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1 Introduction

Pure 4D SU(N) Yang-Mills theory on a Euclidean spacetime manifold M has a dimension-

less θ parameter entering the action as

Sθ =
iθ

8π2

∫
M

trF ∧ F (1.1)

where F is the SU(N) field strength. Since the topological charge Q = 1
8π2

∫
M trF ∧ F

is quantized, Q ∈ Z, θ is a periodic parameter with period 2π. Hence one should expect

that observables are periodic in θ with a period of 2π. However, considerations involving

the large N limit imply that the way that this periodicity is enforced is rather subtle [1–4].

Observables are not smooth 2π-periodic functions of θ. Instead, they are expected to be

multi-branched functions with non-analytic behavior at e.g. θ = π. The reason for this is

that YM theory has many locally-stable candidate vacuum states, and which one is the

true globally-stable vacuum depends on θ. For instance, it is expected that the vacuum

energy E(θ) takes the form

E(θ) = min
k
Ẽk(θ/N) , (1.2)

where Ẽk are the vacuum energies of the locally-stable candidate vacuum states labeled by

an integer k. The states Ẽk are expected to individually depend on θ/N and hence have a

2πN θ periodicity, and the 2π θ periodicity expected in SU(N) YM theory is a consequence

of the minimization in (1.2). These expectations have been verified in 2D and 4D models
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which are analogous to 4D pure YM, see e.g. refs. [1–6]. Some aspects of the θ dependence

of YM theory have also been extensively studied using numerical lattice simulations, see

e.g. [7–14].

However, these standard observations leave open some interesting questions:

1. What are the symmetries of YM theory as a function of θ?

2. What is a physical interpretation of the different branches?

3. How many candidate locally-stable vacuum branches does pure SU(N) YM theory

actually have?

4. Does YM theory have spinodal points1 as a function of θ?

The answer to the first question above is somewhat more subtle than is commonly

assumed because center symmetry and charge conjugation and PT symmetries do not

commute. Explaining this is the focus of a companion paper [15]. In this paper, we focus

on the other three questions, which concern the dynamics of the theory. Consequently, to

answer them it is very helpful to consider a setting where the physics becomes amenable

to analytic treatment. In this paper we use the construction proposed in ref. [16], and

intensively explored in related works, see e.g. refs. [17–50], where YM theory is compactified

on a circle R3×S1 with stabilized center symmetry for all circle circumferences L. The idea

is that with center symmetry unbroken for all L, the physics is smooth in L, and becomes

analytically calculable for small L.

First, we find that the different θ vacua turn out to be distinguished by the expectation

values of certain magnetic line operators wrapping S1. Second, we give an explicit count

of the vacua, with the result that there are only ∼ N/2 locally-stable vacua for any given

θ. Nevertheless, observables are N -branched functions.2 Third, we find that as θ is varied

from 0 to 2πN , any given θ vacuum goes from being locally stable to being locally unstable.

Hence the theory has spinodal points as a function of θ for any N .3 We also comment on

the vacuum structure in various related models, and point out that the presence of spinodal

points is sensitive to whether the theory contains light adjoint fermions.

The paper is outlined as follows. To keep the paper self-contained, we review some basic

properties of circle-compactified YM theory with stabilized center symmetry in section 2,

with an eye to how θ enters a small-L 3D effective field theory description. In section 3.2

we discuss the interpretation of θ vacua in both in the 3D EFT and from the 4D point of

1By a spinodal point we mean a place where a metastable state reaches the limit of local stability.
2In the classic paper [4], Witten asserted that at large-N , the number of metastable states is of order

N, while observables are exactly N -branched functions. These comments are of course consistent with our

results, but are occasionally incorrectly interpreted to imply that there are necessarily exactly N metastable

branches in SU(N) gauge theory.
3Spinodal points in YM were conjectured to exist by Shifman [51] from some suggestive extrapolations

of softly-broken N = 1 SYM theory. The existence of spinodal points is also consistent with behavior seen

in a holographic model of YM theory examined in [52, 53], as well as with the behavior of QCD with light

fundamental quarks [54–56]. The novelty of our analysis is that it is done in a systematically-controlled

setting without any quark fields with masses . ∆(θ = 0), where ∆(θ = 0) is the mass gap at θ = 0.
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view. Section 3.3 discusses the behavior of parity-even and parity-odd gluon condensates.

Section 4 then argues for the existence of spinodal points in center-stabilized YM theory

and compares such findings to the behavior of a variety of other theories, with an eye

to understanding the conditions under which one should expect the existence of spinodal

points as a function of θ. Our results are summarized in section 5.

2 Center-stabilized YM theory on a small circle

Our main interest is in the θ dependence of the physics on R4. Since this is a strongly-

coupled limit of the theory, we will have to be satisfied with studying the θ dependence

in some calculable corner of the phase diagram which is smoothly connected to R4. This

calculable corner of the phase diagram appears when one studies the theory on R3 × S1.

SU(N) YM theory has a global ZN center symmetry, and the long distance physics is

highly sensitive to its realization, which can depend on L. Center symmetry is known to

be automatically preserved at large L in pure YM theory. Thus to have any chance that

a small-L limit would be smoothly connected to large L, center symmetry must also be

preserved for small L. Fortunately, it is known that center symmetry can be stabilized at

small L by certain double-trace deformation, or by adding heavy adjoint fermions to the

theory [16, 25, 26]. A large amount of evidence [16–49] suggests that with this setup, the

physics depends smoothly on NLΛ, without phase transitions or rapid crossovers. (The

reason why NLΛ rather than LΛ is the relevant dimensionless parameter will be reviewed

below.) When NLΛ is large, the physics approaches that of pure YM on R4, with strong

coupling at large distances. But when NLΛ is small, the physics remains weakly coupled

at all distances. This enables systematic semiclassical studies of the non-perturbative

dynamics, with NLΛ interpreted as the small expansion parameter.

Let us denote the compactified direction by x4, and label the non-compact directions

xµ, µ = 1, 2, 3. In the presence of the center-stabilizing double-trace deformation, the

holonomy Ω = P exp(i
∮
dx4A4) gets a ZN -symmetric vacuum expectation value (that is,

with vanishing expectation values for traces of Ωn for n 6= n mod N) for all L. At small

NLΛ, where the theory is weakly coupled, the eigenvalues of Ω take the values

Ω = ω−(N−1)/2diag
(
1, ω, . . . , ωN−1

)
, ω = e2πi/N (2.1)

up to permutations generated by the Weyl group SN ⊂ SU(N). From the perspective of

the 3D effective field theory, valid at long distances compared to L, 〈 tr Ωn〉 = 0 for n 6= 0

(mod N) implies (in the usual gauge-fixed sense) that compact 〈A4〉 6= 0, and A4 acts as

an adjoint Higgs field “breaking” the SU(N) gauge group down to U(1)N−1. The color-off-

diagonal components of the gauge fields Aµ, where now and henceforth µ = 1, 2, 3, pick up

effective masses which are integer multiples of

mW ≡
2π

NL
. (2.2)

Indeed, this is why the theory becomes weakly coupled at long distances so long as mW �
Λ: the gauge coupling stops running at the energy scale mW , since there are no charged

modes below mW .
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The light degrees of freedom at small L are the N−1 Cartan gluons, with field strengths

we denote as F aµν , a = 1, . . . N−1. The Cartan gluons will often be referred to as “photons”.

Even though it is rather natural to interpret the index ‘a’ as a color index, it is important

to note that this index has a manifestly gauge-invariant meaning. In particular, one can

show that

F aµν(xµ) ∼ 1

N

1

L

∫
dx4

N−1∑
q=1

ω−qa tr Ωq(x4, x
µ)Fµν(x4, xµ) , (2.3)

where Fµν is the 3D part of the full non-Abelian SU(N) field strength, Ω(x4, xµ) = Ω(xµ) =

P exp
[
i
∫ L+x4
x4

dx′4A4(x
′4 , xµ)

]
. We use a ∼ in relating the left and right hand sides of

eq. (2.3) to emphasize that the right-hand-side should be viewed as a 4D manifestly gauge-

invariant interpolating operator for the expression on the left-hand side. That is, at weak

coupling, the 4D operator on the right dominantly couples to single-3D-“photon” states,

but it also creates e.g. pairs of W-bosons with the same quantum numbers.

For the purposes of later discussion, it will be notationally convenient to introduce

an fictitious N -th photon, FNµν , which will decouple from the N − 1 physical photons both

perturbatively and non-perturbatively. With this done, the photon action can be written as

Stree =
L

4g2

∫
d3x

N∑
a=1

F aµνF
aµν . (2.4)

Equation (2.3) can be used to infer that under center symmetry, the Cartan gluons trans-

form as

S : F aµν → F a+1
µν . (2.5)

The Cartan gluons are gapless to all orders in perturbation theory, see e.g. [16, 57,

58], but develop a mass non-perturbatively. To see this, we pass to the Abelian dual

representation of the effective action for dual photons. At tree level, the effective action

becomes

Stree,dual = λmW

∫
d3x

N∑
a=1

(∂µσ
a)(∂µσa) ≡ λmW

∫
d3x (∂µ~σ)2 . (2.6)

Here σa are the dual photons, ~σ = (σ1, . . . , σN ), and the σa fields are related to the original

Abelian field strengths by the 3d Abelian duality relation

F aµν = λmW /
(
4π2
)
εµνρ∂

ρσa . (2.7)

The tree-level dual photon effective action in (2.6) gives rise to a conserved shift cur-

rent Jaµ = ∂µσ
a. The symmetry conservation equation ∂µJaµ = 0 can be rewritten as

∂µεµαβ ~F
αβ = 0. The latter equation always holds in the absence of magnetic monopoles,

and the theory we are studying certainly has no magnetic monopole field configurations in

perturbation theory. So the ~σ shift symmetry is exact in perturbation theory, and the dual

photons are perturbatively gapless.4

4Perturbative interactions do not generate a potential for ~σ, but they do generate a non-trivial metric on

the TN−1/SN target space,
∑N
a=1(∂µσ

a)(∂µσa) →
∑N
a,b=1 fa,b(λ)(∂µσ

a)(∂µσb), where fa,b = δa,b + O(λ).

The implications of this fact were discussed in detail in [37], with some large N implications covered in [59].

Here we take fa,b = δa,b since the O(λ) corrections do not materially affect our discussion.
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We now briefly review the leading non-perturbative effects. More details of such so-

lutions can be found in, for example, ref. [60]. As in any SU(N) YM theory, there exist

instanton solutions with action SI = 8π2N/λ and topological charge Q = 1. But in the

setting of (2.1), the instantons fractionalize into N types of monopole-instantons [61, 62],

each carrying topological charge Q = 1/N . The monopole-instantons are the field configu-

rations with the smallest finite value of the action. Their actions are all equal, S0 = 8π/λ,

so that NS0 coincides with the BPST instanton action SI . The magnetic charges of N−1 of

these monopole-instantons are given by the SU (N) (co-)root vectors, ~αa, a = 1, . . . N − 1,

and would be present even in a locally-3D theory. The N -th monopole (the KK monopole)

with action S0 has magnetic charge given by the affine (co-)root ~αN = −
∑N−1

a ~αa, and is

present due to the locally four-dimensional nature of our theory [61, 62].5 More precisely,

in terms of the U(1)N valued 3d magentic field defined by ~Bµ ≡ 1
2g ε

µνρ4 ~Fνρ, the monopole

of type a has magnetic charge which satisfies∫
S2

dΣµ
~Bµ =

2π

g
~αa (2.8)

with S2 a sphere in R3 surrounding the monopole. The gauge invariance of (2.8) can be

made manifest by rewriting ~Fµν using (2.3). Since the monopole-instanton field configura-

tions carry magnetic charge, their contributions to the path integral can produce a mass

gap for the σa fields.

At leading order in the semi-classical approximation, the magnetic monopole-instanton

contribution to the effective action can be evaluated using the dilute monopole-instanton

gas approximation. This approximation is under systematic control because the monopoles

have a fixed characteristic size ∼ m−1W , while their typical Euclidean separation is expo-

nentially large, ∼ m−1W e+S0/3. This gives

Sσ̃ =

∫
d3x

[
λmW (∂µ~σ)2 + V (~σ)

]
(2.9)

where

V (~σ) = V (1) + V (2) + . . . . (2.10)

where the expansion is in powers of e−S0 , so that

V (1) = − A
λ2
m3
W e
−S0

N∑
a=1

cos

[
~αa · ~σ +

θ

N

]
(2.11)

V (2) ∼ e−2S0

N∑
a=1

cos [(~αa − ~αa+1) · ~σ] + · · · (2.12)

Here A is an O (1) scheme-dependent constant, while V2 ∼ e−2S0 represents the contri-

butions arising at the next (second) order in the semiclassical expansion in powers of

5We choose to use an N -dimensional basis for the root vectors, so that their components can be written

as (~αa)i = δa,i− δa,i+1. All of these vectors are orthogonal to ~e0 = (1, 1, · · · , 1), ~αa ·~e0 = 0, where ~e0 is the

magnetic charge vector associated with the fictitious N -th photon. This ensures that the fictitious photon

completely decouples from the physical fields.
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e−S0 . Starting from the second order in the semiclassical expansion, the σ potential re-

ceives contributions from correlated monopole-instanton events. The most important of

these for our story are magnetic bions, which carry magnetic charge but have vanishing

topological charge [18], and their contribution is written explicitly above. At second or-

der in the semiclassical expansion one also encounters topological bions, which carry both

magnetic and topological charges, and neutral bions, which have neither topological nor

magnetic charge. The neutral bions do not contribute to the σ potential. The topological

bions do contribute, but their contributions are suppressed by positive powers of λ relative

to the magnetic bion contribution if the center symmetry is stabilized by massive adjoint

fermions or typical double-trace deformations [30], and their effects are subsumed in the . . .

in eq. (2.12). The magnetic bions can become important if the leading-order contribution

vanishes, which can happen for certain values of θ and N .

The potential V (1) has N extrema within a unit cell of the weight lattice given by

~σk =
2πk

N
~ρ, with ~ρ ≡

N−1∑
i=1

~µi (2.13)

where k = 0, 1, . . . , N − 1, ~ρ is the Weyl vector, and ~µi are the fundamental root vectors of

SU(N). These vectors satisfy ~αi ·~µj = δij , ~αi ·~ρ = 1 for i = 1, . . . , N−1, and ~αN ·~ρ = 1−N ,

which we will use below. Occasionally, it will be useful to use an explicit basis where the

root vectors are (αa)b = δa,b − δa+1,b, 1 ≤ a < N , ~σk, in which case the extrema take the

form

~σk =
2πk

N
(N,N − 1, . . . , 2, 1) . (2.14)

The value of V (1) evaluated at each of the extrema is given by

Vk ≡ V (~σ = ~σk) = −N A

λ2
m3
W e
−S0 cos

(
2πk + θ

N

)
+O

(
e−2S0

)
. (2.15)

In the following sections we explore the vacuum structure and θ dependence of observables

that follow from this effective field theory description.

It is also interesting to explore the transformations of these extrema under various

symmetries of the system (such as center symmetry, parity, and charge conjugation sym-

metries) as a function of θ. We do so in a companion paper [15]. This analysis shows

that center symmetry and e.g. charge conjugation do not commute, and as a consequence

the group of discrete symmetries generically involves the dihedral group D2N . However,

at θ = π, the symmetry group becomes centrally extended and involves D4N , which is

consistent with the results of ref. [63] concerning mixed ’t Hooft anomalies involving center

symmetry and CP symmetry.

3 Vacuum structure of Yang-Mills theory as a function of θ

3.1 Spectrum and ground state properties

We now examine the spectrum as a function of θ. The value of the leading-order potential at

its extrema is given in eq. (2.15). Diagonalizing the matrix of quadratic fluctuations around

– 6 –
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each extremum tells us that the “mass-squares” of fluctuations around the extrema are

m2
q,k = m2

γ sin2
(πq
N

)
cos

(
2πk + θ

N

)
+O

(
e−2S0

)
, (3.1)

where m2
γ ∼ m2

W e
−S0 and q = 1, . . . , N − 1. This basic formula has been known for a long

time, see e.g. refs. [28, 30, 39]. Here we give a precise count of the number of locally-stable

vacua, and comment on the important role of magnetic bion corrections given by eq. (2.12).

If all fluctuations have positive mass squares, a given extremum is a local minimum

and hence corresponds to an (at least) metastable vacuum. It is straightforward to verify

that m2
q,k > 0 for all q so long as the energy density Vk is positive. The true vacuum,

corresponding to the global minimum, has the smallest value of Vk among the local minima.

For −π < θ < π the true vacuum is k = 0, while for (2M − 1)π < θ < (2M + 1)π with

M ∈ Z it is k = N −M mod N .

Which vacua are locally stable also depends on θ and N . For example, for θ = 0

and N = 5, k = 0, 1, 4 are local minima, but k = 2, 3 are local maxima, while for θ = π

and N = 5, k = 0, 4 are local minima while k = 1, 2, 3 are local maxima. In general, for

any θ, roughly N/2 extrema of eq. (2.11) are locally stable, while N/2 extrema are locally

unstable. More precisely, we find that the number of locally stable vacua, Ns, is

Ns =



1 + 2bN
4
c θ = 0

bN
4
c+ bN + 3

4
c 0 < θ < π/2

bN + 1

2
c θ = π/2

bN + 1

4
c+ bN + 2

4
c π/2 < θ < π

2bN + 2

4
c θ = π.

(3.2)

where the floor function bxc gives the largest integer less than x.

It is amusing to note that for some values of N , there are values of k such that

the mass matrix of eq. (3.1) can vanish identically at leading order in the semiclassical

expansion. But in the small NLΛ regime, the subleading contribution to the masses comes

from magnetic bions, and is always positive.6 So, when k and N conspire to make the

leading order masses vanish, taking subleading contributions into account, such as V2 in

eq. (2.11), implies that these extrema are in fact metastable vacua. For example, when

N = 4, and θ = 0, the global minimum corresponds to k = 0. But if we set k = 1 with

θ = 0, then mq,1 = 0 to leading order in the semiclassical expansion [39]. But the magnetic

bion contribution to the mass in eq. (2.12) is always positive for any N and θ, so in fact

6The heuristic argument for this involves two steps. First, one notes that the magnetic bion contribution

does not depend on θ since magnetic bions have zero topological charge. Second, there are examples of

theories, such as adjoint QCD [18] where the presence of fermion zero modes eliminates the monopole-

instanton contribution to the ~σ potential, so the magnetic-bion contributions are leading order. Therefore,

the bion contribution must by itself yield a positive mass spectrum for stability of the theory.

– 7 –



J
H
E
P
0
9
(
2
0
1
8
)
0
3
0

the dual photon mass spectrum at k = 1 is

m2
q,1 = e−2S0 sin4

(πq
4

)
+O

(
e−3S0

)
, N = 4 (3.3)

So the k = 1 extremum is in fact a local minimum for N = 4, θ = 0, and corresponds to

a metastable state of the system. These comments generalize to any N , and the locally-

stable-vacuum counting formulas in eq. (3.2) take into account the effects of magnetic bions.

These results imply that the 2π periodicity of the system in its thermodynamic ground

state is not enforced by a dance between N candidate ground states which are all metastable,

as is sometimes assumed in the literature. Instead, as θ is varied between 0 and 2πN , any

given extremum passes from being locally stable to locally unstable, and for any given θ,

only ∼ N/2 extrema are metastable vacua.7

Lastly, we note that the 4D energy density Ek ≡ Vk/L is

Ek ∼ N2Λ4(NLΛ)−1/3 cos

(
2πk + θ

N

)
. (3.4)

On R4, it is expected that Ek(θ = 0) ∼ N2, while the topological susceptibility χtop

χtop ≡
〈
∂2Ek
∂θ2

〉 ∣∣∣∣
θ=0

∼ O
(
N0
)

(3.5)

To get a calculable large N limit where our formulas apply, one must take the double-

scaling limit NLΛ ∼ N0 as N →∞ [16, 59], and ensure that NLΛ� 1. In this limit, the

N scaling of E(θ = 0) and of χtop is completely consistent with the expectations above.

3.2 Interpretation of θ-vacua

We have found that the vacua of YM theory on R3 × S1 are labeled by the values of

〈 tr Ωn〉, n 6= 0 mod N and ~σk. Here we discuss the interpretation of the physics behind

the distinct extrema labeled by k where 〈~σ〉 = ~σk, defined by (2.13). We note that ref. [46]

has insightful remarks of a similar spirit to some of our discussion below.

Before we start, it will be helpful to recall some properties of the monopole-instanton

operators. In our dualized language, a type a monopole of charge ~αa located at position

xµ is equivalent to the insertion of ei~αa·~σ(x
µ) in the path integral. In terms of the SU(N)

field strength, the magnetic charge of such a field configuration is defined by (2.8). Our

discussion above implies that the θ vacua are all confining and labeled by θ-dependent

phases for these operators, so

〈Ma ∼ e−8π
2/λei~α·~σ〉 = e−8π

2/λe2πik/N , 〈 tr Ωn〉 = 0 , (3.6)

where n 6= 0 modN and the integer k depends on θ.

7For N = 3 we have explicitly verified that as an extremum passes from being a minimum to being a

maximum, it merges with a saddle-point of the potential in eq. (2.11). We expect this to generalize to all

N > 3. The N = 2 case must be treated separately, since the leading-order potential strictly vanishes at

θ = π, and one must take into account the magnetic bion contributions. With this done, one finds that

the spinodal point is associated with a merger of extrema of the leading-order potential with some extra

extrema of the magnetic-bion-corrected potential.

– 8 –
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Let us start with comments on the physical interpretation of the θ-extrema within

the 3D effective theory. From our discussion in the previous paragraph, it is clear that

〈~σ〉 = ~σk can be interpreted as defining uniform background distributions of magnetic

monopoles of types 1 to N − 1 of with fractional magnetic charges 2πk
N ~αi, as well as the

contribution from monopole of type N , giving a charge 2πk
N (1−N) ~αN . One might be

concerned that this would cause the system to have a divergent magnetic Coulomb energy,

but fortunately this is not the case. For arbitrary k, a background of constant ~σ = 2πk
N ~ρ

represents magnetic charge

N−1∑
i=1

2πk

N
~αi +

2πk

N
(1−N) ~αN = −2πk ~αN (3.7)

with respect to the U(1)N gauge fields. This is equivalent to 〈~σ〉 = 0 for integer k due to

the 2π periodicity of ~σ.

We now ask about the interpretation of the vacuum structure from the point of view

of the four-dimensional SU(N) gauge theory. To get such an interpretation, we need to

better understand the meaning of operators like ei~αa·~σ(x
µ) in a 4D language. Thanks to

eq. (2.3), we can write a manifestly gauge-invariant 4D interpolating operator for σa as a

line integral over the S1 direction:

σa(x
µ) =

4π2

λmW

1

∇2

[
∂ρε

µνρF aµν
]

(3.8)

=
2π

λm2
W

1

∇2

∂ρεµνρ ∫ dx4

N−1∑
q=1

ω−qa tr Ωq(xµ)Fµν(x4, xµ)

 . (3.9)

This can then be used to write a gauge-invariant 4D interpolating operator for ei~αa·~σ(x),

for which we will introduce a new symbol Ξa,

Ξa(xµ) ∼ exp

 2πi

λm2
W

1

∇2

∂ρεµνρ ∫ dx4

N−1∑
q=1

(
ω−qa − ω−q(a+1)

)
tr ΩqFµν

 . (3.10)

This gauge-invariant expression makes clear that the index a onMa, which at first glance

may like a color label, is better interpreted as a discrete Fourier transform of center charge.

To make this clearer, one can define

Ξ̃p =
1

N

N−1∑
a=0

ωapΞa. (3.11)

The operators Ξ̃p, p = 1, · · ·N − 1 carry non-trivial center charge. If they picked up non-

trivial expectation values, this would be a signal of spontaneous center symmetry breaking.

But on the k-th θ-extremum one finds

〈Ξ̃0〉 ∼ e2πik/N , 〈Ξ̃p〉 = 0 , p = 1, . . . , N − 1 . (3.12)
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Figure 1. [Color Online.] An sketch of the phase structure of SU(N) YM theory for N = 4 as

a function of θ. The vertical axis depicts the vacuum energy density. The gray dashed curves

indicate the energy density associated with the four distinct θ-extrema. The colored bold curves

indicate the vacuum energy density associated with the thermodynamically stable vacuum branch

for any given θ. The black dots at the cusps label the locations of quantum phase transitions. These

phase transitions are associated with changes in the expectation values of GNO ’t Hooft magnetic

holonomies, as discussed in the main text.

So as the value of k labeling the globally stable vacuum changes as a function of θ, center

symmetry is always unbroken, but the phase of 〈Ξ̃0〉 changes in discrete steps. This is

illustrated in figure 1.

To get some further insight into the interpretation of the Ξa(x
µ) operators, note that

they are point-like in R3 and carry magnetic charge valued in the root8 lattice of SU(N),

rather than in the fundamental weight lattice. The magnetic charge in question is the

one described in the classic work of Goddard, Nuyts, and Olive (GNO) [64]. Putting this

together with eq. (3.10), we interpret Ξa(x
µ) as (GNO) magnetic line operators wrapping

S1. (This is consistent with the identification in [33].)

Since Ξa(x
µ) ∼ ei~αa·~σ(x

µ) is independent of the x4 coordinate, it can be equivalently

characterized by its properties in the R3 subspace at a given value of x4 where it appears

as a point-like object. In particular, consider some S2 in the R3 subspace surrounding the

point xµ where we insert Ξa. Then one can define Ξa by demanding that it obey (2.8),

with F aµν replaced by its gauge-invariant interpolating operator (2.3) if one wants to make

gauge-invariance manifest.

8Strictly speaking, the magnetic charges live in the root lattice of the dual magnetic group GL for the

‘electric’ gauge group G = SU(N), which is SU(N)/ZN , and consequently the monopole operators should

written as ei~α
∗
a·~σ, where ~α∗

a are co-root vectors. But for G = SU(N) it happens that ~αa and ~α∗
a are

numerically identical, so we ignore this technicality in the main text.
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We note that ’t Hooft proposed another sort of magnetic line operator [65], which es-

sentially carries magnetic charge in the fundamental weight lattice. Such ’t Hooft magnetic

line operators have the defining property that they do not commute with Wilson loops.

This is to be contrasted with the GNO magnetic line operators relevant here, which com-

mute with Wilson loops. However, in the popular modern approach of Kapustin [66] both

types of magnetic line operators are referred to as ’t Hooft line operators. Note that Ξa are

“genuine line operators” since they require no topological surface to be gauge-invariant.

We will refer to these operators as GNO ’t Hooft magnetic holonomies, or “magnetic

holonomies” for short.

Thus, as far as magnetic charge is concerned, the monopole operators behave as if they

arise from dimensional reduction of GNO ’t Hooft magnetic line operators wrapping S1.

So the various θ vacua are labeled by expectation values of these magnetic operators, 〈Ξa〉.
But we have not yet commented on the electric charges of these operators. In fact, we

have often referred to the associated field configurations as ‘magnetic monopoles’, and if

one naively classifies field configurations as purely electric, purely magnetic, or dyonic, one

might be tempted to infer that monopole-instanton operators have vanishing electric charge

and thus descend from a purely magnetic holonomy. This is not quite right, because the

3D monopole operators are not electric charge eigenstates, and so their electric charge is

not well defined. Below we explore this using Poisson duality, following an earlier analysis

with Poppitz [67].

To see the issues in the simplest context, consider the case N = 2, and parametrize

the holonomy Ω as

Ω =

(
eiφ/2

e−iφ/2

)
(3.13)

so that (in an obvious gauge-fixed sense) 〈A4〉 = 1
L
σ3

2 φ. The center-symmetric case corre-

sponds to φ = π. For N = 2, there are two types of elementary monopole-instantons which

give rise to the potential of eq. (2.11). It is well-known that these monopole-instanton solu-

tions are self-dual and satisfy the BPS equations Eµ = ±Bµ, see e.g. ref. [57]. However, in

the dimensionally reduced theory, the A4 field becomes a scalar and acquires a vacuum ex-

pectation value rendering it massive. If we make the dependence of the monopole-instanton

operators on 〈A4〉 explicit, they take the form

M1 ∼ e−
8π
λ
φe+iσ, M2 ∼ e−

8π
λ
(2π−φ)e−iσ (3.14)

to leading order in the semiclassical expansion and neglecting θ dependence for the time

being. The two solutions associated with M1,2 have the minimal values of the action, but

monopole-instantons with higher action also exist. These more general solutions can be

constructed by allowing generic winding numbers for the compact scalar field φ [60],

φ(x4 = L) = φ(x4 = 0) + 2πnW ⇔ M(nW ) = e−
8π
λ
|φ+2πnW |e−iσ , (3.15)

and M1 and M2 correspond to the cases nW = 0 and nW = −1, respectively.

Although the monopole-instantons are defined by a self-duality relation, (3.14) shows

why they should not be interpreted as a dyonic monopoles [31, 46]. The monopole am-

plitude is of the form e
− 4π
g2
φ+iσ

, rather than the dyonic form eiqeφ+iqmσ. In particular, φ
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exchange between monopole-instantons configurations of the same φ-charges leads to an

attractive force, since φ is a (massive) scalar. This is not the correct sign for electric in-

teractions, and means that it is incorrect to interpret monopole-instantons as dyonic field

configurations.

However, there is a heuristic but highly suggestive way to interpret the potential

of (2.11) as coming from an infinite sum over dyonic operators, as shown in [31, 67].

To do so, consider the potential generated by a sum of the monopole-instantons with all

possible windings, nW :

Vall windings = m3
W

[
eiσ

∑
nw∈Z

e−
8π
λ
|φ+2πnW | + h. c.

]
+ . . . . (3.16)

The . . . in this expression represent the contributions from correlated events which start to

contribute from O(e−2S0), as well as the φ dependence generated in perturbation theory

around each monopole-instanton. Since we have been considering the leading-order winding

solutions all along, the differences between (2.11) and (3.16) are exponentially suppressed.

The value of focusing on the terms shown explicitly in (3.16) is that they have a well-defined

and highly suggestive four-dimensional interpretation. Specifically, as a consequence of

Poisson resummation identities, the following relation holds [31, 67][∑
nw∈Z

e−
8π
λ
|φ+2πnW |

]
eiσ =

[
1

π

∑
ne∈Z

8π
λ(

8π
λ

)2
+ n2e

eineφ

]
eiσ. (3.17)

While each of the terms on the left-hand side originates from field configurations with

well-defined magnetic charge, all of them have an ill-defined electric charge.9 But each of

the terms on the right-hand side is of the form eineφ+iσ, and hence can be interpreted as

originating from field configurations with well-defined electric and (GNO) magnetic charges

(qe, qm) = (ne, 1). (Note that since we have specizlied to N = 2 there is only one type of

magnetic and electric charge.)

When λ is small, the sum on the left is dominated by the nW = 0,−1 terms, cor-

responding to the M1,M2 operators, while the sum on the right is dominated by terms

with charge |ne| . 8π/λ. So for small NLΛ, one can interpret the monopole-instantons as

arising from a purely magnetic holonomy as well as many dyonic holonomies constructed

from some combinations of the electric and magnetic holonomies. The relevant dyonic-

instanton configurations arise from dimensional reduction of the corresponding dyonic field

configurations wrapping the S1 direction. Here the relevant dyonic line operators can be

constructed from the Wilson line with charge Ω ∼ (1, 0) and the GNO t’ Hooft line with

charge Ξ ∼ (0, 1) as ΩqeΞqm ∼ (qe, qm).

9Relatedly, the individual terms on the left-hand side of (3.17) are not periodic under φ → φ + 2π,

and this would not be cured by including the perturbative or correlated-event contributions we have been

dropping. But the φ periodicity must be respected by the full theory and taking into account the sum over

nw cures this issue. See [68] for a discussion of this issue in the context of N = 1 super-Yang-Mills theory,

where the extra constraints provided by supersymmetry allow one to establish very explicit results in this

direction.
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Just as the holonomy acquiring a vacuum expectation value implies a well-defined

vacuum expectation value of the dimensionally reduced A4 scalar, we can view the σk (the

specialization of ~σk for N = 2) as arising from a vacuum expectation value of the magnetic

holonomy. Hence the specification of the vacuum structure of center-stabilized YM amounts

to a specification of the ordinary and magnetic holonomy vacuum expectation values.

Generalizing to arbitray N , we simply require N − 1 labels for all the GNO ’t Hooft

lines.10 The sum of (3.17) becomes

N∑
a=1

[∑
nw∈Z

e−
8π
λ |~αa·~φ+2πnW |

]
ei~αa·~σ =

N∑
a=1

[
1

π

∑
ne∈Z

8π
λ(

8π
λ

)2
+ n2e

eine~αa·
~φ

]
ei~αa·~σ. (3.18)

By the same reasoning above, the vacuum expectation values of φa and ~σk can equally well

be described as vacuum expectation values of the Polyakov loop and magnetic holonomy

〈Ξa〉. In particular, as already noted above and illustrated in figure 1, on the k-th θ

extremum, the magnetic holonomy has the expectation value

ei~αa·~σ
∣∣∣∣
〈~σ〉=(2πk/N)~ρ

= e2πik/N . (3.19)

The fact that the confining phase at small NLΛ is characterized by vanishing expecta-

tion values for Wilson holonomies and non-vanishing expectation values for GNO ’t Hooft

holonomies fits in a satisfying way with the standard expectations about the phases of

gauge theories. Confinement is supposed to be associated with an area law for large Wil-

son loops, which is indeed observed in the NLΛ regime [16, 69]. The area law behavior is

also associated with the absence of a disconnected contribution in the holonomy correlator

〈 tr Ω(~x) tr Ω(0)〉 = 〈 tr Ω(~x) tr Ω(0)〉connected ≡ e−βE(|~x|), (3.20)

so that the Polyakov loop expectation value vanishes [70], and E(|~x|) = σtension|~x| for large

|~x|. At the same time, large GNO ’t Hooft loops have a perimeter law. One can verify

that this is indeed the case in center-stabilized YM theory due to the Coulomb interactions

between the dual photons. And not coincidentally, we have seen that certain GNO ’t

Hooft holonomy operators have non-vanishing expectation values, so that GNO ’t Hooft

holonomy correlation functions have non-vanishing disconnected pieces.

Lastly, it is interesting to recall that when θ → θ+ 2π, the charges of dyonic operators

transform as (qe, qm) −→ (qe + qm, qm) [71]. In the context of (3.18) this amounts to a

transformation

eine~αa·
~φei~αa·~σ → ei(ne+1)~αa·~φei~αa·~σ = ei2π/Neine~αa·

~φei~αa·~σ. (3.21)

In view of these remarks, one can interpret the e2πi/N jumps in the phase of the magnetic-

monopoles (and associated dyonic line operators) as a function of θ as arising from the

Witten effect.
10In the special case of a center-symmetric theory considered here, all magnetic holonomies take on the

same vacuum expectation value so it may seem redundant to use N − 1 labels. But if center symmetry

is spontaneously broken, then the expectation values of magnetic holonomies associated to distinct simple

roots of su(N) would not have to be the same, so we keep the labels distinct.
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3.3 Branch dependence of gluon condensates

We have seen above that as θ varies, there are phase transitions between θ vacua, and

one of the order parameters for these phase transitions is the expectation value of the

GNO ’t Hooft magnetic holonomies on S1. These phase transitions are also marked

by non-analyticities in the expectation values of local operators. Here we illustrate this

point by calculating the parity-even and parity-odd gluon condensates 〈 1N trFµνFµν〉 and

〈 1N trFµνF̃µν〉.11

The leading contribution to these condensates in the calculable NLΛ� 1 domain arises

from monopole-instantons. Before explaining quantitatively, we note that this statement

is in sharp distinction with old QCD literature which gives the impression that vacuum

condensates arise from 4d instantons. The important distinction between these two cases is

that the dilute monopole-instanton gas on R3×S1 is a controlled semi-classical approxima-

tion to the Euclidean vacuum of the gauge theory, while the “dilute instanton gas” is not a

controlled approximation. Therefore, it should not be a surprise that monopole-instantons

produce the correct multi-branched structure of observables, while 4d instantons do not.

Relatedly, the monopole-instanton density is of order e−S0 , while 4d instanton density is

order e−NS0 . In the large N limit the 4D instanton contribution to the vacuum energy

is exponentially suppressed, while the monopole-instanton contribution is not suppressed.

As a result, the θ angle dependence induced by the monopole instantons is consistent

with large-N arguments [4], in contrast to the θ-dependence inferred from naive instanton

calculations.

At leading order in semi-classics, we can think of the vacuum as a dilute gas of N types

of monopole-instantons (in a grand canonical ensemble), each with complex fugacity

za = e−S0+iθ/N , a = 1, . . . , N . (3.22)

Physically, the fugacity of any given species of monopole-instanton is |za| ∼ NMa/VR3×S1 ,

where NMa is the average (with respect to the path integral measure) number of monopole-

instantons of type a in the spacetime volume VR3×S1 . In this statistical interpretation, we

can write

〈 trFµνFµν〉 ∼
∫
R3×S1 trFµνF

µν

VR3×S1

. (3.23)

That is, the value of the gluon condensate can be obtained by computing the average value

of trFµνF
µν in a spacetime volume VR3×S1 . In terms of the fugacities defined above, to

leading order in the semiclassical expansion, this implies that

〈 trFµνFµν〉 ∼
8π2

N
×
m3
W

L
×

N∑
a=1

(
za + z†a

)
. (3.24)

where 8π2

N is the value of
∫
d4x trFµνF

µν on any given monopole-instanton,
m3
W
L is the

relevant inverse volume, and the sum is over the N species of monopole-instantons, with

11We thank Tin Sulejmanpasic for discussions of the statistical method of evaluating condensates in

the semiclassical domain which we use below. This method was used in the context of N = 1 SYM to

show vanishing of the gluon condensate in [72]. In purely bosonic theory, an alternative approach to the

computation of 〈 1
N

trFF̃ 〉, with the same result, is described in [39].
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z†a the fugacities of the anti-monopole-instantons. As a result, to leading order in the

semiclassical expansion at small NLΛ, we obtain

〈 1

N
trFµνFµν〉 ∼ m4

W e
−S0 cos

(
2πk + θ

N

) ∣∣∣∣
k=k∗(θ)

= Λ4(ΛLN)−1/3 cos

(
2πk + θ

N

) ∣∣∣∣
k=k∗(θ)

(3.25)

where k∗(θ) is the value of k that maximizes cos
(
2πk+θ
N

)
for any given θ. Setting k = k∗(θ)

ensures that we evaluate 〈 1N trFµνFµν〉 on the vacuum branch, which minimizes the energy,

for any given value of θ.

The discussion for the parity odd gluon condensate is almost the same except for the

fact that
∫
lump trFµνF̃µν = ±

∫
lump trFµνFµν , with a plus sign for monopoles and a minus

sign for antimonopoles. Hence, the anti-monopole contribution comes with a negative

over-all sign, leading to

〈 1

N
trFµνF̃µν〉 ∼ m4

W e
−S0 sin

(
2πk + θ

N

) ∣∣∣∣
k=k∗(θ)

= Λ4(ΛLN)−1/3 sin

(
2πk + θ

N

) ∣∣∣∣
k=k∗(θ)

(3.26)

Note that we wrote (3.26) as an operator statement in Minkowski space. In Euclidean

space, there is an extra factor of i for operators like trFµνF̃µν = tr εµναβFµνFαβ that

involve the spacetime Levi-Civita tensor.

In the decompactification limit where LNΛ� 1, we expect these semiclassical results

to approach

〈 1

N
trFµνFµν〉 ∼ Λ4feven

(
2πk + θ

N

) ∣∣∣∣
k=k∗(θ)

(3.27)

〈 1

N
trFµνF̃µν〉 ∼ Λ4 godd

(
2πk + θ

N

) ∣∣∣∣
k=k∗(θ)

(3.28)

where feven(x) and godd(x) are even and odd 2π-periodic functions, as illustrated in figure 2.

Note that 〈 1N trFµνFµν〉 is a continuous function of θ with a cusp at θ = π. The largest

deviation of the observable from its value at θ = 0 takes place at θ = π, and the difference

is O(1/N2). Hence, at N = ∞, this condensate is actually a constant, independent of

θ [30]. On the other hand, the parity odd condensate 〈 1N trFµνF̃µν〉 is a saw-tooth function

of θ with a discontinuity at θ = π. The largest deviation of the observable from its value

at θ = 0 takes place at θ = π, where it is given by ±Λ4 sin
(
π
N

)
. Since the parity-odd

condensate is zero at θ = 0, and it is O(N−1) at θ = π, at N = ∞, it must remain zero

for all values of the θ-angle. This means that spontaneous T (or CP ) -breaking is not

visible at leading order in the large N expansion, and only becomes apparent once 1/N

corrections are taken into account.
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Figure 2. [Color Online.] A sketch of the θ angle dependence of the lowest-dimension non-trivial

parity even and odd condensate 〈 1N trFµνFµν〉(θ) and 〈 1N trFµν F̃µν〉(θ) for N = 4 in SU(N) YM

theory in the semiclassical confining domain. The continuous bold red curve shows the values of

the parity-even condensate, while the saw-tooth bold blue curves denote the values of the parity-

odd condensate. The grey dashed curves mark the values of the condensates on the N different θ

extrema.

4 Genericity of spinodal points in the YM phase diagram

In this section we first show that when NLΛ is small, center-stabilized YM has spin-

odal curves in its θ-NLΛ phase diagram. A spinodal point is defined as a place where a

metastable vacuum reaches its limits of stability, and the theory becomes exactly “gap-

less” on the metastable branch, in the sense that eigenvalues of the Hessian matrix of the

potential around the vacuum vanish. A natural follow-up question is whether the spinodal

curves persist all the way to large NLΛ, where the physics approaches that of pure YM

theory on R4. We then seek to gather some intuition on this question by examining the

θ-dependence of various related theories: QCD(adj) at small NLΛ [18], and QCD with

light fundamental fermions on both R4 and R3 × S1.

4.1 YM on R3 × S1

Suppose we start at θ = 0 in the k = 0 global minimum configuration, and adiabatically

increase θ, the system will stay in the k = 0 state so long as it is locally stable. The time

scale for bubble nucleation is parametrically long so long as NLΛ � 1 [39, 40].12 But

the k = 0 extremum becomes locally unstable for θ > Nπ/2 +O(e−S0). This means that

at θ = θ∗

θ∗ = Nπ/2 + c e−S0 , c > 0 (4.1)

there is a spinodal point. Here, c ∼ O(1) to leading log accuracy. The positivity of c is tied

to the positivity of the bion contributions to the effective potential, and their independence

from θ. Consequently one can balance a negative leading-order contribution to the masses

against positive contributions from higher orders by tuning θ, and thus arrange for the

dual photon “masses” from eq. (3.1) to vanish for k = 0 at some θ. So, if θ is adiabatically

12For example, if one takes the large N limit with NLΛ held fixed and small, and θ > π, the decay rate

is Γ ∼ e−CN7/2/(π−θ)2 where C ∼ e+S0/2 [40].
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Figure 3. [Color Online.] Plot of the mass of the lightest excitation of YM theory with N = 4

at small NLΛ as a function of θ, normalized to its value at θ = 0, with magnetic bion effects

taken into account. The thick black curve at the top marks the behavior of the gap along the

thermodynamically stable branch. Each of the four colored curves show the dependence of the

mass on θ in a given k-extremum, with blue, red, green, orange corresponding to k = 0, 3, 2, 1

respectively. The black dots mark spinodal points, and the fact that there are two distinct spinodal

points near θ = 2πk, k ∈ Z is due to magnetic bions.

increased from 0 to θ∗, the system will become “gapless”, in the sense that the eigenvalues

of the Hessian of the potential evaluated on the θ = 0 vacuum configuration vanish at θ∗.

The existence of these spinodal points is thus a robust feature of YM theory with stabilized

center symmetry at small L. The spinodal points of YM theory with N = 4 at small NLΛ

are illustrated in figure 3.

To illustrate these features in the simplest context, consider N = 2. The spinodal

curves for N = 2 are sketched in figure 4. In terms of the physical dual photon field

α1 · ~σ ≡ σ, the potential associated with the k = 0, 1 extrema can be written as

Vk = − A
λ2
m3
W e
−S0

[
2 cos (σ) cos

(
θ + 2πk

2

)
+ c e−S0 cos(2σ) + . . .

]
. (4.2)

The magnetic bion M1M2 contribution to the effective potential is never smaller in abso-

lute value than the topological bion M1M1 contribution [30], so in writing (4.2) we have

dropped the topological bion contributions.

To leading order, when θ is smaller than π the k = 0 branch is locally stable while the

k = 1 branch is locally unstable. If θ becomes larger than π the branches exchange roles.

Since for any given θ there is only one locally stable state, it is also the globally stable

state. At θ = π the leading-order contributions to the σ mass vanish. (In fact here the

leading-order potential itself vanishes, but this is special to N = 2.) But the magnetic bion

contribution to the effective masses is always positive. As a result, if we start in the stable
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Figure 4. [Color Online.] Spinodal curves (blue) and phase transition lines (vertical red line) for

center-stabilized SU(2) YM theory in the LΛ-θ plane. The vertical red line at θ = π indicates a

first-order phase transition between two θ-vacua. The two blue curves mark the regions of spinodal

instability of the θ-vacua, where a metastable branch reaches the limit of local stability. The

behavior of the spinodal curves for LΛ . 1 follows from (4.3) and (4.4), and hence is indicated by

a solid curve, while the behavior for LΛ & 1 is a conjecture and is indicated by the dashed portion

of the dashed curve.

k = 0 vacuum at θ = 0 and adiabatically increase θ, the theory has a spinodal point at

θ∗+ = π + 4 c e−S0 +O
(
e−2S0

)
. (4.3)

If we instead start at θ = 2π, where the stable vacuum has k = 1 and adiabatically decrease

θ, there will be a spinodal point at

θ∗− = π − 4 c e−S0 +O
(
e−2S0

)
. (4.4)

The phase diagram of the theory is sketched in figure 4.

4.2 SYM and QCD(adj)

It is known that N = 1 SYM and QCD(adj) with exactly massless fermions λA, A =

1, . . . , nadj have unbroken center symmetry on R3 × S1 for any S1 size provided that the

fermions are endowed with periodic boundary conditions.13 In the chiral limit, where the

fermions are exactly massless, the θ angle can be eliminated (“rotated away”) using field

13For adjoint QCD with nadj > 1 flavors of adjoint Majorana, strictly speaking this is a conjecture, which

is however strongly supported by all available analytic and numerical lattice simulation evidence. For

nadj = 1, the preservation of center symmetry can be proved using a combination of semiclassical analysis

along with holomorphy arguments enabled by the emergence of supersymmetry for this number of fermion

flavors, since adjoint QCD with nadj = 1 is precisely N = 1 SYM theory.
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redefinitions in the path integral, and the physics is θ-independent. Turning on a small

common mass term madj for the adjoint fermions brings θ dependence back into the physics.

Working with a small S1 and varying madj we thus obtain an interesting setting where the

θ dependence of the physics becomes calculable. Our emphasis here is the local stability

vs. instability of vacua labeled by k.

It is known that in QCD(adj) as well as SYM with madj = 0, the mass gap for

gauge fluctuations and linear confinement is caused by magnetic bion mechanism [18]. The

magnetic bions produce σ interaction terms of the form

e−2S0ei(~αa−~αa+1)·~σ , (4.5)

At the same time, when madj = 0, monopole-instantons have 2nadj fermionic zero modes

and thus cannot contribute to bosonic potentials, so the magnetic bions give the dominant

contribution to the σ potential. The monopole-instantons induce Yukawa-type interactions

for ~σ with the Cartan components of the adjoint fermions ~λA. These interaction terms take

the form

e−S0ei~αa·~σ
nadj∏
A=1

(
~αa · ~λA

)2
, madj = 0 (4.6)

Consequently, the monopole-instantons do not induce a potential for dual photons. How-

ever, turning on a small mass for fermions, the fermi zero modes are “soaked up” by the

mass term, and as a result the monopole-instanton generated interactions take the form

e−S0

(
madj

mW

)nadj

ei~αa·~σ+iθ/N . (4.7)

As long as (madj/mW )nadj . e−S0 , the bions provide the dominant mechanism of confine-

ment and mass gap, while once (madj/mW )nadj & e−S0 the physics becomes dominated by

monopole-instantons.14

This has an interesting implication in light of the discussion in the previous section.

In the regime where the mass gap in k-vacua is induced by bions, it is fairly easy to show

that there is no local instability of any branch. In fact, the branch dependence of the vacua

is a tiny perturbation which has no effect on their stability. All N branches are stable. To

see this, first note that the non-perturbatively induced potential is

V (~σ) = −m3
W

[
madj

mW

]nadj

e−S0

N∑
a=1

cos

[
~αa · ~σ +

θ

N

]
− e−2S0

N∑
a=1

cos [(~αa − ~αa+1) · ~σ]

(4.8)

The first and second terms above come from the first and second orders in the semiclas-

sical expansion, respectively. However, in the (madj)
nf � e−S0 regime, the latter term is

actually parametrically larger and dominates the dynamics. (This does not invalidate the

expansion.) Diagonalizing the mass matrix, one finds

m2
q,k ∼ m2

W

[(
madj

mW

)nadj

e−S0 sin2
(πq
N

)
cos

(
2πk + θ

N

)
+ e−2S0 sin4

(πq
N

)]
(4.9)

14An exception is SU(2) YM theory at θ = π, because there the monopole-instanton-induced potential

cancels exactly even for finite madj.
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Figure 5. [Color Online.] A sketch of the θ angle dependence of the dual photon mass mσ in

SU(2) adjoint QCD with nadj = 2 flavors of adjoint Majorana fermions in the k = 0 θ-vacuum,

as a function of the fermion mass madj in units of the mass gap at vanishing adjoint quark mass,

m0 ∼ mW e
−S0 . For small enough fermion mass, the θ-dependence is very mild, in the sense that

the k = 0 θ-vacuum is stable for all θ. The dual photon mass is normalized to its value in the chiral

limit. But once madj exceeds m0, the θ-dependence becomes more dramatic: there is a region where

the k = 0 vacuum becomes locally unstable.

and in the (madj/mW )nadj � e−S0 regime, the mass gaps for all branches are positive

definite. In the chiral limit, the mass gap is of course θ-independent. This can be traced

to the fact that magnetic bions give the dominant contribution to the bosonic potential

near the chiral limit, and they carry zero topological charge and hence do not bring in any

θ dependence.

For nadj = 1, the N = 1 SYM case, there is an analytically calculable center symmetry

changing phase transition for madj ∼ mW e
−S0 [31, 32] and in order to see the effect on

branches, one needs to add a center-stabilizing double-trace deformations.15 However,

when 1 < nadj < 5.5, we can increase madj until madj ∼ mW without any obstacles. As

a result, when nadj ≥ 1, we observe that some of the branches start to become unstable

around madj/mW ∼ e−S0/nadj while retaining control over the long-distance dynamics. In

the e−S0 � (madj/mW )nadj � 1 regime, the behavior of the branches coincides precisely

with the one we discussed in the context of center-stabilized YM theory. This is of course

not an accident: nadj massive fermions with madj . mW are the prototypical example of a

center-stabilizing deformation of Yang-Mills theory. The evolution of the local stability of

the k-vacua are illustrated in figure 5.

4.3 QCD with light fundamental quarks

We now consider QCD with massive fundamental quarks and look for spinodal points as

a function of θ. The value of considering this example is that when the quarks are light,

15Intuitively, this is because in the supersymmetric theory the center-stabilizing effective potential is non-

perturbatively small, while for nadj ≥ 2 the holonomy effective potential is non-zero and stabilizes center

symmetry already at one loop.
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there is an approximate spontaneously broken chiral symmetry on R4. The low energy

physics is then systematically describable using chiral effective field theory, and thus one

can probe the existence of spinodal points directly on R4. The chiral perturbation theory

results described in this section have been known for a long time, see e.g. [54–56]. The

only novelty has to do with the relation to center symmetry described below.

Take QCD with NF = N quarks with a common quark mass mq and a theta angle θ.

Then, if the theory is placed on R3 × S1
L, one can pick the quark boundary conditions in

such a way that the theory has an exact ZN color-flavor-center (CFC) symmetry [73], see

also [74–83]. This recently uncovered symmetry of QCD combines color center symmetry

transformations with cyclic flavor permutations. By itself, color center symmetry is broken

in the presence of fundamental quarks. But a diagonal combination of color center and

cyclic flavor permutations is a bona fide symmetry of the theory, with order parameters

which depend non-trivially on the parameters of the system.

Our motivation in considering this example is two-fold. First, it has an especially

smooth connection to pure Yang-Mills theory: there is a center-type 0-form ZN symmetry

for all values of mq, which at small mq must be thought of as the CFC symmetry described

above, while at large mq it can just as well be thought of as the 0-form part of ZN center

symmetry of pure YM theory. We expect the existence of this symmetry to be important

for studying the θ dependence, because of the key role center symmetry plays in our

Yang-Mills analysis in the preceding section. Second, if one ensures that CFC symmetry

does not break for any S1 size L, for instance by a double-trace deformation, then chiral

symmetry will continue to be broken at both large and small L [44, 84], and must be broken

for all L if CFC symmetry is unbroken as shown in [84] from discrete anomaly-matching

considerations.

Let us work at very large L, where for our immediate purposes we can neglect the

twisted boundary conditions for the quarks. (Their main effect is simply that the charged

Nambu-Goldstone bosons get effective masses ∼ 1/(LN).) The leading-order terms in the

chiral Lagrangian are

LχPT = f2π tr ∂µU∂
µU +B tr

(
MU +M †U

)
(4.10)

Here M = mq1NF is the quark mass spurion field, while U is the NF ×NF unitary chiral

field, whose exponent contains the Nambu-Goldstone fields. We will take mq complex with

argmq = θ/NF , which is equivalent to turning on a θ angle in the QCD Lagrangian with

the conventional normalization.

To analyze the vacuum structure, let us focus on diagonal matrices U . This amounts

to setting to zero the charged pseudo-Nambu-Goldstone fields. This is motivated by the

expectation that the vector-like part of the flavor symmetry will not break spontaneously.

Moreover, as we will see, the issue of spinodal instabilities will simply come down to the

possibility that the neutral pion mass-squares can change sign at tree level, as a function

of θ. But at the quadratic level, the charged fields cannot mix with neutral fields.
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For simplicity, let us illustrate the story by considering the case NF = N = 2.16

Focusing on neutral field configurations amounts to setting

U
∣∣
diag

= eiπ
0τ3/fπ . (4.11)

In terms of a dimensionless pion field, σ = π0/fπ, the potential term in the chiral La-

grangian is just

V (σ) = 2Bmq [cos(σ + θ/2) + cos(−σ + θ/2)] + · · · (4.12)

where · · · stand for higher-order terms in the chiral Lagrangian, such as e.g. trM2U2.

With the chosen notation, this expression, which arises from chiral perturbation theory

on R4, is clearly exactly of the same form we obtained for two-color YM theory at small

NLΛ in (2.11). The only difference is in the prefactor of the potential, which depends on

mq in QCD with light quarks on R4, but becomes mq-independent for large mq.

Lastly, for small-(NLΛ), (4.12) also coincides with the chiral Lagrangian derived in [44].

Consequently, once bion effects/higher-order chiral expansion corrections effects, we again

find spinodal behavior as a function of θ.

In all of these examples, which have a Z2 center-like symmetry, there are two θ “vacua”,

but at θ = 0, only one of them is stable. The other is locally unstable. Precisely at θ = π,

the two vacua switch roles, and at θ = π, time-reversal symmetry is spontaneously broken.

But, if θ is changed adiabatically, one can stay on a metastable branch as one passes through

θ. Eventually this metastable branch reaches a limit of stability, which is a spinodal point

where the π0 becomes “gapless”. With light quarks, this always happens due to a balance

between the contributions to the π0 mass term from the leading-order chiral Lagrangian

against contributions from a higher order. At small L in center-stabilized YM theory, the

same thing happens due to a balance between monopole-instanton contributions and the

magnetic bion contributions. The situation is summarized in figure 6.

Of course, it is an open question whether spinodal points as a function of θ also exist

in pure YM theory, which corresponds to the question marks in the upper-right corner of

the diagram in figure 6. But the fact that the phenomenon is present everywhere one can

compute in figure 6, as well as directly on R4 in a holographic model of YM theory, makes

it plausible that the occurrence of spinodal points as a function of θ may be a general

feature of SU(N) gauge theory with exact ZN center or color-flavor-center symmetry, so

long as there are no light adjoint-representation fermions.

Finally, we note that we assumed that N is finite in the discussion above. In the

large N limit with fixed NF , the η′ meson becomes light, and the potential in the chiral

Lagrangian becomes

V = B tr
(
MU +M †U

)
+ a (log detU)2 , (4.13)

16For N = 2 the fundamental representation is pseudoreal, so the chiral symmetry is enhanced from

SU(2)× SU(2) to SU(4). The SU(4) symmetry is spontaneously broken to Sp(4). Consequently, there are

five Goldstone bosons: the familiar π±, π0, and two light “di-quark” baryons d±. Since we are only consider

neutral field configurations, the d± and π± do not affect our analysis.
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Figure 6. [Color Online.] A cartoon mapping out the regions in gauge-theory parameter space

where spinodal points exist. We consider QCD on R3×S1 with boundary conditions that preserve

a ZN color-flavor-center (CFC) symmetry [73], and vary the quark mass mq and the circle size L,

assuming that CFC symmetry is preserved at small L. When mq � Λ the CFC symmetry reduces

to the usual center symmetry. In all regions where the physics can be quantitatively explored

(shaded yellow), there are spinodal points which appear as a function of θ.

where B ∼ O(N1), a ∼ O(N0), to leading order in the 1/N and mq/fπ expansions. Re-

stricting U to the Cartan subgroup, one can then verify that the conditions for a vanishing

set of first derivatives and vanishing second derivatives cannot be simultaneously satisfied

for any θ and a 6= 0. This means that a given θ extremum cannot go from being locally

stable to being locally unstable, and thus spinodal behavior is not possible in the large N

limit of QCD with light fundamental quarks. But of course, this is not so relevant to the

question of whether spinodal points can emerge when the fundamental quarks are heavy.

5 Summary

We have studied the vacuum structure of SU(N) YM theory as a function of θ, using

compactification on R3 × S1 with stabilized center symmetry as an arena to explore the

dynamics. Our results fit nicely with conventional wisdom concerning the θ dependence,

in that as expected, observables are N -branched functions of θ due to the existence of

many candidate θ vacua. However, we find that for any given θ there are only ≈ N/2

candidate vacua which are locally stable. As θ is varied, some candidate vacua cease to

exist as locally-stable field configurations, but new locally-stable candidate vacua appear,

and eventually take their turn being global minima. We discuss the physical interpretation

of the θ vacua, and find that they can be distinguished by the expectation values of certain

magnetic line operators that carry GNO charge but not ’t Hooft charge. Finally, as a

corrolary to some of the results above, we find that YM theory has spinodal points as a
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function of θ, at least in the domain of validity of our analysis. It may be interesting to

explore whether the presence of such spinodal points might have some phenomenological

applications in e.g. axion model building.
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