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1 Introduction and conclusions

Any conformal field theory (CFT) is characterized by two pieces of information. The
first one is the set of its primary operators and their conformal dimensions which can be
read from the two-point correlation functions. The second piece needed is the structure
constants coefficients which specify the operator product expansion (OPE) of two primary
operators. The knowledge of all two and three point correlators of primary operators is
enough to determine through the OPE all higher point correlation functions. Usually, the
aforementioned correlation functions are calculated as a series of one or more parameters,
the couplings of the theory, that is they are calculated order by order in perturbation
theory. It is a rare occasion when one is able to calculate the observables of the theory at
large values of the coupling constants or as an exact function of the couplings. One such
occasion is that of the maximally supersymmetric gauge theory in four dimensions, N' = 4
Super Yang-Mills (SYM), one of the most thoroughly studied CFTs due to its duality with
type IIB string theory on AdS5 x S° [1]. Exploiting the integrable structure of the theory
an intense activity took place culminating in the determination of its planar spectrum for
any value of the 't Hooft coupling A. A variety of integrability based techniques were used
to this end, from the asymptotic Bethe ansatz to the Y-system and the quantum spectral
curve (for a review on these techniques see [2]).

Much less is known about the structure constants of the theory. The problem of de-
termining them is much harder than that of the spectrum since the exact form of the



eigenstates of the dilatation operator is also needed [3-5]. Systematic studies of the struc-
ture constants involving non-protected operators were performed in [6-9] by computing the
corrections arising from the planar one-loop Feynman diagrams and taking into account
the correct form of the one-loop eigenstates [4, 9]. Alternatively, one may use the string
theory side in order to extract information about non-protected OPE coefficients. However
this is intricate because the supergravity limit can not be used since all non-protected oper-
ators acquire large anomalous dimensions and decouple. A particularly interesting limit in
which one can extract information about structure constants involving non-BPS operators
is the BMN limit [10]. In that limit one focuses on operators with large R-charge which are
dual to string states propagating in the PP-wave limit of AdS5 x S°. Different proposals
for the cubic string Hamiltonian had been put forward in [11-13]. Finally, the issue of
how to correctly compare string amplitudes obtained from the PP-wave cubic Hamiltonian
and the structure constants of the N' = 4 SYM was settled in [14, 15] by combining a
number of results available from both string and field theory [16-19]. More recently, sev-
eral integrability-based, non-perturbative in nature, methods for bootstrapping three-point
correlators were developed [20-23]. In addition, the leading term in the strong coupling
expansion of three-point correlators involving three heavy states in the SU(2) and SL(2)
subsectors was obtained in [24, 25] by calculating the area of the corresponding minimal
surface through Pohlmeyer reduction. Another interesting case is the one where the three-
point correlator involves two non-protected operators dual to classical string solutions and
a light state. In this case the strong coupling result for the three-point function takes the
form of the vertex operator of the light state integrated over the classical surface describ-
ing the free propagation of the heavy state from one point on the boundary of AdSs to
another [26-30].

Recently, the identification of integrable deformations of the original AdS/CFT sce-
nario has attracted a lot of attention. In these attempts it is usually supersymmetry that
is partially or completely broken. However, there are cases where the deformation is more
radical. One such case is the correspondence between a certain Schrodinger spacetime and
the null-dipole deformed conformal field theory [31]. The theory on the gravity side was
firstly derived in [32]. It is a solution of the type IIB equations of motion and can be
obtained from the AdSs x S° background through a solution generating technique known
as T-s-T transformation. One performs an Abelian T-duality along one of the isometries of
the sphere S° followed by a shift along one of the light-like directions of the AdSs boundary
and then performing a second T-duality along the dualized coordinate of the sphere. The
holographic dual is non-supersymmetric and realizes the Schrodinger symmetry algebra as
its isometry group. The field theory dual can be obtained by introducing in the N' = 4
SYM Lagrangian the appropriate x-product which can be identified with the correspond-
ing Drinfeld-Reshetikhin twist of the underlying integrable structure of the undeformed
theory [33, 34]. As a result, it is believed that the deformed theory is fully integrable with
its integrability properties inherited from the parent N'=4 SYM.

Unlike the original AdS/CFT scenario very few observables have been computed in the
deformed version of the correspondence. In [35, 36] the two, three and n-point correlation
functions of scalar operators were calculated using the gravity side of the correspondence.



We should stress that all these operators correspond to point-like strings propagating in
the Schs x S® background. Extended dyonic giant magnon and spike solutions were found
in [37]. Their existence is in agreement with the fact that the theory is integrable. In the
same work an exact in the coupling A\ expression for the dimensions of the correspond-
ing gauge operators was conjectured.! Furthermore, in the large J limit agreement of
this expression with the one-loop anomalous dimension of BMN-like operators was found
providing further evidence in favor of the correspondence. On the field theory side, it
is only the one-loop spectrum of operators belonging in a SL(2) subsector that has been
studied [39] finding agreement with the string theory prediction for the anomalous dimen-
sion of certain long operators (see also [40]). No higher point correlation functions have
been calculated.?

In the present paper we will use the Schrodinger background in order to calculate,
holographically, three-point functions involving two heavy operators and a light one. The
light operator will be chosen to be one of the modes of the dilaton while the heavy states
will be either generalizations of the single spin and dyonic magnon or the single spin and
dyonic spike solutions constructed in [37]. We will also calculate the three point function
in the case where the heavy operators are two novel string solutions presented later in
this work. As mentioned above the existing results in the literature are at the level of
supergravity, in the sense that the corresponding states participating in the correlator
are point-like and reduce to BPS states in the limit of zero deformation, i.e. u = 0. In
contradistinction, the heavy states we will be using are extended string solutions which
tunnel from one point boundary of Schs to another. These are precisely the points where
the dual field theory operators will be situated. Our results provide the leading term of
the correlators in the large A expansion and are in perfect agreement with the form of
the correlator dictated by non-relativistic conformal invariance. Unlike the three-point
functions in A/ = 4 SYM conformal invariance of the non-relativistic theory is not enough
to fix completely the space-time dependence of the correlator. Instead one is left with
an undetermined function, called the scaling function, of the single conformally invariant
variable that can be built from three space-time points. Our calculation will determine
this function F'(v1s) at strong coupling.

A number of extensions and generalizations of the present calculations are possible.
One may try to replace the dilaton with another light operator such as the R-current or
the energy-momentum tensor 7),,. The analogous calculation in the case of the original
AdS/CFT scenario can be found in [41]. In order to be able to perform such a calculation
one should first find the corresponding bulk-to-boundary propagators in the Schrodinger
background. Another possibility would be to focus on the field theory side and try to
identify the field theory operators which are dual to the string solutions we are using in
this work and calculate their correlation functions at weak coupling possibly employing
the integrable structure of the theory. In particular, it would be interesting to focus on
operators which can be described by coherent states since in this case one may be able to

!Giant-magnon like solutions with a different dispersion relation to that of [37] were studied in [38].
2Here we refer to calculations performed in the null-dipole CFT whose Lagrangian is obtained by de-
forming the N’ = 4 SYM Lagrangian with the appropriate *-product.



compare the weak and strong coupling results along the lines of [42, 43]. Finally, it would
be interesting to employ integrability in order to calculate three-point correlation functions
involving three heavy operators or one heavy and two light operators both holographically
and at weak coupling.

2 Classical string solutions

In this section we will write down and analyze the four classical string solutions, which in
the following section will be used in the calculation of the three-point correlation functions.
In subsection 2.1 we review the dyonic magnon and dyonic spike solutions, in 2.2 we review
the single spin giant magnon and in 2.3 we review the single spin spike solutions. These
solutions were initially presented and studied in [37]. To be precise, we will consider
slight generalizations of the string solutions presented in [37] because these solutions will
have a clear interpretation as strings tunneling from one point of the boundary to another
and as a result will be of immediate use in the calculation of the three-point correlators.
Subsequently, in subsections 2.4 and 2.5 we present two new classical string solutions.
The solution of 2.4 is a generalization of the spinning BMN-like string solution that first
appeared in [39]. In 2.5 we present a completely new solution, with an oscillating behavior
along the holographic direction which does not have an undeformed analogue.
We consider the following consistent truncation of the 10d Schs x S° metric?

2
ds? = — <1 + Z4> dT? + % (2dev +dZ* +dX* - X2dT2> +ds%s  with

dsgs = dn* + sin® ndyp? + cos® nde3 (2.1)
that is supplemented by the following B-field
B:ﬂdT/\<sin2nd<p + cos’nd ) (2.2)
72 1 naysz) . .

2.1 Dyonic giant magnon and dyonic single spike

Here we review and extend the dyonic giant magnon and single spike solutions that were
originally presented in [37],* since we intend to use them in the three-point function cal-
culation. We consider the following ansatz, for both solutions,

—

2

X " o
T=kT, V:aT—TOsinZ{T—i—Vy(y), X = Xy sinkT,

1 1 1
Z=Zy, =350, eip=g ket (@) E0,0),  (23)

3With respect to the notation of [37] for the S® we have performed the following change of variables

6=2n =1+ p2 P=p1—p2.

More details about the consistent truncation can be found in appendix A.
4The solutions of [37] have X, = 0.



where we have defined the variable y as
y=co—dr. (2.4)

The explicit expressions for the functions V,(y), 0,(y), ¥, (y) and ®,(y) as well as for the
constants x and Zy can be found in [37] and it is where the interested reader is referred to.
The new dispersion relation for the giant magnon reads

- 2
X? A
(E—QOM> —p2M? - = J§+7Tsin23 (2.5)

while for the single spike

v 2

A X 1
Jf—J%zﬁsm2 [W (E—OM—MM>—A90

7 ; > (2.6)

Setting the constant XO to zero, i.e. )ZO = 0, we obtain the dispersion relations of [37].

In order to compute the three-point correlation function we need to Euclideanize the
world-sheet metric and then rewrite the solution (2.3) in Poincare coordinates. To this end
we have used the coordinate transformation relating the global to the Poincare coordinates
which can be found in [44]. Namely,

—

Z -
xTr =

+ —
" =tanT, x =V _—
cosT cosT

<22 + XZ) tanT', z= (2.7)

1

2
where (21,27, 2, ¥) parametrize the space in Poincare coordinates. Performing these two
steps we arrive at the following solution

X T T Z
X=5 tanh K7, vt =i 2 tanh w7, = \/; coshO/@T ’
i X e 4 +Vi(y) (28)
T =—= — ——| tanhk (xe’ )
5 0 5T T T yy7
1 i 1
U=§9y(y)a 901/2:§(W¢1W¢)T+§(‘I’y(9)i®y(y))

where the definition for y becomes
y=co—idr (2.9)

due to the Wick rotation performed to the world-sheet time. To obtain (2.8) we have also
redefined X; as X, = —%X. The complex solution (2.8) describes a string propagating
from the point x(7 = —o0) = —% and z*(7 = —00) = —i T of the boundary -which is
located at z = 0- to another point of the boundary with coordinates x(7 = 00) = % and
(T =00) =1 % The two heavy field theory operators of the dual CFT will be inserted
at precisely the aforementioned points.

At this point an important comment is in order. Notice that due to the relation z* (7 =

+too) = i % the operator insertion appears to be at points of the boundary where the



coordinate (7 = +00) takes imaginary values. However, the dual conformal field theory
lives in a spacetime with real coordinates. In order to fix this issue one can analytically
continue the quantity as follows T — —¢T. A similar analytic continuation was performed
for the other separation variable X. Having done this the operator insertion points are now
real 1 (7 = £00) = + % This analytic continuation amounts to replacing the conformal
invariant ratio v1o defined in (3.5) with iv2 in all formulae from section 3.2 on. Finally,
let us note that an identical analytic continuation T — —¢T should be performed to all
solutions presented in the rest of this section.

In what follows we will also need the Lagrangian densities evaluated on the classical
solutions. These will be useful in the calculation of the corresponding three-point functions.

Computing the Lagrangians on-shell we obtain the following expressions®
GM . \/X Wep Wy av
[’on sh2esll =1 91 1 — 02 (1 + szp) U(y) (2.10)
and
A 20 — _
27 2 1—02  av (wy+wy)

where the explicit expression of the function u(y), both for the giant magnon and the spike
solutions, can be found in [37].

2.2 Single spin giant magnon

Here we review and extend the single spin giant magnon solution that can also be obtained
from the dyonic one, once we set the conserved momentum Js equal to zero, i.e. Jo = 0.
The ansatz we consider is the following®

—

2

X - -
T=kT, V:,LLQmT—TOSiDQHT—I-Vy(y), X = Xy sinkt,

1
Z=y]—, n=§9y(y), pr=wrT—pumo+P(y), p2=—pmo (2.12)

where y is defined in (2.4). As in the dyonic case [37], we rewrite the differential equation
for 6,(y) in terms of a new function u(y) = cos? (l 0,) as

(u)?
2

where the two constants g and 34 have the values

+W(u)=0 with  W(u) = —2(Bsu+ fa) u? (2.13)

c? w? w?
B = @ ey = 702(1 Y. <0 (2.14)
ﬁ4:(,umd—cw)Z—cg,uzmz:(,umv—w)Q—,uzmQ (2.15)

2 (c? —d?) 2 (1—02)

For the giant magnon solution and for the new classical string solution we use the notation d = vec.
For the single spike solution we use the notation ¢ = vd. In all cases 0 < v < 1.

5Tn all the expressions (for the functions and the constants) we present in the current and in the following
subsections, the boundary conditions have been taken into account.



and the prime denotes differentiation with respect to y. In order for 8, to be positive’ we
constrain the values of w as follows

w<—pm(l=v) or w>pum (1+v). (2.16)

The solution of equation (2.13) is known from the analysis in [37] and is given by

u(y) = R (2.17)

86| cosh? (v/B1y)

The equations of motion give the following expressions for V;(y) and ®; (y)

Vi) = =y ) (2.18)

and
_pm n ;Lm(l —02) +ow  u(y)

() c c (1 —02) 1—u(y)’

(2.19)
The value of & is determined by the Virasoro constraint G, (X# X"+ X" X") = 0 as follows
K2 =p7m? (1+0%) —2umow +w?. (2.20)

As a result the dispersion relation of the solutions becomes

— 2
2
( —X0M> —MQMQ—J:ﬁsing. (2.21)

2 T

This dispersion relation can be derived, as usual, by finding the relation among finite com-
binations of the infinite conserved charges E, J and M. Euclideanizing (2.12) and rewriting
it in Poincare coordinates we obtain that

T T 1

x == tanhkr, 2" =i= tanhkr, 2= B2 ,

2 2 2m cosh kT

i [k X2

-__ Y\ _ h . 9
x 5 [m 2T} tanh kT +ip“m7 + Vy(y),

1 .
=50, w1=iwr—pmo+y(y) & p2=-pmo, (2.22)

where now y is defined in (2.9). Computing the Lagrangian on shell it is straightforward
to obtain

o VA &t o pmo
on shell — 21 1 — 2

) u(y). (2.23)

Notice that setting wy = wy — 2pumv with wy = w and a = p?m in (2.10) the on-shell

w

Lagrangian of the dyonic magnon becomes that of the single spin giant magnon (2.23).

"Otherwise the coordinate 0(y) will have oscillatory behavior as y — oo and this is not the expected
behavior for the giant magnon.



2.3 Single spin single spike
Here we review and extend the single spin single spike solution. This solution can be found
by considering the following ansatz
X2 . o
T=k7t, V=ar-— TO sin2kt +Vy(y), X = Xosinkr,

[ 2dkp? 1
Z: —_— :—9
dOé—C(A)/,L’ n 2 y(y)7

l/a cw l/a cw
_ - Z_z= P =—— (=== 2.24
P1 M+2<u d>0+ y(y) & @ 2<u d)cr, (2.24)

where y is defined again by (2.4). After some algebra the equations of motion lead to a
differential equation analogous to (2.13) but with the constants taking the values

2d2 2
Bo = ——— ) (2.25)
w2 (c? = d?) pd? (1= v?)
2 2
Bi = —— a >0, (2.26)

(&= 3) R (1= 0?)
Since 4 > 0 there is no constraint on the values of w, contrary to the giant magnon case,
and the solution for u(y) is given by (2.17), with 8¢ and S4 defined in equations (2.25)
and (2.26) respectively. The expressions for V;(y) and @} (y) take the form
a
V(Y = ———se 2.27
(W) = =) u(y) (2.27)

and

y(y) = % - pd (CIU— v?) 1 ﬁ(Zgy) ' (2:28)

The dispersion relation of the single spin spike becomes

X3 1

7T VA 2
As we did in the giant magnon cases the next step consists of euclideanizing the world-sheet
time of the solution (2.24) and rewriting it in Poincare coordinates to get

X T drp?T 1
x = — tanhk7r, 2t =4i= tanhsr, 2= il .
2 2 ad— cpw cosh kT

_ i [ 2drp? X2 , 1
z” =3 [adc,uw_QT} tanhwr +ia71+ Vy(y), nziey(y),

. l/a cw l/a cw
gplzzw7+2<ﬂ—d>a+¢>y(y), & @2:—2<M—d)a (2.30)

where now y is defined in (2.9). Computing the Lagrangian on shell we have

SS 1s V12 ( ,uvw> u(y)
L — il 4 — . 231
on shell Z27r2u2 1 o 1 1 — 2 (2.31)

Notice that setting wy = % with wy = w, the on-shell Lagrangians of the dyonic and single

spin spikes, namely (2.11) and (2.31), are identified.



2.4 Spinning BMN-like strings

In this section, we will present a solution generalizing the BMN-like solution of [39]. Our
solution is also winding one of the isometries of the S° with the winding number being
n € Z. In the limit of zero winding n = 0 and Xo = 0 we obtain the spinning BMN-like
solution that was presented in [39].

To start we consider the following ansatz for the spinning BMN-like solutions

X2 wno > o
T=krkr, V=p*mr—="Lsin2k7— —————, X = X, sinkr,

m(1-2)
PR LS S
"oewm

pr=wT+no & pa3=0. (2.32)
In order for Z, in (2.32), to be real the parameter n should satisfy the constraint n < pm.
The G, (X* XY + X' X'V) = 0 Virasoro constraint requires that

K2 = w? + p?m? (2.33)

while the parameters of the solution are related to the conserved charges as follows

72
E—%M:ﬁ/ﬁ}, J=Viw & Mz\[\(fn—Z) (2.34)

As a result the dispersion relation is given by the following expression

2

2\ n
E—70M = J? 4t M+\FA; . (2.35)

Euclideanizing (2.32) and rewriting it in Poincare coordinates we have

J’_

T
X = 5 tanh kT, =« :iE tanh k7,

Eo(y n\ ! X2
m um 2T

T o
p1=iwT+no, z:\/ﬁ <1 n> (2.36)

2m wm cosh kT

tanh k7 4+ i > m T —

Subsequently. we compute the Lagrangian on shell, to obtain the following result

A
328 = i Y2 . 237

Note that for the BMN-like solution of [39] n = 0 and as a result the on shell Lagrangian

becomes zero.



2.5 New classical string solution

In this subsection we will describe a new classical string solution that does not have an
undeformed analog. We start by writing the ansatz we will use and is inspired by the giant
magnon solution of [37], with the novelty that now the function Z is not a constant but a
function of the worldvolume coordinates, that is

v 2

X
T=xr1+T,(y), Vz;fmT—Tosin2<nT+Ty(y))+Vy(y), Z = %Zy(y),
= S T
X:Xosm</<;7+Ty(y)), =g o1 =wr+Py(y) & p2=0 (2.38)

where y is defined in (2.4). Note that if we set T, =V, = &, = Xo =0 and Zy =1 in the
solution (2.38) we get the spinning string solution of [39]. As usual the functions T (y),
Vy(y), Zy(y) and @,(y) are functions of o and 7 and they will be determined through the
equations of motion and the Virasoro constraints.

Following the same line of reasoning as in [37] and fixing the integration constants in
such a way that if we set Z, = 1 we obtain the spinning string solution of [39], we have
the following first order differential equations for the functions 7} (y), V; (y) and @ (y)

dk

— 2
T{/(y) T2 g2 (Zy o ) ) (2.39)
1 9 d K2 Z;
cm 1

From the two Virasoro constraints, we obtain a first order differential equation for Z?’J
(which is actually consistent with the second order differential equation coming from the
variation along the direction Z)

2
N2 dr 9 2cpmuw 9
(Zy) T2 — 2 (Zy o 1)] [ dr2 Zy] (2.42)
as well as the following algebraic constraint
K2 = p?m? +w?, (2.43)

Since the r.h.s. of (2.42) should be positive, the value of Z, is limited in the following in-

2
0< Zy < Zpit = ,/%. (2.44)

As can be seen from (2.42) as soon as we set the deformation parameter to zero, i.e. u =0,

terval

the only acceptable solution is that the Lh.s. and the r.h.s. of (2.42) vanish independently,
i.e. Z, = 1. In that way we are led to the spinning BMN-like string solution of [39].

~10 -



In order to solve the equation of motion for Z, (2.42) we need to specify whether
Zgrit > 1 or Zgriy < 1. In what follows we will solve the equation in the interval

1< Zy < quit (245)
since when Zgi; < 1 the variable y cannot range to +oco. Integrating (2.42) and imposing

y:O = Zy: qrit
y=+o00 = Z,=1 (2.46)

we obtain the following solution

Z, rit
Zy(y) = 4 (2.47)
dk ZQI,.1 -1
14+ (ng — 1) tanh? [CQ—qd; y]
Plotting the above solution it is easy to verify that Z, takes the value 1 at y = —oo reaching

its maximum value Zgjt at y = 0 and Zg;it and goes back to Z, = 1 at y = oo, with Z?’/ >0
for y € [~00,0] and Z;, < 0 for y € [0, +00].

Now we can calculate the conserved charges for the new classical solution and con-
struct the finite linear combinations of those conserved quantities that will lead us to the
dispersion relation. In the following we will also use the following change of variables

1 dZ oo 2 [Zait 7
do =~ /y = / do = / ) /y : (2.48)
c|Z, cJ1 Zy|

—0o0

Using the above change of variables it is possible to calculate the three conserved charges &£,
M and J.8 All these charges diverge and it is possible to express them in terms of a non-
convergent integral. That integral should be eliminated among the conserved quantities in
order to construct the dispersion relation. The non-convergent integral reads

quit dé’
Taiv = 2.49
w= [ o (2.49)

\/ Zérit - 52

The conserved charges are given by

XQ 2(1—’02) Qme qult_l
E-2 M= div (2.50)
2 K2 Zgrit
2m (1 —v? 2m qult 1
M= L )dwnw 72 (2:51)
qrit
2w (1 —10v?
KU

8We use the notation £ = E/T, M = M/T and J = J/T.

- 11 -



Using the algebraic constraint (2.43) we eliminate the non-convergent integral and construct
the following dispersion relation

2
VA 2umwo _02] _
wM

o \V 2m? + w?

12 m?2

\f 2um )

E—— M+
271' VW w?

2
] =J%. (2.53)

In order to write the dispersion relation in terms of conserved quantities we introduce the
following ratio of the parameters p, m and w that we denote by x and which repeatedly
appears in (2.53)

nm

—_—. 2.54
. (254)
Using linear combinations of (2.50), (2.51) and (2.52) it is possible to find an expression
for x in terms of £, M and J which reads

IV = ( ——M)_ ;
Jx—pM VS

In terms of x, the conserved charges and the velocity v of the soliton the dispersion relation

(2.55)

becomes finally

29 2 2
X 2
—JMJFIA ! —X—l— uMJr£ 21— y2| = J%. (2.56)
2 /14 x? v

Euclideanizing (2.38) and rewriting it in Poincare coordinates we have

X T
XZEtaHh(HT—’iT), +—z§tanh( kT —iTy) ,
. X2
x_:—% [;Zi QT] tanh (k7 —iT,) +ip?mt+V,,
T Z
o1 =iwT+®y, P i y , (2.57)

2m cosh (kT — i Ty)
where now y is defined in (2.9). Computing the Lagrangian on shell, we finally have that

VA Zi=1x(x—v) ,
on shell — —Zﬁ Zg 1— 02 w. (2.58)

LS

3 Three-point correlation functions

In this section we will evaluate the leading term in the semiclassical expansion of the three
point function involving the dilaton and two heavy operators. The two heavy operators
will be dual to each of the classical solutions presented in the previous section.

In general, as discussed in [26-28] the ratio of the three-point correlator of a light
state and two heavy ones over the two-point function of the heavy states is given in the
semiclassical limit by

G3(Z1, T2, T3)

2 )
G (21, 72) /d O'VL( (1,0), Z(1,0) — &3, v~ (1,0), X*(T, 0)) ] (3.1)
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Here V7, is the vertex operator of the light state and z(7,0), Z(7,0), 7 (7,0) and X*(,0)
with ¢ = 1,...5 denote the ten coordinates of the classical string solution tunneling from
the point z; of the boundary -which is at z = 0- to another point Zs of the boundary,
where Z; = (t;,%;). This tunneling solution is the string theory dual of the corresponding
field theory two point correlator at strong coupling.

The vertex operator of a generic light state will depend on the deformation parameter
p and its form is not known for the Schrodinger background we are using. It would be
interesting to construct systematically these vertex operators. However, there is one case
where the vertex operator is actually known, even for the deformed background. This is
the case of the dilaton since the latter couples universally to all other fields of the theory
through the term [ d2ae@GW(X)8X“5X” + .... In this case the ratio of the three to
the two-point function takes the form

CUTLIn ) _ [ g 00700 K Giea(roimn) LS5 (32)
where all quantities appearing in the integrand are evaluated on the classical solution
sourced by the two heavy state vertex operators. It is this classical solution that correspond
to the two-point correlator. The exponential in (3.2) comes from the fact that the dilaton
is expanded as a sum of the eigenfunctions of the mass operator a.k.a. number operator
which is a good quantum number in the Schrodinger backgrounds. The relevant for the

dilaton expansion is

o(z,T,27) = ZeiM3 T by (2,T) (3.3)
M3

Furthermore, K (Z¢lassical(T, 0); Z3) is the bulk to boundary propagator of the specific mode

of the dilaton which has momentum Ms in the 2z~ direction and £classical

ool 18 the Lagrangian

density of the string which is evaluated on the classical two-point solution.

An important comment is in order. Would one like to calculate the three-point cor-
relator not for a single mode characterized by M3 but for the full dilaton field appearing
in the left hand side of (3.3) one should be able to evaluate the three-point correlator for
each mode separately and subsequently sum over Ms3. This means that one should evaluate
the three-point correlator for values of M3 that are comparable and bigger than the mass
eigenstate M of the heavy state. But in such a situation the approximation M3 < M does
not hold any more and the method that we use in this paper to calculate the three-point
function is no more applicable since the light state can no longer be considered as a small
perturbation and its absorption from the heavy state will considerably alter the latter.
As a result, this fact forbids one to check the expression relating the three-point function
coefficient to the derivative of the scaling dimension w.r.t. the coupling A which holds in
the original AdS/CFT scenario unless one is able to compute the correlators for arbitrary
values of M3. We believe that the aforementioned relation should hold in the present case
also and it would be interesting to perform the calculation of the three-point function for
arbitrary values of M3 in order to verify this.

~13 -



3.1 Schrodinger symmetry and the propagator for the scalar field

In this subsection, we briefly review the analysis presented in [35, 36]. In a quantum
field theory possessing Schrodinger symmetry the two-point function of scalar operators is
completely determined up to an overall constant and takes the following form

(3.4)

Ga(Z1,%2) = C 5 Mz Ot — 1) exp [
2 t1 — to

iMl (fl — 52)2
Aq,A (tl _ t2)A1 :|
where Z; = (¢;, %;) and (M;, A;) denote the non-relativistic mass and the scaling dimension
of the scalar operator.
When we have three spacetime points, namely Z;, 2 and 3, it is possible to construct
the following kinematic Schrodinger invariant

1 x%z mgs 5”%3)
vg=—5 (242813 3.5
2 (tlz tog  t13 (3:5)

where t;; = t;—t; and x;; = (&; —Z;). Then, the functional form of the three-point function
of scalar operators is fixed up to a scaling function F(v12) of this Schrodinger invariant

_1A _ 1A 1A
Gg(jh j27 j3) = 5%?+M2 9(2‘,‘1 — tg) 6(752 — tg) t132 13,21,:232 23,1t122 12,3
M = = 2 M = = 2
X exp LM, (71 — 7) 1My (75 — Ts) F(v12) (3.6)
2 t1 —t3 2 to — i3

where we have introduced the following notation A;;, = A; + A; — Ag. This is to be
contrasted with the case of the original AdS/CFT scenario where the spacetime dependence
of a three-point correlator involving scalar fields is fully determined by conformal invariance.

We aim in computing the three-point function between two heavy operators and a light
scalar operator. The heavy operators will be located at the spacetime points Z; and To
while the light operator at the spacetime point Z3. In order to simplify the computation
we consider the following assumption regarding the time ordering of the operators

t3<t1 <ty & t3— —00. (37)

Furthermore for the semiclassical approximation to make sense we impose the condition
that the mass eigenvalue of the light should be much less that the corresponding mass
eigenvalue of the heavy states, that is

Y
M3 < M1 & M2 ﬁ M1 ~ —MQ . (38)

Normalizing the three-point function of (3.6) by dividing with the two-point function (3.4)
and using (3.7), (3.8) and A; = Ay we arrive to following expression

G3(%1,%2,73) _ < t12

A3
2
) M F
G (71, Z2) 113 t23> P [Z ' 2112] (v12)

~ (Va)A F (v12), (3.9)

—t3
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where in the last equality we have used the fact that ¢35 < t; < t5. Furthermore, Ag is the
conformal dimension of the light operator

Az =2+ /44 p2 M2 (3.10)

F(Ulz) = exp [’l M1 Ulg] F(’Ulg) . (3.11)

and

The strong coupling computation should verify the spacetime structure of (3.9) and predict
the expression of the scaling function F' (vy2).

The bulk to boundary propagator for the scalar field, here the dilaton modes, is given
by the following expression

o uMs\Az—1,—LinA As 2 2
i(B52)Rs e 2o P 8 i g Ft@—zg)
K(z,Z,t; @3, t3) = —2 O(t —t s HMs =G5y
(271‘7 ; L3, 3) WP(A3—2) ( 3) <t—t3> € 3
=~ —_— 3.12
mI'(As —2) <—t3) (3.12)

where to obtain the second line of (3.12) we have used (3.7). It is exactly that expression
of the propagator that we will use in the next subsections to perform the three-point

function calculation.

3.2 Three-point function of dilaton with giant magnons

Before presenting the actual computation, we collect the essential components for the
calculation of the three-point function of two giant magnons, either dyonic or single spin,
and the operator dual to the dilaton. In particular, we rewrite in Poincare coordinates
the dyonic and single spin giant magnon solutions of (2.8) and (2.22) respectively by using
ratios of conserved quantities®

T E V12 1 _ 7 E V19 L
: \/2 (JWjL 2>Cosh/<7' & = 2 (M 2) anh k7 + i m7 + Vy(y)
(3.13)
where the function Vy(y)’lo is given by the following expression
wWo . D
Vi - T — {t h 1}
y(Y) M oot 2pmo sin | tan ( 543;)—1—

—uo sing [tanh( B4 y) + 1} . (3.14)

In the last line of (3.14) we have used the fact that

-1
We Jo 1 J2
- 5 4 =0 3.15
Wy +2pumu 2Tsing+2 T2 sim2§+ (3.15)

9Notice that even if both E and M are infinite quantities, their ratio is finite.
19T6 obtain (3.14) one needs to integrate V, (y), whose explicit expression appears in [37]. We have fixed

the unimportant constant of integration by setting Vy(—o0) = 0.
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to write the quantity under the square root as a function of conserved quantities. Note
that Jy is a finite quantity. Setting Jo = 0 (or equivalently wy = wy, +2pumo) in (3.15)
fixes § = 1 and from (3.14) we obtain the expression for the function V,(y) in the case of
the single spin giant magnon solution. Furthermore, we have used the fact that t3 — —oo
to write % as v12 (see (3.5) and keep in mind that t3; = T and 22, = X?). At this point
it should be apparent why we had to generalize the solutions of [37]. Those solutions have
X =0 and this will make the invariant v;2 = 0. Had we sticked to the solutions of [37] all
the dependence of the three-point functions on v15 would have been lost.

Now we are in the position to write the expression for the normalized three-point
function of the dyonic giant magnon by inserting the appropriate solution in the general
expression for the three-point correlator (3.2) to get

- (Mg As=l —irAg Az A
G . \F)\ Wep Wy nmuo ¢ 2 € E V12 | 2 VAt 3
G el T 5 w2 D) o
2 Ti-v Wy 22 1T(As—2) -3
(3.16)
where T is given by the following double integral'!
1 e’i Msx—
Iovm = — /dey u(y) . 3.17
c (cosh kT)2 (@) (8.17)
The two integrals can be performed independently and we can write
Tovm =T 1o (3.18)
with
+00 €Xp {% (% — %2 tanh kT — M2mMgT}
7, = / . dr (3.19)
—00 (coshk 7)73
and
1 oo . 7 (1 — 1)2) : s P
Ty =— / u(y) e MV gy = — -/ <e’2“‘M3 sy — 1) . 3.20
2= ) (y) U v (3.20)

The integral in (3.19) can be evaluated analytically using the approximation tanh y ~ y

2831 11 _ 1 _
I~ B |: (As —EgMm), = (As + :GM):| (3.21)
K 2 2
with
— 1 E V12 2 E V12 -1
Eem =Mz (= - 2 ) —p2Ms (= + 22 . 22
GM = 5 23 <M 2 > M \qr T (3.22)

"For the dyonic giant magnon the expression for the function u(y) can be found in [37], while for the
single spin giant magnon it is given in (2.17).
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Combining (3.16) with (3.18), (3.20) and (3.21) we arrive to the following expression for
the three-point coupling for the dyonic giant magnon case

Ag

~ \/X Aa_2 Aa—2 6_%WA3 E vi2\ 2
Flon) =i 575 w2 My A(M+2>

27T (Ag — 2)
2
(37 + %)

(1-9) (1-v?) ]
B [; (Asz —Egm) % (Az + EGM)} (6_2i“M36 sinf — 1) (3.23)

1+

1—|—5+2v\/gcos§

where F' is the scaling function defined in (3.11). The Schrodinger invariant ratio o
appears in several places in (3.23). It appears in the beta function through its dependence
on =, as well as in the part of the prefactor (% +732) %. This is the string prediction for the
leading term in the large A expansion of the scaling function F. Notice that the spacetime
dependence in (3.16) is the one dictated by non-relativistic conformal invariance (3.9).

In order to express the ratio % as a function of conserved quantities we have used the

following expression'?

2

oD 1 opum
sm2§:—1+ﬁ v(1+5)+2T¢(1—02) . (3.24)

Finally, notice that in the dyonic giant magnon solution there are two finite conserved
quantities, namely p and Jy, and we have expressed the three-point coupling in terms of
those quantities, together with the finite ratio of £ and M.

Setting § = 1 (or equivalently Jo = 0) we obtain the three-point coupling for the single
spin giant magnon case

~ . \/X _ Aae 6_%WA3 FE V12 i ,u2
Flow) =ig 5 u 2M332A3<M+2> LR m)
22 T(A3 - 2) (37 + %)
1 1 . .
B3 (A3 —Eam), 5 (As + EGM)} (672Z“M3 sinf 1) : (3.25)

Before closing this section lets us make the following comment. As pointed out in [45],
in order to extract the correlation function of energy eigenstates of the dilatation operator
in the strong coupling regime of the correspondence one should integrate the light vertex
operator not only over a single classical string worldsheet but also over the moduli space of
classical string solutions, that corresponds to the heavy states under consideration. How-
ever as we will argue, in our case this is completely equivalent to ignoring the integration
over the moduli space since the latter integration trivializes, as it happens with the first two
examples presented in [45]. To see this consider the following modification/deformation of

?In order to derive (3.24) we write sin® 2 = "l

5o7 and substitute the values of the constants from [37].
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our classical string solution (2.8)

X T T Z
- = h +t ;= h =/ =
b d 5 tanh K7, x 1 5 tanh k7, z 9 coshror’
i X2
r7 = —- |Z3 — | tanh kT +ia (T — 10) + Vy(9), (3.26)
2 2T
1 B 1 1 - -
=3 0y(9) Y2 =5 (wy wg) (T = 71/2) + ) (Uy(9) £ Py(y)) -

where the variable y is shifted universally by 73 as follows
y=y+1idrs (3.27)

so the equations of motion and the Virasoro constraints are satisfied. In the new modified
solution (3.26) and (3.27) there are in total 4 moduli parameters, namely 79, 71, 72 & 73.

Since (as pointed out in [45]) it is equivalent to realize the moduli space of saddle
points by shifting either the Schrodinger coordinates or those of S®, we choose the latter
case. The reason behind that choice is that the vertex operators for heavy states in a
Schrodinger spacetime are completely unknown. Notice that we have also allowed for an
independent parameter 7y in the linear term of the £~ coordinate.

As a consequence the moduli space of our solutions is parametrized by 79, 7, 72 &
73 over which one should also integrate. Thus in the ratio of the three to the two-point
function in (3.2) we insert the solution (3.26) and (3.27), with an extra integration over the
moduli parameters. Notice that the contribution from the shifts by 71 and 7o will cancel
in the ratio of the three-point to the two-point correlator, as it happens with the first two
examples of [45]. This is actually a consequence of the fact that the dilaton vertex operator
does not carry any R-charges.

However, there is another modification needed. Namely, one should take into account
that the vertex operators of the heavy states are not identical for the in and for the out
state. Moreover, since there is a moduli space of saddle points (parametrized by 79, 71, T2
& 73) instead of a single one, the contribution of the vertex operators for heavy states in the
ratio (3.2) will not be just an overall factor that cancels completely with the contribution
from the two-point functions. Although the vertex operators for heavy states are not known
iMaz

it is plausible to assume that they are proportional to e times derivatives of £~ and

other coordinates. This implies that the modification coming from the vertex operators is
ei (M_OO—MOO)(—iOcTo) — 6(—i Mg)(—iOLTU) (328)

since My, = M_o + Ms. But this contribution will precisely cancel the (i Ms)(—iao)
coming from the numerator of (3.17) leaving the double integral independent of 7p. In that
way the integral Z; of (3.19) remains untouched and in the integral Zs of (3.20) we should

replace y with 3. Consequently, the averaging over all the moduli parameters will trivialize

1 T/2
lim / dTO’LQ,S =1 (329)
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and the result will be identical to what it was before and independent of the moduli
parameters. We conclude that the averaging over the moduli space trivializes and is not
relevant in our calculations.

We should mention that the same argument applies also to all the other three-point
correlation functions considered in the subsequent sections.

3.3 Three-point function of dilaton with single spikes

The calculation of the three-point function for the single spike solution (either dyonic (2.8)
or single spin (2.30)) has to be performed with special care. Integration of the on-shell
Lagrangian (either in (2.11) or in (2.31)) will lead to an infinity and for this reason a proper
normalization has to be implemented. The most natural/physical one is to subtract in both
cases the Lagrangian for a classical configuration that moves very close to the equator, i.e.
0 = m = u = 0 which represents a hoop winding an infinite number of times the equator
of S°. The remaining on-shell Lagrangians for the three-point function calculation become

s-norm \/X vw U(y)
£gn shell — 21 9 :U’¢ |:2 a—vp (O‘)d) - U.)w):| 1 — 2 (330)
and \f
. Al a powy  u(y)
1s-norm
- 1 ) . 31
‘Con shell 2 2 ,U ( + o 1 — 2 (3 3 )

After properly normalizing the Lagrangians, the computation of the three-point func-
tion, where instead of giant magnons we have single spikes, is similar to the calculation we
presented in the previous subsection. Now the function Vj,(y) is given by

_ A (it D)
Vyly) = 7 [tanh (VBay) + 1} : (3.32)
Setting J; = 0 (or equivalently wy = ;%) we obtain the expression for the function V,(y) in

the case of the single spin single splke solution. Substituting all the ingredients in (3.2) we
arrive to a double integral (in 7 and y) for the three-point function, similar to that of (3.18).
In the dyonic spike case the calculation of those integrals give the following results

28s-1 1 A LA
I~ B |- -= - = 3.33
1 B [ (80— B g (B0 + Z)] (3.3
with . .
- V12
HEgs==-Ms|———) —uM 3.34
58 = 5 Ms <M 5 ) wMs (3.34)
and )
; _ . 27 (J1+J2)
PPN Gl <1 oM T ) , (3.35)
Mz pvswg
The three-point coupling for the dyonic single spike case is given by the following expression
i Az
- ) f —3mAs E K2 J
F(U12)2_1L2MA372M3A3 23€<+1}12> 1_%1)12_72
2mcv 2 T(As —2) M 2 a3 J1
1 ; - 2n(J1+J9)
B |1 (8~ Zs9) . (A + _ssﬂ (1 _ e ) . (3.36)
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In order to write the three-point coupling in (3.36) using conserved quantities, we have
used the following expressions

oo v (wy t+wg) & Jo puwy —

1— —
%4_% 2« J1 [0}

(3.37)

Notice that in the dyonic single spike solution there are two finite conserved quantities,
namely J; and Js, and we have expressed the three-point coupling in terms of those quan-
tities, together with the finite ratio of E and M.

Setting Jo = 0 in (3.36) we obtain the three-point coupling for the single spin single

spike case
= S E v B 15
F(m?):_Zﬁ”S Mg> A3<M+2> L=
U 22 (A3 —2) Mt
1 _ 1 _ i Ms 27 J
B 3 (A3 — Egg), B (Asz + Egg) <1 —e 2 ) . (3.38)

3.4 Three-point function of dilaton with spinning BMN-like strings

In the case of the spinning BMN-like strings the computation of the three-point function
can be easily performed using the strategy we described in subsection 3.2. For that reason
we only quote the results for the calculation of the integrals Z;

2831 /X 1 _ 1 _
i~ —B|= (Ag — :BMN) , = (Ag + \:BMN) (3.39)
FE 2 2
with
—_ 1 FE ’U,12> \/ J2
ZBMN = 3 M3 ( - | — [LMg 1-— T w2 (340)
2 M2 (B + 42 M)
and 7y )
T .7 . J
Tp = —iMs€ip0 gy — L2 ( *2’”1‘435*—1) . 3.41
5 /0 e M7 do NGE T e M ( )

Notice that in the spinning BMN-like string solution all the conserved quantities are finite.
The three-point coupling is given by the following expression

- —inAs E A% M 2
F(’Ulg) = Zié MA3—1 M3A3*2 A362— < + Ulg) - 1— J—2
27 2P Ay —2) \M 2 J (E+ %2 M)
1 _ 1 — o J
B [2 (A3 — ZBMN) 5 (Az + :BMN)} (6 2miMs€gy — 1) : (3.42)

3.5 Three-point function of dilaton with new classical string solution

Following the same strategy an in subsection 3.2 to present the three-point coupling cal-
culation, we rewrite the essential components of the Poincare coordinates in (2.57) using
ratios of conserved quantities

—% {u\/l—i-X_Q ZS —ulg] tanh(mT—iTy)—i-i/fmT—i-Vy

[T Z
— 1 -2 Y 3.43
‘ 2 X cosh (k1 —iT)) (3.43)

Tr =
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where the expressions of T}, and V}, as functions of Z, can be obtained by integrating (2.39)
and (2.40) using also (2.42). Here we quote those results, initially for the function T},

Zy (3.44)

2x 72
v (1+x3) Zy

tanT,(Z,) =

and subsequently for the function V,,

4 - 2x
Vy(2,) = -2 /HXQ\/U el (3.45)

The connection between the quantities )?0 and vyg IS V19 = —)?g. Notice that in the new
classical string solution all the conserved quantities, namely F in (2.50), M in (2.51) and J
in (2.52) are infinite and in the expression of the three-point coupling only ratios of them
may appear.

Plugging all the necessary ingredients in (3.2), we obtain the normalized three-point
function as follows

As—1
(430) e

Ggiﬁ,um(x—v 2 I /7_2% Va1 A
GQ_ ™ U‘/1+X2 TFF(A3—2) |:2 I+x j| —13

qrit dZ i Msx—
/ dr / ¢ . (3.46)
1 Zi s |22, — 722 [cosh (kT — i T})]~?

where we have changed variables, from o to Z, according to (2.48). The integral with
respect to 7 in the expression above can be calculated analytically using the approximation
tanh y =~ y and the result is

00 6% M3 [u 14+x—2 nguu} tanh(kT—1 Ty)fu2 MsmT
dr ~
/—oo [cosh (kT — iTy)]A3

2As—1 M Ty e

(A3 + Ens) (3.47)

L\’JM—A

v B [ (A3 —=nNg),
K
with

X

Contrary to the cases of the previous subsections, the integral with respect to Z, cannot
be performed analytically, since the expression for =yg depends also on the integration
variable Z,. The three-point coupling for the new classical string solution is written in
terms of that integral as follows

- VA Aet X (x—v) €™ g 5
F = — M3)=3 — /1 —2 4
(U12) 7_[_2 (N ) v (1 + XQ) (Ag —_ 2) |:2 + X :| (3 9)
quic e_ZMMS Ty \/74-1 Ms Vy 1 _ 1 B
dz, - (A3 —Ens), 5 (A3 +Ens)| -
1 527A3 ng _ Zg 2 2
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Figure 1. Plots for the three-point coupling in (3.49) of the new solution. In the upper two panels
we plot the imaginary and the real part of the three-point coupling as a function of p while in the
third panel we plot the real and the imaginary part of the three-point coupling for different values
of the deformation parameter.

Even if the integral with respect to Z, cannot be calculated analytically, it can be performed
numerically and fixing the values for v, y, u and vi5 as follows

1
V= x=1, p=1 & viz=0 (3.50)

we obtain the following values for the three-point coefficient

cgilaton o~ _0.02 —0.047 for Mz =1

cdilaton ~ .86 +1.637 for Mz =2 (3.51)
when M3 takes the values 1 and 2. Alternatively we could fix v, x, M3 and v15 as follows
v=—-, XZI, M3:1 & ’U12:0 (3.52)

and obtain the three-point coupling as a function of the deformation parameter p. Since
we can vary the deformation parameter in a continuous way it is possible to obtain plots
for the real and the imaginary value of the three-point coupling as a function of u. These
plots can are presented in figure 1.
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A Polyakov action and a consistent truncation

The Polyakov form of the string action is given by the following standard expression '
T.
Sp=—% /deJ (V=R oy = P b (A1)
where
9o = Gun Oaz™ 952" &  bas = BunOaz™ 9pa (A.2)

are the pullbacks of the metric and the B-field on the string worldsheet and the tensor
density €*? is defined according to the convention ! = 1. With hag we denote the
worldsheet metric and we choose the conformal gauge where h,g = 1,3. The construction is
also supplemented by the Virasoro constraints, which are obtained by differentiating (A.1)
with respect to hag,

Gun (0:2M 0:2N + 9,2 9,2N) =0 & Gy 0z 9,2 = 0. (A.3)

The momentum pj; that is canonically conjugate to the coordinate ™ is given by the
following expression

oL

= A4
PM = Fo37 (A.4)
where &M = 9, 2M.
The 10d Schs x S° metric is given by the following expression [39, 46]
ds® _ 1+“—2 T2 + L (2a7av + dz® — X247 + dX?) + ds?
R2 74 72 S5
o' By = R? % dT A (dx + w) , Fs = 4R Y (wsens +wgs), (A.5)

where wgen, and wgs are the volume forms of Schs and S° respectively. The metric in the
five-sphere is written as an S'-fibration over CP?

ds3s = (dx + W)+ dsgps  with dsfps = dv? +sin®v (S7 + 53 + cos’ v 53),  (A.6)
where the ¥; (i = 1,2,3) and w are defined as follows

1
Y1 = =(costp df — sintpsin 6 do) Yo = §(sin1/1d9 + cos v sin 6 do)

[ — N —

PO (dip — cos B do) and w=sin’vY3. (A7)

2
It can be explicitly checked that the following ansatz

X2 -
T =kt +Ty(y), V:OéT—TOSiHZ‘QT—FV;J(y), X =Xosinkr, Z=27Zyy),

Xx=0, 0=0,(y), v=wpT+Yy(y), d=wsT+P(y) & v= (A.8)

satisfies the equations of motion coming from (A.1) and the Virasoro constraints from (A.3).

Equipped by the preceding analysis we set x = 0 and v = 7 in equations (A.5) and (A.6)

and obtain the consistent truncation ansatz of (2.1) and (2.2).

3The string tension Ty is related to the 't Hooft coupling as Ts = ‘2/—5
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