two-particle threshold. These poles correspond to the exchange of an on-shell un-

stable σ particle which amounts to a resonance in the scattering process whose width is

determined by

Γ = − Im Π(M2
ren)/Mren . (C.10)

The resonance is observed as a phase shift due to a branch cut in log S(s) stemming from

such poles. Alternatively we can extract the same information about the resonance from

the zeros of S(s) as they too give rise to a branch cut in log S(s) and thus result in a phase

shift. Moreover the zeros are in a sense more fundamental as they are not hidden behind

any branch cuts and we do not need to analytically continue the S-matrix through branch

cuts to study them. Below we analyze the resonance in our perturbative example first by

studying the poles and later through the zeros.

17Namely, vertex corrections and box diagrams.
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C.2 Resonances, poles and zeros

As discussed in section 3.1, resonances are associated with branch cuts in the s-plane for

the function log S(s) which typically connect a pair of pole and zero of the S-matrix the

location and residue of which determine the features of the resonance. Here we study the

zeros and poles of the perturbative S-matrix (C.8).

C.2.1 Poles in s-plane

Poles associated to unstable resonances are not visible on the complex s-plane and are

hidden behind multi-particle branch cuts of the S-matrix. To illustrate this in our pertur-

bative example note that (C.8) has square-root branch points at s = 0 and at s = 4m2.

We take the branch cuts to stretch along the real axis from −∞ to 0 and from 4m2 to

+∞. The location of the poles of S(s) due to the exchange of a σ in the s-channel are

determined by

s−M2 −Π(s) = 0 . (C.11)

Now consider the following ansatz for the solution

s∗ = 4m2 + s◦e
iϕ+2πin (C.12)

where s◦ is taken to be positive, ϕ ∈ [0, 2π) and n = 0, 1 labels the sheets of the Rie-

mann surface associated with the function
√
s− 4m2. Plugging our ansatz into the equa-

tion (C.11) and taking the real part we obtain

s◦ cosϕ+ 4m2 −M2 − Re Π(s∗) = 0 . (C.13)

This implies s∗ = M2 + O(λ2) and since 4m2 − M2 − Re Π(M2) < 0 we must have

ϕ ∈ (0, π/2) ∪ (3π/2, 2π). Therefore, the imaginary part of (C.11) simplifies to

s◦ sinϕ+
λ2

4

(−1)n cos(ϕ/2)

M
√
s◦

= 0 . (C.14)

where we have used (C.4) and have omitted higher order terms using that sinϕ = O(λ2).

It is evident that the equation has no solution for n = 0, i.e. in the physical sheet. To

find a solution we have to take n = 1 which as can be seen from (C.12) corresponds to the

analytic continuation of the function
√
s− 4m2 into the second sheet.18

Having demonstrated that the poles lie behind the square-root branch cut stemming

from the two-particle threshold at s = 4m2 we now switch to the θ-variable, introduced

in section 2.1. Recall that θ = θ(s) maps the two-sheeted Riemann surface associated to

eq. (C.8) into the strip θ ∈ [−iπ, iπ).

18Here we have assumed M > 2m. For M < 2m we find a pole on the real axis and below the two-particle

threshold corresponding to production of a stable particle of mass M .

– 22 –



J
H
E
P
0
9
(
2
0
1
8
)
0
5
2

C.2.2 Poles and zeros of the S-matrix

The S-matrix on the θ-strip, in units m = 1, was given in (3.22):

S(θ) = 1+
iλ2

4 sinh θ

[
1

M2 + λ2

8π

− 1

4 cosh2
(
θ
2

)
−M2 −Π(θ)

+
1

4 sinh2
(
θ
2

)
+M2 + Π(iπ − θ)

]
.

(C.15)

We remind the reader that the above expressions are perturbative results valid only up to

order λ3. We are interested in finding poles and zeros of the S-matrix in the fundamental

domain of complex θ. To this end we can use a series expansion for small λ. The poles

arise when one of the denominators vanishes. Since S = 1 + O(λ2), the zeros lie in the

regions where one of the denominators is of order λ2. Thus we can look for location of

zeros and poles in parallel. The location of the zeros and poles arising from the s-channel

contribution are determined by the equation

4 sinh θ
(
4 cosh2 (θ/2)−M2 −Π(θ)

)
= iaλ2 (C.16)

where a = 0 for poles and a = 1 for zeros.

Note that the t and u-channel contributions to (C.16) appear at order λ4 along with

contributions from other diagrams we have not considered. These contributions only affect

the position of the pole and the zero at order λ4. We are interested in poles and zeros near

s◦ = M2 or θ±◦ = ±2 cosh−1
(
M
2

)
. We therefore look for perturbative solutions of the form

θ±σ = θ±◦ + λ2θ±∗ . (C.17)

Plugging this ansatz into (C.16) we find

8 θ±∗ sinh2 θ±◦ −
θ±◦ − iπ

2π
= ia (C.18)

and therefore

θ±∗ =
1

8 sinh2 θ±◦

(
θ±◦
2π

+ i

(
a− 1

2

))
. (C.19)

Thus we find two poles at

θ±p = ±
(
θ◦ +

λ2θ◦

16π sinh2 θ◦

)
− iλ2

16 sinh2 θ◦
(C.20)

and two zeros located at

θ±z = ±
(
θ◦ +

λ2θ◦

16π sinh2 θ◦

)
+

iλ2

16 sinh2 θ◦
(C.21)

where θ◦ = 2 cosh−1
(
M
2

)
. Note that the zeros lie above the real axis corresponding to the

physical sheet while the poles lie below the real axis corresponding to the second sheet and

that the location of the zeros and poles are related by

θ±z = −θ∓p (C.22)
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as required by unitarity. We also find a second pair of poles and zeros located at

θc±p/z = iπ − θ±p/z (C.23)

using crossing symmetry.

We remind the reader that (C.20) and (C.21) are only valid up to corrections of order

λ4 while (C.21) only satisfy S(θ) = 0 up to corrections of order λ2. This is due to the fact

that near the roots of S(θ) the s-channel denominator is of order λ2 resulting in higher

order diagrams to contribute at order λ2. On general grounds we expect the contribution of

higher order diagrams to merely shift the location of the poles and zeros without affecting

their order such that the S-matrix takes the form

S(θ) =
(
g(θ) +O(λ2)

)∏
i

θ − θzi
θ − θpi

, (C.24)

where θz/p are determined up to O(λ4).
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