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1 Introduction

There exist only five maximally supersymmetric backgrounds in off-shell A” = 1 supergrav-
ity in four dimensions [1].! Only two of them support maximally symmetric spacetimes.
The latter backgrounds are: Minkowski superspace M** [6, 7] and anti-de Sitter (AdS)
superspace AdS** [8-10].

The structure of consistent supercurrent multiplets in ' = 1 AdS supersymme-
try [11, 12] considerably differs from that in the N" = 1 super-Poincaré case, see e.g. [13, 14].
Specifically, there exist three minimal supercurrents with 12 + 12 degrees of freedom in
M4 [14], and only one in AdS** [11], the latter being the AdS extension of the Ferrara-
Zumino supercurrent [15]. Furthermore, the so-called S-multiplet advocated by Komar-
godski and Seiberg [16] does not admit a minimal extension to AdS.? These differences
between the supercurrent multiplets in M4/* and AdS** have nontrivial dynamical impli-
cations. For instance, since every N’ = 1 supersymmetric field theory in AdS should have a
well-defined Ferrara-Zumino supercurrent [11, 12], the Kédhler target space of every super-
symmetric nonlinear o-model in AdS must be non-compact and possess an exact Kahler
two-form, in accordance with the analysis of Komargodski and Seiberg [16].> The same
conclusion was also obtained by direct studies of the most general N' = 1 supersymmetric
nonlinear o-models in AdS [1, 20].

It should be pointed out that the consistent AdS supercurrents [11, 12] are closely re-
lated to two classes of supersymmetric gauge theories: (i) the known off-shell formulations,
minimal (see, e.g., [3, 21] for reviews) and non-minimal [12], for N =1 AdS supergravity;
and (ii) the two dually equivalent series of massless higher spin supermultiplets in AdS
proposed in [22]. More specifically, as discussed in [12], there are only two irreducible AdS
supercurrents, with (12+412) and (20+20) degrees of freedom.* The former is naturally as-
sociated with the so-called longitudinal action S (H3 /2) for a massless superspin-3/2 multiplet
in AdS [22], which is formulated in terms of a real vector prepotential H,q and a covariantly
chiral superfield o. The latter is associated with a unique dual formulation S(L3 /2) where

the chiral superfield is replaced by a complex linear superfield I'. The functional Sy3 /2)

!The classification by Festuccia and Seiberg [1] was given purely at the component level. It was re-derived
in [2] using the superspace formalism developed in the mid-1990s [3]. As curved A/ = 1 superspaces, all
maximally supersymmetric backgrounds were described in [4] (see also [5] for a new derivation of the results
in [2, 4], which works equally well for all known off-shell formulations for N' = 1 supergravity).

2The consistent supergravity extension of the S-multiplet was given in [11].

3In the N' = 2 extended case, AdS supersymmetry imposes nontrivial restrictions on the structure of
the hyperkahler target spaces of supersymmetric nonlinear o-models [17-19].

4These supercurrents are related to each other via a well-defined improvement transformation [12].



proves to be the linearised action for minimal ' = 1 AdS supergravity. The dual action
S(L3 /2) results from the linearisation around the AdS background of non-minimal N = 1
AdS supergravity [12].> Both actions represent the lowest superspin limits of two infinite

series of dual models, Sstr 1 and S é L1y for off-shell massless gauge supermultiplets in AdS
2 2
of half-integer superspin (s + %), where s = 1,2..., constructed in [22]. Off-shell formu-

lations for massless gauge supermultiplets in AdS of integer superspin s, with s =1,2...,
were also constructed in [22]. In the flat-superspace limit, the supersymmetric higher spin
theories of [22] reduce to those proposed in [23, 24].

Making use of the gauge off-shell formulations for massless higher spin supermultiplets
in AdS [22], one can define consistent higher spin supercurrent multiplets in AdS superspace
(i.e. higher spin extensions of the supercurrent) that contain ordinary bosonic and fermionic
conserved currents in AdS. One can then look for explicit realisations of such higher
spin supercurrents in concrete supersymmetric theories in AdS, for instance models for
massless and massive chiral scalar superfields. Such a program is a natural extension
of the flat-space results obtained in recent papers [25, 26] in which two of us built on
the structure of higher spin supercurrent multiplets in models for superconformal chiral
superfields [27]. In accordance with the standard Noether method (see, e.g., [28] for a
review), the construction of conserved higher spin supercurrents for various supersymmetric
theories in AdS is equivalent to generating consistent cubic vertices of the type [ H.J, where
H denotes some off-shell higher spin gauge multiplet [22], and J = DPO®DIV is the higher
spin current which is constructed in terms of some matter multiplets ® and ¥ and the AdS
covariant derivatives D. This is one of the important applications of the results presented in
the present paper. In the flat-superspace case, several cubic vertices involving the off-shell
higher spin multiplets of [23, 24] were constructed recently in [29-31], as an extension of
the superconformal cubic couplings between a chiral scalar superfield and an infinite tower
of gauge massless multiplets of half-integer superspin given in [27].

It should be pointed out that conserved higher spin currents for scalar and spinor
fields in Minkowski space have been studied in numerous publications. To the best of
our knowledge, the spinor case was first described by Migdal [32] and Makeenko [33],
while the conserved higher spin currents for scalar fields were first obtained in [33-35] (see
also [36, 37]). The conserved higher spin currents for scalar fields in AdS were studied, e.g.,
in [38-42]. Since the curvature of AdS space is non-zero, explicit calculations of conserved
higher spin currents are much harder than in Minkowski space. This is one of the reasons
why refs. [38, 39] studied only the conformal scalar, and only the first order correction to
the flat-space expression was given explicitly. The construction presented in [42] is more
complete in the sense that all conserved higher spin currents were computed exactly for
a free massive scalar field. This was achieved by making use of a somewhat unorthodox
formulation in the so-called ambient space. All these works dealt with integer spin currents.
The important feature of supersymmetric theories is that they also possess half-integer
spin currents. They belong to the higher spin supercurrent multiplets we construct in this

5Tt was believed for almost thirty years that there is no off-shell non-minimal formulation for A" = 1
AdS supergravity [21]. However, such a formulation was constructed in [12].



work. Another nice feature of the supersymmetric case is that the calculation of higher
spin supercurrent multiplets in AdS superspace is considerably simpler than the problem
of computing the ordinary conserved higher spin currents in AdS space.

Various aspects of supersymmetric field theories on AdS, have been studied in detail
over the last forty years, see, e.g., [1, 9, 10, 17, 18, 20, 43-49] and references therein. The
energy-momentum tensor of such a theory belongs to the Ferrara-Zumino supercurrent
(or, equivalently, to the non-minimal AdS supercurrent which is related to the Ferrara-
Zumino supermultiplet by a well-defined improvement transformation [12].). In this paper
we present, for the first time, higher spin extensions of the AdS supercurrents and derive
their explicit realisations for various supersymmetric theories on AdS, including a model
of N massive chiral scalar superfields with an arbitrary mass matrix. Our results have
numerous applications. For instance, the conserved higher spin supercurrents computed
in section 5 and 6 can readily be reduced to component fields. This will give closed-
form expressions for conserved higher spin bosonic and fermionic currents in models with
massive scalar and spinor fields, thus leading to more general results than those known in
the literature [38-42]. Another applications of the results obtained are consistent cubic
coupling between chiral scalar supermultiplets and massless higher spin supermultiplets.
Our results also make it possible to develop an effective action approach to massless higher
spin supermultiplets along the lines advocated in [50-52] and more recently in [27]. We
also refine some statements given recently in the literature, see section 7.

This paper is organised as follows. Section 2 contains a summary of the results con-
cerning supersymmetric field theory in AdS superspace. Section 3 is devoted to a novel
formulation for the massless integer superspin multiplets in AdS. This formulation is shown
to reduce to that proposed in [22] upon partially fixing the gauge freedom. We also describe
off-shell formulations (including a novel one) for the massless gravitino multiplet in AdS.
In section 4 we introduce higher spin supercurrent multiplets in AdS and describe improve-
ment transformations for them. Sections 5 and 6 are devoted to the explicit construction of
higher spin supercurrents for N massive chiral multiplets. Several nontrivial applications
of the results obtained are given in section 7. The main body of the paper is accompanied
by three technical appendices. Appendix A reviews the irreducible supercurrent multiplets
in AdS following [11, 12]. Appendices B and C review the conserved higher spin currents
for N scalars and spinors, respectively, with arbitrary mass matrices. These results are
scattered in the literature, including [32-35].

2 Field theory in AdS superspace

In this section we give a summary of the results which are absolutely essential when doing
N = 1 supersymmetric field theory in AdS in a manifestly OSp(1]4)-invariant way. We
mostly follow the presentation in [22]. Our notation and two-component spinor conventions
agree with [3], except for the notation for superspace integration measures.

Let zM = (mm,éﬂ,éﬂ) be local coordinates for A/ = 1 AdS superspace, AdS**. The
geometry of Ads* may be described in terms of covariant derivatives of the form

Da=(Da,Da,D*) = Es+Qa,  Ea=Es"0n, (2.1)



where E4™ is the inverse superspace vielbein, and
Lo e B q B
QA=§QA Mpe = Q" Mgy + €y MB’Y’ (2.2)

is the Lorentz connection. The Lorentz generators M. < (MBWMBW) act on two-
component spinors as follows:

1 _
Mopy = 5(57a¢,8 + &y8%a) , Mapipy =0, (2.3a)
I _ _ ~
Mo'zB Qb:y = E(Efydwﬁ' + g»y/fj’wd) , Md/g ¢7 =0. (23b)

The covariant derivatives of AdS*!* satisfy the following algebra

{Da,Da} = —2iDaq (2.4a)
{Do,Ds} = —4 Mg, {Da, Dy} = 4 My, (2.4b)
[Da, Dysl = ifi sagﬁg, [@Q,Dﬂﬁ-] = —ipeysDs, (2.4c)
Dac, Dys) = —20ip (eaﬁMdﬁ + sdBMaﬁ) , (2.4d)

with p # 0 being a complex parameter, which is related to the scalar curvature R of AdS
space by the rule R = —12|u|?.

In our calculations, we often make use of the following identities, which can be readily
derived from the covariant derivatives algebra (2.4):

1 - 1 _ _

DoDps = §gagp2 — 21 Mg, DsDy = _5%292 +2u Mg, (2.5a)
D,D? = 4a D’ My + 4ji Dy, D’D, = —4i D’ M5 — 2D, (2.5b)
DeD? = 4D M, + 4Dy . D*Ds = —4puDP My —2u Dy, (2.5¢)
[D?, Do) = 4iD,3D° + 4u Dy = 4DD, 5 — 4D, (2.5d)
[D?,Ds] = —4iDs D’ + 4 Dy = —4iD Dy, — 4 Dy (2.5¢)

where D? = D*D,,, and D? = DyD%. These relations imply the identity
DY(D? — 4p)D, = Dy (D? — 4) DY, (2.6)

which guarantees the reality of the action functionals considered in the next sections.

Complex tensor superfields Fa(m)c‘z(n) = ot amon..an = F(al...am)(dl...dn) and
Ga(m)a(n) are referred to as transverse linear and longitudinal linear, respectively, if
the constraints

DT ianny =0, 1 A0, (2.7a)
Dia Gatm)as...insy) = 0 (2.7b)
are satisfied. For n = 0 the latter constraint coincides with the condition of covariant chiral-
ity, DgGo(m) = 0. With the aid of (2.5a), the relations (2.7) lead to the linearity conditions
(D* = 2(n+ 2)1) Comyam) =0 (2.8a)

(D? + 2np1) Go(myan) = 0- (2.8b)



The transverse condition (2.7a) is not defined for n = 0. However its corollary (2.8a)
remains consistent for the choice n = 0 and corresponds to complex linear superfields
L' (m) constrained by

(D? = 4p) T pmy = 0. (2.9)
In the family of constrained superfields I'y(,,) introduced, the scalar multiplet, m = 0, is
used most often in applications. One can define projectors P and P,Ll on the spaces of
transverse linear and longitudinal linear superfields respectively:

1

4(n+1)p

1
pll = =
" dn+1)p

Pl = (D? + 2np), (2.10a)

(D* —2(n+2)p), (2.10b)

with the properties
(PHY?=p-, (P =P, PrPI=PlP =0, P-+P)=1. (2.11)

Superfields (2.7) were introduced and studied by Ivanov and Sorin [10] in their analysis
of the representations of the AdS supersymmetry. A nice review of the results of [10] is
given in the book [53].

Given a complex tensor superfield Vi, (m)4n) With n # 0, it can be represented as a
sum of transverse linear and longitudinal linear multiplets,

1

- D, Dy
2pu(n+1) (1 a(m)

Va(m)d(n) == @7@(&Va(m)a1...an) - (2.12)

Qa...Gn )7y -

2u(n +2)
Choosing V(m)a(n) to be transverse linear (To(m)a(n)) or longitudinal linear (G (mya(n)),
the above relation gives
Tatmam) = D @) (s (2.13a)
Gagm)a(n) = Den Ya(m) da-én) » (2.13b)
for some prepotentials @, (m)a(n+1) and ¥o(myam—1)- The constraints (2.7) hold for un-

constrained P, (,)a(n+1) a0d Yo (m)a(n—1)- These prepotentials are defined modulo gauge
transformations of the form:

0e@a(m) a(n+1) = D im) (B i) (2.14a)
3¢ Wa(m) a(n—1) = Dicr Calm) dadn_1) (2.14Db)

with the gauge parameters §q(m) ¢(nt2) and Co(m) a(n—2) being unconstrained.
The isometry group of N' = 1 AdS superspace is OSp(1]|4). The isometries transfor-

mations of AdS** are generated by the Killing vector fields AYE, which are defined to
solve the Killing equation

1 .
A+ §waMbc,DA =0, A:=APDp = \'Dy + NDjs + ABDB, (2.15)



for some Lorentz superfield parameter w’ = —w. As shown in [3], the equations in (2.15)
are equivalent to

DiaAgys =0, DIN 5+ 8ida =0, (2.16a)
DA =0, Deha + %,U)\ad =0, (2.16b)
Wap = Dalg . (2.16¢)

The solution to these equations is given in [3]. If T is a tensor superfield (with suppressed
indices), its infinitesimal OSp(1|4) transformation is

oT = (A + ;wbchc> T. (2.17)

In Minkowski space, there are two ways to generate supersymmetric invariants, one of
which corresponds to the integration over the full superspace and the other over its chiral
subspace. In AdS superspace, every chiral integral can be always recast as a full superspace
integral. Associated with a scalar superfield £ is the following OSp(1]4) invariant

_ 1 _
/ d*zd*0d*0 E L = -1 / d*zd?0 £ (D? —4p)L,  E~' = Ber (EAM), (2.18)

where £ denotes the chiral integration measure.® Let L. be a chiral scalar, DyL. =
0. It generates the supersymmetric invariant [ d*zd?0 € L.. The specific feature of AdS
superspace is that the chiral action can equivalently be written as an integral over the full
superspace [54, 55]

1 _
/ d*zd*0 € L, = m / d*zd®0d*0E L. . (2.19)

Unlike the flat superspace case, the integral on the right does not vanish in AdS.

3 DMassless integer superspin multiplets

Let s be a positive integer. The longitudinal formulation for the massless superspin-s
multiplet in AdS was realised in [22] in terms of the following dynamical variables

U|(|S) = {Ha(sfl)d(sfl) (Z)vGa(s)o'z(s) (Z), Ga(s)d(s)('z)} . (31)

Here, H,(s—1)a(s—1) is an unconstrained real superfield, and Gq(s)a(s) is a longitudinal
linear superfield. The latter is a field strength associated with a complex unconstrained
prepotential ‘lla(s)o'z(s—l)v

Gal---OésO'q-..ds = 25(c'ul ‘llal...asdg...o'zs) - ﬁ(dl Ga1...asd2...ds+1) =0. (32)

5In the chiral representation [3, 21], the chiral measure is £ = gaS, where ¢ is the chiral compensator of
old minimal supergravity [54].



The gauge freedom postulated in [22] is given by

5Ha(s—l)o'c(s—1) = DﬁLBa(s—l)o’c(s—l) ~-D°L (33&)

a(s—1)Ba(s—1)
1 -
5G sa(s-1yacs—1) = 53 PEPEP Las-1)a(s-1)) » (3.3b)

where the gauge parameter is L, (s)q(s—1) 1S unconstrained.

In this section we propose a reformulation of the longitudinal theory that is obtained by
enlarging the gauge freedom (3.3) at the cost of introducing a new purely gauge superfield
variables in addition to Hy (s 1)a(s—1)s Ya(s)a(s—1) and \Tja(s—l)d(s)' In such a setting, the
gauge freedom of W (5)4(s—1) coincides with that of a superconformal multiplet of superspin
s [27]. The new formulation will be an extension of the one given in [26] in the flat-
superspace case.

3.1 New formulation

Given a positive integer s > 2, a massless superspin-s multiplet can be described in
Ads*4 by using the following superfield variables: (i) an unconstrained prepotential
Vo (s)a(s—1) and its complex conjugate ‘I’a(sq)a(s); (ii) a real superfield Hy(s—1)a(s—1) =

Hg(s—1)a(s—1); and (iii) a complex superfield X, ;_1)4(s—2) and its conjugate X, (s_2)a(s—1)
where ¥, (;_1)4(s—2) 18 constrained to be transverse linear,

PB . _
D% (s—1)ga(s—3) = 0- (3.4)

The constraint (3.4) is solved in terms of a complex unconstrained prepotential
Za(sfl)d(sfl) by the rule

La(e-1)a(5-2) = D2y 1) s - (3.5)

This prepotential is defined modulo gauge transformations

0 Za(s—1)a(s—1) = ﬁﬁga(s—l)(ﬁal...as,l) J (3.6)

with the gauge parameter {,(s_1)a(s) being unconstrained.
The gauge freedom of Wy,  a.4,..a. , 1S chosen to coincide with that of the supercon-
formal superspin-s multiplet [27], which is

1 _
5%,C\Da1...asd1...d371 = ip(oqmag...as)dl...ds_l + ,D(d1<a1...aso’z2‘..ds_1) I (373‘)
with unconstrained gauge parameters Uy (s_1)4(s—1) and (o (s)a(s—2)- The V-transformation
is defined to act on the superfields Hy(s—1)a(s—1) and Xq(s—1)a(s—2) as follows

S0 Heu(s—1)a(s—1) = Da(s—1)a(s—1) + Ba(s—1)a(s—1) » (3.7b)

08 (s—1)a(s—2) = @ﬁﬁa(s_l)gd(s_g) = 0uZa(s—1)a(s-1) = Vas—as—1) - (3.7¢)
The longitudinal linear superfield defined by (3.2) is invariant under the (-transformation
(3.7a) and varies under the 2U-transformation as

1.
O0Gay...asi.is = 577(@1D(aliﬁag...as)aQ...aS) : (3-8)



Our next task is to derive an AdS extension of the gauge-invariant action in Minkowski
superspace (given by eq. (2.8) in [26]). The geometry of AdS superspace is completely
determined by the algebra (2.4). We start with the following action functional in AdS
superspace, which is a minimal AdS extension of the action constructed in [26].

[ INS [ 4 99022 L a(s—1)a(s—1 ~2
sy = (_ 5) /d £d26d HE{SH (=D DIDIDIH (o 1ya(s-1)

S
s+1
+2G° G 4s) +

s—1

4s
L = a(s)a(s—1) A :
+ v (Pas Dty = 205 = 1)Duasir ) Szt o

1_ . _ _
—|— 7\1’04(871)0[(8) (Ddlpal - 21(3 - 1)Do¢1d1)20&2---(15—1(562---@5

s
s—1

8s

I ca(s—2)a(s—2)3 (1, 2 A . 2
- Tl (5( + 1)DDy +i(s — 1) Dﬁg)zﬁa(s_g)d(s_g)} o (39)

+

a(s=1)a(s—1) (pBHBL . _ PBPBA .

H (D D Gﬂa(sfl)ﬁd(sfl) D°D Gﬁa(sfl)ﬂd(sfl)>
S

s+1

ch(s—l)c’v(s—l) (Dal 1322042...(15,1(54(5—1) - Zjdl DQZ&(S—I)dQ...dsfl)

(GG ags) + GE I Gy yas))

+

+

(Ea(s*l)d‘(*m7722&(371)@(372) _ ia(sﬂ)d(*”@?Sa(s,g)d(s,l))

The gauge-invariant action in AdS is expected to differ from (3.9) by some p-dependent
terms, which are required to ensure invariance under the gauge transformations (3.7) and,
by construction, (3.6). We compute the variation of (3.9) under (3.7) and then add certain
p-dependent terms to achieve an invariant action. The identities (2.5) prove to be useful
in carrying out such calculations.

The above procedure leads to the following action in AdS, which is invariant under the
gauge transformations (3.7) and (3.6)

1\s a Lo a(s—1)d(s— D
S(”s) - (* i) /d4:cd29d29E{8H (s=Da=DDP(D? — 4p) Dy Ho(o—1)a(s-1)

S

o AT (DD oy~ DD G vyiacs )
n (s —;1)2ﬁMHa(s—l)oz(s—l)Ha(s_l)d(s_l)

267G o + 7 (GO Cagai + GO Gagacs)
4 S LG (D D8, ety Pay D ot
n %wa“)é‘(*l) (Dalﬁdl ~2i(s — 1)Da1d1)zaz__,am,,ds_l

+ %@MS*UC’Y(S) (25@12?@1 ~2i(s — 1)Da1d1)i@_,,as,ld?,,_ds

_ HSQ—i_;f_lHa(s_l)d(s_l)palzw,._as1@(5—1)

+ ﬂ'%f_:lHa(S_l)d(s_l)@al Yo(s—1)dg...s—1



n 38;51 (Ea(s_l)d(s_2)D2Ea(s—1)d(s—2) B ia(s—z)a(s—1)@22a(s_2)d(5_1))

— 8—122_]‘“(5*2)0"(5*2)8(%(32 + 1)D6253 +i(s — 1)2953) Yi8a(s—2)a(s—2)

+ Misz +f§ — 120‘(8_2)(5‘(5_1)ia(s—z)a(s—l)

+ /1752 +j: - 1Ea(sq)a(sfz)Ea(s*l)é‘(“m} : (3.10)

The above action is real due to the identity (2.6). In the limit of vanishing curvature of
the AdS superspace ( — 0), (3.10) reduces to the action constructed in [26].

The U-gauge freedom (3.7) allows us to gauge away o (s_1)a(s—2),

Eoc(s—l)éz(s—Q) =0. (311)

In this gauge, the action (3.10) reduces to that describing the longitudinal formulation for
the massless superspin-s multiplet [22]. The gauge condition (3.11) does not fix completely
the U-gauge freedom. The residual gauge transformations are generated by

Bo(s—1)its-1) = P’ Lgoy. .o 1)a(s-1) » (3.12)

with Ly (s)a(s—1) being an unconstrained superfield. With this expression for U (s—1)a(s—1)>
the gauge transformations (3.7a) and (3.7b) coincide with (3.3). Thus, the action (3.10) in-
deed provides an off-shell formulation for the massless superspin-s multiplet in the AdS su-
perspace.

One can impose an alternative gauge fixing
Hy(s—1)a(s—1) = 0. (3.13)

In accordance with (3.7b), in this gauge the residual gauge freedom is described by

Vo (s—Da(s—1) = Ra(s—1)a(s—1) » Ra(s—1)a(s—1) = Ra(s—1)a(s—1) - (3.14)

The action (3.10) includes a single term which involves the ‘naked’ gauge field
Vo (s)a(s—1) and not the field strength G, (4)a(s), the latter being defined by (3.2) and in-
variant under the (-transformation (3.7a). This is actually a BF term, for it can be written
in two different forms

1 i . i}
3 /d4gjd29d20E\Iﬂ1(s)a(s—1) (Ddel — 2i(8 — 1)Da1d1)Zaz...ang..,aS_l
1 4 _.12n12p a(s)a(s) [ .
——— [ dada BG (DMDM 4 2i(s + 1)1)&1@1)2@2___%@2_,@3. (3.15)

The former makes the gauge symmetry (3.6) manifestly realised, while the latter turns the
(-transformation (3.7a) into a manifest symmetry.



Making use of (3.15) leads to a different representation for the action (3.10). It is

1\s — 1 3 a
St =(-3) / dod?0d?0 I {sH AmNACTIDID? — 4p) D Ho - 1ags-1)

S

_ 5 prels=Das=1) (pBps : _ DPBDBA .
T s+ 1H (D D G,Ba(s—l),é’d(s—l) DD G,Boz(s—l),@d(s—l))
(8+1)2— a(s—1)a(s—1
+ gl =DV Ho (o pyagen)
~a(s)a(s S a(s)a(s ~a(s)a(s)
+2G° G a0 + 1 (G OEIG o a(s) + YN )Ga(sm(s))
s—1 a(s—1)a(s— P23 D
ds H (s=1)a(s—1) (Dalpgzaz...asflo'z(s—l) - Ddlpgza(s—l)ag s 1)
1 a(s)a(s— D :
- S—i-ilG ( )CY(S 1) (Dd1Da1 + 21(5 + 1)Da1d1)Za2.‘.asd2...ds
1 a(s)a(s— B : 7
+ s+ 1G (s)a(s—-1) (Doq,Déq + 21(3 + 1)Da1d1)Za2---Oésd2---ds
52 +4s—1 a(s—1)a(s— N
- NTH (s=1)a( I)Dalzag...asfld(s—l)
2 —_ . —
+ Ias—i_;i‘SlHa(s—l)a(s—l),Ddl Ea(s—l)o’cg...ds_l
S
s—1 a(s—1)a(s—2) 2 sa(s—2)a(s—1) 2%
s (E (=D& )D Et)c(s—l)éz(s—?) - (s=2)a( )D Eoz(s—?)dc(s—l))
I sa(s—2)a(s—2)8 (1, 2 A : 2
— ?Z ( )& )6(5(8 + 1)DBDB +1(S — 1) DBB)EBQ(S—Q)Q(S—2)
2 —_— — . —
n Mﬂislgaw—ma(s—nga(s_Q)d(s_l)
S
—52+48_1 o(s—1)a(s—
+ HTZa(sfl)d(sz)E (1) 2)} : (316)

3.2 Dual formulation

As in the case of the flat superspace [26], the theory with action (3.16) can be reformulated
in terms of a transverse linear superfield by applying the duality transformation introduced
in [22].

We now associate with our theory (3.16) the following first-order action”

Stirst-order = S(“S) [U, 177 H,Z, Z]

+<_21)S/d4xd2«9d29E (silra(S)d(S)Ua(s)d(s) + c.c.) : (3.17)

where S(”S) [U,U,H,Z,Z7] is obtained from the action (3.16) by replacing Go(s)a(s) With

an unconstrained complex superfield Ug,(s)4(s), and the Lagrange multiplier I'y(g)a(s) 18

transverse linear, .
DT =0. (3.18)

a(s)Bo’q...o‘zs_1
Varying (3.17) with respect to the Lagrange multiplier and taking into account the con-
straint (3.18) yields Uy(s)as) = Ga(s)as); then, Sfrst-order turns into the original ac-
tion (3.16). On the other hand, we can eliminate the auxiliary superfields Ua(s)a(s) and

"The specific normalisation of the Lagrange multiplier in (3.17) is chosen to match that of [22].
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ﬁa(s)d(s) from (3.17) using their equations of motion. This leads to the dual action

1\s — 1 3 =
1 4,.12p32 a(s—1)a(s—1 2
Sy = —(—5) /d zd26d QE{—SH (s=0aG=UDH(D? — 4p) Dy Ho(s—1)(s-1)

+ ;(SJFUS(ZM[DB DO H DD D 5 D] Hos-1))(s-1))
+ %5 i T DPHCDHID G Hoo1yyagen)

( J; 1) PHAS D
+ Qszij pHOEI DD (0, ooty ~ Dageniats 1)
Tt 1fa(8)d(8)r“(s)d(s) C(s+ 1)?23 +1) (FQ(S)Q(S)F““)@(” +IRE (8)0‘(5))
- ST (Per D s i) — Dr D Bagen )i )
+2(251+1)Ha(31)d(81) (Dzﬁdlza(sfl)dgmds = D’Day Sy s (s 1)
_ i%Ha(sl)a(s1)Daldl (Dﬁzﬂag...as,laz...as,l i @Biag...as,lﬁaz...as,J
+“(S+2§)J(r1) HeG-DIp 5
_ ﬂ(s +22)j_81+ 1)Ha(s_l)d(s_l)@alEa(s—l)az...as,l

s—1

a(s—1)a(s—2 2 Sa(s—2)a(s—1) M2y
iy <2 (—DHE=ADIY o 1a(sz) — BHETDEEDD Ea(sq)a(sq))

I ca(s—2)a(s—2)3 (1, 2 = . 2
+ Sl )5<§(s + 1)DPDy +i(s — 1) Dﬁg)zﬁa(s_m(s_z)

2
s 45 — Lags-2)a(-15

- MT a(s 2)a(s—1)
—32+43_1 a(s—1)a(s—
- MTEa(s—l)a(s—mE (s=D)a( 2)} ) (3.19)

where we have defined

12 .
Las)ats) = Lat)ats) = 5P@r Plar Zas..as)as..as) = 18 + DDay(n Zas..as)da ) - (3:20)

The first-order model introduced is equivalent to the original theory (3.16). The ac-
tion (3.17) is invariant under the gauge {-transformation (3.6) which acts on Uy(s)a(s) and
Fa(s)d(s) by the rule

5£Ua(s)d(s) =0, (3.218,)

s+1

5§Fa(s)o}(s) = Zjﬁ{mﬁ(ﬂ.palé-QQ...asdl.“ds) + i(S =+ 1)’1)0{1(@'5&24..@‘9&1...@5)} . (3'21b)

Ty (s)a(s) 18 invariant under the gauge transformations (3.6) and (3.21b).
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The first-order action (3.17) is also invariant under the gauge U-transformation (3.7b)

and (3.7c), which acts on Uy (s)a(s) and Ta(s)a(s) s
@(dl,D(oalmag...as)dz...ds) > (3223)
(3.22D)
In accordance with (3.7c), the U-gauge freedom may be used to impose the condition
Za(s—1)a(s—1) = 0. (3.23)

In this gauge the action (3.19) reduces to the one defining the transverse formulation for
the massless superspin-s multiplet [22]. The gauge condition (3.23) is preserved by residual
local U- and &-transformations of the form

@Bga(s—l)ﬁd(s—l) + Q_ja(s—l)d(s—l) =0. (3.24)

Making use of the parametrisation (3.12), the residual gauge freedom is

6H04(5—1)d(5—1) = DﬁLﬁa(s—l)d(s—l) - @ﬁj’a(s—l)ﬁ'd(s—l) ) (3.25a)
s+1 ~5 = . _
Taa) = 3054 27 {DDior + 205+ 2D, (3} Lo i iy (3:25b)

which is exactly the gauge symmetry of the transverse formulation for the massless
superspin-s multiplet [22].

3.3 Models for the massless gravitino multiplet in AdS

The massless gravitino multiplet (i.e., the massless superspin-1 multiplet) was excluded
from the above consideration. Here we will fill the gap.

The (generalised) longitudinal formulation for the gravitino multiplet is described by
the action

_ 1 _ 1 _. _. _
Sl =- / d'zd*0d*0 E {161{1)@(172 = 4)DoH + L H(D*D*Gag — D*D*Goa)
_ . 1 . o
+ G Gag + 5 (G*Cag + G™Coa)
7]

., _
> b > b -
+ul? <H e ﬂ) + ( + ﬁ> (D W + ﬂDa‘I’O‘)} : (3.262)

where ® is a chiral scalar superfield, Dy ® = 0, and
Goa = DaV,, Goa = —DaVy . (3.26b)

This action is invariant under gauge transformations of the form

SH=0+9, (3.27a)
1 _
6\:[’& == EDa% —|— 7706 y DOLT/O( = 07 (327b)
1 _ _
5b = —1(232 —4u)0. (3.27c)
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This is one of the two models for the massless gravitino multiplet in AdS introduced
in [11]. In a flat-superspace limit, the action reduces to that given in [56]. Imposing the
gauge condition ® = 0 reduces the action (3.26) to the original longitudinal formulation
for the massless gravitino multiplet in AdS [22].

The action (3.26) involves the chiral scalar ® and its conjugate only in the combination
(¢ + @), where ¢ = ®/u. This means that the model (3.26) possesses a dual formulation
realised in terms of a real linear superfield L,

(D* —4p)L=0, L=1L. (3.28)
The dual model is described by the action [11]
Sam = — / d*zd*0d*0 E {1161{730‘(1)2 — 4p)Do H + iH(Da@dGad — DYD*Gaa)
GGt (GG + G Ca) + |2

1 I feY la N . ¢ 2
—Z(2lu|H + L — ED*¥, — ZDy0 . (3.29)
4 ] ||

This action is invariant under the gauge transformations (3.27a), (3.27b) and

1 _
SL = m(wana + @Dai®) . (3.30)

In a flat-superspace limit, the action (3.29) reduces to that given in [57].

In Minkowski superspace, there exists one more dual realisation for the massless grav-
itino multiplet model [26] which is obtained by performing a Legendre transformation
converting ® into a complex linear superfield. This formulation cannot be lifted to the
AdS case, the reason being the fact that the action (3.26) involves the chiral scalar ¢ and
its conjugate only in the combination (¢ + @), where ¢ = ®/p.

The dependence on ¥, and ¥, in the last term of (3.26) can be expressed in terms
of Gag and Gag if we introduce a complex unconstrained prepotential U for ® in the
standard way

P = %(T)? —4u)U . (3.31)

Then making use of (2.5d) gives
_ _ 1
/ d42d?0d20 E oDV, = — / d42d?0d%0 E G*° (ZDQDQ + iDad> U. (3.32)

Since the resulting action depends on Gag and Gag, we can introduce a dual formulation
for the theory that is obtained turning Gy and Gag into a transverse linear superfield

Fad = DB(I)Q o'z,(? ’ (I)oz de = (I)a o'z[? (333)
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and its conjugate using the scheme described in [22]. The resulting action is
_ 1 _
Sén = / d*2d?0d?0 E {—mHDa(DQ — 4p)Do H

1 . _ 1 .
oD DY H [Da, Ds]H + (D*“H DosH

1 .
+50" T — 5 (rwraa + ra“raa) 5 (r I‘O“O‘>DMH
Yo — Laprm (H = (I’) (3.34)
6 6 K 7 '
where we have defined 1
Tog :=Tag — 5ﬁéwaU — 21Dy U . (3.35)
The action (3.34) is invariant under the following gauge transformations
0cU = Dsk?, (3.36a)
5eTas = —gpﬁ { Doy + 61D, 54 } : (3.36b)

Both ® and T',4 are invariant under ¢-gauge transformations. The action (3.34) is also
invariant under the gauge transformations (3.27a), (3.27c) and

SpU =, (3.37a)
5T e = 0. (3.37b)

Imposing the gauge condition U = 0 reduces the action (3.34) to the original transverse
formulation for the massless gravitino multiplet in AdS [22].

4 Higher spin supercurrents

In this section we introduce higher spin supercurrent multiplets in AdS. First of all, we
recall the structure of the gauge superfields in terms of which the massless half-integer
superspin multiplets are described [22].

4.1 Massless half-integer superspin multiplets

For a massless multiplet of half-integer superspin s+ 1/2, with s = 2,3, ..., there exist two
off-shell formulations [22] which are referred to as transverse and longitudinal. They are
described in terms of the following dynamical variables:

Vj+1/2 = {Ha(s)d(s) ) I_‘oz(s—l)o'c(s—l) ) f‘oc(s—l)éc(s—l)} ) (41&)
VSHH/Q {Ha(s)d(s)v Ga(s—1)a(s—1) 5 éa(sq)a(sq)}- (4.1b)

Here H,(5)a(s) is @ real unconstrained superfield. The complex superfields I'y(5_1)¢(s—1)
and Gy (s—1)a(s—1) are transverse linear and longitudinal linear, respectively,

D" Fa(sfl)ﬁ'o‘é(sfm =0, (4.2a)
D(al Ga(s—l)dg...ds) =0. (4.2b)

— 14 —



These constraints are solved in terms of unconstrained prepotentials as follows:

Fa(s—l)d(s—l) = ,Dﬁq)a(sfl) (Bér-+Gis—1) ?

Goags—1)a(s=1) = Diay Pa(s—1) dode_1) - (4.3b)

The prepotentials are defined modulo gauge transformations of the form:
8ePa(s—1)a(s) = D 6oes1) (B dn) » (4.4a)
8¢ a(s—1) a(s—2) = D Cals—1) dio-is_2) » (4.4b)

with the gauge parameters §,(s—1)a(s+1) and Co(s—1)a(s—3) being unconstrained.
The gauge transformations of the superfields H, I' and G are

6AH041--~asdlmC'¥s = @(o'cleq...asdg...ds) - D(alAaz...as)dl...ds ) (453‘)
L - 5 PBDPBD. A .
OAL o). ag 16 der = _mp D ’D(ﬁAa(s—l))ﬁd(s—l)
1 5 o=
— _PbBp2 .
] D AO&1--~Oés—1,30'é1---ds—1
1 .
— §u(s — 1)D5Aa1_._a8715d1md871 , (4.5b)
1 _ .
L _ Bl s .
6AGa1~-~Oés—1a1-~.Oés—1 - _5 (dlpl ‘D Aﬁal...as,ldz.‘.dsfl)ﬂ
+i(s — 1)D(d1Dﬂ|5|Aﬁal.”%_ld%%_lm . (4.5¢)
Here the gauge parameter Ag,. a.61..6.1 = A(Oél---as)(dl---ds—l) is unconstrained. The
symmetrisation in (4.5¢) is extended only to the indices &, dg,...,das—1. It follows

from (4.5b) and (4.5c) that the transformation laws of the prepotentials ®,(s_1)4(s) and
VUo(s—1)a(s—2) are

1 _5- 1
6/\(1)011...(13,1(511...0'13 — _ZDQAOLL..QS,1O}1...O'(S - 5/1(5 - 1)Aa1...a571d1...ds 9 (46&)
1/_; ) .
6/\\1’&1...%—1@1..-&3—2 = D) <D'8DB - 21(5 - 1)Dﬂﬁ>Aﬁm-..as&ﬂ.m-..o’zsfz ’ (4'6b)

4.2 Non-conformal supercurrents: half-integer superspin

In the framework of the longitudinal formulation, let us couple the prepotentials Hy(5)4(s),
Vo (s—1)a(s—2) and \Tla(s,Q)d(s,l), to external sources

sl = /d4wd29d2§E {Ha(s)d(s)‘]a(s)d(s) + UCTDAEAIT, (i)
+ ‘i’a(s—2)a(s—1)Ta(s_ﬂd(s_l)} . (4.7)
Requiring S§§$§3 to be invariant under (4.4b) gives
ﬁBTa(sfl)Bal...as,g =0, (4.8a)

)

1
and therefore T(,(,_1)4(s—2) is a transverse linear superfield. Requiring Ss(;i%e to be invariant
under the gauge transformations (4.5a) and (4.6b) gives the following conservation equa-
tion:
. 1 _ '
D asiinnins + 5 (Do Dy = 2005 = DDlay(a ) Tos asis ) = 0+ (4:8b)
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For completeness, we also give the conjugate equation

1

Dﬁjﬁal...as_ldl...ds - 5 <@(Q1D(a1 - 21(8 - 1)D(a1(d1>Ta2...as_1)é¢2...ds) =0. (48C)

Similar considerations for the transverse formulation lead to the following non-
conformal supercurrent multiplet

_ 5 1 _
Dﬁjal...asﬂ'dl.l.ds,l - Z(DQ + 2:“’(8 - 1))Fa1...asd¢1...ds_1 = O, (4.98,)

Do, F =0. (4.9Db)

02...0541)0 .. Gs—1

Thus, the trace multiplet ]Fa(s—l)d(s) is longitudinal linear.

In the flat-superspace limit, the higher spin supercurrent multiplets (4.8) and (4.9)
reduce to those described in [25].

As in [25], it is useful to introduce auxiliary complex variables (¢ € C? and their
conjugates (%. Given a tensor superfield Ua(m)a(n), We associate with it the following field
on C?

U(m,n) (C? g—) = Cal s Camgdl s Edn Ual...amdl...dn ’ (410)
which is homogeneous of degree (m,n) in the variables (® and (%. We introduce operators
that increase the degree of homogeneity in the variables ¢® and (¢,

Da,0) = (" Da, (4.11a)
Do) = (Da (4.11b)
D1,1) = 2i("("Das = —{D(LO),@(OJ)} . (4.11c¢)

We also introduce two operators that decrease the degree of homogeneity in the variables
¢ and (%, specifically

0

ID(_Lo) = Da@ y (412&)
_ .0
D(O,—l) = D @ . (412b)

Making use of the above notation, the transverse linear condition (4.8a) and its con-
jugate become

D(o,-1)T(s-1,5-2) = 0, (4.13a)

D(—l,O)T(s—Q,s—l) - O . (413b)

The conservation equations (4.8b) and (4.8¢) turn into

14 1

JDo1Jiss) — 5400 Ts1,5-2) = 0, (4.14a)
1 1- _

P09 — 5 A0 Ts-2,5-1) = 0. (4.14b)

where

Ay = —DaoyDoay + (s —1)Dayy, Aaa) :=DonPaoy — (s —1)Day. (4.15)
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Since 75(20 _1)J(s, s) = 0, the conservation equation (4.14a) is consistent provided
Dio,-1)Aa)T(s-1,5-2) = 0. (4.16)
This is indeed true, as a consequence of the transverse linear condition (4.13a).

4.3 Improvement transformations

The conservation equations (4.8) and (4.9) define two consistent higher spin supercurrents
in AdS. Similar to the two irreducible AdS supercurrents [12], with (124 12) and (204 20)
degrees of freedom, the higher spin supercurrents (4.8) and (4.9) are equivalent in the sense
that there always exists a well defined improvement transformation that converts (4.8)
into (4.9). Such an improvement transformation is constructed below.

Since the trace multiplet T, (s_1)4(s—2) i transverse, eq. (4.8a), there exists a well-
defined complex tensor operator X (s_1)a(s—1) such that

To(s-1a(s-2) = D? X ooy (4.17)

5(3(1...(5(572) '

Let us introduce the real Uy (s_1)4(s—1) and imaginary Vi s_1)a(s—1) Parts of Xos—1)a(s—1)s

Xas—1)a(s—1) = Ua(s—1)a(s—1) T 1Va(s—1)a(s—1) - (4.18)

Then it may be checked that the operators

s _
Ja(s)d(s) = Ja(s)d(s) + 5 [D(alap(dl] Uag...ocs)dg...ds) + SD(al(dq Vaz...as)dg...ds) ) (419&)

IE‘oz(s)éz(s—l) = D(oq {(25 + 1)Ua2...as)d(s—1) - iVag...as)d(s—l)} (419b)

enjoy the conservation equation (4.9).

In accordance with the result obtained, for all applications it suffices to work with the
longitudinal supercurrent (4.8). This is why in the integer superspin case, which will be
studied in section 4.4, we will introduce only the longitudinal supercurrent.

There exists an improvement transformation for the supercurrent multiplet (4.8).
Given a chiral scalar superfield €2, introduce

Jis.6) = J(s.s) ¥ Dl py (2 + (-1)°Q),  Da =0, (4.20a)

T 2(71)8 > s—1 O 4(5 + 1) s—2
T(871,372) = T(8717872) + mp(ojfl)D(Ll)Q + TMD(LI)D(LO)Q . (420b)

The operators J~(S’S) and T(S_L s—2) Prove to obey the conservation equation (4.8).

4.4 Non-conformal supercurrents: integer superspin

We now make use of the new gauge formulation (3.10), or equivalently (3.16), for the
integer superspin-s multiplet to derive the AdS analogue of the non-conformal higher spin
supercurrents constructed in [26].
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Let us couple the prepotentials Ho (s 1)a(s—1)s Za(s—1)a(s—1) and Yy 5)a(s—1) to exter-
nal sources

S(s)

4 n a(s)a(s— Ta(s—1)a(s) T
source — /d zd*0d*0 E {\II (o 1)‘]&(8)@(871) - (=D& )Ja(sfl)d(s)
+Ha(8—1)d(5—1)Sa(s_l)d(s_l)

+Za(571)d(871)Ta(sfl)d(sfl) i Za(sil)d(sil)Ta(sfl)d(Sf1)} ) (4.21)

In order for Ss(g)urce to be invariant under the (-transformation in (3.7a), the source
Ja(s)a(s—1) must satisfy

ﬁﬁJa(s)Bd(sz) =0 < ,Dﬁjﬁoz(sz)d(s) =0. (4.22)

Next, requiring Ss(g)urce to be invariant under the transformation (3.6) leads to

Dy To(s-1)én..i) =0 = Doy Tny. a)a(s—1) = 0. (4.23)

We see that the superfields Jq(s)q(s—1) and Tos—1)a(s—1) are transverse linear and lon-
gitudinal linear, respectively. Finally, requiring Ss(f;&me to be invariant under the ‘U-

transformation (3.7) gives the following conservation equation

1 _
- ilpﬁ']ﬁa(sfl)d(sfl) + Sa(s—1)a(s—1) T Ta(s—1)a(s—1) = 0 (4.24a)

as well as its conjugate
1-45-
§D5Ja(s—1)6a(s_1) + Sa(s—1)a(s—1) T Ta(s—1)as—1) = 0. (4.24b)

As a consequence of (4.23), from (4.24a) we deduce
1

1
4D2Ja(s)d(s—1) - 5“(5 + 2)Ja(s)d(s—l) + D(alsaz...as)d(s—l) =0. (425)

The equations (4.22) and (4.25) describe the conserved current supermultiplet which cor-
responds to our theory in the gauge (3.11).
Taking the sum of (4.24a) and (4.24b) leads to

1 1 -s- _
§Dﬁjﬁa(s—1)a(s—1) + §Dﬁja(s_1)5a(s_1) + Tats-1)a(s—1) — Ta(s—1)a(s—1) = 0. (4.26)

The equations (4.22), (4.23) and (4.26) describe the conserved current supermultiplet which
corresponds to our theory in the gauge (3.13). As a consequence of (4.23), the conservation
equation (4.26) implies

1 .
§D(a1 {D‘BlJaz...as)ﬂd(s—l) + DﬂJQQ.”as)BO‘C(S_l)} + D(alTag...as)d(s—l) =0. (427)

Using our notation introduced in section 3, the transverse linear condition (4.22)
turns into
D(O,fl)J(s,sfl) - O, (428)
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while the longitudinal linear condition (4.23) takes the form

D(O,I)T(sfl,sfl) = 0 . (429)
The conservation equation (4.24a) becomes
1 _
= 55 P10 J(s,5-1) + S(s-1,5-1) + Ts1,5-1) =0 (4.30)
and (4.27) takes the form
1 _ _
%D(Lo) {D1.0)J(s,5-1) + Dio,-1)(s—1,5) } + Pa,0yT(s-1,5-1) = 0. (4.31)

In the flat-superspace limit, the higher spin supercurrent multiplet described by
egs. (4.22) and (4.25) reduces to the one proposed in [26].

4.5 Improvement transformation

There exist an improvement transformation for the supercurrent multiplet (4.24). Given a
chiral scalar superfield 2, we introduce

J(s,5-1) = J(s,5-1) + Df;ll)D(l 0, Dy =0, (4.32a)
T(s 1,s—1) = T(s 1,s—1) + Df 1)(D2 _4/])9
1
+(=1)%(s — 1)( )D(S 19, (4.32b)
S(sfl,sfl) = S(s 1,5— 1) + M(S - 1),Df_l)Q + (_1>S_1ﬂ(8 B I)D?ill)ﬁ

o 8—1 1A
Sy D( D2+ (=1)*7 —Din - (4.32¢)

It may be checked that the operators j(&s_l), 127(3_175_1) and 5’(5_1,8_1) obey the conserva-
tion equation (4.30), as well as (4.23) and (4.28).

5 Higher spin supercurrents for chiral superfields: half-integer superspin

In the remainder of this paper we will study explicit realisations of the higher spin super-
currents introduced above in various supersymmetric field theories in AdS.

5.1 Superconformal model for a chiral superfield

Let us consider the superconformal theory of a single chiral scalar superfield
S = /d4xd2«9d20E PP, (5.1)

where ® is covariantly chiral, Ds® = 0. We can define the conformal supercurrent J(s,5) I
direct analogy with the flat superspace case [25, 27]

- k(S s k s—k—173 5
sy =D _(=1) <k> {<k+ 1>D<1,1>D<1,0)‘1> Dy Pon®

S s—k T
+<k>2>§1,1)<1> D(Lf)@} : (5.2)
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Making use of the massless equations of motion, (D? —4/1) ® = 0, one may check that J(s,5)
satisfies the conservation equation

D(—I,O)J(s,s) =0 = T)(O,—l)*](s,s) =0. (5.3)

The calculation of (5.3) in AdS is much more complicated than in flat superspace due to
the fact that the algebra of covariant derivatives (2.4) is nontrivial. Let us sketch the main
steps in evaluating the left-hand side of eq. (5.3) with J, ) given by (5.2). We start with
the obvious relations

0

@D(Ll) = 2i(*Daq » (5.4a)

11)_29 ) 21" Daa D}, k> 1 (5.4b)

To simplify eq. (5.4b), we may push (*D,q, say, to the left provided that we take into
account its commutator with Dy 1):

[(*Daa » D11y = —4i fipr ¢aC*CP M 5. (5.5)

Associated with the Lorentz generators are the operators
Moy = 4P M (5.6a)
M) == ¢* CﬁMa[z, (5.6b)

where ]\_4(0,2) appears in the right-hand side of (5.5). These operators annihilate every
superfield Uy, ) (C, ¢) of the form (4.10),%

M(O,Z)U(m,n) = 0, M(Z,O)U(m,n) =0. (5.60)
From the above consideration, it follows that
{@pad ,Dﬁl)} Uty = 0, (5.7a)
9 e k—1
(84‘@ 1)) Utmny = 21k C* ot D U - (5.7b)

We also state some other properties which we often use throughout our calculations

D(O 1 = —2My) (5.82)

[D (1,0, D ] D ©0.1)Pq, 1)] =0, (5.8b)
[D* Dn] —2i(*Dyo,1) » (5.8¢)

[D°,Dfy 1)) = —2ik Dl Do,y » (5.8d)

[Da,< Dﬁﬁ-] = iog D(OJ) . (5.8¢)

The above identities suffice to prove that the supercurrent (5.2) does obey the conservation
equation (5.3).

8These properties are analogous to those that play a fundamental role for the consistent definition of
covariant projective supermultiplets in 5D A =1 [58, 59] and 4D A = 2 [60] supergravity theories.
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5.2 Non-superconformal model for a chiral superfield

Let us now add the mass term to (5.1) and consider the following action
S = /d4xd29d29 E3d + {2 /d4xd205m<1>2 +eet, (5.9)

with m a complex mass parameter. In the massive case J, ) satisfies a more general
conservation equation (4.14a) for some superfield T(,_; ,_9). Making use of the equations
of motion

1 - 1, - _
— ~(D? —4p)® + md = 0, —(D? —4)® + m® = 0, 5.10
4 4

we obtain
le(0,—1)‘](5,5) = F(s,s—l) ) (511&)

where we have denoted

Floao1) =2 ) (=)0 (0
ooty = 2+ DY) (k o

x{1+(—1)3 k+1

s—k—1

(1,1)

We now look for a superfield T(,_; ,_9) such that (i) it obeys the transverse linear
constraint (4.13a); and (ii) it satisfies the equation

S
Fos-1) = 5AanT(s-1,5-2) - (5.12)

Our analysis will be similar to the one performed in [25] in flat superspace. We consider a

general ansatz

T(s-1,5-2) mzcw(“ ® DY f D10 D (5.13)

with some coefficients ¢; which have to be determined. For k£ = 1,2,...s— 2, condition (i)
implies that the coefficients ¢, must satisfy

kep = (s —k —1)cs—g—1, (5.14a)

while (ii) gives the following equation

csk1+sck+(s—1)ck1——4(—1)k5+1(2) (qu) {1+(—1)S dan } (5.14b)

s s—k+1

Condition (ii) also implies that
S
(5 — D)es_a +co = 4(—1)*(s + 1) {1 + (—1)85} , (5.14c)
4
co=—=(s+1+(=1)7). (5.14d)
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It turns out that the equations (5.14) lead to a unique expression for ¢ given by

S 4(s+1ss_—1 _1l§:s k<><lj1){1+(_1)ssl—j;1}’ (5.15)

k=0,1,...s 2.

If the parameter s is odd, s = 2n + 1, with n = 1,2,..., one can check that the
equations (5.14a)—(5.14c) are identically satisfied. However, if the parameter s is even,
s = 2n, with n = 1,2,..., there appears an inconsistency: the right-hand side of (5.14c)
is positive, while the left-hand side is negative, (s — 1)cs—2 + cg < 0. Therefore, our
solution (5.15) is only consistent for s =2n+1,n=1,2,....

Relations (5.2), (5.13), (5.14d) and (5.15) determine the non-conformal higher spin
supercurrents in the massive chiral model (5.9). Unlike the conformal higher spin super-
currents (5.2), the non-conformal ones exist only for the odd values of s, s = 2n + 1,
withn =1,2,....

In the flat-superspace limit, the above results reduce to those derived in [25] and in a
revised version (v3, 26 Oct.) of ref. [29] (which appeared a few days before [25]).

5.3 Superconformal model with IN chiral superfields
We now generalise the superconformal model (5.1) to the case of N covariantly chiral scalar
superfields ®¢, i = 1,... N,

S = /d4xd29d2§E PP, Dyd =0. (5.16)

The novel feature of the N > 1 case is that there exist two different types of conformal
supercurrents, which are:

ij - k(S S k k—1 =
T =57 LD <k> {<k+1>D(1’1)D(1 0® Py Doy
k=0

+<Z) Dfy ) D f)qﬂ} S = gt (5.17)

and

AN k(S § k i ys—k—17y  &j
T =172 (1) <k> {<k+1>D<lvl>D<1,0)‘P Py Don®
k=0

. - g
+(k) D(1 1)<I>Z Dfl 1)<I>J} AY = — A, (5.18)
Here S and A are arbitrary real symmetric and antisymmetric constant matrices, respec-

tively. We have put an overall factor v/—1 in eq. (5.18) in order to make J(; 5 real. One
can show that the currents (5.17) are (5.18) are conserved on-shell:

" _
D(*LO)J(S,S) =0 = D(o )J

(8,8

,=0. (5.19)
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The above results can be recast in terms of the matrix conformal supercurrent J, ;) =
(J(Zg s)) with components

iy - k(S S k ) DS -1 Y
T = 21 <k> {<k+1>D<1 Pao® D1y Doy ®?
k=0
S k i ys—k
+<k>D(171)q) D(l 1)(I) } (5.20)

which is Hermitian, J(S’S)T = J(s,5)- The chiral action (5.16) possesses rigid U(N) symmetry
acting on the chiral column-vector ® = (®%) by ® — g®, with g € U(IN), which implies
that the supercurrent (5.20) transforms as Ji4 5 — gJ(&S)g_l

5.4 Massive model with NN chiral superfields

Now let us consider a theory of N massive chiral multiplets with action
o 1 o
S = /d4xd29d29E<I>z<I>’ + {2 /d4xd20<€M”<I>7’<I>J + c.c.} ; (5.21)

where M%¥ is a constant symmetric N x N mass matrix. The corresponding equations of
motion are

1 ) . 1 _ _. S
- Z(D2 —4p)®" + MYPI =0, 71(2)2 —4p)®" + MYPI =0. (5.22)

First we will consider the case where S is a real and symmetric matrix. Making use of
the equations of motion, we obtain

Pt =0+ 00 1 () )

k=0
k k—1 7 s—k
k+ D(l 1) D( )(I) D(l 1)(I)J

+2(s + 1)(SM)7! Zi:(_l)k <Z> <k -SF 1)

s—k—11y 37

Now, suppose the product SM is symmetric, which implies [S,M] = 0. Then, (5.23)
becomes

s—1
i S
(10)J(SS)—2(S+1 SM ]Z <><k‘—{—1>

s k + 1 k&t ps—k—1p 5J

We now look for a superfield T, (s—2,s—1) such that (i) it obeys the transverse antilinear
constraint (4.13b); and (ii) it satisfies the conservation equation (4.14b):

D-1.0)J(s,6) = 540,10 T(s-2,5-1) - (5.25)

[NCR VA
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As in the single field case we consider a general ansatz

5—2
T(S*ZS*U = (SM)U ch’pégl,l)(ii 'D‘(gl_f)_zﬁ(o,l)(i)j . (526)
k=0

Then for k = 1,2,...s — 2, condition (i) implies that the coefficients ¢ must satisfy
ke =(s—k—1)cs—p—1, (5.27a)

while (ii) gives the following equation

+1 /s s k+1
e “)epy = —A(—1)FE2 14(—1)° . 2
Cs—k—1+5ck+(s—1)ck—1 (—1) . (k) (k—i—l){ +(—1) s—k—i—l} (5.27b)

Condition (ii) also implies that

(5 — 1)eson + co = 4(—1)%(s + 1) {1 n (—1)8%} , (5.27¢)

co = —é(s 14 (1)), (5.27d)
The above conditions coincide with egs. (5.14a)—(5.14d) in the case of a single, massive
chiral superfield, which are satisfied only for s =2n + 1,n = 1,2,.... Hence, the solution
for the coefficients ¢ is given by (5.15) for odd values of s and there is no solution for
even s.
On the other hand, if SM is antisymmetric (which is equivalent to {S, M} = 0),
eq. (5.24) is slightly modified

(]

pard E+1
1 L Uph g pekip @ 5.28
xq—1+(-1) pumyaEl d(R) 1,1 Pon®. (5.28)
Starting with a general ansatz
s—2 A
Tis-2.s-1) = (SM)7 Y " d Dy 1y @' DY > Do,y P (5.29)
k=0

and imposing conditions (i) and (ii) yield the following equations for the coefficients dj

kdp = —(s—k—1)ds_p_1 . (5.30a)

—dy_ 1+ s+ (s—1)dj_y = —4(—1)’6511 (Z) (kL) {—1+(—1)s:z}rl} . (5.30Db)
(5—1)dg_z—do = 4(—1)*(s+1) {—1+(—1)S§} . (5.30¢)

do= %(s+1+(—1)8*1). (5.30d)
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The equations (5.30) lead to a unique expression for dj, given by

e BT AB I GRS B

=0

k=0,1,...5s — 2.

If the parameter s is even, s = 2n, with n = 1,2,..., one can check that the equa-
tions (5.30a)—(5.30d) are identically satisfied. However, if the parameter s is odd, s = 2n+1,
with n = 1,2,..., there appears an inconsistency: the right-hand side of (5.30c) is positive,
while the left-hand side is negative, (s — 1)ds_2 — dp < 0. Therefore, our solution (5.31) is
only consistent for s =2n,n=1,2,....

Finally, we consider AY = —AJ% with the corresponding J(s,s) given by (5.18). The
analysis in this case is similar to the one presented above and we will simply state the
results. If s is odd the non-conformal higher spin supercurrents exist if {A, M} = 0. The
trace supercurrent 7| (s—2,s—1) 18 given by (5.26) with the coefficients ¢, given by

o = ids ] (S‘: i) Zk: — ( )<1j1> {H(_l)sslfz}q} : (5.32)

=0

k=0,1,...s—2.

If s is even the non-conformal higher spin supercurrents exist if [A, M] = 0. The trace
supercurrent 7| (s—2,s—1) 18 given by (5.29) with the coefficients dj, given by

k

SRS QRO ) s B s

=0

k=0,1,...5—2.

Note that the coefficients ¢ in (5.32) differ from similar coefficients in (5.15) by a
factor of —i. This means that for odd s we can define a more general supercurrent

ij - k(S § k i
= HY Z(—l) (k) {(k i 1)D(1,1)D(1,0)¢ D(1 1) D(0 1)
k=0

+ (Z) Dfy @' D f)qﬂ} (5.34)

where H% is a generic matrix which can be split into the symmetric and antisymmetric
parts HY = S§% 4 iA%. Here both S and A are real and we put an i in front of A because
J(s,5) must be real. From the above consideration it then follows that the corresponding
more general solution for T{;_ ,_1) reads

s—2

Tiamzsmn) = (HM)Y Y 0Dy )8 Dy Doy ® (5.35)
k=0

where [S, M] = 0, {A,M} = 0 and ¢ are, as before, given by eq. (5.15). Similarly, the
coefficients dj, in (5.33) differ from similar coefficients in (5.31) by a factor of —i. This

— 95—



means that for even s we can define a more general supercurrent (5.34), where H% is a
generic matrix which we can split as before into the symmetric and antisymmetric parts,
HY = 89 4 iAY. From the above consideration it then follows that the corresponding
more general solution for T(S_ZS_I) reads

5—2
T(S—Q,s—l) - (HM)Z] Z dk,Décl,l)(iz Dfl_,f)_225(071)(1)J B (536)
k=0

where {S, M} =0, [A, M] = 0 and dy, are given by eq. (5.31).

6 Higher spin supercurrents for chiral superfields: integer superspin

In this section we provide explicit realisations for the fermionic higher spin supercurrents
(integer superspin) in models described by chiral scalar superfields.

6.1 Massive hypermultiplet model

Consider a free massive hypermultiplet in AdS?
S = /d4xd29d26E (\Lm + \IJ_\II_> v {m/d4xd205 R c.c.} , (6.1)

where the superfields Wy are covariantly chiral, Ds¥+ = 0 and m is a complex mass
parameter. By a change of variables it is possible to make m real. Let us introduce
another set of fields ®4, Ds®4+ = 0, related to ¥4 by the following transformations

dy =20, m= M, (6.2)

Under the transformations (6.2), the action (6.1) turns into
S = /d4md20d2§E (<I>+<1>+ + <I>,q>,) n {M / drd?0E D, b + c.c.} : (6.3)

where the mass parameter M is now real. In the massless case, M = 0, the conserved
fermionic supercurrent J,(s)4(s—1) Was constructed in [27] and is given by

s—1
R(s—1 8 k s—k—1
J(s,5-1) = E (—1) ( 2 ){(kJrl)D(LnD(LO)‘I’Jr Dy @-
k=0

S ok
_(k> D,y @+ DGy ID(LO)@} . (6.4)

Making use of the massless equations of motion, —%(DZ —41) @+ = 0, one may check that

J(s,5—1) obeys, for s > 1, the conservation equations

D_1,0)J(s,5-1) =0, Do,—1)J(s,5—1) = 0. (6.5)

9This model possesses off-shell N = 2 AdS supersymmetry [17, 18, 61].
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We will now construct fermionic higher spin supercurrents corresponding to the massive
model (6.3). Making use of the massive equations of motion
1 = 1

— Z(D2 —4p)®, + MP_ =0, j(zﬂ —4p)®_ + MP, =0, (6.6)

we obtain

s—1
s—1\ /s
D(_17O)J(5,S—1) = 2M(S + 1) Z(—l)k-‘rl( L > <k>

k s—k—1 k s—k—1 7
X {—k 1D(1 p®-Dfiy) @+ D0y DYy Py

X D D( )(i)_ D’ 1D(1 0)

(1,1)
s—2

—1 s\s—1—k

IM(s + 1 N S

+2M(s + )kz:%( ) <k k) k+1

x Df,1y D0 @+ Dty “Dion®+ (6.7)

It can be shown that the massive supercurrent Ji, ;1) also obeys (4.28).

(1, 1)

We now look for a superfield 7(,_; ;1) such that (i) it obeys the longitudinal linear
constraint (4.29); and (ii) it satisfies (4.31), which is a consequence of the conservation
equation (4.30). For this we consider a general ansatz

slsl chpllq) ,Dflf) ICI)_

s—1
+ kz_o dy, Df; 1)@ Dﬁljf)*lch
s—1
+Y Dl Puo®- Dty Doay®-
-
+ gk Dﬁff)D(LO)‘I)Jr Dfif)flﬁ(m)@r : (6.8)
k=1

Condition (i) implies that the coefficients must be related by

co=do=0, fe=cx,  gp=1dk, (6.9a)
while for £ =1,2,...s — 2, condition (ii) gives the following recurrence relations:
M(S +1) s+k(S— 1 S
=——(-1
Ck + Cht1 —(=1) < o\
1
xm{(2k+2—s)(s+l)—k—2}, (6.9b)

s -1
i+ dp+1 = M(sm(_l)k(s . ) <Z>

X T k2 - )+ ) -k -2} (6.90)
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Condition (ii) also implies that

=y MESD o MY, (6.99
dy = _M(522—1)’ dyy = _(_1)8]\4(51_1). (6.9¢)

The above conditions lead to simple expressions for ¢; and dy:

dy, = J\ﬂsjl)kil(—l)kc . 1) (Z) : (6.10a)

C — (—1)8dk, (6.10b)
where k =1,2,...5s — 1.

6.2 Superconformal model with N chiral superfields

In this subsection we will generalise the above results for N chiral superfields ®*, i =
1,...N. We first consider the superconformal model (5.16). Let us construct the following
fermionic supercurrent

s—1
_ g p(s—1 s k i s—k—1 1]
Tioo = CY 2 (1) < k >{<k+1>D(1,1)D(1vO)‘I} Dl ¥
k=0

§ i ys—k— i
_(k;>Dé€Ll)¢ D(Lf) 1D(1,0)(I)J} ; (6.11)

where C%¥ is a constant complex matrix. By changing the summation index it is not hard
to show that Ji, ;1) = 0 if (i) s is odd and CY is symmetric; and (ii) s is even and C¥ is
antisymmetric, that is

CY=0C", s=13,... = Jys 1) =0; (6.12a)
CY=-C", s=24,... = Jys1 =0. (6.12b)
This means that we have to consider the two separate cases: the case of even s with
symmetric C, and the case of odd s with antisymmetric C. Using the massless equation
of motion, —i(D2 — 4j1) ®* = 0, one may check that J(s,s—1) satisfies the conservation

equations (6.5)
Di1,0)d(s,5-1) =0,  Dio—1)Js,s-1) = 0. (6.13)

In the case of a single chiral superfield, the supercurrent (6.11) exists for even s,

s—1
g(s—1 5 k s—k—1
Jiss1) = > _(=1) ( i > {(k+ 1)7)(1,1)9(1,0)@1)(1,1) ®
k=0

S Sk
—(k)Dé“M)@D(Lf) 12)(1,0)@} , s=24,... (6.14)

The flat-superspace version of (6.14) can be extracted from the results of [26, 27].
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6.3 Massive model with NN chiral superfields

Now we move to the massive model (5.21). As was discussed in previous subsection,
to construct the conserved currents we first have to calculate D(_; g)J(s 1) using the
equations of motion in the massive theory. The calculation depends on whether C¥ is

symmetric or antisymmetric.

6.3.1 Symmetric C

If C* is a symmetric matrix, using the massive equation of motion, we obtain

s—1
_ T\ kr1(S—1\[(s\s—k
P10 os—n = =2+ DICHY kzo(l) < ’ )(k)lﬁ—l

k ximys—k—1mj
><D(l,l)‘I>ZD€1,1) @

+2(s +1)(C M) kZZO< DA <S k 1) <Z>

»
|
—

x Dfy 1)@ Dy '8
+2(s+1)(01\‘4)11871( Dl sV () ko
P k k)k+1
7 s—k—1 j
(1 1)D(0 )P D11y Paon®
s—2
N6 —1\/s\s—1—k
2 WOMY 1)kt S s—1—kK
25 + (O S 055
% DFLI)D(LO)(I)i D(Sf,f)_zﬁ(o,l)@j- (6.15)

Here we have two cases to consider:
1. CM is symmetric <= [C, M] = 0, s even.
2. C'M is antisymmetric <= {C, M} = 0, s even.

Case 1. Eq. (6.15) can be simplified to yield

s—1
Sy s—1 S
D_1,0)J(s,5-1) = 4(s + 1)(CM)¥ Z(—l)kH( 1 ) <k>
k=0

k i ys—k—1
X D(1,1)q’ D(1 1) P/

a4 1T (1) kH( 1><5>’“
= k) k+1

x D AD 'D10)® . (6.16)

7 s—k—
(1,1) (071)<I> D

(L,1)

We now look for a superfield T{,_; ,_1) such that (i) it obeys the longitudinal linear con-
straint (4.29); and (ii) it satisfies (4.31), which is a consequence of the conservation equa-
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tion (4.30). The precise form of eq. (4.31) in the present case is

1
5:201.0) {D(-1,0)(s,5-1) + Do,

1 J(s—
9 s—1
k
-0 S0 () ()
k=0

e - fet=Bieans)

19}

(k+1)(k+2)
k i ys—k—1F7
X D(1,1)‘I’ D(m) ®J
= —DaoT(s-1,5-1) (6.17)

To find T(,_; 1) we consider a general ansatz

s—1
Tis-1,5-1) = D _(cx)” Décl 1)‘13Z D, f) e/
k=0
s—1
k-1 k-1 HJ
+ > () D Dao® Dy Doy - (6.18)
k=1

It is possible to show that no solution for T{s_; s_1) can be found unless we impose!”

CM =CM. (6.19)
Furthermore, condition (i) implies that the coefficients must be related by
(c0)7 =0, (e) = ()7, (6.20a)

while for £ = 1,2,...s — 2, while condition (ii) and eq. (6.19) gives the following recur-
rence relations

(@) + (@) = —28 D ey -y (S K 1) (:)

s
1 (s+1)(s—k)
- . 2
Xk+1{3 k+2 (6.20b)
Condition (ii) also implies that
. L 9(1 = g2 L
(d)¥ = (1—s>)(CM)Y, (ds—1)" = <SS)(CM)” : (6.20c)
The above conditions lead to simple expressions for dy:
o 2(s+1), - .k e(s—1\ (s
dp)¥ = CM)Y —1 6.21
a7 =2 ennyr et () (), (6:21)

where kK =1,2,...s— 1 and s is even.

%Since C and M commute we can take them both to be diagonal, C = diag(ci,...,cn), M =
diag(myi,...,mn). Then the condition (6.19) means that arg(c;) — arg(m;) = n;m for some integers n;.
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Case 2. If we take CM to be antisymmetric, a similar analysis shows that no solution

for T(,_1,5—1) exists for even values of s.

6.3.2 Antisymmetric C

If C¥ is antisymmetric we get:

s—1
B — pr1(S—1\[(s\s—k
Disaplosmsy =26 + DO (1) (0
x Dy D
—1\ /s
1 k+1 §

o () (G

k i ys—k—1

Dy ® Py

(L)
—2(s + )(CM)T* Y " (=1)**! <s 5 1) <Z> k—kkl

@
I
_

+2(s + 1)(CM)

EM

J

re< |

»
|
—

bl
El

% D1y Do ® Dty ' Pao®

1’

N
=
=

[\

x Dfy.1yDa,0)® Dfy D(OJ)@ : (6.22)

(1, 1)
As in the symmetric C case, there are also two cases to consider:
1. CM is symmetric <= {C, M} =0, s odd.
2. C'M is antisymmetric <= [C, M] = 0, s odd.

Case 1. Using eq. (6.22) and keeping in mind that s is odd, we obtain

s—1
-1\ /s
D(-1,0)(s.s-1) = 4(s + 1D)(CM)Y Z k+1( ) <k>

k k—1
x Dfyy® D, qﬂ

= s—1\[(s\ k
4 1 Z] k+1 -
(54 Zl k)t 1
i ys—k—1 j
X D(l 1)D(0 H® D1y Paog® - (6.23)
Then it follows that eq. (4.31) becomes

s—1
1 _ - 2 g1 (s—1\ (s
35 200 P10 Ts5-1) + Do) Js-19) = 7 19(1,0)2(—1) * < k )(k)
_l’_
+

s o s
M
8 {k O -
k i ys—k—1F
X D(l,l)q) 'D(1 1) o’
= -DuoT(s-1,5-1) - (6.24)
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Note that it is the equation same as eq. (6.17) which means that the solution for T,_; ,_1)
is the same as in Case 1. That is, the matrices C and M must satisfy CM = CM,
T(s—1,5—1 is given by eq. (6.18) and the coefficients (cx)Y, (dy)" are given by eqgs. (6.20).

Case 2. If we take CM to be antisymmetric, a similar analysis shows that no solution
for T(s_1,5—1) exists for odd values of s.

6.3.3 Massive hypermultiplet model revisited

As a consistency check of our general method, let us reconsider the case of a hypermultiplet
studied previously. For this we will take NV = 2, the mass matrix in the form

M= (12 ’g) , (6.25)

and denote ® = (&, ®_). If s is even we will take C in the form

C = <S S) . (6.26)

Note that C' commutes with M. The condition CM = CM is equivalent to arg(c) =
arg(m) +nn. For simplicity, let us choose both ¢ and m to be real. Under these conditions
eq. (6.11) for Ji, ,_1) becomes

s—1 s k s—k—1
S s—1) = CZ ( > (k + 1) {D(l,l)D(LO)q)Jr D(1 1) o
k s—k—1
+D(1,1)D(1,0)(I)— D(l,l) (I)+}

-1\ /s
+ CZ k+1< ) (k) {Déﬂl,l)@‘ﬁ‘ D(l 1) D(l 0)

k s—k—1
Dfy 1 @- Dy D(1,0)<I>+} . (6.27)
Introducing a new summation variable k' = s — 1 — k for the second and fourth terms,
we obtain
! s—1 s
_ k - s |k —k—1
Jiss-1) = _(—1) < i ><k+ 1) [(1 +(=1) }D(l,l)D(LO)q)JF any 2

s—1
s—1\ /(s R ok
—CZ(—N( ) ><k> [(1+ (—1) }Dﬁ’l)@ﬂ)(l’ﬁ "Diog®- . (6.28)

We see that for even s it coincides with the hypermultiplet supercurrent given by (6.4) up
to an overall coefficient 2¢. If s is odd we have to choose C' to be antisymmetric

C= (_OC g) . (6.29)
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Note that C' now anticommutes with M. For simplicity, we again choose ¢ and m to be
real. Now the expression (6.11) for J(, ,_1) becomes

s—1
s—1 S s |k k-1
Tee) CZ ( ) (k N 1) (1= (=1)°| Pl P @+ Dirt -

fcs :(1)k<321) (Z) (- (1] Dl ® D D@ (6:30)

k=

We see that for odd s it coincides with the hypermultiplet supercurrent given by (6.4) up
to an overall coefficient 2c. To summarise, we reproduced the hypermultiplet supercur-
rent (6.4) for both even and odd values of s. However, for even s it came from a symmetric
matrix (6.26) and for odd s it came from an antisymmetric matrix (6.29).

Let us now consider T{5_; 4_1). First, we will note that the product CM is given by

— 1 0

CM = . 6.31

cm <0 (-1) s> (6.31)

This means that T{;_; ,_1) is given by the following expression valid for all values of s
s—1

i i ys—k—1F7 k—1 i Mys—k—11y 5]
Tiar01) = 2 (di)7 [ Dy ® DHT' + DY D@ DYt Doy @], (6:32)
k=0

where the matrix (d;)¥ is given by

(dp) = zcmsykﬁl(_l)k(s ; 1> (Z) ((1) (_01)S> , (6.33)

It is easy to see that this expression for 7(,_; 1) coincides with the one obtained for

the hypermultiplet in the previous subsections in egs. (6.8), (6.9a), (6.10) up to an overall
factor 2c.

7 Summary and applications

In this paper, we have proposed higher spin conserved supercurrents for N' = 1 supersym-
metric theories in four-dimensional anti-de Sitter space. We have explicitly constructed
such supercurrents in the case of IV chiral scalar superfields with an arbitrary mass matrix
M. The structure of the supercurrents depends on whether the superspin is integer or half-
integer, as well as on the value of the superspin, and the mass matrix. Let us summarise
our results.
In the case of half-integer superspin s+ 1/2, the supercurrent has the structure Jis, s) =

HY J(” s> Where i,j = 1,... N and H" is a Hermitian matrix. The precise form of J(;S)
was discussed in section 5. In massless theory it is conserved for all values of s. In massive
theory, the conservation equation involves an additional complex multiplet 7(,_; ,_o) whose
existence depends on the value of s and the mass matrix. For odd values of s, it exists
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provided [S, M] = 0, {A, M} = 0, where S and A are the symmetric and antisymmetric
parts of H, respectively. When s is even, it exists provided {S, M} = 0, [A, M] = 0.

In the case of integer superspin s, the fermionic supercurrent was discussed in section 6.
It has the form Ji, ;1) = C’ijJZZ

( 75_1).
symmetric and for odd values of s if C' is antisymmetric. In massive theory the conservation

In massless theory it exists for even values of s if C' is

equation involves an additional complex multiplet 7(,_; ;_1) and a real multiplet S(;_1 5_1).
Their existence also depends on the value of s. For s even they exist provided CM = CM,
[C, M] = 0 and for s odd provided CM = CM, {C, M} = 0.

In the rest of this section, we will discuss several applications of the results obtained
in the paper.

7.1 Higher spin supercurrents for a massive chiral multiplet: integer superspin

Let us return to the model (5.9) describing the dynamics of a single massive chiral multiplet
in AdS. It proves to possess conserved fermionic higher spin supercurrents. For even integer
superspin, s = 2,4,..., the supercurrent Ji,,_1) is given by (6.14). The corresponding
trace multiplet is

s—1 s—1
Tie1s-1) = Y aDiny® DIy '@+ ) di D\ Daoy® Dfyy ' Diony®, (7.1)
k=0 k=1
where the coefficients ¢; and dj, are given by (6.10). As an example, for s = 2 we obtain
J(le) = 4D(171)q) D(l,O)(I) — 29 D(l,l)D(l,O)q)a (72&)
T(l,l) — *37’71((51)(171)(1) + D(Lo)@ Z_)(O,l)(i)) . (72b)

It was claimed in [29] that the chiral model in Minkowski superspace
Spassive = / d42d?0420 3® + {% / d42d?0 ©* + c.c.} . Da®=0  (7.3)

does not possess any conserved fermionic supercurrents J(; ,_1), for any value of the mass
parameter m. Here we have demonstrated that they, in fact, do exist when s is even.
There is a simple explanation for why the conserved fermionic supercurrents were
overlooked in the analysis of [29]. The point is that the authors of [29] considered only a
particular ansatz for the Noether procedure to construct cubic vertices, J,® = A®, where
A is a higher-derivative operator containing infinitely many local parameters. However, in
order to generate the conserved fermionic supercurrents we constructed, it is necessary to
deal with a more general ansatz §,® = A® + D?B®, with B another higher-derivative op-

erator.!

7.2 Higher spin supercurrents for a tensor multiplet

Let us consider a special case of the non-superconformal chiral model (5.9) with the mass
parameter m = pu,

_ 1 _ _ _
S[®, ] = 2/d4a:d29d20E (®+®@)%, Dy®=0. (7.4)

1YWe thank Konstantinos Koutrolikos for clarifying comments.
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This theory is known to be dual to a tensor multiplet model [62]
1 _
S[L) = - / d*zd?0d*0 F L? (7.5)
which is realised in terms of a real linear superfield L = L, constrained by (D? —4u)L = 0,
which is the gauge-invariant field strength of a chiral spinor superfield

L = D%y + Daii®, Dyila = 0. (7.6)

We recall that the duality between (7.4) and (7.5) follows, e.g., from the fact the off-
shell constraint

(D? — 4u)Do(® 4+ @) = 0 (7.7a)
and the equation of motion for ®
(D? —4u)(® +®) =0 (7.7b)
are equivalent to the equation of motion for 7,
(D* — 4p)Do L =0 (7.8a)
and the off-shell constraint
(D* —4u)L =0, (7.8b)

respectively.

Higher spin supercurrents for the tensor model (7.5) can be obtained from the results
derived in section 5.2 in conjunction with an improvement transformation of the type (4.20)
with Q = —%@2. Given an odd s = 3,5..., for the supercurrent we get

s—1 N
J(s,5) = =L D{y 1y [P0y, Do,y L

s—1
k(S S k s—k—1
+ Z(—l) <k> <k 4 1> D(1,1)D(1,0)L D(1,1) 1D(O,l)L

s—1
1 S S _ — —
+5 {—1 + (—1) <k>} <k> Dy [Paoy Do)l D L. (7.9)

The corresponding trace multiplet proves to be

4p _ s+1
Toro-n =~ L D2 Doy L+ 4p=——D gL D;

_3 oy
(1.1) 1) PonPaol

2 s—2 N NG
- gp(l,l) {D(LO)DC'YL D L}
s—2

+ 1% CkDf]:ll ID(OJ)D(L())L D

k—2
) DaolL
k=1

(L.1)

5—2
4p s—2 _ - s—k—
+ < >Dk 3P0 PoL PGty *Pa o)L
k=1

5 k (1,1)
s+1 3 /69
- k s—k—31
=) ( 3 > {9(1,1)17(1,(3)13 D1y "PonPaol
k=1

k—1 1 s—k—2
+Df Doy Py L Dirs D(LO)L}. (7.10)
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The coefficient ¢ is given by eq. (5.15), s is odd. The Ferrara-Zumino supercurrent (s = 1)
for the model (7.5) in an arbitrary supergravity background was derived in section 6.3 of [3].
Modulo normalisation, the AdS supercurrent is

Jaa = DaLDoL + LDy, Dy | L, (7.11a)
and the corresponding trace multiplet is
L =5 2
T = Z(D —4p)L~. (7.11Db)
The supercurrent obeys the conservation equation (A.1).

7.3 Higher spin supercurrents for a complex linear multiplet

The superconformal non-minimal scalar multiplet in AdS is described by the action
S0, T) = — / d*2zd?0d*d ETT, (7.12)

where T is a complex linear scalar, (D? — 4u)T' = 0. This is a dual formulation for the
superconformal chiral model (5.1). As is well known, the duality between (5.1) and (7.12)
follows from the fact that the off-shell constraint

(D* —4p)T =0 (7.13a)

and the equation of motion for I

DL =0 (7.13b)

are equivalent to the equation of motion for ®, (D? —4/1)® = 0, and the off-shell constraint
Ds® = 0, respectively. In other words, on the mass shell we can identify T with ®.

The higher spin supercurrents, Ji, ) and Ji, 1), for the model (7.12) are obtained
from (5.2) and (6.14), respectively, by replacing ® with I". The fermionic supercurrent
J(s,s—1) exists for even values of s. In the flat-superspace limit, the expression for Ji,
obtained coincides with the main result of [30].12 It was claimed in [30] that the flat-
superspace model

S0, T) = — / d'zd?0d*0TT, DT =0 (7.14)

does not possess any conserved fermionic supercurrents Ji,,_1). Here we have demon-
strated that they, in fact, do exist when s is even. Just like in the case of a massive chiral
multiplet, the fermionic supercurrents were overlooked in [30] because only a particular
ansatz for the Noether procedure was studied in [30].

12 Actually the higher spin supercurrents derived in [30] are obtained from eq. (5.6) in [27] by replacing
& with T
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7.4 Gauge higher spin multiplets and conserved supercurrents

For each of the two off-shell formulations for the massless multiplet of half-integer superspin
s+1/2, with s = 2,3, ..., which we reviewed in section 4.1, it was shown in [22] that there
exists a gauge-invariant field strength W (2,1) which is covariantly chiral, D f; Wa@s+1) =0,
and is given by the expression

1 _

Wa(25+1) = _Z(Dz - 4/“’)D(a1ﬂ1 o 'D(asﬁsp H

Qota2st1) 1 Bs

(7.15)

As41

It was also shown in [22] that on the mass shell it holds that (i) W 2s41) and its conjugate
Wi (2s+1) are the only independent gauge-invariant field strengths; and (ii) Wy(2s41) obeys
the irreducibility condition

D Waazs) = 0. (7.16)

The relations (7.15) and (7.16) also hold for the cases s = 0 and s = 1, which correspond
to the vector multiplet and linearised supergravity, respectively. In terms of Wy 2,41) and
Wd(2s+1)7 we can define the following higher spin supercurrent

Ja(25+1)d(25+1) = Wa(23+1)Wd(25+1) ’ s=0,1,..., (717)

which obeys the conservation equation

@(O,—I)J(25+1,2s+1) =0 <= Dr10Jde@s1,25+1) =0. (7.18)

In the case of the longitudinal formulation for the massless multiplet of integer super-
spin s, with s = 2,3,..., which we described in section 3, it was shown in [22] that there
exists a gauge-invariant field strength W, o,) which is covariantly chiral, @BWQ(QS) = 0,

and is given by the expression'

1 - : .
Wa(?s) = —*(DZ _ 4N)D(a151 e D(as—lﬁs_lpasqj

;i (7.19)

Qsp1-02s)f1Bs—1

As demonstrated in [22], on the mass shell it holds that (i) W, and its conjugate
Wd(%) are the only independent gauge-invariant field strengths; and (ii) Wy 2s) obeys the
irreducibility condition

D Wa2s—1) =0. (7.20)

The relations (7.19) and (7.20) also hold for the case s = 1, which corresponds to the grav-
itino multiplet. In terms of W2, and Wd(gs), we can define the higher spin supercurrent

Ja@2s)aes) = Wa@aWa@s),  5=1,2,..., (7.21)

which obeys the conservation equation

D,-1)J2s25) =0 <= D(_10)J2s25) = 0. (7.22)

The conserved supercurrents Jyn)amn) = Wa(n)Wd(n), with n = 1,2,..., are the AdS
extensions of those introduced many years ago by Howe, Stelle and Townsend [66].

13The flat-superspace version of (7.19) is given in section 6.9 of [3].
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Now, for any positive integer n > 0, we can try to generalise the higher spin supercur-
rent (5.2) as follows:

~ t s n S k s—k—17 T
J(stnysin) = Z(—l)’“(’“()n(ﬂf)) {(—1) m%,l)%,a)wmm D5 Doy Wiom
k=0 n

k s—k 11
+ D(l,l)W(n,O) D(l,l)W(07n)} . (7.23)
Making use of the on-shell condition
Dc1o)Wio) =0 < (D*—=2(n+2)a)W,0 =0, (7.24)

one may check that

s—1 s\ (s+n
3 = —}: nie_ 5=k () (%"
D(—LO)‘J(S-i-n,s-i-n) =2np (—1) n+k4+1 (n—i—k;)
k=0 n
k s—k—17y T
X D(l,l)W(mO) D(Ll) Do,1yWio,n) - (7.25)

This demonstrates that J(syn,s1n) I8 nOt conserved in Ads?4,

In the flat-superspace limit, ;1 — 0, the right-hand side of (7.25) vanishes and J (s, 54n)
becomes conserved. In Minkowski superspace, the conserved supercurrent Js iy s4n) Was
recently constructed in [31] as an extension of the non-supersymmetric approach [67].

As a generalisation of the conserved supercurrents Jy()a(n) = Wa(n)Wd(n), one can in-
troduce

Jamyatm) = WamWem) » (7.26)

with n £ m. They obey the conservation equations
Do,-1)dtnm) =05 Di—1,0)J(nm) =0 (7.27)

and can be viewed as Noether currents for the generalised superconformal higher spin
multiplets introduced in [27]. Starting from the conserved supercurrents (7.26), one can
construct a generalisation of (7.23). We will not elaborate on a construction here.
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A AdS supercurrents

There are only two irreducible AdS supercurrents, with (124 12) and (20 4+ 20) degrees of
freedom [11].1* The former is associated with minimal AdS supergravity (see, e.g., [3, 21]

14 A supercurrent multiplet is called irreducible if it is associated with an off-shell formulation for pure su-
pergravity.
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for reviews) and the corresponding conservation equation is
DYps =DoT,  DsT =0. (A1)

The latter corresponds to non-minimal AdS supergravity [12], and the conservation equa-
tion is 1

DJoe = —ZD%&, D(sCa) = 0. (A.2)
The vector superfields J, and J, are real.

The non-minimal supercurrent (A.2) is equivalent to the Ferrara-Zumino multi-
plet (A.1) in the sense that there always exists a well-defined improvement transformation
that turns (A.2) into (A.1), as demonstrated in [12]. In AdS superspace, the constraint on
the longitudinal linear compensator (, is equivalent to

Co =Do(V +1iU), (A.3)

for well-defined real operators V and U. If we now introduce

! (D% — 4u)(V — 3iU), (A.4)

1 _
Jag = Jaa + *[DouDd]V_DadUu T:= E

6
then the operators J,4 and T prove to satisfy the conservation equation (A.1).
For the Ferrara-Zumino supercurrent (A.1), there exists an improvement transforma-
tion that is generated by a chiral scalar operator (). Specifically, using the operator 2
allows one to introduce new supercurrent J,s and chiral trace multiplet T' defined by

:]Vaa = Joa +1Das (Q — Q) , ﬁdQ =0, (A.5a)
~ 1 - _
T=T+2uQ+ Z(D2 —4u)Q. (A.5b)

The operators jaa and T obey the conservation equation (A.1) for arbitrary Q.1

B Conserved currents for free real scalars

In this appendix we will consider higher spin currents in free scalar field theory in flat
space. Similar analysis for free fermions will be done in the next appendix.

Given an integer s > 2, the massless spin-s field [63] is described by real potentials
ha(s)a(s) and ho(s—2)a(s—2) With the gauge freedom'©

ONay..asén..cs = V(61 Mas...cs)do.ds) » (B.1a)
s—1 B8

5h0‘1-"0‘8—2‘5‘1"-‘j‘5—2: ) 9 )\Bal...a572ﬂ.dl~--d572’ (B'lb)

for an arbitrary real gauge parameter A (s_1)4(s—1)- The field hq(s)4(s) may be interpreted
as a conformal spin-s field [64, 65].

5Extension of the improvement transformation (A.5) to the case of supergravity is discussed in section 6.3
of [3].
6We follow the description of Fronsdal’s theory [63] given in section 6.9 of [3].
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To construct non-conformal higher spin currents, we couple hq(5)a(s) and ho(s—2)a(s—2)
to external sources

s 4 a(s)a(s) a(s—2)a(s—2
SEhree = / d w{h ()35, sy + B2 )ta(372)d(sf2)}' (B.2)

Requiring that Ss(g“’;&me be invariant under the A-transformation in (B.1) gives the conser-
vation equation

' s—1
8:85 + ?a(al(dlta2---@s—1)o}2...ds,1) =0. (B3)

‘750’1...0&37160’(1...@571

Our derivation of (B.3) is analogous to that given in [36].
Let us introduce the following operators

1,1y = 21¢*C“Bae » (B.4a)
s gace 9 0
8(_17_1) = 218 @@ . (B4b)

The conservation equation (B.3) then becomes

O(—1,-1)J(s,s) + (s = )01 1)t (s—2,6-2) = 0 (B.5)

Note that both j(, ) and ¢(,_o ,_9) are real.
Let us now consider the model for N massless real scalar fields ¢’, with i = 1,... N,

in Minkowski space
1 2 0 Hiote
2/ 2 9.0'0"" (B.6)

which admits conserved higher spin currents of the form

S:

S

- 28 i s s i 95— j
J(s,5) =1 cv Z(_l)k <k’> <k’> 8?1,1)¢ 8(1,1k)¢] ) (B7)

k=0

where C% is a constant matrix. It can be shown that J(s,s) = 0 if s is odd and CY is
symmetric. Similarly, js ) = 0 if s is even and C% is antisymmetric. Thus, we have to
consider two separate cases: the case of even s with symmetric C' and, the case of odd s
with antisymmetric C. Using the massless equation of motion ¢' = 0, one may show
that j, ) satisfies the conservation equation

O—1,-1)J(s,5) = 0. (B.8)
We now turn to the massive model
1 4 . o
5= / at {0u00m 4 + (M2)igigi ) (B.9)

where M = (M%) is a real, symmetric N x N mass matrix. In the massive theory, the
conservation equation is described by (B.5) and so we first need to compute O(—1,-1)J(s,9)
using the massive equations of motion

O¢' — (M*)"¢) =0. (B.10)
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For symmetric C', we obtain
S

D(-1,-1)i(s,s) = —8(s + 1)*(CM?)V §<_1)k <Z> <Z>

oy k=0

. maﬁ,l) ¢ Oy e (B.11)

(1,1)

If C¥ is antisymmetric, we get

s

O(-1,-1)(s.) = 8i(s + 1)*(CM?)? g(_l)k <Z> <Z>

k=0

% (s — k) ok g95—k—1 i B.12
T D+ 0 29 (542

Thus, in the massive real scalars there are four cases to consider:
1. Both C and CM? are symmetric <= [C, M?] = 0, s even.
2. C is symmetric; CM? is antisymmetric <= {C, M?} =0, s even.
3. C is antisymmetric; CM? is symmetric <= {C, M?} =0, s odd.
4. Both C and CM? are antisymmetric <= [C, M?] =0, s odd.

Case 1. Eq. (B.11) is equivalent to

01 1yi(ee) = —Als + DACM)Y Z;<—1>’“ () ()=

sk s=1 1 k i as—k—1 i
) {(kJrl)(kJrQ) +(=1) s—k+1}a(1,1)¢] Ny ¢ (B.13)

We look for t(,_5 ,_9) such that (i) it is real; and (ii) it satisfies the conservation equa-
tion (B.5). We consider a general ansatz

s—2
ta2,0-2) = —(CM?)TY " dy Oy )¢ 015720 (B.14)
k=0

For k=1,2,...s— 2, condition (ii) gives

s = —1C () (2 -

s—k o 1

Condition (ii) also implies that

ds—o+dy=—4s(s+1)(s+2), (B.15D)
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Equations (B.15) lead to the following expression for di, k =1,2,...s5 — 2

= “”kdrw zk:(_l)k <?> <§> (s=0) { (l+i)_(ll+2) - s—}—i-l } . (B.16a)

=1
d0:d5_2:—28(8+1)(8+2). (B.16b)

One can check that the equations (B.15a)—(B.15b) are identically satisfied if s is even.

Case 2. If we take CM? to be antisymmetric, a similar analysis shows that no solution
for t(,_o 5_) exists for even s.

Case 3. Now we consider the case where C' is antisymmetric and CM? symmetric. Again,
similar consideration shows that no solution for ¢;_s ,_9) exists for odd s.

Case 4. Eq. (B.12) is equivalent to

s—1
i S
8( 1—1)](35)_41(5+1 CM2 J E < ><k>(5_k)
k=0

sk 1 k i as—k—1 ;i
8 {(k+1)(k+2) - s—k+1}a(1’1>‘757 Iy 9" (B.17)

We consider a general ansatz
N s—2
t(s—2,5-9) = —1(CM?)" de 351,1 ¢’ R k- 2<75l (B.18)
k=0

Imposing (i) and (ii) and keeping in mind that s is odd, we obtain the following conditions
for dj:

A1+ di = 4(8;11)2 (=1)" <Z> (Z) (s = k) x {(k +S1)_(lf+ 2)  s— /1+ 1} - (B.19a)

Condition (ii) also implies that

ds—o —dy=—4s(s+1)(s+2), (B.19Db)

Equations (B.19) lead to the following expression for dy, k =1,2,...5 — 2

B 4(s+1)2 i s\ (s (s —1)? s—1
di = (=1)"do + ==~ Z“”‘“(z) (z) {(z 0042 s—i+ 1} » (B.20a)
d() = —ds_g = 28(8 + 1)(8 2) . (B20b)

One can check that the equations (B.19a)—(B.19b) are identically satisfied if s is odd.
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C Conserved currents for free Majorana fermions

Let us now consider N free massless Majorana fermions
S = —i /d4:n ¥ D™ (C.1)
with the equation of motion
Oaa0™ = L, =0,  i=1,...N. (C.2)
We can construct the following higher spin currents

s—1
. i k(S S k a1t as—k—1 & ij i1
Jss) = CY Y (1) (k> (k+ 1) O ¢ Ve Oy € =0t ©y

k=0

s—1

i SO s a s & ij i

76 :1032(_1)k<k> <k+1) Of ¢l O I, Y =0T (C)
k=0

where we put an extra i in eq. (C.4) since j(, ) has to be real. Using the equation of
motion (C.2), it can be shown that the currents (C.3), (C.4) are conserved

(=1,-1)J(s,5) = 0 - (C.5)

We now look at the massive model

A . 1 . 1
5= [ dta {ium0nas + (GMuvg + R ), (C6)
where M% is a constant symmetric N x N mass matrix. To construct the conserved
currents, we compute 0(_1,_1)j(s,s) Using the massive equations of motion (i = 1,...,N)
a0 + MUy =0 = O} = (MM)7J}, (C.7a)
—i0aat + MUY, =0 = Oy = (MM)79),. (C.7b)

If C is a real symmetric matrix, we find

s—1

. k+1 s
O-1,-1)J(ss) = —2(5 +1) Z —k+ . (k) (’f + 1>
+ (=

k= O
{(CM) Oy O 1)*(CM) 0 1 0%, % lw}
s—1 s s
+4(s+1)(s+2)k221k(—1)’f(k) (k+1>
1 i k+1 i
x {k+ (MMC)” ~ (s—k+2)(s—k+1)(CMM)]}
X Q¢ O Capl . (C.8)
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If C% is antisymmetric, we have

s—1

_ . k+1 k(S 5
O-1,-1)d(ss) = —2A(s+1) Y sk Y <k> <k‘ + 1>

k=0
< {(Can)Taf ot Ol + (1) THONDTof U Ot %}

+4i(s + 1)(s +2) i K-1)f <Z> (k ' 1>

k=1
k+1
(s—k+2)(s—k+1)

X O B¢ Ve Oy M (C.9)

1 o o
X {k—F(MMC)” — (CMM)”}
There are four cases to consider:
1. C,CM,CMM are symmetric <= [C, M| = [C, M] = 0,[M, M] = 0.
2. C,CMM symmetric; CM antisymmetric <= {C, M} = {C,M} = 0, [M, M] = 0.
3. C,CMM antisymmetric; CM symmetric <= {C, M} = {C,M} = 0, [M, M] = 0.
4. C,CM,CMM are antisymmetric <= [C, M] = [C, M] = 0, [M, M] = 0.

Case 1. Eq. (C.8) becomes

s—1
. S S
O -niss) = ~(s 1) 3_(=1)" (k) (k + 1)
k=0

k+1 _SISk azsklj
(S + o R ean ol e ol

DS (s+1) k:( < ) < )

k+1 o s—15 — ) skl aj
X{s—k+1+( 2 k+2}(CM) 0¥ Oty

+4(s+1)(s +2) § k(—1)k (Z) (k i 1)

k=1

1 k41
X{k+2_(s—k+2)(s—k+1)}

X (CMM)7 O\l 915 M, (C.10)

We look for t(,_5 ,_9) such that (i) it is real; and (ii) it satisfies the conservation equa-
tion (B.5):

O(—1,-1)J(s,;s) = —(s = 1)1 1yt (s-2,5-2) - (C.11)
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Consider a general ansatz

s—2
t(s—2,5—2) = (CM)¥ ch 351,1)1#” 3(81f 247
k=0
— .. ST 2 ..
+(=1)2(CM)T Y e Oy 1y Oy 1y 2
k=0
s—2
+ (CMM)7 Y gy, O\ Cl, 01 (C.12)
k=1
For k =1,2,...s — 2, condition (i) gives
gk = (=1)"""gs—1r, (C.13a)
while condition (ii) gives
s+1 k(s s kE+1 15—k
- = -1 _— —1)° .13b
e )<k><k+1>{s—k+1+( ) k+2}’ (C.13b)
o (s+1)(s+2) e(S s 1 E+1
e B VT AV D L Nl pomy ey oy ey O
(C.13c¢)
Condition (ii) also implies that
1
Csatoo=— {25+ (1)1 (s + 1)}, (C.13d)
- 25(5’3_2%2 +55+6), (C.13e)
25(s — 2
o2 = (—1)5—13(33)(52 455+ 6). (C.13f)

The above conditions lead to the following expressions for ¢, and g (k= 1,2,...5 — 2)
s+1 k s s [+1 s—1
= (-1)k —1)* (-1 14
e o [ EERRTrES] B

=41 +81_51+2 2 <s> (z + 1> {(s y +l(l1)+(sl)— [+2) ziz} - (G.14b)

=1

If the parameter s is even, (C.14a) gives
1
Cs—g =Co = —is(s +2) (C.14c¢)
and (C.13a)—(C.13f) are identically satisfied. However, when s is odd, there appears an

inconsistency: the right-hand side of (C.13d) is positive, while the left-hand side is negative,
cs—2 + co < 0. Therefore, our solution (C.14) is only consistent for s =2n,n=1,2,....
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Case 2. If CM is antisymmetric while CM M symmetric, eq. (C.8) is slightly modified

-1,-1)(s,s) = —(s+1) SZE(—”'“ (Z) (k:i 1)

k=0

k+1 —k
T — 1
{s—k+1+( )

}(CM) 11),¢o¢z as k lwa

(i)

+ 2
k+1 sS T k v S— k 1,767
X{,<s—lf—H+( 1) }(CM) 11)#@3 V

+4(s+1)(8+2)§k(_1) <><k‘ >

+(=1D* (s +1)

o 1 B kE+1
k+2 (s—k+2)(s—k+1)

X (CM M) O ¢l 051 ¢, (C.15)
Starting with a general ansatz
5—2
b(s—2,5-2) = (CM)? de 8{“171)111“' a(51{€ ),
k=0
5—2 N
+ (=1)5(CM)T Y dy O 4y Oy
k=0
5—2
+(OMBY Y g ol ¢, (C.16)
k=1

and imposing conditions (i) and (ii) yield

gr=(=1)""gs 1, (C.17a)
s+1 I s k+1 _15—k
= 1 ——(-1)° 1
di1tde= =7 (1) (k) <k+1> {s—k—H (=1) k+2}’ (C-17b)
(s+1)(s+2) el S s 1 kE+1
- =—4—F——"(-1 k - 1
91+ G P A VY AV R Y L e ey ey
1
do—dy-g=— {2s+(-1)°s*(s+1)}, (C.17d)
2s5(s—2
9123(33 >(82+53+6), (C.17¢)
25(s—2

gs_zz(—l)HM(sQ%(s%). (C.17f)

3
As a result, the coefficients dj and gy are given by (k=1,2,...s5 — 2)

oo g o) o

S ()2 ) (Y

=1
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When the parameter s is odd, (C.18a) gives

1
ds—o = —dp = 58(5 + 2) (0.180)

and (C.17a)—(C.17f) are identically satisfied. However, when s is even, there appears an
inconsistency: the right-hand side of (C.17d) is positive, while the left-hand side is negative,
dp — ds—2 < 0. Therefore, our solution (C.18) is only consistent for s =2n+1,n=1,2,....

Finally, we consider C% = —(C® with the corresponding J(s,s) given by (C.4). Similar
considerations show that in Case 3, the non-conformal currents exist only if s is even. The
trace t(s_o s_9) is given by (C.12) with the coefficients c and g given by

k
ik s+1 k(S s [+1 Cys—15 1
e =1(—1) 00—1—18_1 1521( 1) (l) <l+1> {s—l—l—l +(—1) ol (C.19a)

= 41(_1)szf; G) (z : 1) {(s — er(zl;;:)_ I+2) zfrz} - (C19)

=

In Case 4, the non-conformal currents exist only for odd values of s. The trace t(,_ ;_9)
is given by (C.16) with the coefficients dj and gj given by

g = i(~ >kdo+lsfil§;<—1>’“(j) (i) fth o) o

= 41(_1)szk; <?> (z j 1> {(s —1 i(i;zsl)— [+2) z+l2} - (C200)

l

We observe that the coefficients ¢, and gy in eq. (C.19a) and (C.19b), respectively differ
from similar coefficients in (C.14a) and (C.14b) by a factor of i. Hence, for even s we may
define a more general supercurrent

s—1
_ (g _1\k S o S— k 1-c
=72 () (k) (k +1) Ol 1 (Ol OG0 (C.21)

where C% is a generic matrix which can be split into the symmetric and antisymmetric
parts: C% = S% +iA%. Here both S and A are real and we put an i in front of A because
J(s,s) must be real. From the above consideration it then follows that the corresponding
more general solution for ¢(s_y ,_9) reads

s—2
t(s—2,5—2) = (CM)" ch 851,1)¢m 8?1f )
k=0
s—2 o
_|_( ) CMUZCkallwz asllk)QwaJ
k=0
s—2
+ (CMM)Y nga W O 1ga (C.22)
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where [S, M] = [S,M] =0, {A, M} = {A, M} =0 and [M, M] = 0. The coefficients ¢}, and
gr are given by eqs. (C.14a) and (C.14b), respectively. Similarly, the coefficients dy and g
in (C.20a) and (C.20Db) differ from similar coefficients in (C.18a) and (C.18b) by a factor of
i. This means that for odd s we can define a more general supercurrent (C.21), where C¥ is
a generic matrix which we can split as before into the symmetric and antisymmetric parts,
C¥ = S% 4+1A%. From the above consideration it then follows that the corresponding more
general solution for ¢(,_o ;1) reads

s—2

l(s—2,5-1) = (CM)Y de 851,1)1#” aaf ),
k=0
5—2 o
+ (=1 (CM)7 Yy Oy 1y Oy
k=0
s—2
+ (CMM)7 Y~ g1, 050k 01 ¢ (C.23)
k=1

where {S, M} = {S,M} =0, [A,M] = [A,M] = 0 and [M, M] = 0. The coefficients dy,
and gj are given by egs. (C.18a) and (C.18b), respectively.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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