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Via Marzolo 8, 35131 Padova, Italy
cINFN, Sezione di Padova,

Via Marzolo 8, 35131 Padova, Italy
dDepartment of Physics, University of Zürich,
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1 Introduction

In a previous work [1], we began the investigation of the next-to-next-to-leading-order

(NNLO) virtual corrections to the elastic scattering of muons and electrons in Quantum

Electrodynamics (QED), by classifying and evaluating the planar two-loop integrals arising

from Feynman diagrams at this order in perturbation theory [2].

The NNLO QED corrections to the process µe→ µe are crucial to interpret the high-

precision data of future experiments like MUonE, recently proposed at CERN, aiming at

measuring the differential cross section of the elastic scattering of high-energy muons on

atomic electrons as a function of the spacelike (negative) squared momentum transfer [3, 4].

This measurement will provide the running of the effective electromagnetic coupling in the

spacelike region and, as a result, a new and independent determination of the leading

hadronic contribution to the muon g-2 [3, 4]. In order for this new determination to be

competitive with the present dispersive one, which is obtained via timelike data (see [5]

for a review), the µe differential cross section must be measured with statistical and sys-

tematic uncertainties of the order of 10ppm. This high experimental precision demands an

analogous accuracy in the theoretical prediction.

Moreover, the NNLO QED corrections for the crossing-related scattering process e+e−

→ µ+µ− are important for some of the high-precision studies planned at upcoming low-

energy e+e− experiments, like Belle-II and VEPP-2000. Two interesting applications would

be the following. The forward-backward asymmetry in muon pair production could be
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exploited to constrain non-standard eeµµ interactions [6], and the current estimates suggest

that the knowledge of the NNLO QED differential cross section is needed, as QED itself

produces an asymmetry starting at NLO. The knowledge of the QED radiative corrections

to the e+e− → µ+µ− cross section will also be needed for precise measurements of the

ratio R(s) = σ (e+e− → hadrons) /σ (e+e− → µ+µ−) [7, 8].

In this work, we complete the task of determining all functions required by the NNLO

QED virtual photonic corrections to µe scattering, by evaluating the two-loop integrals

coming from non-planar four-point Feynman diagrams. Given the hierarchy between the

electron mass me and the muon mass m, me/m ∼ 5·10−3, as in our former study we consider

the approximation me = 0.1 For the non-planar topology, integration-by-parts identities

(IBPs) [11–13] yield the identification of a set of 44 master integrals (MIs), which we com-

pute analytically by means of the differential equations method [14–16]. The system-solving

strategy [17, 18] is based on a consolidated procedure, which has been proven to be very

effective in the context of multi-loop integrals involving several scales [1, 18–21]. Firstly,

we identify a set of MIs that obey a system of first-order differential equations (DEQs)

in the kinematic variables s/m2 and t/m2 which is linear in the space-time dimension d.

Subsequently we employ the Magnus exponential matrix [18] to derive an equivalent sys-

tem of equations in canonical form [17], where the dependence of the associated matrices

on (d − 4) is factorised from the kinematics. The matrix associated with the canonical

system is a logarithmic differential form which, in appropriate variables, has a polynomial

alphabet. The canonical MIs can be therefore cast as a Taylor series around d = 4, with

coefficients written as combinations of generalised polylogarithms (GPLs) [22–25].

For certain classes of MIs, like the ones of µe→ µe and crossing-related processes, the

choice of the boundary conditions may also constitute a challenging problem. Here, we

exploit either the regularity conditions at pseudo-thresholds or the expression of integrals

which are obtained by solving simpler, auxiliary systems of DEQs. Therefore, we limit the

use of direct integration only to a small subset of simpler integrals used as input functions.

The package Reduze [26] has been used throughout the calculations, for the IBPs

decomposition and for generating the DEQs obeyed by the MIs. The analytic expressions

of the MIs have been numerically evaluated with the help of GiNaC [27] and were successfully

tested against the numerical values provided either by the computer code SecDec [28] or,

for the most complicated two-loop non-planar topologies (with 6- and 7-denominators), by

an in-house algorithm. For such topologies, we identified an alternative set of quasi-finite

integrals [29], more suitable for numerical integration, also with the help of Reduze.

As far as the QED corrections involving two leptons (one massless, one massive) are

concerned, the non-planar four-point functions hereby presented, together with the planar

1The simplifying assumption me = 0 has already been used in the case of the two-loop photonic correc-

tions to Bhabha scattering [9], with which µe scattering shares several features. In particular, one expects

to find logarithmically enhanced terms, proportional to log(s/m2
e) and log2(s/m2

e), in the cross-sections for

such processes. Such terms would correspond to collinear singularities in the me → 0 limit. For Bhabha

scattering it was possible to precisely recover the coefficients of those terms, starting from the calculation in

which the collinear divergenes are dimensionally regulated, and exploiting the universal infrared structure

of gauge theories (see [10] and references therein).
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ones presented earlier [1], and the three-point functions available in the literature [30–32],

make the analytic evaluation of the virtual two-loop amplitudes for the µe scattering, as

well as for the crossing-related processes, within reach. In order to build the corresponding

two-loop virtual amplitude, one would still need to compute the corresponding Feynman di-

agrams by reducing them to our set of MIs and carrying out the ultraviolet renormalization.

Finally, the analytic continuation to the µe scattering region (s ≥ m2, −(m2−s)2 ≤ s t ≤ 0,

and s (2m2 − s) ≤ s u ≤ m4) has to be performed. We leave all these steps to a future

publication.

For completeness we mention that, as in the case of Bhabha scattering (see e.g. ref. [10]

for a review), further gauge-invariant sets of NNLO corrections to µe scattering will have

to be computed. Those sets consist of vertex and box diagrams with vacuum polarization

insertions of two kinds: i) vacuum polarization due to a heavy-fermion loop (the tau lepton

or the top, bottom and charm quarks), which can be addressed perturbatively at energies

much lower than their masses, the only difference being the presence of a further scale in

the loop integrals; ii) vacuum polarization due a light-quark loop, where the effect of the

hadronic interactions cannot be neglected and a non-perturbative approach, such as the

use of dispersion relations, is required.

In addition, we remark that the MIs of the QED corrections to e+e− → µ+µ− are

a subset of those needed for the QCD corrections to the tt̄-pair production at hadron

colliders. The complete two-loop QCD corrections to pp → tt̄ are currently known only

numerically [33–37]. The analytic evaluation of the MIs appearing in the leading-colour

corrections to pp→ tt̄ were considered in refs. [38–42], which also include the simplest non-

planar topology, namely the one in which the crossed-loop is fully massless. In our former

work [1], we extended the set of available functions for considering also sub-leading colour

contributions. Very recently, the analytic calculation of the MIs for the planar double-box

integral with a closed top loop appeared in [43]. The analytic result for a non-planar three-

point function, which constitutes a sub-diagram of the non-planar double box with closed

heavy quark loop, was presented in [44]. The non-planar graphs hereby considered would

also contribute to subleading-colour terms to tt̄-pair production, and their analytic evalua-

tion was never addressed before. The numerical evaluation of (one of the) non-planar inte-

grals computed analytically in this work has been recently considered in [45], in the context

of a novel, promising method that aims at the numerical solution of differential equations.

The paper is organised as follows. In section 2, we set our notation and conventions

for the four-point topology relevant for µe scattering. In section 3, we describe the general

features of the systems of DEQs satisfied by the MIs, cast in d log-form, and we present

the results for the non-planar two-loop MIs. In section 4, we describe the numerical eval-

uation of the non-planar four-point integrals. The information provided in the text is

complemented by two appendices: in appendix A, we discuss the computation of the aux-

iliary integrals which have been used to extract some of the boundary constants and, in

appendix B, we give the matrices associated with the d log-form.

The analytic expressions of the considered MIs are given in the ancillary files accom-

panying the arXiv version of this publication.
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Figure 1. Two-loop four-point topologies for µe scattering.

2 The non-planar four-point topology

In this paper, we consider the µe scattering process

µ+(p1) + e−(p2)→ e−(p3) + µ+(p4) , (2.1)

in the approximation of vanishing electron mass, me = 0, i.e. with kinematics specified by

p21 = p24 = m2 , p22 = p23 = 0 ,

s = (p1 + p2)
2 , t = (p2 − p3)2 , u = (p1 − p3)2 = 2m2 − t− s , (2.2)

where m is the muon mass. Representative Feynman diagrams of the 10 relevant two-

loop four-point topologies Ti that contribute to the process are depicted in figure 1. The

computation of the MIs belonging to the topologies T1,2,3,4,5,7,8,9,10 has been discussed

in [1]. In this paper, we complete the evaluation of all MIs required for the two-loop

virtual amplitude due to photonic corrections, by determining the analytic expression of

the MIs that belong to the non-planar topology T6.
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The calculation involves the evaluation, in d dimensions, of Feynman integrals of

the type

I [d](n1, . . . , n9) ≡
∫

d̃dk1d̃dk2
1

Dn1
1 . . . Dn9

9

, (2.3)

where Di are inverse scalar propagators. The analytic calculation described in section 3 is

performed expanding around d = 4, while the numerical evaluation presented in section 4

is carried over around d = 6. We set ε ≡ (d∗ − d)/2, where d∗ = 4 and d∗ = 6 according to

the case considered, and define our integration measure

d̃dk =
ddk

iπd/2 Γε

(
m2

µ2

)ε
, (2.4)

where µ is the ’t Hooft scale of dimensional regularisation and Γε ≡ Γ(1 + ε). Notice that

our integration measure, when evaluated at d = 4− 2ε, agrees with eq. (3.2) of [1].

For the non-planar four-point topology T6, we choose the following set of inverse

propagators:

D1 = (k1)
2 −m2, D2 = (k2)

2 −m2, D3 = (k1 + p1)
2, D4 = (k2 + p1)

2,

D5 = (k1 + p1 + p2)
2, D6 = (k2 + p1 + p2)

2, D7 = (k1 − k2)2,
D8 = (k2 + p1 + p2 − p3)2, D9 = (k1 − k2 + p3)

2 , (2.5)

where k1 and k2 denote the loop momenta. In particular, with the definition (2.4), the

tadpole integral ε2I [4−2ε](2, 2, 0, . . . , 0) is normalised to 1. The Feynman prescription is un-

derstood, and it can be recovered by the addition of an arbitrarily small positive imaginary

part, Di → Di + iω.

3 System of differential equations

By means of IBPs, the two-loop integrals that belong to T6 can be reduced to a basis

of 44 distinct MIs. In order to determine the analytic expression of the latter, we derive

their DEQs in the kinematic variables s and t. The evaluation of the MIs can be fur-

ther facilitated by parametrising the Mandelstam invariants in term of two independent

dimensionless variables, w and z, which are defined by

u−m2

s−m2
= −z

2

w
,

t

m2
= −(1− w)2

w
, (3.1)

where the constraint s+ t+ u = 2m2 is understood. Such change of variables rationalises

the canonical DEQs.2

2At an earlier stage of the project, we found that the variables x and y, defined through,

s−m2

m2
= −x2

(
1− (1− y2)2

4x2y2

)2

,
t

m2
= − (1− y2)2

y2
,

remove all irrational terms appearing in the system of DEQs, individually. However, as pointed out by

Lorenzo Tancredi - whom we acknowledge for the suggestion -, it is sufficient to rationalise just those

combinations of irrational terms that appear in the DEQs, by means of w and z defined through in eq. (3.1),

to yield a polynomial alphabet.

– 5 –



J
H
E
P
0
9
(
2
0
1
8
)
0
1
6

A canonical basis of MIs in d = 4−2ε can be identified by making use of the algorithm

described in [18, 19]. Namely, we start by choosing an initial set of MIs Fi that fulfill DEQs

with linear dependence on the dimensional regularisation parameter ε,

F1 = ε2 T1 , F2 = ε2 T2 , F3 = ε2 T3 ,
F4 = ε2 T4 , F5 = ε2 T5 , F6 = ε2 T6 ,
F7 = ε2 T7 , F8 = ε2 T8 , F9 = ε3 T9 ,

F10 = ε3 T10 , F11 = ε3 T11 , F12 = ε2 T12 ,
F13 = ε3 T13 , F14 = ε2 T14 , F15 = ε3 T15 ,
F16 = ε2 T16 , F17 = ε2 T17 , F18 = ε4 T18 ,
F19 = ε3 T19 , F20 = ε4 T20 , F21 = ε2(1 + 2ε) T21 ,
F22 = ε3 T22 , F23 = ε4 T23 , F24 = ε3 T24 ,
F25 = ε4 T25 , F26 = ε3 T26 , F27 = ε3 T27 ,
F28 = ε2 T28 , F29 = ε4 T29 , F30 = ε3 T30 ,
F31 = ε4 T31 , F32 = ε3 T32 , F33 = ε3 T33 ,
F34 = ε3 T34 , F35 = ε4 T35 , F36 = ε3(1− 2ε) T36 ,
F37 = ε4 T37 , F38 = ε4 T38 , F39 = ε4 T39 ,
F40 = ε4 T40 , F41 = ε4 T41 , F42 = ε4 T42 ,
F43 = ε4 T43 , F44 = ε4 T44 , (3.2)

where the Ti are the integrals depicted in figure 2.

Subsequently, we use the Magnus exponential in order rotate the integrals of eq. (3.2)

into a new basis of MIs Ii that satisfy canonical DEQs in both variables w and z (or,

equivalently, in s and t),

I1 = F1 , I2 = −sF2 ,

I3 = m2 F3 , I4 = −sF4 ,

I5 = (m2 − s)(2 F4 + F5) , I6 = uF6 ,

I7 = −2m2 F6 +
(
u−m2

)
F7 , I8 = −tF8 ,

I9 = (m2 − s) F9 , I10 = λt F10 ,

I11 = (u−m2) F11 , I12 = m2
(
u−m2

)
F12 ,

I13 = (m2 − s) F13 , I14 = m2
(
m2 − s

)
F14 ,

I15 = (m2 − s) F15 , I16 = m2(m2 − s) F16 ,

I17 = 3m2 F15 + 2m4 F16 +m2(2m2 − s) F17 , I18 = (m2 − s)F18 ,

I19 = m2(m2 − s) F19 , I20 = λt F20 ,

I21 = (λt − t)
(

1

2
F10 − 2 F20

)
−m2 tF21 ,

I22 = −(m2 − s) tF22 , I23 = (u−m2) F23 ,

I24 = −m2 tF24 , I25 = (m2 − s)F25 ,
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I26 = −m2tF26 , I27 =
(
m2 − s

)
uF27 ,

I28 = −m2 (m2 − s)
(

F27 − (u−m2) F28

)
, I29 = −tF29 ,

I30 = (m2 − s) (u−m2) F30 , I31 = λt F31 ,

I32 = m2(m2 − s) F32 , I33 = (m2 − s)(u−m2)F33 ,

I34 =
1

6

(
u−m2

) (
2 F4 + F5 − 12 F13 − 12m2 F14 + 6 F34

)
+
(
u−m2

)2
F33 ,

I35 = (m2 − s)λtF35 , I36 = (m2 − s)(2F35 (t− λt) + 2F23+F36) ,

I37 =
√
m2
√
m2 − s

√
u−m2

√
−tF37 , I38 = −(m2 − s) (F23 − F38) ,

I39 =

{
1

4

[
F7 − 4

(
m2 F12 + F11 + F20 − F31 + F40

)] (
u−m2 + λt

)
− F25 + F39

}
+m2 F3

(
1 +

λt
u−m2

)
− (m2 − s)λt F37 +

1

2
F6

[
u− (u+m2)

(
1 +

λt
u−m2

)]
,

I40 = −m2 F3

(
1 +

λt
u−m2

)
− 1

4

[
F7 − 4

(
m2 F12 + F11

)] (
u−m2 + λt

)
+ (m2 − s)λt F37 + λt F40 +

F6

2
(u+m2)

(
1 +

λt
u−m2

)
,

I41 = (m2 − s)2 F41 , I42 = (m2 − s) (u−m2) F42 ,

I43 = −(m2 − s) tF43 , I44 = (m2 − s)F44 , (3.3)

where we introduced the abbreviation λt =
√
−t
√

4m2 − t.
By combining the two DEQs in w and z into a single total differential, we get

dI = εdAI , (3.4)

where I is a vector that collects the 44 MIs and

dA =
12∑
i=1

Mi d log(ηi) , (3.5)

with the Mi being constant matrices with rational entries. The arguments ηi of this d log-

form, which define the so-called alphabet of the DEQs, are the following 12 letters :

η1 = w , η2 = 1 + w ,

η3 = 1− w , η4 = z ,

η5 = 1 + z , η6 = 1− z ,
η7 = w + z , η8 = z − w ,
η9 = z2 − w , η10 = 1− w + w2 − z2 ,
η11 = 1− 3w + w2 + z2 , η12 = z2 − w2 − wz2 + w2 z2 .

(3.6)

In the present work, we compute the MIs in the kinematic region where all the letters are

real and positive,

0 < w < 1 ∧
√
w < z <

√
1− w + w2 , (3.7)

– 7 –
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Figure 2. The 44 MIs T1,...,44 for the two-loop non-planar topology T6. Thin lines represent

massless propagators and thick lines stand for massive ones. Each dot indicates an additional

power of the corresponding propagator. Numerator insertions are indicated explicitly on top of

each diagram.
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which corresponds to the unphysical region

t < 0 ∧ s < 0 . (3.8)

The analytic continuation to the physical region for µe scattering

s ≥ m2 ∧ −s
(

1− m2

s

)2

≤ t ≤ 0 ∧ 2m2 − s ≤ u ≤ m4

s
, (3.9)

can be obtained through the Feynman prescription, by adding a small positive imaginary

part iω to the Mandelstam invariants whenever they become positive.

Since all the integrals defined in eq. (3.3) are finite in the ε → 0 limit, the vector

I(ε, w, z) admits a Taylor expansion in ε (of uniform transcendental weight),

I(ε, w, z) = I(0)(w, z) + ε I(1)(w, z) + ε2I(2)(w, z) + . . . , (3.10)

with the n-th order coefficient given by

I(n)(w, z) =

n∑
i=0

∆(n−i)(w, z;w0, z0)I
(i)(w0, z0), (3.11)

where I(i)(w0, z0) is a constant vector and ∆(k) the weight-k operator

∆(k)(w, z;w0, z0) =

∫
γ
dA . . . dA︸ ︷︷ ︸

k times

, ∆(0)(w, z;w0, z0) = 1 , (3.12)

that iterates k ordered integrations of the 1-form dA along any piecewise-smooth path

γ : [0, 1] → M ⊂ C × C such that γ(0) = (w0, z0) and γ(1) = (w, z). If the singularities

of the integrand are removed from M , and suitable branch cuts are imposed, the iterated

integrals in eq. (3.12) do not depend on the chosen path (see e.g. ref. [21] for a compact

review of the properties of the iterated path integrals). Since the rational alphabet given

in eq. (3.6) has only algebraic roots, we can directly express (by first integrating in w and

then in z or viceversa3) the iterated integrals of eq. (3.12) in terms of GPLs, which are

defined as

G(~an;x) ≡ G(a1,~an−1;x) ≡
∫ x

0
dt

1

t− a1
G(~an−1; t), (3.13)

G(~0n;x) ≡ 1

n!
logn(x) . (3.14)

The length n of the vector ~an corresponds the transcendental weight of G(~wn;x) and it

amounts to the number of iterated integrations that define the GPL. The GPLs in our

3The integration to GPLs of a rational d log form, for instance first in w and then in z, can be performed

in two ways. First, one can use the iterated path-integral approach and choose γ to be a sequence of straight

lines, from (w0, z0) to (w, z0) and then to (w, z). Equivalently (see e.g. ref. [19]) one can work directly on

the associated canonical partial DEQs, ∂iI = ε∂iAI order by order in ε (i = w, z). In particular, one first

integrates the partial DEQ in w up to an unknown vector H depending on z. An ordinary DEQ for H is

then obtained by explicitly taking the derivative of the integral of the partial DEQ in w and matching to the

partial DEQ in z. For definiteness, the latter is the strategy we followed to produce the results of this work.
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solution, which for definiteness we obtain by first integrating in w and then in z, are of two

classes, namely GPLs in w, with weights drawn from the set0 , ±1 , ±z , z2 , 1

2

(
3±

√
5− 4z2

)
,
z
(
z ±
√

4− 3z2
)

2 (z2 − 1)
,

1

2

(
1±

√
4z2 − 3

) , (3.15)

and GPLs in z, with weights drawn from

{0 , ±1 , ±i} . (3.16)

The analytic structure of the canonical MIs is determined by the letters at all orders in ε,

and the solution can in principle be built up to any weight. We compute the MIs up to

weight 4, which will be enough for the two-loop virtual calculation.

In the region defined by eq. (3.7), the imaginary part of our solution I(ε, w, z) only

originates from the integration constants I(i)(w0, z0).

3.1 Boundary conditions

The general solution of the system of DEQs in terms of GPLs, which is obtained from the

integration of eq. (3.4), must be complemented by a suitable set of boundary conditions.

These boundary conditions can be determined either from the knowledge of the analytic

expression of the MIs in special kinematic configurations or by imposing their regularity at

pseudo-thresholds of the DEQs. For the problem under consideration, regularity conditions

express the boundary constant as combinations of GPLs of argument 1, with weights drawn

from the set ai ∈ {−1,−i, 0, i, 1}, which arises from the kinematic limits imposed on the

alphabet given in eq. (3.6). We used GiNaC to numerically verify that for each MI, at each

order in ε, the corresponding combination of constant GPLs is proportional to a uniform

combination of the transcendental constants π, ζk and log 2.

In the following, we specify how the boundary constants of each integral have been

obtained:

• The integrals I1,...,5,8,9,10,13,...,18,20,...,24,29,30,41 are common to the two-loop topologies

discussed in ref [1], to which we refer the reader for the discussion of the boundary

fixing. Furthermore, the integrals I25,26 are related to I23,24 by s ↔ u crossing, so

that their boundary constants can be inferred directly from the ones of I23,24.

• The integrals I6,7 are regular in the limit u→ 0, where they can be reduced, via IBPs,

to a single two-loop vacuum diagram. From the analytic expression of the latter, we

obtain the boundary values

I6|u=0 = 0 ,

I7|u=0 = 1 +
π2

3
ε2 − 2ζ3ε

3 +
π4

10
ε4 +O

(
ε5
)
. (3.17)
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• The integrals I11,12 are regular in the limit u → 0. In particular, we observe that

their boundary values can be obtained as the limits

I11|u=0 = −ε3m2 lim
p21→m2

, I12|u=0 = −ε2m4 lim
p21→m2

.

(3.18)

Therefore, we can generate the DEQs for the analogous triangle integrals with p24 = 0,

and u = 0 and an off-shell leg p21, solve them by using as an integration base-point

the regular point p21 = 0, and finally extract the boundary values of I11 and I12 by

means of eq. (3.18). The details of this computation are reported in appendix A. In

this way, we obtain

I11|u=0 = 2ζ3ε
3 +

7π4

180
ε4 +O

(
ε5
)
,

I12|u=0 = −π
2

12
ε2 − 5ζ3

2
ε3 − 1

12
π4ε4 +O

(
ε5
)
. (3.19)

• The boundary constants of the integrals I27,28 can be fixed by imposing the regularity

of their DEQs as t→ 0.

• The boundary constants of the integrals I31,32,33 are obtained by demanding regularity

at t→ 0, as well the reality of the integrals in the region s ≤ 0, u ≤ 0.

• The boundary constants of the integrals I19,34,35...40,42,43,44 are obtained by demanding

their finiteness in the limit s→
√
4m2−t−

√
−t√

4m2−t+
√
−t .

The analytic expressions of the MIs are given in electronic form in the ancillary files at-

tached to the arXiv version of the manuscript.

4 Numerical evaluation of the non-planar four point integrals

The analytic expression of our MIs have been numerically evaluated in the region s, t < 0 by

means of the GiNac library, and successfully checked against independent calculations. In

particular, the integrals Ii with i = 1, . . . , 36, 41 were computed with the package SecDec.

For the most complex topologies, corresponding to the non-planar four-point integrals Ii
with i = 37, . . . , 40, 42, 43, 44, we adopted a different strategy. As the numerical evaluation

of those integrals is challenging, we identified an alternative set of independent MIs that

are quasi finite [29] in d = 6. The latter have been computed semi-numerically by means

of an in-house algorithm: starting from the Feynman parametrisation of the integrals, we

carried out as many analytic integration as possible, until we reached a form where the left

over multivariate integral could be numerically evaluated by means of Gauss quadrature.

Dimension-shifting identities [46, 47] and IBPs, implemented in LiteRed [48, 49], establish

analytical relations between this set of integrals and the MIs we computed around d = 4.

– 11 –
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graph I [d]−integral I [d=6−2ε](s = −1
7 , t = −1

3 ,m
2 = 1)

p1

p2 p3

p4

I [d](1, 1, 1, 0, 1, 0, 1, 1, 1) −1.219372− i 0.294408

p1

p2 p3

p4

I [d](1, 2, 1, 0, 1, 0, 1, 1, 1) 0.98317 + i 1.00335

p1

p2 p3

p4

I [d](1, 1, 1, 0, 1, 0, 1, 2, 1) 12.039969 + i 6.660946

p1

p2 p3

p4

I [d](1, 1, 1, 0, 0, 0, 1, 1, 1) 1
4ε + 0.6798187 + i 0.0300909

p1

p2 p3

p4

I [d](2, 1, 1, 0, 0, 0, 1, 1, 1) −0.554605− i 0.06984485

p1

p2 p3

p4

I [d](1, 1, 1, 0, 0, 0, 1, 2, 1) −1.91103 + i 0.241649

p1

p2 p3

p4

I [d](3, 1, 1, 0, 0, 0, 1, 1, 1) 0.525679 + i 0.248668

Table 1. Numerical results for our set of quasi-finite non-planar MIs belonging to the 6- and

7-denominators topologies (m2 = 1).

The definition of the 7 non-planar MIs that are quasi finite in d = 6 dimensions,

together with our results at the phase-space point s = −1/7, t = −1/3, m2 = 1, are

collected in table 1. We identified them through educated guesses or with the help of

Reduze. In the next subsection, we use the first of those integrals as an example to describe

our evaluation strategy.

4.1 The non-planar box in d = 6 dimensions

As an example, we describe the numerical evaluation of the non-planar scalar integral

p1

p2 p3

p4

= I [d](1, 1, 1, 0, 1, 0, 1, 1, 1) , (4.1)

carried out in two steps.
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4.1.1 Analytic integrations

By using Feynman parametrisation, the integral can be written as

p1

p2 p3

p4

= Γ(7)

∫
d̃dk1d̃dk2

∫ 1

0
dx1. . .

∫ 1

0
dx7

δ(1− x1234567)
D7

tot

, (4.2)

where

Dtot = x1D1 + x2D2 + x3D3 + x4D5 + x5D7 + x6D8 + x7D9 + iω . (4.3)

After integrating over k1 and k2, one finds

Γ2
ε

p1

p2 p3

p4

= −Γ(7− d)

∫ 1

0
dx1. . .

∫ 1

0
dx7

δ(1− x1234567)

A
3d
2
−7

0 ∆7−d
, (4.4)

A0 = x34x56 + x5x6 + x346x7 + x2x3457 + x1x2567 ,

∆ = x22x3457 + x21x2567 + x1x2(x2 + 2x57) + x3(−x5x6 + x2x7)t

+ (x2(−x4x5 + x3x7)− x1(x4x256 + x46x7))(s− 1)− iωA0 , (4.5)

where we used the notation xi1i2...in = xi1 + xi2 + . . .+ xin . We perform as many analytic

integrations as possible. In particular, we integrate over x3 eliminating the δ-function, and

we make the changes of variables x6 → x26−x2, x7 → x57−x5. In this way, the polynomial

∆ becomes linear in x4 and x5, so that eq. (4.4) becomes

Γ2
ε

p1

p2 p3

p4

= −Γ(7− d)

∫ 1

0
dx26

∫ 1−x26

0

dx57

A
3D
2
−7

∫ 1−x2657

0
dx1

∫ x26

0
dx2

∫ x57

0
dx5×

∫ 1−x12657

0

dx4
(C41x4 + C40)7−d

, (4.6)

where

A = x2657(1− x2657) + x26x57 ,

C41 = tx26x5 − (s+ t− 1)x2x57 − (s− 1)x1x2657 ,

C40 = x21x2657 + x2 (x2(1− x26) + 2x1x57) + t(−1 + x12657)(x26x5 − x2x57)− iωA
+ (s− 1)(x5 − x57) (x1x26 + x2(−1 + x2657)) . (4.7)

The integral over x4 in eq. (4.6) is finite for d→ 6 and, in this limit, we get

Γ2
ε

p1

p2 p3

p4

d→6
= −

∫ 1

0
dx26

∫ 1−x26

0

dx57
A2

∫ 1−x2657

0
dx1

∫ x26

0
dx2×

∫ x57

0

dx5
x5tx26 − f3

ln

(
f4x5 + P4

f2x5 + P3

)
, (4.8)
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where

P1 = x22(1− x26) + 2x1x2x57 + x21x2657 + tx57(x26 − x2)(−1 + x12657)− iωA ,
P2 = x22(1− x26) + 2x1x2x57 + x21x2657 + (s− 1)(−1 + x12657)(x1x2657 + x2x57)− iωA ,
P3 = P1 − f2x57 ,
P4 = P2 − f4x57 , (4.9)

and

f1 = f3 − tx26x57 ,
f2 = f4 − tx26(1− x12657) ,
f3 = (s+ t− 1)x2x57 + (s− 1)x1x2657 ,

f4 = (s− 1) (x1x26 + x2(−1 + x2657)) . (4.10)

Finally, we integrate over x5, and reduce eq. (4.8) to

Γ2
ε

p1

p2 p3

p4

d→6
= −

∫ 1

0

dx26
tx26

∫ 1−x26

0

dx57
A2

∫ 1−x2657

0
dx1

∫ x26

0
dx2 ×

(
Li2

(
Q1

R

)
− Li2

(
Q2

R

)
− Li2

(
Q3

R

)
+ Li2

(
Q4

R

))
, (4.11)

where

Q1 = f1f2 , Q2 = f1f4 , Q3 = f3f2 , Q4 = f3f4 ,

R = Qi + Pitx26, ∀i, i = 1, . . ., 4 . (4.12)

4.1.2 Numerical integrations

The four remaining integration variables in eq. (4.11) are rescaled, and mapped onto a

four-dimensional hypercube of unit side,

x26 = t1 , x57 = (1− x26)t2 , x1 = (1− x2657)t3 , x2 = (x26)t4 ; (4.13)

so that the new variables ti have to be integrated over [0, 1]. At this point, we have to

consider the branch points of the dilogarithms that appear in eq. (4.11), which correspond

the hypersurfaces defined by the equations

R(t1, t2, t3, t4) = 0 , Pi(t1, t2, t3, t4) = 0, i = 1, . . .4 . (4.14)

It is necessary to sample carefully the integrand near these branch points. Therefore, for

the integration over t4, we split the integration interval at the N4(t1, t2, t3) real solutions

z4j(t1, t2, t3) of eq. (4.14) which are on the interval [0, 1],∫ 1

0
dt4 =

N4−1∑
j=0

∫ z4,j+1(t1,t2,t3)

z4j(t1,t2,t3)
dt4 , z40 = 0 , z4N4 = 1 . (4.15)
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Analogously, for the integration over t3, we split the integration interval at the N3(t1, t2)

real zeros z3j(t1, t2) of the discriminants (polynomials in (t1, t2, t3)) that appear in the

zeros z4j . These are the points where the hypersurfaces of eq. (4.14) are tangent to the

hyperplane t4 = constant,

∫ 1

0
dt3 =

N3−1∑
j=0

∫ z3,j+1

z3j

dt3 , z30 = 0 , z3N3 = 1 . (4.16)

Analogously, for the integration over t2, we split the integration interval at the N2(t1) zeros

z2j(t1) of the discriminants (polynomials in (t1, t2)) that appear in the zeros z3j ,

∫ 1

0
dt2 =

N2−1∑
j=0

∫ z2,j+1

z2j

dt2 , z20 = 0 , z2N2 = 1 . (4.17)

We proceed in a similar way for the last integration,

∫ 1

0
dt1 =

N1−1∑
j=0

∫ z1,j+1

z1j

dt1 , z10 = 0 , z1N1 = 1 . (4.18)

To carry out the integration over a generic interval [ta, tb], we perform the change of

variables ti → ui, with

ti = tai +
eu

3
i

eu
3
i + 1

(tbi − tai) , i = 1, . . ., 4 , (4.19)

in order to deal with possible singularities at the endpoints. The variable ui should be

integrated in (−∞,∞) but we actually truncate the integration domain to (−M,+M),

with M suitably large (typically M ∼ 4), and we use Gauss-Legendre integration over

16 points. Note that all the singularities in the integrands are logarithmic, and therefore

integrable, so we can safely set a very small value of ω, like 10−30.

By using 16 subdivisions in each interval and in every variable we find that our integral,

in the phase space point s = −1/7, t = −1/3, m2 = 1, amounts to

p1

p2 p3

p4

d→6
= −1.219372− i 0.294408 . (4.20)

A similar procedure is adopted for the other integrals in table 1. Case-by-case, after

the analytic integrations, the corresponding integrands, in the d→ 6 limit, are found to be

combinations of logarithms, so that the decomposition of the integration domain, and the

numerical integration can be carried out along the same lines as for the non-planar scalar

box integral.
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5 Conclusions

In this work, we presented the analytic evaluation of the two-loop master integrals needed

to compute the non-planar Feynman diagrams contributing to µe elastic scattering in QED

at NNLO. We adopted the same computational strategy previously applied to planar di-

agrams, and presented in the companion article [1]. Namely, we employed the method of

differential equations and of the Magnus exponential to identify a canonical set of mas-

ter integrals and we derived boundary conditions either from the regularity requirements

at pseudothresholds or from the knowledge of the integrals at special kinematic points,

possibly evaluated by means of auxiliary, simpler systems of differential equations. The

considered master integrals were expressed as a Taylor series around four space-time di-

mensions, whose coefficients are written as a combination of generalised polylogarithms.

We worked in the massless electron approximation, while keeping full dependence on the

muon mass.

The scattering of high-energy muons on atomic electrons has been recently proposed as

an ideal framework to determine, in a novel way, the leading hadronic contribution to the

anomalous magnetic moment of the muon. The ambitious experimental goal of the MUonE

project, namely measuring the differential cross section of the µe → µe process with an

accuracy of 10ppm, requires, on the theoretical side, the knowledge of the QED corrections

at NNLO. The results of the planar and non-planar master integrals we obtained represent

an important step towards the evaluation of the virtual corrections at the required order.

By crossing symmetry, our results are also relevant for muon-pair production at e+e−-

colliders operating well below the Z-pole, such as Belle II and VEPP-2000, as well as for

the QCD corrections to heavy-quark pair production at hadron colliders. The former appli-

cation is particularly interesting, as a precise knowledge of the differential cross section in

QED could be exploited to constrain non-standard eeµµ interactions via the measurement

of a forward-backward asymmetry.
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Figure 3. Auxiliary three-point integral family for eq. (3.18). Thick and thin lines represent,

respectively, massive and massless propagators. The dashed line corresponds to an external leg

with arbitrary squared momentum.

A Evaluation of the auxiliary vertex integrals for eq. (3.18)

In this appendix, we discuss the solution of the DEQs for the vertex integrals that we used

in eq. (3.18) as an input for the determination of the boundary constants of the MIs I11, 12.

The required input integrals belong to the integral family∫
d̃dk1d̃dk2

Dn5
5 Dn6

6 Dn7
7

Dn1
1 Dn3

2 Dn3
3 Dn4

4

, ni ≥ 0 , (A.1)

which is identified by the set of denominators

D1 = k21, D2 = k22 −m2, D3 = (k1 + k2 + p1)
2, D4 = (k1 + p1 + p2)

2 −m2,

D5 = (k1 + p2)
2, D6 = (k2 + p1)

2, D7 = (k2 + p2)
2, (A.2)

and by the external momenta

p21 = p22 = 0 , p23 = (p1 + p2)
2 . (A.3)

A representative 4-propagator integral of this family is depicted in figure 3. IBPs reduce

the integral family of eq. (A.1) to a set of 5 MIs, whose dependence on p23 is parametrised

in terms of the dimensionless variable

x = − p23
m2

. (A.4)

The integral basis

I1 = ε2 , I2 = −ε(1− ε)m2 , I3 = −ε2p23

I4 = −ε3p23 , I5 = −ε2m2p23 , (A.5)

fulfils canonical DEQs,

dI = ε dA I , (A.6)
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where

dA = M0 d log x+ M−1 d log(x+ 1) , (A.7)

with

M0 =


0 0 0 0 0

0 0 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 −1
2 −3 −2

 , M1 =


0 0 0 0 0

0 0 0 0 0

−1 0 − 2 0 0
1
2 −

1
2 0 −3 −2

−1
2

1
2 0 3 2

 . (A.8)

The general solution of the DEQs can be expressed in terms of harmonic polylogarithms

(HPLs), i.e. GPLs with weights ai ∈ {−1, 0, 1}. The integrals I1,2, which are independent

of x, are determined by direct integration,

I1 = 1 , I2(ε) = 1 +
π2

3
ε2 − 2ζ3ε

3 +
π4

10
ε4 +O(ε5) , (A.9)

whereas the boundary constants of I3,4,5 are obtained by demanding their vanishing in the

regular limit x→ 0. In particular, for the two triangle integrals, we obtain

I4(ε, x) =

(
π2

6
G(−1;x)−G(−1;x)G(0,−1;x) + 2G(0,−1,−1;x)

)
ε3

+

(
ζ3G(−1;x) +

π2

12
G2(−1;x)− π2

6
G(0,−1;x) +

1

2
G2(−1;x)G(0,−1;x)

+G(−1;x)G(0, 0,−1;x)− 3G(0,−1,−1,−1;x) + 2G(0,−1, 0,−1;x)

− 2G(0, 0,−1,−1;x)

)
ε4 +O

(
ε5
)
,

I5(ε, x) =
1

2
G(0,−1;x)ε2 +

(
π2

6
G(−1;x) +G(−1;x)G(0,−1;x)− 3G(0,−1,−1;x)

− 1

2
G(0, 0,−1;x)

)
ε3 +

(
− ζ3G(−1;x)− π2

12
G2(−1;x) +

π2

6
G(0,−1;x)

− 1

2
G2(−1;x)G(0,−1;x)−G(−1, x)G(0, 0,−1;x) + 5G(0,−1,−1,−1;x)

+G(0,−1, 0,−1;x) + 3G(0, 0,−1,−1;x) +
3

2
G(0, 0, 0,−1;x)

)
ε4 +O

(
ε5
)
.

(A.10)

These solutions are real valued in the interval 0 < x < 1. By analytic continuation to the

region x < 0, we can extract the values of the two integral at p23 = m2,

I4(ε,−1) = 2ζ3ε
3 +

7π4

180
ε4 +O

(
ε5
)
,

I5(ε,−1) = −π
2

12
ε2 − 5ζ3

2
ε3 − 1

12
π4ε4 +O

(
ε5
)
, (A.11)

which can then be used in eq. (3.18).
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B d log forms

In this appendix we collect the coefficient matrices of the d log-form

dA = M1 d log(w) + M2 d log(1 + w) + M3 d log(1− w)

+ M4 d log(z) + M5 d log(1 + z) + M6 d log(1− z)

+ M7 d log(w + z) + M8 d log (z − w)

+ M9 d log
(
z2 − w

)
+ M10 d log

(
1− w + w2 − z2

)
+ M11 d log

(
1− 3w + w2 + z2

)
+ M12 d log

(
z2 − w2 − w z2 + w2z2

)
(B.1)

for the master integrals in the non-planar integral family, defined in eqs. (2.3) and (2.5):

M1 =



0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 2 0 0 0 0 −12 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

−12 0 0 0 0 −1 1
2 0 0 0 1 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1
2 0 0 0 0 1

2 −12 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1
2 0 2 0 0 0 0 1

4 0 1
2 0 0 0 0 0 0 0 0 0 −4 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

−1 0 −3 0 0 0 0 −34 0 1
2 0 0 0 0 0 0 0 0 0 16 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 −3 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 −2 −2 1
2 0 0 0 0 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 3 3 −1 0 0 3
4 0 3

2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 −3 0 0 1 −1 −34 0 −32 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1
2 0 3 0 0 0 0 0 0 0 0 0 0 0 3 2 2 0 0 0 0 0 0 0 0 0 1 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1
2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 −1 1
2 0 1

2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1
2 0 0 −1 0 0 −12 0 0 0 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −6 2 −1 2 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −2 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0
1
2 0 0 0 −1 0 −12 0 0 0 −3 −2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −12 8 −2 4 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 −2 0 0 0 −13 0 0 0 0 0 0 0 0 0 0 0 0 4 1 0 0 0 0 0 0 0 0

−1 −2 0 0 0 0 0 0 −2 0 0 0 0 0 0 0 0 8 0 0 0 2
3 0 0 0 0 0 0 0 0 0 0 0 0 −16 −4 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 −6 0 0 19
6 −76 −12 0 1 0 0 −2 −4 0 0 0 0 0 0 0 0 0 0 −8 2 0 0 0 0 −4 0 0 0 0 0 0 −4 0 −4 0 0 0 0

0 0 2 −1 0 −53
2
3

1
4 0 −12 0 2 1 2 0 0 0 0 0 4 1 0 0 0 4 −2 0 0 0 0 −4 2 −1 2 0 0 0 2 0 2 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 4
3 0 −2 5

6 0 0 0 0 0 0 0 0 0 2 4
3

4
3 −2 0 0 0 0 0 0 −4 0 2

3
4
3 0 0 0 −2 0 0 4 1 0 0 0 0 0 0 0 4

−1 −43 0 2 −56 0 0 0 0 0 0 0 0 0 −2 −43 −43 2 0 0 0 0 0 0 4 0 −23 −43 0 0 0 2 0 0 −4 −1 0 0 0 0 0 0 0 −4
1 4

3 1 −1 7
6 0 0 0 0 0 0 0 0 0 2 4

3
4
3 −2 0 0 0 0 0 0 2 0 2

3
4
3 0 0 0 −4 0 0 4 1 0 0 0 0 0 0 0 2
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M2 =



0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 −4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 10 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −2 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 −2 0 0 1 −12 0 0 0 2 2 0 0 0 0 0 0 0 −2 0 0 0 0 0 0 0 0 0 0 6 0 0 0 0 0 0 0 0 −2 0 0 0 0

0 0 2 0 0 −1 1
2 0 0 0 −2 −2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0 2 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
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M3 =



0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

−2 −4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 −2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 −8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 −4 −2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 −8 −4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 −4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 −8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 −4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 −6 −4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 −6 −4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 −6 −4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

−3 −2 −12 0 0 0 0 0 0 0 0 0 0 0 −12 −4 −8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −12 −8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −12 −4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 −6 0 0 0 0 0 0 0 0 0 0 0 0 −6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 6 6 −2 0 0 3
2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −12 −8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 6 0 0 −2 2 3
2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 12 −8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

−1 0 −6 0 0 0 0 0 0 0 0 0 0 0 −6 −4 −4 0 0 0 0 0 0 0 0 0 −4 −4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 6 0 0 0 0 0 0 0 0 0 0 0 6 4 4 0 0 0 0 0 0 0 0 0 −4 −4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 −4 −2 1 0 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −8 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −8 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −8 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −8 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −6 0 0 0 0 0 0 0 0 0

2 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 12 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −6 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 4 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 6 0 0 −5 1
2 0 0 0 −2 −2 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 −2 0 0 0 0 0 0 0 0 6 0 0 0 0

0 0 −6 0 0 3 −32 0 0 0 4 2 0 0 0 0 0 0 0 −4 0 0 0 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0 −6 0 0 0 0

2 2 6 0 4
3 0 0 0 4 0 0 0 6 8 0 −4 4 4 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −4 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −4 −4 0 0 0 0 0 0 0 0 0 0 0 0 0 −8 0 0

−2 −83 0 4 −53 0 0 0 0 0 0 0 0 0 −4 −83 −83 4 0 0 0 0 0 0 8 0 20
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