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1 Introduction and summary

Scattering amplitudes are central for understanding the structure of superstring theory.

Their low-energy (α′) expansion exhibits many deep mathematical structures. For in-

stance, the four-graviton scattering amplitude of type II string theory in 10− d space-time

dimensions is expected to be invariant under the string U-duality group Ed+1(Z) [1] or-

der by order in α′ [2, 3]. This can be used together with supersymmetry to determine

the lowest order derivative corrections of the form D2kR4 arising from the four-graviton
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scattering amplitude as exact (generalized) automorphic forms of the moduli [3–25]. As

these automorphic forms are invariant under U-duality, they contain information about

all orders of string perturbation theory and also non-perturbative effects. However, most

results here are restricted to the four-graviton amplitude in type II in various dimensions

and BPS-protected couplings associated with small automorphic representations. The au-

tomorphic forms have led to predictions of higher-genus string amplitudes and certain

non-renormalisation theorems that have been confirmed by direct calculations [26–30].

In a different direction, superstring amplitudes have been evaluated for many parti-

cles at low orders in string perturbation theory and the systematics of their α′-expansion

has been studied. At string tree level and for the scattering of N open or closed strings,

there are amazing systematics associated with the theory of (single-valued) multiple poly-

logarithms and (single-valued) multiple zeta values [31–43]. At string one-loop order, the

corresponding generalisation appears to be that of (single-valued) elliptic polylogarithms

and (single-valued) elliptic multiple zeta values that is currently under construction [44–48].

‘Single-valued’ here indicates a certain projection on the set of multiple zeta values that

has to be applied in the closed superstring case [40, 49]. Other references on the relations

of loop integrals to multiple zeta values include [50–52] and for other work on the modular

structure of string one-loop amplitudes see for example [53].

In the present paper, we are interested in functions that arise in (or are related to) the

α′-expansion of closed superstring one-loop amplitudes. A one-loop amplitude is given by

an integral over the modulus τ of the world-sheet torus where the integrand is a modular

SL(2,Z)-invariant function that is determined by world-sheet conformal field theory. The

integrand depends on α′ and therefore the α′-expansion of the one-loop amplitude can

be studied from an α′-expansion of the integrand. The separation into analytic and non-

analytic terms in α′ can be effectively implemented by studying the behaviour of the

integrand near the boundary of the torus moduli space (cutting off the τ integration on

the SL(2,Z) fundamental domain).

This separation and the structure of this expansion was studied in [54, 55] where a

formalism was developed that represented the integrand at a given α′-order by a Feynman

diagram of the world-sheet conformal field theory. This has led to the study of the structure

and systematics of such world-sheet Feynman diagrams and the associated integrands in

their own right [56–63]. Understanding the structure of the integrand is necessary for

finding the integrated value that is the actual contribution to the scattering amplitude. We

note that for string amplitudes with more than four external states, the integrands are not

necessarily described in terms of scalar propagators only but there can also be derivatives of

propagators appearing in the world-sheet Feynman diagrams [64, 65]. In [66], it was shown

that in the five-graviton case one can remove these derivatives up to order D10R4. However,

it is not known whether this is possible to arbitrary derivative order or for more general

amplitudes. Restricting to standard scalar Feynman diagrams will therefore perhaps not

capture all possible contributions to string scattering. Nevertheless, the scalar Feynman

diagrams exhibit already a rich mathematical structure that is worthwhile to investigate.

The integrand functions determined by the scalar world-sheet Feynman diagrams are

now called modular graph functions [48] and several cases have been studied in great detail.
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For world-sheet Feynman diagrams with one and two loops, the complete structure of the

connected Feynman diagrams in terms of their behaviour under the modular Laplacian

has been worked out [56] and this has led to many interesting and unexpected identities

among these modular graph functions [57, 60, 62] that partially mirror identities of multiple

polylogarithms [48]. Beyond this complete treatment of one and two loops, some special

cases of higher loop integrand functions have been analysed and some of them have been

integrated [56–59, 61]. One of the main tools in the study of these functions are the mod-

ular invariant differential equations that they satisfy. These are typically inhomogeneous

Laplace equations that sometimes admit an explicit integration with boundary conditions

from degeneration limits of the toroidal world-sheet.

In this paper, we will study an infinite family of modular graph functions at three-loop

order on the world-sheet. We restrict to tetrahedral Feynman diagrams but allow for an

arbitrary number of vertices along the edges of the tetrahedron. In graphical notation, the

functions we are interested in are associated with Feynman diagrams of the form

z1

z2

z3 z4

s
t

p

qw

r

where the labels on the edges indicate the number of consecutive scalar propagators along

the edge, meaning that the corresponding propagator is raised to the power given by the

label. The simplest instance of such a modular graph function, corresponding to the case

s = t = p = q = w = r = 1, was studied in [58] and its contribution to the D12R4 derivative

correction was determined by using the inhomogeneous Laplace equation satisfied by the

integrand associated with this diagram. In general, we will refer to the modular graph

functions associated with the above diagram as tetrahedral modular graph functions. We

will call s+ t+ p+ q + w + r the weight of the modular graph function.

We shall show in this paper that the family of tetrahedral modular graph functions

satisfies an inhomogeneous Laplace equation where the right-hand side contains ‘simpler’

modular graph functions when the spectrum is diagonalised. This is in complete parallel

with [56] where at two loops the right-hand sides were quadratic polynomials in non-

holomorphic Eisenstein series. Our results contain those of [58] mentioned above as a special

case and we employ heavily graphical methods similar to those of [62]. The tetrahedral

graph is symmetric under the action of the finite permutation group S4 and we will show

that the modular Laplace operator is closely related to the quadratic Casimir operator of

sl(3). These two ingredients allow us to use finite group theory and representation theory

to deduce certain properties of the spectrum of the Laplace operator acting on the family of

tetrahedral modular graph functions. As a by-product we will obtain a simple rederivation

of the two-loop results of [56] by the same methods. We note that the modular Laplacian on
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tetrahedral modular graph functions closes without the need to introduce modular graph

forms that were recently introduced as a generalisation in [60, 63]. Contrary to the cases

studied in [63], the eigenvalues of the modular Laplacian that we obtain are surprisingly

not only of the form s(s− 1) for non-negative integers s.

There are many possible generalisations and extensions of our work that are beyond

the scope of the present paper. A point we have not investigated systematically is to use

the inhomogeneous Laplace equations that we find to determine a basis of independent

modular graph functions. This point would be very interesting in particular in connection

with (elliptic) multiple polylogarithms. It would also be relevant for performing the actual

world-sheet integrals over the modular graph functions that we do not attempt here. We

note that useful techniques for determining the behaviour of the modular graph functions in

the degeneration limit of the world-sheet (τ2 →∞) can be found in [55]. Finally, it would

be interesting to consider extensions of the tetrahedral modular graph functions to also

include derivatives in such a way that one reconstructs integrands of closed superstring

one-loop amplitudes with five and more external legs. A widely open field is also the

extension to higher genus string amplitudes, see [29, 30, 67–74] for some relevant work

on genus-two Riemann surfaces, in particular in connection with the so-called Kawazumi-

Zhang invariant.

The structure of this article is as follows. We first review in section 2 general facts

about genus-one amplitudes in closed superstring theory in order to motivate the types of

Feynman diagrams and Laplace equations that we analyse. This includes an exposition

of the diagrammatical tools for manipulating modular graphs. In section 3, we introduce

the tetrahedral modular graph functions that are the central objects in this paper. We

present their Laplace equation in general and introduce a generating function that makes

it possible to connect to the representation theory of sl(3). We present detailed examples

of Laplace equations and spectral properties up to weight 12 together with some general

considerations. These are the main results of this paper. Appendices contain results on

simpler two-loop modular graph functions and technical details of some of the calculations

of section 3.

2 Genus-one amplitudes and modular graph functions

We shall consider genus-one contributions to n-graviton scattering amplitudes in type II

string theory compactified on a torus T d from ten to D = 10 − d space-time dimensions.

The moduli dependence of these contributions appears generically through integrals of

the type

IF =

∫
F
dµF (τ̄ , τ) Γ(d,d) . (2.1)

The integration domain F is a fundamental domain of the moduli space, of genus-one

Riemann surface

F =

{
|τ1| ≤

1

2
, |τ | ≥ 1

}
= H/PSL2(Z) , (2.2)

where H = {τ = τ1 + iτ2 ∈ C | τ2 > 0} is the complex upper half plane on which the modu-

lar group PSL(2,Z) acts by the standard fractional linear transformation. The integration
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measure dµ is the standard PSL(2,Z) invariant measure

dµ =
dτ1dτ2

τ2
2

, (2.3)

such that the volume of the fundamental domain is normalised to be
∫
F dµ = π

3 . The

function Γ(d,d) is the Narain genus-one partition function [75] for the self-dual lattice that

describes toroidal compactifications from ten dimensions to 10 − d dimensions:

Γ(d,d) = τ
d/2
2

∑
nI∈Z2d

e−πτ2|Z(n)|2eπiτ1n
IηIJn

J
, (2.4)

in terms of the SO(d, d) invariant metric ηIJ = ( 0 1
1 0 ). The mass squared |Z(n)|2 appearing

in (2.4) is given by

|Z(n)|2 = Za(n)Za(n) = nIVaIVaJnJ . (2.5)

VaI is the coset representative parametrising the symmetric space SO(d, d)/SO(d)×SO(d),

which transforms from the left under the local compact subgroup and from the right under

the global SO(d, d). Local coordinates can be chosen in terms of the metric and B-field on

the torus in the standard fashion [75, 76]. The Narain partition function Γ(d,d) is invari-

ant under SO(d, d,Z) transformations and modular transformations from PSL(2,Z). The

invariance under SO(d, d,Z) is obvious, PSL(2,Z) invariance can only be seen after using

Poisson resummation. The integral (2.1) is by construction still a function of the moduli

VaI of the space-time Narain torus; the dependence on the world-sheet torus parameter τ

is being integrated over.

The function F (τ, τ̄) appearing in (2.1) encodes the specifics of the scattering pro-

cess under consideration. It is required to be invariant under PSL(2,Z) transformations

acting by

F (τ, τ̄) = F

(
aτ + b

cτ + d
,
aτ̄ + b

cτ̄ + d

)
, ad− bc = 1 , (2.6)

with a, b, c, d ∈ Z. For general processes F (τ, τ̄) term will be a complicated function encod-

ing momentum and Narain moduli dependence. However, for a four-graviton interaction,

its form can be found explicitly as a Koba-Nielsen prefactor [56, 77]

F (τ, τ̄) =
4∏
i=1

∫
Σ

d2zi
τ2

eD , (2.7)

where D is a sum over all insertions at local coordinates zi and zj

D =
∑
i<j

sijG(zi − zj |τ) (2.8)

with dimensionless Mandelstam variables

sij = −1

4
α′(ki + kj)

2 (2.9)

and G(zi−zj |τ) the translation invariant scalar propagator between zi and zj on the world-

sheet torus of modulus τ . We will give an explicit form for the propagator below in (2.19).

– 5 –



J
H
E
P
0
9
(
2
0
1
7
)
1
5
5

The integral in (2.7) is over the world-sheet of the torus Σ that we parametrise in a fixed

domain of volume
∫

Σ d
2z = τ2, where d2z = dz1dz2 in terms of the real and imaginary parts

of z = z1 + iz2. While the formula (2.7) is correct for four-graviton scattering, one will

have additional insertions beyond Koba-Nielsen factors for higher point amplitudes [65, 78]

and there can be additional Narain moduli dependences.

The integral IF in (2.1) is an object of central interest in string theory. However,

no closed formula for it is known. From a low-energy perspective, one can consider the

α′-expansion of the integral, corresponding to an expansion in sij � 1. This generates

analytical (in α′) terms in the scattering amplitude [54, 55]. Sometimes one can then

understand the integrand, and possibly even the integral, at a fixed order in α′ by studying

the differential equations the integrand satisfies. The integral IF is a function on Narain

moduli space SO(d, d)/SO(d)× SO(d) and for the case when F (τ, τ̄) is independent of the

Narain moduli one can compute the action of the SO(d, d) Laplacian by using [8][
∆SO(d,d) − 2∆SL(2) +

1

4
d(d− 2)

]
Γ(d,d) = 0 (2.10)

that relates the SO(d, d) action to one of the modular invariant SL(2) Laplace operator

acting on τ . By partial integration the action of the SO(d, d) Laplacian can then be mapped

to the SL(2) Laplacian acting on F (τ, τ̄). This action of ∆SL(2), more specifically in an α′

expansion, is what we shall study in this paper. For genus-one world sheets with metrics

parametrised by τ ∈ F of (2.2) the SL(2) invariant Laplacian on the upper half plane is

∆ ≡ ∆SL(2) = 4τ2
2 ∂τ∂τ̄ = τ2

2

(
∂2
τ1 + ∂2

τ2

)
(2.11)

and we shall henceforth drop the subscript SL(2) on the Laplacian as it is the only one we

will use.

2.1 Low-order contributions to the four-graviton amplitude

From the definition of D in (2.8) and the Mandelstam invariants we see that we can perform

a low-energy expansion in the sij corresponding to the α′ expansion of string theory. The

result of expanding the exponential in (2.7) can be represented by a world-sheet Feynman

diagram consisting of four points that are connected by n lines, where n is the order of the

expansion in Mandelstam variables.

The function F (τ, τ̄) controlling the four-graviton amplitude expands for small mo-

menta sij � 1 (corresponding to a power expansion in α′) as

F (τ, τ̄) =

∞∑
n=0

1

n!

4∏
i=1

∫
Σ

d2zi
τ2

(∑
j<k

sjkG(zj − zk|τ)

)n
, (2.12)

where n counts the number of world-sheet propagators between the 4 points zi. By virtue of

the definition (2.9) of the sij this corresponds also to the power of α′. Because of momentum

conservation the sij are not all independent in the massless four-point amplitude. Letting

s = s12 = s34 , t = s13 = s24 , t = s23 = s14 (2.13)
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one has

s+ t+ u = 0 . (2.14)

As a consequence, the analytic part of the four-graviton amplitude can be expanded in

a double series in s2 + t2 + u2 and s3 + t3 + u3, except for the classical Einstein-Hilbert

contribution [54].

The low order terms in the expansion of F can be found for example in [55] along with

their integrals contributing to the four-graviton amplitude in the low-energy expansion.

We recall that the one-loop string theory calculation in ten space-time dimensions gives

contributions to R4 and then to every even derivative order starting from D6R4. (In

lower dimensions one also has contributions for D4R4.) The integrated contributions up

to D10R4 have been worked out [56]. A further discussion of the low order contributions

can be found in [54, 55].

2.2 Laplacian on modular graph functions and the Green’s function

For high order in α′ the explicit functional dependence of F on τ is not very well understood.

As in [56], one can consider the function (2.12) that generates the world-sheet diagrams in

the α′-expansion as a prototype of a new class of functions called modular graph functions

that are constructed from world-sheet Feynman diagrams with an arbitrary number of

points (not only four) connected by scalar propagators. These diagrams will not directly

correspond to string processes but can serve as an interesting class of modular functions

and certainly are relevant to the string theory calculation.

In view of the structure of (2.12) that is given by an integral over products Green’s

function connecting different vertices we will follow [48, 56] and study the following more

general class of functions where the integrand is given by

I({nkl}, τ, τ̄) =
n∏
i=1

∫
Σ

d2zi
τ2

(∏
k<l

Gnkl(zk − zl|τ)

)
(2.15)

for some non-negative integer powers nkl and a total of n vertices. Compared to (2.12) we

have removed the Mandelstam variables and allowed for an arbitrary number n of vertices.

Dimensionally, such an integrand would be related to an amplitude with low-energy action

of the form D2wR4, where w =
∑

k<l nkl is the weight of the integrand. However, this

is generally only true dimensionally as it is known that for n > 4 the integrand of the

genus one amplitude is not of this simple form but also involves derivatives of Green’s

functions [65].

Functions arising from modular integrals over expressions of the type (2.15) are called

modular graph functions. As we will review below, they can be represented graphically

in terms of Feynman world-sheet diagrams. Modular graph functions are invariant under

modular transformations acting on τ and can appear as constituents of higher derivative

corrections. Besides this physical relevance, they represent an interesting new class of

modular functions on the upper half plane and we will be interested in evaluating the

modular Laplacian acting on them.
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We shall use a diagrammatic way of computing the Laplacian acting on a modular

graph function, similar to [62]. The basic tool is to first rewrite the modular Laplacian

using deformation theory as [56]

∆ = 4τ2
2 ∂τ∂τ̄ = δµδ̄µ , (2.16)

where δµ denotes infinitesimal changes in the complex structure while keeping the coordi-

nates fixed. The advantage of this formalism is that one can work out the deformation of

the Green’s function on general grounds. As shown in [56], the action of the deformation

δµ acting on a single Green’s function connecting two points zi and zj can be replaced by

the insertion of an additional vertex:

δµG(zi − zj |τ) = − 1

π

∫
Σ
d2z∂zG(z − zi|τ)∂zG(z − zj |τ) . (2.17)

Moreover, the Laplacian with respect to the modular parameter satisfies

∆G(zi − zj |τ) = 0 , (2.18)

since the result becomes a total derivative. Therefore, when evaluating the modular Lapla-

cian on a product of Green’s functions one has to apply the deformations δµ and δ̄µ to

different factors.

Obviously the function I(τ, τ̄) has in general highly complicated dependence on τ, τ̄ ,

however some very simple and elegant answers were found in the past. For the purpose of

understanding these results we can express G through a lattice sum:

G(z|τ) =
∑

(m,n)∈Z2\{(0,0)}

τ2

π|mτ + n|2
e
π
τ2

(z̄(mτ+n)−z(mτ̄+n))
, (2.19)

where the integers m,n parametrise the discrete momenta on a torus p = m + nτ . The

zero momentum was removed from the lattice sum Z2. In this representations the modular

invariance of G(z|τ) can be easily seen. The scalar Green’s functions on a world-sheet torus

Σ of modulus τ satisfies the identities

∂z∂z̄G(z|τ) = −πδ(2)(z) +
π

τ2
,

∫
Σ
d2zG(z|τ) = 0 , (2.20)

where the second condition is related to the choice of zero mode. The zero mode does not

contribute to (2.12) by momentum conservation
∑

i<j sij = 0.

It is very helpful to represent the Green’s functions and their derivatives in a graphical

way in order to simplify the calculations. These are the modular graphs that represent the

integrands of the modular integrals.

A single point is a symbol for the integration of an insertion and lines represent the

Green’s functions between two insertions

i

1

τ2

∫
Σ
d2zi =

i
,

1

τ2
2

∫
Σ
d2zid

2zj G(zi − zj |τ) =
j
. (2.21)

Due to reflection invariance in z one does not need to put arrows on the propagators.
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In the same way several lines joining at one point z mean that several Green’s functions

connect an insertion point z to various other insertions and all of them are integrated out

at the end

z

1

τn+1
2

∫
Σ
d2z

n∏
i=1

∫
Σ
d2ziG(z − zi|τ) =

n

n−1
... .

2

1 (2.22)

We also introduce the action of the derivative in z acting on one of the Green’s functions

i

∂1

τ2
2

∫
Σ
d2zid

2zj ∂ziG(zi − zj |τ) =
j

= −
i j

∂
= − 1

τ2
2

∫
Σ
d2zid

2zj ∂zjG(zi − zj |τ) .

(2.23)

Here, we have also illustrated the consequence of translation invariance ∂ziG(zi − zj |τ) =

−∂zjG(zi − zj |τ).

Last but not least we are always able to rewrite the action of the deformation δµ
into the action of derivatives on the world-sheet by introducing an additional insertion,

such that

i

δµ
δµ

[
1

τ2
2

∫
Σ
d2zid

2zjG(zi − zj |τ)

]
=

j

i
= −τ2

π z
∂ ∂

j
= − 1

πτ2
2

∫
Σ
d2zid

2zjd
2z∂zG(z − zi|τ)∂zG(z − zj |τ) .

(2.24)

This rule is due to (2.17). There is a similar formula for the conjugate deformation δ̄µ in

terms of the conjugate world-sheet derivative ∂̄z.

Because of equation (2.20) we see that every diagram with at least one node that has

only one Green’s function connecting to it is vanishing. Therefore for tadpoles diagrams

we obtain

i z
∝ 1

τ2

∫
Σ
d2zG(zi − z|τ) = 0 . (2.25)

Additionally, we read out from (2.20) the diagrammatical simplification rule

i

∂

j

∂̄ =
π

τ2 i = j
− π
τ2 i j

. (2.26)

The derivative with respect to world-sheet variables acting on one of the Green’s functions

can be moved on the graph reproducing the integration by parts formula. We obtain

for example

i

∂
= −

i

∂
−

i
∂ −

i ∂

. (2.27)
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2.3 Modular graph functions with one and two world-sheet loops

Some subsets of modular functions with a particular geometric structures are well under-

stood. For example a simple s-polygon of Green’s functions reproduces non-holomorphic

Eisenstein series with a somewhat unusual, yet for our purpose useful, normalisation [56]:

1 2

3

4

s =
∑

(m,n)∈Z2/{0}

τ s2
π2s|m+ nτ |2s

= Es(τ, τ̄) .

(2.28)

This is the simplest non-trivial structure that appears as the modular graph function, with

a single summation over the discretised momentum in the loop and it depends just on a

single value s, that is the number of internal vertex insertions. Eisenstein functions are

know to satisfy a homogeneous Laplace equation

(∆− s(s− 1))Es(τ, τ̄) = 0 . (2.29)

This equations can also be proved diagrammatically using the rules outlined above. For

the particular value of s = 0, we use the normalisation

E0(τ, τ̄) = 1 . (2.30)

The next more complex structure was discussed in detail in [56] and depends on a triplet

(s, t, p) of integer values, that describe the number of vertex insertions on the path con-

necting points z1 and z2 on the torus

z1

1

2 s−1

s

1′ 2′ (t−1)′ t′

1′′

2′′ (p−1)′′

p′′

z2 =
∑′

(m1,n1)
(m2,n2)

τs+t+p2
πs+t+p|m1+n1τ |2s|m2+n2τ |2t|m1+m2+(n1+n2)τ |2p

= C(s,t,p)(τ, τ̄) ,

(2.31)

where we sum over discrete momenta p1 and p2 in the loop, excluding zero and have

solved overall momentum conservation. The prime on the sum indicates that we have

to exclude all zero momentum propagators, i.e., (m1, n1) 6= (0, 0), (m2, n2) 6= (0, 0) and

(m1 +m2, n1 + n2) 6= (0, 0). In string theory only non-negative integer values for s, t and

p arise but as argued in [56] the function C(s,t,p) can be analytically continued to arbitrary

complex values of the parameters. We will often suppress the arguments τ and τ̄ .

Starting now we will use following abbreviations to indicate the number of Green’s

functions that connect two points in a simple manner

1 2 s
= .s

(2.32)
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With this notation Eisenstein functions and C(s,t,p) can be written in a more graphical way

z1 s = Es(τ, τ̄) , z1 z2

s

t

p

= C s
t
p

(τ, τ̄) . (2.33)

It is obvious that C(s,t,p) is completely symmetric under permutations of the (s, t, p) triplet.

Furthermore for specific values of (s, t, p) the function C(s,t,p) simplifies to a quadratic

polynomial in Eisenstein series [56]

C s
t
0

= EsEt − Es+t , C s
t
-1

= Es−1Et + EsEt−1 . (2.34)

This simplification can be easily seen from the lattice sum representation. Unfortunately,

the differential equation satisfied by a general C(s,t,p) function is not any more homogeneous

and can be derived to be [56]

(∆− ω)C s
t
p

= st

(
C s + 1

t− 1
p

+ C s− 1
t + 1
p

+ C s + 1
t + 1
p− 2

− 2C s + 1
t

p− 1

− 2C s
t + 1
p− 1

)

+ the two other pairs of lines , (2.35)

where the eigenvalue ω is given by

ω = s(s− 1) + t(t− 1) + p(p− 1) . (2.36)

The spectrum of the modular Laplacian was studied in great detail in [56]. In appendix A,

we present a simple rederivation of the results of that paper based on an application of

Molien’s theorem combined with some representation theory of sl(2).

3 Tetrahedral family of modular graph functions

In this section, we introduce the family of modular graph functions associated with the

tetrahedral graph and an arbitrary number of propagators on all edges. We determine the

inhomogeneous Laplace equation satisfied by such functions and study some degeneration

limits. The spectrum of the Laplace operator on tetrahedral modular graph functions is

partially determined using generating function techniques.

3.1 Inhomogeneous Laplace equation for tetrahedral modular graphs

The next very symmetrical topology with three-valent vertices after the one above is that

of a tetrahedron (or Mercedes graph):

z1

z2

z3 z4

s
t

p

qw

r

=

′∑
pi

τ s+t+p+q+w+r
2

πs+t+p+q+w+r|p1|2s|p2|2t|p1 + p2|2p|p3|2q|p1 + p2 + p3|2r|p2 + p3|2w
= C

s t p
qw r

(3.1)
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The restriction on the sum means that the discrete momenta pi = mi + niτ for integers

mi, ni ∈ Z are all non-zero and similarly for all other propagators, i.e., p1 + p2 6= 0,

p2 + p3 6= 0 and p1 + p2 + p3 6= 0. We have already solved momentum conservation in the

above expression and the loop momenta are labelled as

p1 p2 p1 + p2

p3

p1 + p2 + p3

p2 + p3
(3.2)

As is well-known, the tetrahedron has point symmetry group S4 acting on it. An explicit

form of the action of this symmetric group on the graph can be found for example in [21].

For a tetrahedral modular graph function C s t p
qw r

we will call s + t + p + q + r + w the

weight of the function. The genuine first non-trivial case arises at weight 6 and was treated

already in [58]. We will re-derive it within our more general analysis below.

Without solving momentum conservation the tetrahedral modular graph function

C s t p
qw r

can be expressed in the symmetric way through six lattice sums and four Kronecker

deltas preserving momentum conservation at each vertex zi:

C
1 2 3

46 5

=
∑′

(mi,ni)∈Z2

δzim0δ
zi
n0

6∏
j=1

τ
sj
2

πsj |mj + njτ |2sj
, (3.3)

where the labels 1, . . . , 6 on the left-hand side stand for the parameters s1, . . . , s6 appearing

on the right-hand side.

Using either graphical methods or the sum representation, we can evaluate the modular

Laplacian on these tetrahedral modular graph functions to be

(
∆− ω

)
C

s t p
qw r

= st

(
C

-1 1
+ C

1-1
+ C

1 1-2
− 2C

1 -1
− 2C

1-1

)
+ 11 other adjacent pairs of lines

+ sq

(
C

1-2
1

+ C
1 -2

1

+ C
1

1-2

+ C
1

1-2

+ 2C
1 -1

1-1

+ 2C
1-1

1-1

− 2C
1 -1

1-1

− 2C
1-1-1

1

− 2C
1 -1

1-1

− 2C
1

1-1-1

)
+ 2 other opposite pairs of lines (3.4)

with the ‘eigenvalue’ ω being

ω = s(s− 1) + p(p− 1) + q(q− 1) + r(r− 1) + t(t− 1) +w(w− 1)− 2(wp+ qs+ rt) (3.5)
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The final mixed term does not arise for the ‘sunset’ functions of [56] and is formed as

the sum over the three sets of non-adjacent (opposite) lines in the diagram. The notation

in (3.4) means that the indices on the corresponding lines of the diagrams are increased or

decreased in the indicated places while maintaining the labels on the left-hand side of the

equation. Thus

-1
1

≡ s-1 t p
qw+1r

(3.6)

We present some details on the derivation of (3.4) in appendix C.

3.2 Degeneration limits

Below we will also require some degeneration limits of the tetrahedral graphs when some

of the vertices come together. These are

z1

z2 z3

s t p q

r

=
∑′

pi

τs+t+p+q+r2
πs+t+p+q+r|p1|2s|p2|2t|p3|2p|p1+p2|2r|p1+p2+p3|2q = C

s t p q
r

(τ, τ̄) ,

(3.7)

z1

z2

s t p q =
∑′

pi

τs+t+p+q2
πs+t+p+q |p1|2s|p2|2t|p3|2p|p1+p2+p3|2q = C

s t p q
(τ, τ̄)

(3.8)

As in (2.34), setting one of the values in C s t p
qw r

to the value 0 or −1 leads to a

simplification in the modular graph functions. Some of simplifications are multi-term

identities.

C
s t p

qw 0

= C
s p w q

t

− C s + w
q + p
t

, (3.9a)

C
s t p

qw-1

+ C
s t p

wq
-1

= C
s-1pw q

t

+ C
s pw-1q

t

+ C
sp-1w q

t

+ C
s pwq-1

t

− C
s p w q

t-1

, (3.9b)

C
s p q r

0

= C
s p q r

− Es+pEq+r , (3.9c)

C
0 s p q

r

= EsC r
p
q

− C s + r
p
q

, (3.9d)

C
s p q r

-1

+ C
s q p r

-1

+ C
s r p q

-1

= C
s-1p q r

+ C
sp-1q r

+ C
s pq-1r

+ C
s p qr-1

, (3.9e)

C
-1 s p q

r

= Es−1C r
p
q

+ EsC r-1
p
q

, (3.9f)

C
0 s t p

= EsEtEp − C s
t
p

, (3.9g)
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C
-1s t p

= Es−1EtEp + EsEt−1Ep + EsEtEp−1 , (3.9h)

C s
t
0

= EsEt − Es+t , (3.9i)

C s
t
-1

= Es−1Et + EsEt−1 . (3.9j)

The last two already appeared in (2.34). The identities above can be derived most easily

from the sum representation of the modular graph functions.

3.3 Laplace equations at low weights

We now evaluate explicitly (3.4) for C s t p
qw r

for low weights s + t + p + q + r + w starting

from weight 6.

3.3.1 Laplace equation at weight 6

In order to illustrate the use of these equations, we re-derive the Laplace equation for

the simplest non-trivial tetrahedral modular graph function that appears for weight 6.

From (3.4) one finds

(∆ + 6)C
1 1 1

11 1

= 12C
-1 1 1

12 2

+ 12C
-1 1 2

12 1

− 24C
0 1 1

12 1

− 24C
0 0 2

12 1

+ 12C
0 1 2

02 1

. (3.10)

We simplify the right hand-side of the equation using equations (3.9):

C
-1 1 1

12 2

+ C
-1 1 2

12 1

= 2E2C 1
1
2

+ E2
3 − 2C 1

2
3

+ 2C
1 1 1 2

1

− C
1 1 2 2

, (3.11a)

C
0 0 2

12 1

= E2C 1
1
2

− 2C 1
2
3

, (3.11b)

C
0 1 2

02 1

= E6 − 2E2
3 + C

1 1 2 2
, (3.11c)

C
0 1 1

12 1

= C
1 1 1 2

1

− C 1
2
3

. (3.11d)

Putting the results together we obtain

(∆ + 6)C
1 1 1

11 1

= 48C 1
2
3

− 12E2
3 + 12E6 . (3.12)

This equation was derived in this form first in [58] and is relevant for determining the

D12R4 correction at one loop.

3.3.2 Laplace equation at weight 7

At weight 7 there is only a single genuine tetrahedral modular graph function associated

with the diagram

2 1 1
11 1 (3.13)
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Plugging this into the equation (3.4), we find in a first instance

(∆ + 6)C
2 1 1

11 1

= 8C
-1 1 1

13 2

+ 8C
-1 1 2

13 1

+ 2C
-1 1 1

22 2

+ 2C
-1 1 2

22 1

+ 8C
-1 1 2

12 2

− 8C
0 0 2

13 1

− 8C
0 0 2

12 2

− 8C
0 0 3

12 1

− 8C
0 1 1

13 1

− 10C
0 1 1

12 2

− 4C
0 1 1

22 1

+ 8C
0 1 2

03 1

+ 4C
0 1 2

02 2

− 6C
0 1 2

12 1

− 4C
0 1 2

11 2

. (3.14)

For the simplifications we use again (3.9) and there are many cancellations. Combining all

the terms together the final Laplace equation at weight 7 is

(∆ + 6)C
2 1 1

11 1

= −2C
1 2 1 2

1

+ 30C 1
2
4

+ 18C 1
3
3

+ 8C 2
2
3

− 12E3E4 + 12E7 . (3.15)

3.4 Generating function, its Laplace equation and sl(3)

For understanding more general properties of the spectrum of the Laplacian on tetrahedral

modular graph functions, it is useful to consider a generating function, similar to the one

introduced in [56]. For the tetrahedral graphs considered here we write it as

W
t1
t2t3
t4t6t5

=
∞∑

s,t,p,q,w,r=1

ts−1
1 tt−1

2 tp−1
3 tq−1

4 tr−1
5 tw−1

6 C
s t p

qw r

. (3.16)

In terms of the lattice sum this can be thought of as considering massive propagators

between the vertices zi

W(ti, τ, τ̄) =
∑′

(mi,ni)∈Z2

δzim0δ
zi
n0

6∏
j=1

τ2

π|mj + njτ |2 − trτ2
. (3.17)

We will now determine the action of the Laplace operator on W from the Laplace

equation (3.4). We begin with the ‘eigenvalue’ ω shown in (3.5). The left-hand side of the

Poisson equations can be expressed using the relation

∞∑
s,t,p,q,w,r=1

ts−1
1 tt−1

2 tp−1
3 tq−1

4 tr−1
5 tw−1

6 s(s− 1)C
s t p

qw r

= t1∂
2
1(t1W

t1
t2t3
t4t6t5

) . (3.18)

Here we use the notation ∂i ≡ ∂/∂ti as a short-hand. This part can be rewritten for

all legs as
(∑6

i=1 ti∂
2
i ti

)
W. The mixed terms in ω of (3.5) can be written in terms of

t-derivatives as
∞∑

s,t,p,q,w,r=1

ts−1
1 tt−1

2 tp−1
3 tq−1

4 tr−1
5 tw−1

6 wpC
s t p

qw r

= ∂3∂6(t3t6W
t1
t2t3
t4t6t5

) . (3.19)

We therefore deduce that

∞∑
s,t,p,q,w,r=1

ts−1
1 tt−1

2 tp−1
3 tq−1

4 tr−1
5 tw−1

6 ωC
s t p

qw r

=

(
6∑
i=1

ti∂
2
i ti − 2

3∑
i=1

∂i∂i+3titi+3

)
W

t1
t2t3
t4t6t5

=

D2 −D− 6− 2
∑
<i,j>

titj∂i∂j − 4

3∑
i=1

titi+3∂i∂i+3

W
t1
t2t3
t4t6t5

, (3.20)
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where ω on the left-hand side is given by (3.5). We have separated the sum over pairs of

edges into the 12 adjacent pairs < i, j > and the three opposite pairs (i, i+3) for i = 1, 2, 3.

The differential operator

D =
6∑
i=1

ti∂i (3.21)

measures the degree of homogeneous polynomials in the ti.

Next we analyse the inhomogeneous terms on the right-hand side of the Laplace equa-

tion (3.4). We will use again the short-hand (3.6) to indicate a number of propagators

different from the standard one in C s t p
qw r

. As a rule of thumb, any shifted index will be

associated with a shifted power on the corresponding variable ti in the generating func-

tion. Shifting the summation back to the standard range will produce ‘boundary terms’

where some of the edges have the special values that also appear in (3.9). Generally, only

the edges with negative shifts will contribute to these boundary terms; the positive +1

shifts are innocuous as they only appear for the edges whose power also multiplies the

corresponding contribution.

Let us consider as an example the first term on the right-hand side of (3.4) that

contains an adjacent pair of lines:

∞∑
s,t,p,q,w,r=1

ts−1
1 tt−1

2 tp−1
3 tq−1

4 tr−1
5 tw−1

6 stC
1-1

= ∂1∂2

t1t2 ∑
p,q,r,w=1

t=0
s=2

ts−2
1 tt2t

p−1
3 tq−1

4 tr−1
5 tw−1

6 C


= ∂1∂2

t22 ∑
s,p,q,r,w=1

t=0

ts−1
1 tt−1

2 tp−1
3 tq−1

4 tr−1
5 tw−1

6 C


= ∂1∂2

[
t22W

t1
t2t3
t4t6t5

+ t2W
t1 0 t3

t4t6t5

]
. (3.22)

The last term comes from the t = 0 term in the sum and we have introduced the notation

W
t1 0 t3

t4t6t5

=
∑

s,p,q,r,w=1

ts−1
1 tp−1

3 tq−1
4 tr−1

5 tw−1
6 C

0
=W

1 2 3
46 5

∣∣∣
2→0

(3.23)

for the generating function of degenerate tetrahedral graph functions. The function C 0

could in principle be simplified using (3.9), but it is more compact to leave it in this form.

We see that a term on the right-hand side of (3.4) contributes both to a differential operator

acting on W t1
t2t3
t4t6t5

and to degenerate boundary terms.
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Manipulations similar to (3.22) can be performed for all the adjacent lines 〈i, j〉 and

opposite lines in (3.4). Summing up all the contributions then gives

(
∆−D2 + D + 6

)
W

1 2 3
46 5

=
∑
Vijk

(
t2i + t2j + t2k − 2titj − 2titk − 2tjtk

)
(∂j∂k + ∂i∂j + ∂i∂k)W

1 2 3
46 5

+

3∑
i=1

((ti+1 − ti+2 + ti+4 − ti+5)2 − 4titi+3)∂i∂i+3W
1 2 3

46 5

+R , (3.24)

where the two sums arise from the adjacent lines 〈i, j〉 coming together at a vertex Vijk and

the three pairs of opposite lines. We have also moved some of the terms in (3.20) to the

right. The term R contains all the contributions from degenerate diagrams and is given

explicitly by

R = −
6∑
i=1

∑
Vpqi

(∂p + ∂q + (2tp + 2tq − ti)∂p∂q)W
1 2 3

46 5

∣∣∣
i→0

+
6∑
i=1

3∑
p=1

p/∈{i,i+3}

(ti + 2ti+3 − 2tp+1 − 2tp+4) ∂p∂p+3W
1 2 3

46 5

∣∣∣
i→0

+

6∑
i=1

6∑
∆ipq 6=∆irs

(∂p + ∂q) (∂r + ∂s)W
1 2 3

46 5

∣∣∣
i→−1

+

[
2∂1∂4

(
W

1 0 3
46 0

+W
1 2 0

40 5

−W
1 0 0

46 5

−W
1 0 3

40 5

−W
1 2 0

46 0

−W
1 2 3

40 0

)

+ two other pairs of opposite lines

]
(3.25)

(Indices are to be understood modulo 6.) The four terms are almost simpler to describe

in words: the first term is a sum over the six edges i with p and q joining line i at a

vertex; so for i = 1 it would be the two cases (p, q) ∈ {(2, 3), (5, 6)} because edge 4 is

opposite of edge 1. The second term is also an outer sum over the edges i and the inner

sum produces the two pairs of opposite edges not containing i; for i = 1 it would be

(t1 + 2t4− 2t3− 2t6)∂2∂5 + (t1 + 2t4− 2t2− 2t5)∂3∂6 . The third term is also a sum over all

the edges i and the inner sum contains the two triangles that can be formed containing the

edge i; for i = 1 this means (∂3 + ∂5)(∂2 + ∂6). The very last term comes from the three

pairs of opposite edges and has two degenerations in the generating function with sign

distributions depending on whether the degenerations are on opposite or adjacent edges.

In the case considered in [56], all boundary terms could be simplified to Eisenstein series

or products thereof by virtue of (2.34); here the source terms are of a more complicated
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nature but still simpler compared to the full tetrahedral function. This can be seen in the

examples above.

As is shown in appendix B, the Laplace equation (3.24) for the generating function can

be rewritten using the quadratic Casimir of the split real sl(3). Upon inserting the Casimir

C2 =
4

3
D2 + 2D +

∑
Vijk

(t2i + t2j + t2k − 2titj − 2tjtk − 2tkti)(∂i∂j + ∂j∂k + ∂k∂i)

+

3∑
i=1

((ti+1 − ti+2 − ti+4 + ti+5)2 − 4titi+3)∂i∂i+3 . (3.26)

that is derived in appendix B, we obtain(
∆− C2 +

1

3
(D + 3) (D + 6)

)
W = R , (3.27)

where we have suppressed all dependence on the variables τ and ti of the generating function

W and the remainder R. Solving the spectral problem means finding the spectrum of

the operator

L2 = C2 − 1

3
(D + 3) (D + 6) . (3.28)

We note that the occurrence of sl(3) is slightly misleading, there is no actual sl(3) symmetry

of the spectrum; what we will be interested in is the number of S4 singlets in representations

of sl(3). This situation is generalisation of the case discussed in appendix A for the sunset

graph underlying the functions C(s,t,p).

3.5 General spectral considerations

We now try to find a basis of C2-eigenfunctions of homogeneous polynomials in the six ti
that transform under S4 in such a way that the polynomials are invariant. The action of

S4 is induced from that of sl(3) mentioned above and exhibited in appendix B. That is,

we are looking for functions that satisfy

DWw,p1,p2 = (w − 6)Ww,p1,p2 ,

C2Ww,p1,p2 =
1

3
(p2

1 + p1p2 + p2
2 + 3p1 + 3p2)Ww,p1,p2 ≡ λp1,p2Ww,p1,p2 (3.29)

and are S4-invariant. We here are using the sl(3) quadratic Casimir operator C2 that was

defined in (B.3) that is normalised such that when acting on an sl(3) representation with

Dynkin labels [p1, p2] it has eigenvalue λp1,p2 = 1
3(p2

1 +p1p2 +p2
2 + 3p1 + 3p2). We note that

the dimension of the sl(3) representation with labels [p1, p2] is given by

dim [p1, p2] =
(p1 + p2 + 2)(p1 + 1)(p2 + 1)

2
. (3.30)

The eigenvalue k of the scaling operator D is related to the weight w =
∑

i si of

C s1
s2s3
s4s6s5

by

k = w − 6 . (3.31)

The value k corresponds to the degree of the homogeneous polynomial in the ti.
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The operators D and C2 commute and the eigenvalue of the modular Laplacian is then(
∆− λp1,p2 +

1

3
w(w − 3)

)
Ww,p1,p2 = Rw,p1,p2 (3.32)

according to (3.28). We note that D and C2 do not form a complete set of commuting

semi-simple operators. There are still degeneracies in the eigenspace labelled by (w, p1, p2).

The form of the right-hand side above depends on which particular eigenfunction in the

(w, p1, p2) we are considering.

Mimicking the analysis of the two-loop sunset graph in appendix A, we need to first

identify the correct representations of sl(3). The representation on six variables ti is the

irreducible six-dimensional representation that we choose as [2, 0] by some labelling con-

vention for the nodes of the A2 Dynkin diagram. For homogeneous polynomials of degree

k we need to form its symmetric tensor product series. We first compute the total number

of S4-invariant functions for a given degree k = w−6 of the polynomial. This can be done

by applying Molien’s theorem to the six-dimensional representation of S4 and gives the

following generating function

1− q + q2 + q4 + q6 − q7 + q8

(1− q)6(1 + q)2 (1 + q2) (1 + q + q2)2 (3.33)

that is also documented as series A003082 in the OEIS [79]. From this one can construct

the total number of S4 singlets at a given order

k 0 1 2 3 4 5 6 7

S4 singlets in Sk([2, 0]) 1 1 3 6 11 18 32 48
(3.34)

As w = k + 6, we recognise the single tetrahedral modular graph function at weight 6 and

the single tetrahedral modular graph function at weight 7 discussed above.

In order to separate the total number of eigenfunctions at weight w = k + 6 into the

Casimir eigenspaces of the representation [p1, p2] we need to consider the sl(3) representa-

tions occurring in the k-th symmetric tensor power of the six-dimensional representation

[2, 0] of the ti variables. This is given by

Sk([2, 0]) =

b k
3
c⊕

i=0

b i
2
c⊕

j=0

[2k − 6i, 6j]⊕
b k−2

3
c⊕

i=0

b i
2
c⊕

j=0

[2k − 6i− 4, 6j + 2]

⊕
b k−1

3
c⊕

i=0

b i−1
2
c⊕

j=0

[2k − 6i− 2, 6j + 4]. (3.35)

All these representations of sl(3) occur with multiplicity one. The only degeneracies in the

Casimir eigenvalues arise for representations related by the outer automorphism of sl(3),

i.e., only [p1, p2] and [p2, p1] have the same Casimir eigenvalue, otherwise all Casimir values

are different.

– 19 –

https://oeis.org/A003082


J
H
E
P
0
9
(
2
0
1
7
)
1
5
5

Unfortunately, compared to the two-loop case of appendix A, we do not have a direct

description of all [p1, p2] as symmetric powers of some simple representation. A notable ex-

ception is again given by the symmetric powers of the fundamental (and anti-fundamental)

representation:

Sp([1, 0]) = [p, 0] (Sp([0, 1]) = [0, p]) . (3.36)

As a representation of S4 the three-dimensional fundamental representation of sl(3) is the

standard representation and one can choose as generators for example the matrices 0 0 1

0 1 0

−1 1 0

 ,

 0 0 −1

0 −1 0

−1 0 0

 ,

0 0 1

1 −1 1

1 0 0

 . (3.37)

Molien’s theorem gives the number of S4 invariants in such representations as being

generated by

1− q3 + q6

(1− q)3(1 + q)2(1 + q2)(1 + q + q2)
. (3.38)

For low p one has for the number of S4 singlets in [p, 0] (or equivalently [0, p])

p 0 1 2 3 4 5 6

S4 singlets in [p, 0] 1 0 1 0 2 0 3
(3.39)

(The series starts to be non-zero for odd p soon after this.) At even p this series agrees with

1

(1− q2)3(1 + 2q2 + 2q4 + q6)
=

1

(1− q2)(1− q4)(1− q6)
(3.40)

as can be checked using a double extension of S4. The even p values are the only ones

of interest to us, so we might as well work with this simpler series that is identical to the

two-loop case.

For more general [p1, p2] it is not quite clear how to get the right generating series. In

table 1, we present the number of S4 invariants for small even p1 ≥ p2. This inequality is

sufficient due to the outer automorphism of sl(3) and only even values of the pi can arise

in (3.35).

The eigenvalue of the modular Laplacian at a given weight w then has to be calculated

using (3.32).

3.6 Eigenfunctions and Laplace equations at low weight

In this section, we give some more examples of eigenvalues and eigenfunctions of the mod-

ular Laplacian acting on tetrahedral modular graph functions. We stress that we are using

the terms ‘eigenvalues’ and ‘eigenfunctions’ loosely as the corresponding Laplace equations

are typically inhomogeneous but the right-hand side source is of lower complexity.
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sl(3) first occurrence Casimir dim [p1, p2] Number of

representation at weight w = k + 6 value C2 S4 singlets

[0, 0] 6 0 1 1

[2, 0] 7 10
3 6 1

[4, 0] 8 28
3 15 2

[2, 2] 9 8 27 2

[6, 0] 9 18 28 3

[8, 0] 10 88
3 45 4

[4, 2] 10 46
3 60 4

[10, 0] 11 130
3 66 5

[12, 0] 12 60 91 7

[6, 2] 11 106
3 105 6

[4, 4] 12 24 125 7

[8, 2] 12 38 162 9

Table 1. Number of S4 singlets in various representations of sl(3) together with their Casimir

eigenvalues and the weight of the tetrahedral modular graph function for which they arise first.

The list is ordered by the dimension of the representation and complete up to dimension 162.

The explicit eigenfunctions of the modular Laplacian at low weights can be constructed

using a basis of S4-invariant homogeneous polynomials of degree k. We list as examples

the linear and quadratic invariant homogeneous polynomials:

k = 1 : p1(t) = t1 + t2 + t3 + t4 + t5 + t6 ,

k = 2 : p
(1)
2 (t) = t21 + t22 + t23 + t24 + t25 + t26 ,

p
(2)
2 (t) = t1t2 + t1t3 + t2t3 + t2t4 + t3t4

+ t1t5 + t2t5 + t4t5 + t1t6 + t3t6 + t4t6 + t5t6 ,

p
(3)
2 (t) = t1t4 + t3t5 + t2t6 . (3.41)

Similar bases of S4 invariant homogeneous polynomials can be generated at any degree

easily. The procedure for finding explicit eigenfunctions of L2 is then to first diagonalise the

action of the sl(3) Casimir C2 on the polynomials and then convert this to inhomogeneous

Laplace equations for combinations of tetrahedral modular graph functions.

3.6.1 Weight 7

The linear polynomial p1 is an eigenfunction of the sl(3) Casimir C2 given in (B.3) accord-

ing to (
C2 − 10

3

)
p1 = 0 . (3.42)

The corresponding tetrahedral modular graph function is C 2 1 1
11 1

with Laplace equation

given already in (3.12).
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3.6.2 Weight 8

For k = 2 the following are explicit eigenfunctions of the Casimir operator (B.3) in the

normalisation given there: (
C2 − 10

3

)(
p

(1)
2 − p

(2)
2

)
= 0 , (3.43a)(

C2 − 28

3

)
p

(1)
2 = 0 , (3.43b)(

C2 − 28

3

)(
p

(2)
2 − 3p

(3)
2

)
= 0 . (3.43c)

This is the first time a degeneracy arises in the spectrum and we have chosen some particular

simple basis. These S4 invariant eigenfunctions (3.43) of the sl(3) Casimir C2 can be

translated into combinations of tetrahedral modular graph functions as follows

(∆ + 4)C
2 1 1

21 1

= −16C
−13 3

11 1

+ 32C
1 2 1 3

1

− 24C
1 2 2 2

1

+ 8C
1 2 1 2

2

+ 2C
2 2 2 2

− 8C
1 2 2 3

+ 88C 1
3
4

− 12C 2
2
4

− 4C 2
3
3

+ 8E3C 1
2
2

− 14E2
4 + 20E8 , (3.44a)

(∆ + 4)

(
C

3 1 1
11 1

+ C
2 2 1

11 1

)
= 4C

−13 3
11 1

− 16C
1 2 1 3

1

+ 2C
1 2 2 2

1

− 2C
1 2 1 2

2

− 1

2
C

2 2 2 2

+ 2C
1 2 2 3

+ 60C 1
2
5

+ 40C 1
3
4

+ 18C 2
2
4

+ 16C 2
3
3

− 2E3C 1
2
2

− 11

2
E2

4 − 20E3E5 + 24E8 , (3.44b)

(∆ + 10)

(
C

2 1 1
21 1

+ 3C
2 2 1

11 1

)
= −4C

−13 3
11 1

+ 8C
1 2 1 3

1

− 6C
1 2 2 2

1

− 4C
1 2 1 2

2

+
1

2
C

2 2 2 2

− 2C
1 2 2 3

+ 36C 1
2
5

+ 124C 1
3
4

+ 42C 2
2
4

+ 32C 2
3
3

+ 2E3C 1
2
2

− 61

2
E2

4 − 12E3E5 + 44E8 . (3.44c)

As can be seen, all right-hand sides contain the function C −13 3
11 1

. This function cannot be

reduced by means of the simplification rules given in (3.9). However, we expect there to

be an additional simplification rule that we have not been able to derive and that would

simplify this function.

3.6.3 Weight 9

For k = 3 one has in total six eigenfunctions according to (3.34). These separate into the

L2 eigenvalues −18, −10 and 0 with degeneracies 1, 2 and 3, respectively. For L2 = −18
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the eigenfunction is given by

L2 = −18 : C
2 2 1

12 1

+ 3C
2 2 1

21 1

. (3.45)

For L2 = −10 one has the following basis of two eigenfunctions

L2 = −10 : C
2 2 1

12 1

+ 2C
2 2 1

21 1

+ 2C
3 1 1

21 1

,

C
2 2 2

11 1

+ C
2 2 1

12 1

+ 3C
2 2 1

21 1

+ 4C
3 2 1

11 1

+ 2C
3 1 1

21 1

. (3.46)

For L2 = 0 one has the follow three independent eigenfunctions

L2 = −10 : C
2 2 2

11 1

+ C
2 2 1

21 1

+ 4C
3 2 1

11 1

+ 5C
4 1 1

11 1

,

− C
2 2 1

12 1

+ 3C
2 2 1

21 1

+ 3C
3 1 1

21 1

,

3C
2 2 2

11 1

− 2C
2 2 1

12 1

− 6C
2 2 1

21 1

− 18C
3 2 1

11 1

− 9C
3 1 1

21 1

. (3.47)

We do not spell out the right-hand sides of the inhomogeneous Laplace equations as they

are rather involved but note that, similar to (3.44) they can involve tetrahedral modular

graph functions on the right-hand side with where one edge has value −1. Such terms

possibly simplify.

3.6.4 Weights 10, 11 and 12

For weights 10, 11 and 12 we only present table 2 of the degeneracies of the eigenvalues of

L2 and do not list the explicit eigenfunctions as they become rather involved.

The numbers in table 2 can also be derived from (3.35), (3.28) and table 1. We have

additionally determined the corresponding eigenfunctions and checked that their inhomoge-

neous Laplace equations contain only less complex modular graph functions or tetrahedral

modular graph functions that have one edge with value −1.

3.6.5 More Laplace equations

In this section we present some additional Laplace equations, where the Laplacian is not

diagonalised as in the previous examples but instead the combinations are chosen such that

there are no functions with a value −1 on any edge remaining on the right-hand side. These

together with the previous ones could be useful for finding the integrated versions of the

corresponding amplitudes. In general, there remain tetrahedral modular graph functions

with a similar complexity on the right-hand side.

For weight w = 8 one has

∆

(
C

2 1 1
21 1

+ 4C
2 2 1

11 1

)
= −12C

2 1 1
21 1

− 40C
2 2 1

11 1

+ 48C 1
2
5

+ 136C 1
3
4

+ 60C 2
2
4

+ 44C 2
3
3

− 8C
1 2 1 2

2

− 36E2
4 − 16E3E5 + 52E8 . (3.48)

The Laplacian acting on the function C 3 1 1
11 1

does not produce any −1 values either.
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weight L2 eigenvalue sl(3) rep. S4 singlets

10 −20 [2, 0] 1

−14 [0, 4] 2

−8 [8, 0] 4

6 [4, 2] 4

11 −26 [0, 2] 1

−20 [4, 0] 2

−14 [2, 4] 4

−4 [10, 0] 5

14 [6, 2] 6

12 −36 [0, 0] 1

−28 [2, 2] 2

−18 [6, 0]⊕ [0, 6] 6

−12 [4, 4] 7

2 [8, 2] 9

24 [12, 0] 7

Table 2. Eigenvalues and degeneracies of the modular Laplacian acting on tetrahedral modular

graph functions of weights 10, 11 and 12.

For weight w = 9, there are four combinations that do not produce any −1 edges after

application of the Laplace operator. Besides the functions C 4 1 1
11 1

and C 2 2 2
11 1

they are

(∆ + 18)

(
C

1 1 1
22 2

+ 3C
1 1 2

12 2

)
= 72C 1

3
5

+ 45C 1
4
4

+ 36C 2
2
5

+ 72C 2
3
4

− 36E4E5 + 36E9 (3.49)

and

∆

(
4C

1 1 1
12 3

+ C
1 1 2

13 1

)
= −4C

1 1 2
21 2

+ 14C
1 1 2

12 2

− 16C
1 1 1

12 3

+ 6C
1 1 1

22 2

− 16C
3 1 3 1

1

− 16C
3 1 2 2

1

− 16C
2 1 2 3

1

− 4C
2 2 2 2

1

− 4C
2 1 1 2

3

(3.50)

− 12E4C 1
2
2

+ 12E4C 1
2
4

+ 84C 1
2
6

+ 128C 1
3
5

+ 96C 1
4
4

+ 48C 2
2
5

+ 34C 2
3
4

+ 22C 3
3
3

− 48E4E5 − 20E3E6 + 68E9 .

For weight w = 10, there are seven combinations that do not produce any −1. For

weight w = 11 there are 11 and for weight w = 12 there are 19 such combinations.
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A Spectrum of the Laplacian on C(s,t,p)

We shall be interested in spectrum of the modular Laplacian on the function C(s,t,p) defined

in (2.31). As in [56] we will introduce a generating function defined by

W(t1, t2, t3|τ) =

∞∑
s,t,p=1

ts−1
1 tt−1

2 tp−1
3 C(s,t,p)(τ) . (A.1)

It follows from (2.35) that the generating satisfies the equation(
∆− L2

)
W = R , (A.2)

with (using ∂i ≡ ∂ti)

L2 = D2 + D + (t21 + t22 + t23 − 2t1t2 − 2t2t3 − 2t3t1)(∂1∂2 + ∂2∂3 + ∂3∂1) , (A.3)

D =
3∑
i=1

ti∂i , (A.4)

and

R =
∞∑

s,t=0

(
ts1t

t
2 + ts2t

t
3 + ts3t

t
1

)
R0
st +

∞∑
s,t=0

(
ts1t

t
2t3 + ts2t

t
3t1 + ts3t

t
1t2
)
R1
st , (A.5)

R0
st = 3s(t+ 1)Es+1Et+2 + 3(s+ 1)tEs+2Et+1 + (2− s− t− 4st)Es+t+3 ,

R1
st = st (Es+2Et+2 − Es+t+4) .

The ‘remainder’ R is of lower complexity and represents some power series in the ti mul-

tiplying Eisenstein series or products of Eisenstein series. The spectral problem concerns

the diagonalisation of the operator L2 in (A.3).

Everything in equation (A.2) is symmetric under the action of S3, the symmetric group

on three letters, acting on the ti in the fundamental representation.1 Moreover, everything

commutes with the weight operator D of (A.4) that measures the degree of homogeneous

polynomials in the ti. Since W is symmetric in the ti, only symmetric polynomials appear

in the expansion on the right-hand side of (A.1).

A.1 SL(2) Casimir in dual Schwinger space

The following is a heuristic derivation of an exact rewriting of the differential operator L2.

The vacuum two-loop diagram in cubic scalar field theory (a.k.a. sunset or melon graph)

has the form (for unequal masses)∫
dDp1d

Dp2
1

p2
1 +m2

1

1

p2
2 +m2

2

1

(p1 + p2)2 +m2
3

. (A.6)

1Strictly speaking, the action of S3 is originally on the Schwinger parameters Li in the fundamental

representation and dually on the ti. In this case, the two actions are the same.
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Using Schwinger parameters it can be related to2

3∏
i=1

∫ ∞
0

dLi (det Ω)−D/2 e−(L1m2
1+L2m2

2+L3m2
3) , (A.7)

where

Ω =

(
L1 + L3 L3

L3 L2 + L3

)
. (A.8)

This matrix of Schwinger parameters carries a natural action of M ∈ PSL(2,R) by Ω →
MΩMT . One can even allow elements M with determinant minus one here. This will

happen for reflections below.

In order for the vacuum amplitude to be invariant under PSL(2,R) one has to act

correspondingly on the masses. We first rewrite this by defining ti = −m2
i and then

−(L1m
2
1 + L2m

2
2 + L3m

2
3) =

3∑
i=1

Liti = Tr ΩT (A.9)

with

T =

(
t1

1
2 (t3 − t1 − t2)

1
2 (t3 − t1 − t2) t2

)
. (A.10)

The action of M ∈ PSL(2,R) on this matrix is given by T → (M−1)TTM−1. From this one

can work out the following form of the infinitesimal generators of PSL(2,R) in a Chevalley

basis3

e = (t1 + t2 − t3)∂1 + (t1 − t2 − t3)∂3, (A.11a)

f = (t1 + t2 − t3)∂2 + (t2 − t1 − t3)∂3, (A.11b)

h = −2t1∂1 + 2t2∂2 − 2(t1 − t2)∂3. (A.11c)

The quadratic Casimir is then seen to agree with (A.3)

C2 =
1

2
ef +

1

2
fe+

1

4
h2 (A.12)

= (ti∂i)
2 + ti∂i + (t21 + t22 + t23 − 2t1t2 − 2t2t3 − 2t3t1)(∂1∂2 + ∂2∂3 + ∂3∂1) .

Since C2 preserves by construction the degree of a polynomial, we can simultaneously

diagonalise C2 and D, while preserving the invariance under the symmetric group S3. The

S3 invariant eigenfunctions of D are symmetric homogeneous polynomials. We note that

even though the operator C2 is the Casimir of sl(2), the individual operators (A.11) do

not act on the space of homogeneous symmetric polynomials even though they act on

homogeneous polynomials. This can be seen for example already for linear polynomials

h(t1 + t2 + t3) = 4(t2 − t1) , (A.13)

which is not symmetric. Therefore the common S3 invariant eigenspaces of D are not

representations of sl(2).

2In this heuristic derivation, we are systematically ignoring factors of 2π etc.
3This means that [e, f ] = h, [h, e] = 2e and [h, f ] = −2f .
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A.2 Spectrum using Molien’s theorem

We will nevertheless be able to exploit the representation theory of sl(2) to characterise the

spectrum of C2. The reason for this is that the quadratic Casimir C2 preserves the space

of symmetric polynomials as it is symmetric itself. Its possible eigenvalues are the ones

inherited from the action on arbitrary homogeneous polynomials (that are a representation

of sl(2)). Denoting the sl(2) representation of dimension p + 1 by the standard Dynkin

label [p], one has that on the irreducible representation [p] the Casimir has the eigenvalue

C2 = 1
4p(p+ 2) = s(s− 1) for s = p

2 + 1.

The space of linear homogeneous polynomials is the three-dimensional representation

[2] with basis {ti | i = 1, 2, 3}. The eigenvalue of L2 on this space is 2, corresponding to

s = 2. Similarly, the homogeneous polynomials of degree k are in the representation Sk([2])

of sl(2), where Sk denotes the kth symmetric tensor power. (The symmetry is simply due

to the fact that the ti commute.) The representation of sl(2) tells us that

Sk([2]) = [2k]⊕ [2k − 4]⊕ . . .⊕ [0/2] , (A.14)

where the last term is meant to indicate [0] or [2] depending on whether k is even or odd.

This means that the spectrum of eigenvalues of L2 for degree k are given by

s(s− 1) with s = k + 1, k − 1, . . . , 1/2 , (A.15)

corresponding to all possible (bosonic) representations of dimensions equal to 2s− 1. The

last term 1 or 2 again depends on the parity of k.

Having established the possible eigenvalues of L2, a harder question is to fix the de-

generacies/multiplicities. For this we need to find the number of S3 singlets in a given

representation [p] of sl(2). A similar mathematical problem arose in a different context

in [80]. We here employ a different method based on Molien series.

Molien’s theorem gives the number of invariants of a finite group (like S3) of fixed

degree k acting in a finite-dimensional representation of the group. We note that the

standard representation of S3 is two-dimensional. In terms of Schwinger parameters it can

be represented as

L1 ↔ L2 M =

(
0 1

1 0

)
,

L2 ↔ L3 M =

(
1 −1

0 −1

)
, (A.16)

L1 ↔ L3 M =

(
−1 0

−1 1

)
.

and this embeds in the two-dimensional representation [1] of PGL(2,Z) ⊂ PGL(2,R). The

representation theory of sl(2) then allows us to determine

Sp([1]) = [p] (A.17)
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such that this symmetric tensor product yields only a single representation. Therefore,

the S3 singlets in the representation [p] of sl(2) is the same as the degree p invariants in

the standard representation of S3. Molien’s theorem then directly gives the generating

function of the number singlets nS3
p in the representation [p] as the coefficient of qp in

∞∑
p=0

nS3
p qp =

1

(1− q2)(1− q3)
= 1 + q2 + q3 + q4 + . . . . (A.18)

One can deduce the following closed formula for nS3
2k from this Molien series by expanding

the geometric series:

nS3
2k =

⌊
k + 3

3

⌋
. (A.19)

We have restricted to even p = 2k since these are the only values that arise in the spectrum

of C2 in view of (A.14).

Combining this with (A.15), we deduce that on symmetric homogeneous polynomials

of degree k one has the following spectrum for C2: the eigenvalue s(s−1) with multiplicity

b(s + 2)/3c for the values s = k + 1, k − 1, . . . , 1/2. This is in complete agreement with

Theorem 1 of [56] but without the need to explicitly diagonalise the operator.

If one is interested in finding an explicit set of eigenfunctions of C2 for a given eigenvalue

and degree k, one can work in arbitrary basis of homogeneous symmetric polynomials,

e.g. Schur polynomials. Since the eigenspaces can be degenerate, one could introduce an

addition operator that commutes with C2 and D and that resolves the multiplicity. This is

the approach taken in [56]. Alternatively, one could just introduce a random labelling of

the various eigenfunctions in a given eigenspace since finding such an operator is not always

obvious. Implementing the explicit diagonalisation at low degrees k is straight-forward to

implement on a computer and has been treated in detail in [56].

B Heuristic for the sl(3) Casimir and the tetrahedral graph

We can use a similar heuristic to show that the differential operator appearing in (3.24)

is closely related to the quadratic Casimir of SL(3,R). For this we consider a cubic scalar

vacuum diagram with tetrahedral topology shown in figure 1.

One obtains an expression similar to (A.7) in terms of

6∏
i=1

∫ ∞
0

dLi(det Ω)−D/2eTr ΩT (B.1)

where now

Ω =

L1 + L3 + L5 L3 + L5 L5

L3 + L5 L2 + L3 + L5 + L6 L5 + L6

L5 L5 + L6 L4 + L5 + L6

 ,

T =

 t1
1
2(t3 − t1 − t2) 1

2(t2 − t3 − t5 − t6)
1
2(t3 − t1 − t2) t2

1
2(t6 − t2 − t4)

1
2(t2 − t3 − t5 − t6) 1

2(t6 − t2 − t4) t4

 . (B.2)
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p1 p2 p1 + p2

p3

p1 + p2 + p3

p2 + p3

t1 t2 t3

t4

t5

t6

Figure 1. The tetrahedral graph with labelling of momenta and parameters of the generating

function.

The action is now by SL(3,R). The quadratic Casimir in the ti variables becomes

C2 =
4

3
D2 + 2D +

∑
Vijk

(t2i + t2j + t2k − 2titj − 2tjtk − 2tkti)(∂i∂j + ∂j∂k + ∂k∂i)

+
3∑
i=1

((ti+1 − ti+2 − ti+4 + ti+5)2 − 4titi+3)∂i∂i+3 . (B.3)

The meaning of the various terms here is as follows. The scaling operator

D =
6∑
i=1

ti∂i (B.4)

measures the degree of homogeneous polynomials in the ti. The first sum is over the four

vertices Vijk of the tetrahedral graph, so (ijk) ∈ {123, 135, 156, 246}, and the sum contains

all second derivatives of adjacent edges. The last term contains mixed second derivatives

over opposite (non-adjacent) edges and there are three such pairs. If an index exceeds 6 it

is to be read modulo 6. Up to D terms in (B.3), we recognise the same differential operator

as the one appearing in (3.24).

C Graphical derivation of tetrahedral Laplace equation

In order to evaluate the modular Laplacian on the function C s t p
qr w

we work with the

deformation calculus of (2.16). This means that we have to distribute the deformation

differentials δµ and δ̄µ on the lines of the tetrahedral diagram. In this appendix we draw

the tetrahedral graph as a Mercedes diagram in order to unclutter some of the equations.

The reference graph is

≡
s t p

qw

r

(C.1)

and in all following equations we will only put changes relative to the values s, t, p, q, r

and w on the diagram.
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There are a number of different possibilities when placing δµ and δ̄µ on the diagram.

They can be placed either (i) on the same line, (ii) on adjacent lines or (iii) on oppo-

site lines.

Case (i) is simplest:

s(s− 1)
δµδ̄µ

= s(s− 1) , (C.2)

where we have included the relevant combinatorial factor for putting δµ and δ̄µ on two

different of the s many propagators of this line. Expanding first δµ and δ̄µ into additional

propagators and partial world-sheet derivatives ∂ and ∂̄ according to (2.24) and then con-

tracting adjacent ∂ and ∂̄ using (2.26) immediately gives back the original diagram. (The

second term in the contraction rule (2.26) never contributes in the considerations of this

appendix as it always gives tadpole diagrams that vanish thanks to (2.25).) Thus this part

of the action of ∆ = δµδ̄µ contributes to the ‘eigenvalue’ part of the differential equation.

There are naturally similar terms for all the other five lines.

Case (ii) is slightly more involved. There are 12 pairs of adjacent lines (three per

vertex) and they all have similar contributions. We consider the

st


δµ δ̄µ

+ c.c.

 , (C.3)

where we have noted that one always has to add the complex conjugate with δµ and δ̄µ
interchanged. The diagram shown can be manipulated as follows4

δµ δ̄µ
=

+1 +1

∂
∂

∂

∂ =
+1

∂

∂ −
+1 +1

∂
∂

∂

∂

=
+1

∂

∂ −
+1 +1 −1

∂

∂ +
+1

∂

∂ (C.4)

In this equation we have shown in blue in each step the derivatives that are integrated

by parts at the trivalent vertices. At this point we can apply Lemma 1 below to all three

4In this and the following equations we do not write out the factors of π and τ2 as they cancel in the

final expression.

– 30 –



J
H
E
P
0
9
(
2
0
1
7
)
1
5
5

diagrams to get

δµ δ̄µ
+ c.c. =

+1 −1
+
−1 +1

+
+1 +1 −2

− 2
+1 −1

− 2
+1 −1

(C.5)

This kind of manipulation is sufficient to find the Laplace equation for C
s
t
p and concludes

case (ii).

For case (iii) we have to put the differentials on opposite lines, for example

sq


δµ

δ̄µ

+ c.c.

 . (C.6)

We start manipulating the diagram with the aim of reducing it to diagrams with one

holomorphic and one anti-holomorphic world-sheet derivatives. All such diagrams can be

simplified using the lemmas below.

δµ

δ̄µ

=
+1

+1

∂

∂
∂

∂
=

+1

+1

∂

∂

∂
∂

+
+1

+1

∂

∂
∂∂

= −
+1 −1

+1∂
∂

+
+1

+1

∂ ∂

∂
∂

−
+1

+1−1

∂

∂
+

+1

+1∂

∂

∂∂
(C.7)

The two terms with the minus sign can be treated with Lemma 2 below. The other two

terms both have vertices with three derivative sitting on them after moving the blue ones

to the other end of the line. Integrating by parts then the derivatives in blue reduces them

to terms to which one can also apply the lemmas below and one requires both. Writing

out all terms gives some cancellations and the total for case (iii) becomes finally:

δµ

δ̄µ

+ c.c. = −2 + 2
+1 −1

+1−1
+ 2

+1 −1

+1

−1
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+
+1 −2

+1
+

+1 −2

+1
+

+1

+1

−2

+
+1

+1−2

− 2
+1

+1−1

−1

− 2
+1 −1

+1−1
− 2

+1 −1

+1

−1

− 2
+1 −1 −1

+1
.

(C.8)

One sees that there is a contribution to the eigenvalue from case (iii); the remaining terms

have been grouped according to whether they use opposite or adjacent lines in addition to

the lines with the differentials. This concludes case (iii).

Putting all the cases together gives (3.4).

C.1 Two lemmas on first derivative graphs

We give two simple lemmas for tetrahedral diagrams that have one derivative ∂ and one

derivative ∂ on them.

Lemma 1 (Adjacent lines lemma). If the derivatives are on adjacent lines one has

∂
∂

+ c.c. =
−1

+
−1

−
−1

, (C.9)

such that the lines with the derivatives appear with the same sign and the last line at the

vertex with an opposite sign.

Proof. The proof is by direct calculation:

∂
∂

=
−1

−

∂ ∂

=
−1

−
−1

+

∂
∂

=
−1

−
−1

+
−1

−

∂
∂

. (C.10)
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As the last term in the last line is the complex conjugate of the original diagram, the

assertion follows.

Lemma 2 (Opposite lines lemma). If the derivatives are on opposite (non-adjacent) lines

one has

∂

∂

+ c.c. =
−1

+
−1

−
−1

−

−1

,

(C.11)

such that all lines without derivatives are affected; opposite lines appear with the same sign.

Proof. We calculate

∂

∂

+ c.c. =

∂ ∂

+

∂

∂

+ c.c. (C.12)

Both diagrams are now such that the derivatives are on adjacent lines and one can apply

Lemma 1 to each of the two diagrams, leading to six diagrams out of which two cancel.

The remaining four are the asserted ones.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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