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1 Introduction

When a continuous system is placed in a generic curved geometry (which we will al-

ways assume is time-independent), it polarizes: its energy density, pressure, and other

components of the stress-energy tensor acquire inhomogeneous expectation values. This

happens in any state of the system, in particular in the vacuum ground state and in

finite-temperature plasmas.
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When the deformation of the geometry away from flatness is small, this polarizability

is captured by a set of linear-response coefficients. These are determined by the two-

point correlation function of the stress-energy tensor, and hence they carry non-trivial

information about the system. They are experimentally accessible data, especially for

systems in two space dimensions, where the background geometry can be more easily

manipulated. It is therefore of interest to have theoretical computations of their values.

For systems that are strongly coupled the best available tool for these calculations is the

AdS/CFT correspondence, where one solves a dual, weakly coupled gravitational system.

In the case of interest to us here — the geometric polarization of a conformally invariant,

finite-temperature plasma — we will study how the gravitational dual to the thermal

state, namely an Anti-deSitter black brane, gets distorted when the boundary geometry is

changed from flat Minkowski spacetime to a generic, weakly-deformed time-independent

geometry. This amounts to introducing a static gravitational potential at infinity, which

we may think of as an external gravitational source that induces a tidal deformation of

the black brane. In order to compute this deformation, we solve the equations for a

linearized perturbation of the geometry that satisfies an appropriate boundary condition

at infinity. Namely, the metric perturbation must not vanish asymptotically, but instead

approach the non-zero value that matches the source, i.e., the metric perturbation specified

at the boundary.

Interestingly, the static tidal polarization is also of relevance in the field of black hole

and stellar astrophysics. There, the linear-response coefficients are known as the Love

numbers of the gravitating object [1, 2]. The asymptotic external sources are a way of

approximating the effect of other distant massive bodies which pull gravitationally on

the object, and the Love numbers characterize its response. In recent times these Love

numbers have been a matter of interest (and of corny puns) in this area, since they may

be measured from the gravitational wave signal of inspiralling black holes and neutron

stars [3, 4]. One can then use them to test the predictions of General Relativity, and also to

extract information about the internal constitution and equation of state of neutron stars.

Given that Love numbers are eminently measurable quantities, not only in astrophysics

but also in the AdS/CMT correspondence, it may be surprising that — to the best of our

knowledge — they have not been explicitly investigated in the latter context. We shall

do so in this article. Specifically, we will compute the Love numbers for black branes in

AdS4 and in AdS5. The former case is dual to the response of a strongly-coupled plasma

to the curvature of the 2+1-dimensional geometry it resides in. This is presumably closer

to physical realization in the lab (with all the caveats that attend to AdS/CMT modelling)

than in the case of the 3+1-dimensional quark-gluon plasma dual to AdS5. We will also

show how the two-point function of the stress-energy tensor is obtained from the Love

numbers [5].

Admittedly, this is not the first study of AdS black branes tidally polarized by an

external gravitational source. Previous constructions of black branes spatially modulated

by curved boundary geometries include [6–9]. These sources have been introduced in

AdS/CMT with the primary aim of mimicking the breaking of translation invariance by an

ionic lattice, so that, subsequently, phenomena like momentum relaxation can be studied.

That is, here the polarization of the brane is a convenient means towards a further effect.
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Our motivation is different. For us, the inhomogeneity is not intended to model a

discrete lattice structure, but rather it is a distortion of a background geometry that is

essentially smooth (on long enough scales), and whose direct effects on the plasma are an

object of study in themselves. In this respect, our analysis is perhaps closer in spirit to the

holographic studies of CFTs in black hole backgrounds [10], although our approach and

aims are different.

Furthermore, at the technical level, in these previous works the deformations have been

considered fully non-linearly, which is rather more difficult than our linear perturbation

analysis. The former requires either the numerical solution of partial differential equations,

or instead very special deformations with a large degree of symmetry that renders them

more solvable, but possibly less realistic. The linear-response analysis that we perform

here has the advantage that it can be done simply and very generally. Surprisingly often,

a linear approximation turns out to work well even for relatively large deformations, so

perhaps this will also be true of our results. At any rate, in none of the previous studies

are we aware of any attempt to compute the linear-response polarization coefficients of the

vacuum and the plasma states. These are of enough interest to motivate our study.

The Love numbers — the polarization coefficients — are extracted from the solutions

of linear, ordinary differential equations for gravitational perturbations of AdS black branes

(which are the static limit of the equations in [11]). For the vacuum state, dual to empty

AdS, we can solve the perturbation equations exactly and find the Love numbers in closed

analytic form. For the thermal state, we will obtain them numerically and also analytically

in a hydrodynamic gradient expansion, i.e., in power series of the wavenumber k. A non-

linear calculation of the hydrodynamic response of the plasma to an external gravitational

force was made in [12, 13], to lowest order for small k. When this result is applied to

linearized deformations, we find agreement with our calculations. But by considering small

amplitudes of the deformation, we can obtain results that extend to higher values of k.

Finally, as a natural extension of our study, we also compute the linear-response coef-

ficients of the electric polarizability of the plasma.1

2 Set up

The solution for a neutral black brane in AdSn+1 with cosmological constant Λ = −n(n−1)
2R2 is

ds2

R2
=
dv2

v2f
+

1

v2
(ηαβ + (1− f)uαuβ) dxαdxβ , (2.1)

where α, β = 1, . . . , n label the field theory directions, uα is a timelike vector with

uαuβη
αβ = −1, and

f = 1− µvn . (2.2)

We denote the bulk radial coordinate as v, such that v = 0 corresponds to the AdS

boundary and v = µ−1/n to the black brane horizon. The parameter µ determines the

1The literature on AdS black branes deformed by boundary electric fields is too large, and more impor-

tantly, too differently motivated than ours, to properly refer to all of it here. We shall mention, though,

that a linearized perturbation analysis was performed in [14].
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temperature T of the configuration through

µ =

(
4πT

n

)n
. (2.3)

When µ 6= 0 one can set µ = 1 without loss of generality. However, for the most part

we will keep µ explicitly in our equations so we can easily recover the AdS vacuum by

setting µ = 0.

The renormalized boundary metric

γαβ = lim
v→0

v2

R2
gαβ (2.4)

in which the dual field theory lives is the flat Minkowski metric ηαβ . We want to study the

response of the field theory to a small deformation of this geometry, which we decompose

into plane waves,

γαβ = ηαβ + h̄αβe
ikαxα . (2.5)

The h̄αβ are constant numbers that characterize the relative amplitudes of the different

metric deformations. We study time-independent perturbations, i.e., with zero frequency

uαkα = 0 . (2.6)

This means that the perturbations are stationary, but not necessarily static since we allow

non-zero components uαh̄αβ , which include momentum. We also allow non-zero gravita-

tional potentials uαuβh̄αβ .

Henceforth we partially fix the frame by choosing a time direction t and aligning kα
with a direction z, i.e.,

uα = δαt , kα = k δαz . (2.7)

where k is the wavenumber of the perturbation.

In the gravitational problem we study small deformations of the black brane geometry

that satisfy the Einstein-AdS equations. Fixing a radial gauge where gvv and gvα remain

unchanged,2 the metric is perturbed as

ds2

R2
=
dv2

v2f
+

1

v2

(
−fdt2 + dz2 + δijdx

idxj + hαβ(v)eikzdxαdxβ
)
, (2.8)

where i, j = 1, . . . , n− 2 label the coordinates xi orthogonal to z.

Near the asymptotic boundary we require that (2.5) holds, so

lim
v→0

hαβ(v) = h̄αβ . (2.9)

Then the h̄αβ are interpreted as asymptotic gravitational potentials acting on the

black brane.

2With this, after requiring regularity of the geometry, the horizon position remains at the pole of gvv at

v = µ−1/n.
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2.1 Gauge invariant perturbation analysis

Following [11] we decompose the perturbations into scalars, vectors and tensors with respect

to the group O(n − 2) of rotations orthogonal to the z axis (the boost symmetries are

broken at finite temperature). In each of these channels one can find master variables

ZS,V,T (v), in terms of which all the other metric components can be recovered, up to gauge

transformations of the form hαβ → hαβ − 2∇(αξβ), with ξα = ξα(v)eikz, which leave the Z

invariant. Since the equations are linear and we want the perturbation to be non-zero at

the boundary we can fix the normalization to

ZS,V,T (0) = 1 . (2.10)

For tensors and vectors the metric perturbations and the master variables are simply

related,

hij(v) = h̄Tij ZT (v) , (2.11)

hti(v) = h̄ti ZV (v) , (2.12)

with h̄Tij a constant symmetric traceless tensor and h̄ti a constant vector. For scalars the

relation is

htt(v) +
1

2

(
n

n− 2
− f

)
h(v) = H̄ZS(v) , (2.13)

where

h(v) = δijhij(v) . (2.14)

At the boundary, (2.13) gives

H̄ = h̄tt +
1

n− 2
h̄ . (2.15)

The tensor perturbations correspond to shearing deformations of the background ge-

ometry in planes orthogonal to z, which then induce shear in the plasma. The vectors

create a stationary motion in the background, which will drag with it the black brane and

impart momentum to the dual plasma.3 The scalars introduce gravitational wells h̄tt and

averaged external pressures δij h̄ij , which cause inhomogeneities in the energy density and

local pressure of the plasma.

From the Einstein equations in the bulk we derive the equations for the master tensor

variable,4

Z ′′T (v)− n− f
fv

Z ′T (v)− k2

f
ZT (v) = 0 , (2.16)

vector,

Z ′′V (v)− n− 1

v
Z ′V (v)− k2

f
ZV (v) = 0 , (2.17)

3This motion creates vorticity in the plane (xi, z).
4For n = 4 these are the zero-frequency limit of the equations presented in [11].
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and scalar,

Z ′′S(v) +
1

v

(
1− n(2f − 1)(n− 2)f + n

((n− 2)f + n)f

)
Z ′S(v)

+
1

f

(
(1− f)2(n− 2)n2

((n− 2)f + n)v2
− k2

)
ZS(v) = 0.

(2.18)

Once ZS is obtained, the metric components in the scalar sector can be recovered

using (2.13) and solving the first-order constraint equations

h′(v) =
n(1− f)

2f2v
htt(v) +

1

f
h′tt(v), (2.19)

and

h′zz(v) =
n(1− f)((3n− 2)f − n) + 4fk2v2

2f2v((n− 2)f + n)
htt(v)

+
n(f − 1)

((n− 2)f + n)f
h′tt(v)− 2k2v

(n− 2)f + n
h(v).

(2.20)

All the components of the metric perturbation that do not appear here can be gauge-

fixed to zero. The component hzz(v) is partly constrained by the choice of radial gauge,

but since the constraint (2.20) contains h′zz but not hzz there remains gauge freedom to

always set

h̄zz = 0 . (2.21)

In the boundary geometry this is simply achieved by changing z → z + cz e
ikz with a

suitable constant cz = O(h̄αβ).

Of all the other boundary values in the scalar sector, only H̄ (2.15) is physically

meaningful, while h̄tt and h̄ separately are not. A Weyl transformation of the boundary

geometry leaves H̄ invariant, but changes h̄tt and h̄ separately. Thus the dual conformal

field theory is only sensitive to H̄.

This can also be understood from the bulk viewpoint. The functions htt(v) and h(v) are

modified by bulk coordinate changes. In particular, a residual radial gauge transformation

of the form

v → v
(

1 +
cv
2
eikz

√
1− µvn

)
(2.22)

with constant cv preserves the radial gauge condition at all v, and transforms

htt(v)→ htt(v) +
cv
2

(n− (n− 2)f)
√

1− µvn ,

h(v)→ h(v)− cv(n− 2)
√

1− µvn ,
(2.23)

while ZS(v) and H̄ remain invariant.5 One can now choose cv so that only H̄, and not h̄

nor h̄tt separately, appears in the perturbed metric. This reflects the fact that changes in

bulk radial gauge result into Weyl transformations at the boundary.

5hzz(v) also changes, and keeping hzv = 0 requires an additional transformation z → z + ξz(v)eikz.

– 6 –
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In this manner we can get rid of h̄tt or h̄ (insofar as they do not enter through H̄),

but one should be aware that the transformation (2.22) is not analytic near the horizon

and generates terms in the metric of the form ∼
√

1− µvn. A gauge where the metric

components hαβ(v) are analytic on the horizon may be preferable over other gauges. In

our subsequent calculations we will compute the values of h̄ and h̄tt that correspond to this

analytic gauge. How this is done will be well illustrated with the hydrodynamic solution

to the equations that we present in appendix B. Bear in mind, however, that this is just a

convenience: choosing the analytic gauge does not confer any separate invariant meaning

to h̄tt nor h̄.

3 Linear response

When submitted to these external forces, the reaction of the black brane (and the dual

field theory state) is expected to show up in the holographic stress-energy tensor: in the

tensor channel as an induced shear Tij ; in the vector channel as a momentum flow Tti due

to the dragging by the geometry; and in the scalar channel as local fluctuations in the

energy density Ttt and averaged pressure δijTij of the dual plasma.

3.1 Love numbers

The gauge-invariant content of the response can be readily extracted from the solutions to

the master equations using the standard AdS/CFT dictionary. In all three channels, the

indices of the differential equation for the variables Z(v) near v = 0 are 0 and n. Therefore,

near the boundary the solutions are expanded as

Z(v) = A(1 + . . . ) +B(vn + . . . ) . (3.1)

A and B are the coefficients of the non-normalizable and normalizable solutions of the

metric perturbation. They depend on k, and as is standard in AdS/CFT they correspond,

respectively, to the external source acting on the system, and to the expectation value of

the operator that the source couples to. In the present case, a non-zero value of A sources

a boundary metric deformation h̄αβ in the corresponding channel, while B determines the

response of the system, i.e., the expectation value of the field theory stress-energy tensor,

δTαβ , generated by the perturbation.

We define the dimensionless Love numbers λT,V,S for each channel as

λ = Rn
B

A
. (3.2)

With our normalization (2.10) this is simply λ = BRn.

This definition of the Love numbers is in complete analogy to their introduction in the

context of asymptotically flat black holes in [2]. We can make this more manifest if we

change to a radial variable

r =
R2

v
, (3.3)

– 7 –
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and consider, for instance, a tensor perturbation. Then the corresponding metric compo-

nent is
R2

r2
gij(r, z) = δij + h̄Tije

ikz

(
1 + · · ·+ λT

Rn

rn
+O

(
r−n−1

))
, (3.4)

which can be compared to eq. (1.1) of [2].

3.2 From Love numbers to stress tensor

One of the basic entries of the AdS/CFT dictionary (as explained in this context in [11],

see also [15]) is that knowledge of the λ is tantamount to knowledge of the expectation

values of the two-point correlation functions of the stress-energy tensor Tαβ . Both are

obtained from the terms of order vn in the series around v = 0 of the metric coefficients.

However the relationship between them is not a simple proportionality. The stress-energy

tensor contains contributions besides λ that are independent of the boundary condition in

the bulk, i.e., of the specific state of the theory. These contributions are renormalization-

scheme dependent. We could, for instance, subtract the vacuum stress-energy out of them,

but instead we shall keep these vacuum terms in the counterterm subtraction method. This

allows us to retain the effects of vacuum polarization.

Note also that in contrast to the calculation in [11], which focused on the quasinormal

poles of 〈TαβTρσ〉, we are not setting the source A to zero. Furthermore, we only consider

zero-frequency perturbations. Therefore we are investigating properties of the correlation

functions 〈TαβTρσ〉 that do not show up in quasinormal mode analyses.

The correlators 〈TαβTρσ〉 can be obtained if we know the one-point function 〈Tαβ〉 as

a function of the source, i.e., of the metric perturbation δγρσ, since

〈TαβTρσ〉 = − 2√
−γ

δ〈Tαβ〉
δγρσ

. (3.5)

In the gravitational set up 〈Tαβ〉 is the renormalized holographic stress-energy tensor.

For reference, we give its definition in appendix A. In our case the stress-energy tensor

takes the form (henceforth omitting the brackets 〈· · · 〉)

Tαβ = T 0
αβ + δTαβ , (3.6)

where the first term is the stress-energy tensor of the unperturbed, homogeneous

black brane,

T 0
tt =

n− 1

16πG
µ , T 0

ij =
1

16πG
µ δij , (3.7)

and the second term δTαβ contains the inhomogeneities linearly induced by the metric

deformations δγαβ = h̄αβe
ikz. Here the bulk Newton constant G is related to the dual

theory gauge group’s rank N as

N2 ∼ GR−3 in AdS5 , N3/2 ∼ GR−2 in AdS4 , (3.8)

with numerical factors that depend on the specific realization of the duality (e.g., the volume

of the compact space transverse to AdS).

– 8 –
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Once we compute δTαβ the two-point function can be obtained as

〈TαβTρσ〉 = −2
∂Tαβ

∂h̄ρσ
e−ikz . (3.9)

In the following we give the perturbation solutions in a boundary expansion up to order

vn, and the form of the stress-energy tensor in terms of λ. The latter will be computed in

later sections.

It is possible to obtain explicit solutions for any n, but the expressions are cumbersome

so we only give them for AdS5 and AdS4.

3.2.1 Boundary expansion and stress-energy tensor in AdS5

In AdS5 in the tensor sector there are two independent polarizations of the shear, which

can be taken to be h× = hxy, and h+ = hxx = −hyy. For perturbations in the scalar sector

we have hxx = hyy = h/2. The field theory metric is then

ds2 = γαβdx
αdxβ = ηαβdx

αdxβ + h̄tte
ikzdt2 +

h̄

2
eikz(dx2 + dy2)

+ 2h̄tie
ikzdtdxi + h̄+e

ikz(dx2 − dy2) + 2h̄×e
ikzdxdy .

(3.10)

The boundary expansion of Z in the three sectors is the same up to order v4,

ZT,S,V (v) =1− k2v2

4
+

(
λT,S,V
R4

− k4

16
log v

)
v4 +O

(
v6
)
. (3.11)

The metric components in the tensor and vector channels are obtained from ZT,V
using (2.11) and (2.12), while for the scalars they are obtained from ZS and from the

solutions of the constraints (2.19), (2.20). We find

htt(v) = h̄tt

(
1 +

µ

2
v4
)

+
H̄

6

(
−k2v2 +

(
4λS
R4
− 4µ− k4

4
log v

)
v4
)

+O
(
v6
)
, (3.12)

h(v) = h̄
(

1− µ

2
v4
)

+
H̄

6

(
−k2v2 +

(
4λS
R4

+ 2µ− k4

4
log v

)
v4
)

+O
(
v6
)
, (3.13)

hzz(v) = h̄zz +

(
h̄tt
2
− H̄

3

)
k2v2 +

h̄tt
2
µv4 +O

(
v6
)
. (3.14)

The stress-energy tensor is

8πGTαβ dx
αdxβ =

(
3dt2 + dx2 + dy2 + dz2

) µ
2

(
1 + h̄tte

ikz
)

+
(
2h̄× dx dy + h̄+(dx2 − dy2)

)
eikz

(
2λT
R4

+
µ

2
− 3k4

32

)
+ 2h̄ti dt dx

i eikz
(

2λV
R4

+
µ

2
− 3k4

32

)
+ H̄dt2eikz

(
4

3

(
λS
R4
− µ

)
− k4

16

)
+ H̄

(
dx2 + dy2

)
eikz

(
2λS
3R4

− µ

6
− k4

32

)
+ dz2

µ

2
h̄tte

ikz .

(3.15)

– 9 –
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The k4 terms here are renormalization-scheme dependent, and in general are modified to

k4 → k4(1−4b/3), where the arbitrary constant b is the coefficient of the finite counterterms

in (A.2). In the following we fix b = 0 for simplicity, but the existence of this ambiguity

should be borne in mind.

The gauge-invariant boundary scalar is

H̄ = h̄tt +
h̄

2
. (3.16)

As we discussed in the previous section, in the scalar sector only this parameter is physically

meaningful, while h̄tt and h̄ separately are not: the coordinate transformations (2.22)

change them. Consistently with this, observe that if we rescale

µ→ µ
(

1− h̄tteikz
)
, (3.17)

and also perform a rescaling of z (which makes h̄zz 6= 0), then we can make h̄tt disappear

from (3.15). In other words, the apparent spatial dependence of the plasma temperature

does not have any invariant meaning for a CFT. Even if (3.17) suggests that the pertur-

bation makes the horizon position z-dependent, this is a gauge effect. In particular it is

easy to see that the surface gravity remains uniform over the horizon, as required by the

zeroth law.

We can also write the stress-energy tensor in a way that separates its different contri-

butions and connects more directly to the hydrodynamic expansion at small k. Define a

boundary velocity field uα as

ut = 1 +
eikz

2
h̄tt, ui = −

(
λV
R4µ

+ 1− 3k4

64µ

)
eikzh̄ti , (3.18)

which is unit-normalized, γαβuαuβ = −1, and choose

h̄tt = −H̄
(

4

9

(
λS
R4µ

− 1

)
− k4

48µ

)
. (3.19)

Then the stress-energy tensor takes a ‘Landau frame’ form

Tαβ =
µ

16πG
(γαβ + 4uαuβ) + T

(1)
αβ , (3.20)

in which the first term has the form of a perfect-fluid stress-energy tensor (with conformal

equation of state) and the second term is purely spatial, orthogonal to uα,

uαT
(1)
αβ = 0 . (3.21)

It is given by

8πGT
(1)
αβ dx

αdxβ =
(
2h̄× dx dy + h̄+(dx2 − dy2)

)
eikz

(
2λT
R4
− 3k4

32

)
+ H̄

(
dx2 + dy2 − 2dz2

)
eikz

(
2

9

(
λS
R4
− µ

)
− k4

96

)
.

(3.22)
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When the stress-energy tensor is written in this way, the first part can be regarded as

capturing how the plasma adapts to the deformed geometry γαβ and to a velocity flow uα
while maintaining its perfect-fluid form. The choice of u and of h̄tt is indeed such that the

vector-channel polarization, and the scalar-channel polarization in the tt direction, are all

encoded in this term. The second term, T
(1)
αβ , measures the polarization effects away from

the perfect-fluid form. Bear in mind, though, that both terms in (3.20) contain physical

polarizations of the uniform plasma.

We will see that when k → 0 we have

λT → 0, λV → −µR4, λS → µR4 . (3.23)

This implies that in the limit that the perturbation is homogeneous we have uα → δαt and

T
(1)
µν → 0, and hence there does not remain any physical polarization effect.

3.2.2 Boundary expansion and stress-energy tensor in AdS4

In AdS4 there are no tensor perturbations. In the scalar sector, h(v) = hxx(v). The field

theory metric is

ds2 = γαβdx
αdxβ = ηαβdx

αdxβ + h̄tte
ikzdt2 + 2h̄txe

ikzdtdx+ h̄xxe
ikzdx2 . (3.24)

The boundary expansion for Z is

ZV,S(v) =1− k2v2

2
+
λV,S
R3

v3 +O
(
v4
)
, (3.25)

and the stress tensor

8πGTαβdx
αdxβ =

(
2dt2 + dx2 + dz2

) µ
2

(
1 +

h̄tt
2
eikz

)
+ 2h̄ti dt dx

i eikz
3

2

(
λV
R3

+
µ

3

)
+ H̄dt2eikz

3

4

(
λS
R3
− µ

2

)
+ H̄dx2eikz

3

4

(
λS
R3

+
µ

6

)
+ dz2

µ

2
h̄tte

ikz .

(3.26)

Now the gauge-invariant boundary scalar is

H̄ = h̄tt + h̄xx , (3.27)

and the metric functions are

hxx(v) = h̄xx

(
1− µ

2
v3
)

+
H̄

4

(
−k2v2 +

(
2λS
R3

+ µ

)
v3
)

+O
(
v4
)
, (3.28)

htt(v) = h̄tt +
H̄

4

(
−k2v2 +

(
2λS
R3
− µ

)
v3
)

+O
(
v4
)
, (3.29)

hzz(v) = h̄zz +

(
h̄tt
2
− H̄

4

)
k2v2 +

h̄tt
2
µv3 +O

(
v4
)
. (3.30)

Similar remarks as in AdS5 apply about the elimination of h̄tt.
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The ‘Landau frame’ expression of the stress-energy tensor is

Tαβ =
µ

16πG
(γαβ + 3uαuβ) + T

(1)
αβ , (3.31)

with

ut = 1 +
eikz

2
h̄tt, ui = −

(
λV
R3µ

+ 1

)
eikzh̄ti , (3.32)

h̄tt = − H̄

2

(
λS
R3µ

− 1

2

)
, (3.33)

and

8πGT
(1)
αβ dx

αdxβ =
3H̄

8
(dx2 − dz2)eikz

(
λS
R3
− µ

2

)
. (3.34)

Again, when k → 0 we will find

λV → −µR3, λS →
µR3

2
, (3.35)

which cancel the zero-momentum offsets in uα and T
(1)
µν .

4 Vacuum polarization

Let us now turn to the explicit calculation of the Love numbers.

It is instructive to begin with the polarization of the vacuum, since it can be solved

exactly in all channels, for all k, and in all dimensions. These Love numbers can be regarded

as representing Casimir-like stress-energies of the field theory vacuum.

In the vacuum state, with µ = 0, the equations in the three channels become the same,

Z ′′(v)− n− 1

v
Z ′(v)− k2Z(v) = 0. (4.1)

This equation is solved in terms of modified Bessel functions. The solution that remains

finite at the Poincaré horizon, v →∞, is

Z(v) = vn/2Kn/2(kv) . (4.2)

Expanding this solution in series around v = 0 we obtain the vacuum Love numbers,

λvac(k) =


(
Hn/2 − 2γ − 2 log

(
kR
2

)) (−1)n/2

(n/2− 1)! (n/2)! 2n
(kR)n n even

Γ(−n/2)

Γ(n/2) 2n
(kR)n n odd

(4.3)

where γ is the Euler-Mascheroni constant and Hn =
∑n

p=1 p
−1 are the harmonic numbers.

Observe that: (i) the dependence ∼ (kR)n is the one expected for the vacuum energy

density of a conformal field theory in n dimensions; (ii) the logarithmic term in even n

comes from the conformal anomaly and makes the terms Hn/2−2γ scheme dependent; (iii)

– 12 –
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the sign of the Love numbers (at large enough k) alternates as n→ n+ 2. This dimension-

dependence of the sign of the polarization response is the same as for the Casimir energy

on a spherical space [16].

In the specific cases of interest to us here,

λvac(k) =
(kR)3

3
in AdS4 , (4.4)

λvac(k) = −(kR)4

16

(
log

(
kR

2

)
+ γ − 3

4

)
in AdS5 . (4.5)

For large k the perturbations probe the ultraviolet, short-distance structure of the

field theory and the results should be asymptotically independent of whether the state is

at finite or zero temperature. In other words, for k � T the perturbations concentrate in

the bulk around 0 ≤ v . 1/k and are largely insensitive to the presence or absence of the

brane. It then follows that the Love numbers at large k should always asymptote to their

conformal vacuum values, and in particular

λ(k) ∼ (−1)bn/2c+1(kR)n . (4.6)

Finally, note that when µ = 0 the gauge transformations (2.22) do not introduce any

non-analytic behavior in the bulk. The gauge is analytic for any arbitrary choice of h̄tt.

5 Polarization of the finite-temperature plasma

At finite temperature the perturbation equations do not admit exact solutions. We solve

them in two ways: in a long-wavelength, hydrodynamic expansion for small k, and numer-

ically for a range of k, up until the large-k asymptotic behavior (4.6) is established.

5.1 Long-wavelength expansion

The solution is obtained by a conventional perturbative expansion in powers of k. The

results for the metric functions are given in appendix B.

The Love numbers that we find are

AdS5:

λT (k)

R4
=
k2
√
µ

8
+
k4

64
(3− 4 log 2)− k6

768
√
µ

(
π2 − 12 (log 2)2

)
+O(k8), (5.1)

λV (k)

R4
= − µ+

k2
√
µ

4
− k4

64
+

k6

128
√
µ

(1− 2 log 2)

− k8

6144µ

(
π2 + 6− 24 log 2

)
+O(k10), (5.2)

λS(k)

R4
= µ−

3k2
√
µ

8
+
k4

64
(11− 4 log 2) +O(k6). (5.3)
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AdS4:

λV (k)

R3
= − µ+

k2µ1/3

2
+

k4

12µ1/3
+

k6

72µ

(√
3π − 9 + 3 log 3

)
+O(k8), (5.4)

λS(k)

R3
=
µ

2
+

2k4

9µ1/3
− k6

27µ
+O(k8). (5.5)

Some comments are in order. First, observe that since this is a small k expansion in

k/T ∼ k/µ1/n � 1, we do not expect to recover the large-k asymptotic behavior (4.6) of

the vacuum.

Second, as anticipated in (3.23) and (3.35), we find non-zero values of the vector and

scalar Love numbers at very long wavelengths, k → 0. These are such that the physical

polarization effects vanish in this limit.

Finally, let us compare these results with those in [12, 13] for the gravitational forcing

on the AdS black brane in the hydrodynamic limit. Refs. [12, 13] give

Tαβ =
µ

16πG
(γαβ + nuαuβ) +

µ
n−2
n

8πG
Cαγβδu

γuδ . (5.6)

Here Cαµβν is the Weyl tensor of the field theory metric γαβ , and the velocity vector uα is

chosen in the Landau frame. This result is valid to two-derivative order in the boundary

theory, hence to order k2 in the linearized approximation. It is straightforward to compare

the Weyl term against our result (3.22) up to this order, and verify the agreement between

the two calculations in AdS5. In AdS4 the boundary Weyl tensor is identically zero, so T
(1)
αβ

vanishes at order k2. This is in agreement with the absence of a k2 term in λS in (5.5).6

5.2 Numerical results

Now we solve the equations by numerical integration. After setting, without loss of gener-

ality, µ = 1, we impose regularity on the horizon at v = 1 by demanding that the gauge

invariant function Z(v) is analytic there. Then we solve the equations in powers of (1− v)

to a high order (without any arbitrary constants other than the overall normalization of

Z), and proceed to integrate them numerically towards the boundary, where we extract the

Love numbers (3.2). We do the integrations with the NDSolve function from Mathemat-

ica, which uses a fourth-order Runge-Kutta procedure with adaptive step. The equations

are very well behaved so the calculation is unproblematic.

The results are shown in figures 1, 2, where we compare them with the hydrodynamic

expansion at small k and with the large-k vacuum limit. In appendix C we give the values

of h̄tt(k) that result when we choose a gauge in which htt(v) (and then also h(v) and hzz(v))

is analytic at the horizon.

Overall, we see that the small-k hydrodynamic expansion and the large-k values from

the vacuum provide together a good approximation to the numerical calculations. It seems

6Refs. [12, 13] work in Eddington-Finkelstein coordinates which are regular at the horizon. In our

calculations, in AdS5 the analytic gauge choice (B.8) coincides up to order k2 with the Landau gauge (3.19).

In AdS4 the Landau gauge (3.33) does not coincide with the analytic gauge (B.15) at order k2. However,

it seems that this could be remedied if in (3.31) we redefined µ → µ(1 + c eikz) with suitably chosen

c = O(h̄αβ , k
2).
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Figure 1. Love numbers λT,V,S for black branes in AdS5 as a function of the wavenumber k. Solid

blue: numerical results. Dashed red: perturbative expansions in powers of k, eqs. (5.1), (5.2), (5.3).

Dotted green: large-k limit (4.5). We set R = 1, the Love numbers λT,V,S are dimensionless, and k

is measured in units of µ1/4 = πT .

Figure 2. Love numbers λV,S for black branes in AdS4 as a function of the wavenumber k, in

units µ = 1. Solid blue: numerical results. Dashed red: perturbative expansions in powers of k,

eqs. (5.4), (5.5). Dotted green: large-k limit (4.4). The Love numbers λV,S are dimensionless and

k is measured in units of µ1/3 = 4πT/3.

likely that Padé approximants can interpolate efficiently at intermediate values of k, but

we have not attempted this.

Observe that the Love numbers can change sign as k increases, i.e., the plasma appears

to polarize in opposite ways at small and large wavelengths. This must be interpreted with

care, given that the zero-momentum offsets in λ, (3.23) and (3.35), disappear in the stress-

– 15 –



J
H
E
P
0
9
(
2
0
1
7
)
1
5
0

energy tensor in Landau frame. The latter may be more appropriate to study the sign of

the response. Then we see, for instance, that the anisotropic, transverse pressure induced

in the scalar channel, T
(1)
xx + T

(1)
yy , is negative for all k in AdS5, and positive for all k in

AdS4. The (gauge-dependent) term h̄tt which, in Landau frame, reflects the perfect-fluid

response in the scalar sector, has opposite signs in AdS5 and AdS4, but in each case it

retains the same sign for all k. On the other hand, the vector-channel velocity ui induced

in AdS5 changes sign as k is increased, while in AdS4 it keeps the same orientation at all k.

Perhaps the most salient feature is that the response coefficients in AdS4 show a mostly

featureless monotonicity in k, while in AdS5 the behavior differs significantly at large and

small k. This occurs even for the vacuum polarization, (4.5), but in this case it is the log k

in the Love number, and not a power of k, that effects the change.

As is familiar from the Casimir effect, the sign of quantum polarization effects is often

difficult to anticipate on intuitive grounds. Nevertheless, it may be interesting to investigate

further the possible meaning of these results. The exploration of further models might hint

at universal features of the geometric polarization.

6 Electric polarization

Now we consider the polarizing effect on the black brane of a small static electric field

in the z direction, with electric potential At(v)eikz. The dual plasma, initially neutral,

polarizes into an inhomogeneous distribution of positive and negative charge densities due

to the presence of an external chemical potential. We denote the amplitude of the chemical

potential by

Āt = At(0) , (6.1)

and, like in our previous analysis, we introduce the variable ZE by

At(v) = Āt ZE(v) . (6.2)

6.1 Linear response theory

The Maxwell equations in the black brane background are

Z ′′E(v)− n− 3

v
Z ′E(v)− k2

f
ZE(v) = 0 . (6.3)

The boundary expansion of the solutions takes the form

ZE(v) = A(1 + . . . ) +B(vn−2 + . . . ) , (6.4)

and the polarization response is determined by the coefficient

λE = Rn−2
B

A
. (6.5)

This coefficient determines the expectation value of the charge density J t. In order to

find the precise relation, following the standard AdS/CFT prescription we differentiate the

Maxwell action with respect to the boundary electric potential to get

〈J t〉 = −1

2

√
−ĝ nµFµt , (6.6)
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where nµ is the unit normal to the boundary at small v with induced metric ĝαβ . The

charge density at the boundary is then given by the electric field in the normal direction.

In AdS4 the boundary expansion of the solution to (6.3) is

ZE(v) = 1 +
λE
R
v +O(v2) (6.7)

which yields

〈J t〉 = Āte
ikz λE

2R
. (6.8)

In AdS5 there is a logarithmic term

ZE(v) = 1 +

(
λE
R2

+
k2

2
log v

)
v2 +O(v3) . (6.9)

This results in a divergence that is cancelled by adding a boundary counterterm to the

action of the form Ict ∼ log v
∫
d4x
√
−ĝFαβFαβ . Then

〈J t〉 = Āte
ikz

(
λE
R2

+
k2

4

)
(6.10)

(again, the term k2 is renormalization-scheme dependent).

The two-point correlation function is obtained as

〈J tJ t〉 =
δ〈J t〉
δĀt

e−ikz . (6.11)

6.2 Polarization coefficients

In the zero-temperature vacuum, µ = 0, eq. (6.3) becomes

Z ′′E(v)− n− 3

v
Z ′E(v)− k2ZE(v) = 0, (6.12)

which is the same as the one for gravitational perturbations if we change n → n − 2.

Therefore, the electric polarization of the vacuum can be determined from the gravitational

vacuum Love numbers as

λ
(n)
E,vac(k) = λ(n−2)vac (k) (6.13)

and the latter were computed in (4.3). This gives

λE,vac =− kR in AdS4 ,

λE,vac =− (kR)2

2

(
log

(
kR

2

)
+ γ − 1

2

)
in AdS5 .

(6.14)

At finite temperature, the long-wavelength hydrodynamic expansion yields

λE(k)

R2
= −√µ+

k2

4
(2 log 2− 1) +

k4

96
√
µ

(
π2 − 12(log 2)2

)
+O(k6) in AdS5 , (6.15)

and
λE(k)

R
= −µ1/3 +

k2

6µ1/3

(
3 log 3−

√
3π
)

+O(k4) in AdS4 . (6.16)
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Figure 3. Electric polarization response of black branes in AdS5 and AdS4 as a function of

wavenumber k, in units µ = 1. Solid blue: numerical results. Dashed red: perturbative expansions

in powers of k, eqs. (6.15), (6.16). Dotted green: large-k limit (6.14).

The results of the numerical and hydrodynamic evaluations of λE(k) are presented in

figure 3.

Observe that as k → 0 the electric polarization λE and the charge density 〈J t〉 take

non-zero values. This is indeed expected: this is a uniform perturbation of the black brane

that adds a uniform charge distribution to it. What we then have is the Reissner-Nordstrom

AdS black brane in the limit of small, linearized charge density (which does not backreact

on the geometry).

Of course this uniform charge is not a polarization effect. The way to remove it is

simple. Rather than a charge density induced by an electric potential, the actual polariza-

tion effect is the charge separation in the neutral plasma, i.e., the appearance of a dipole

distribution

Dz = ∂zJ
t = Re(ikJ t) (6.17)

induced as a response to an external electric field

Ez = ∂zAt = Re(ikAt) . (6.18)

Then when k → 0 the dipole polarization vanishes.

Notice that a similar remark could be applied to the geometric polarization: like in

the Casimir effect, the measurable effect of the polarization is not so much the energy itself

but the force that arises when the geometrical set up varies.

7 Final comments

Clearly we have only taken a first step. There is still further work ahead if one wants to

test a holographic calculation of the polarization response against results from real-world

systems. In particular the holographic modelling must be made more sophisticated. But

we have identified the basic features of the phenomenon, and the extension to other models

developed in AdS/CMT is possible.

In this article the initial unperturbed geometry for the field theory has always been

Minkowski space, and correspondingly we have worked in the Poincaré patch of AdS in
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the bulk. But it is also possible and interesting to study the electric and gravitational

polarization of black holes in global AdS — in dual terms, the polarization of the plasma

on a spherical space. Indeed, the fully non-linear effects of electric polarization for these

black holes have been studied numerically already in [17, 18], see also [19–21]. The analysis

in global AdS is technically more complicated (spherical harmonics instead of plane waves)

and presumably less relevant to systems in the lab, so we have not attempted it here.
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A Holographic stress tensor

The Brown-York stress-energy tensor T̂αβ is computed in the AdS boundary with regular-

ized metric ĝαβ at constant, small v. The renormalized metric is (2.4) and the renormalized

stress-energy tensor is

Tαβ = lim
v→0

(
R

v

)n−2
T̂αβ . (A.1)

We compute it using counterterm subtraction in AdS4 and AdS5 (n = 3, 4) [22], in

which

8πG T̂αβ = Kαβ −Kĝαβ −
n− 1

R
ĝαβ +

R

n− 2
Ĝαβ −

R3

12

(
H1
αβ − 3H2

αβ

)
log(veb), (A.2)

where Gαβ is the Einstein tensor of the boundary metric ĝαβ , and the last two terms, which

enter only in AdS5 due to the conformal anomaly, are

H1
αβ =

1√
−ĝ

δ(
√
−ĝR̂2)

δĝαβ
= 2∇α∇βR̂− 2ĝαβ∇ρ∇ρR̂−

1

2
ĝαβR̂

2 + 2R̂R̂αβ , (A.3)

H2
αβ =

1√
−ĝ

δ(
√
−ĝR̂ρσR̂ρσ)

δĝαβ
= 2∇ρ∇βR̂ρα −∇ρ∇ρR̂αβ −

1

2
ĝαβ∇ρ∇ρR̂

− 1

2
ĝαβR̂ρσR̂

ρσ + 2R̂ραR̂ρβ . (A.4)

Here all geometric quantities refer to the metric ĝαβ . The constant b in (A.2) is arbitrary

and reflects a renormalization scheme dependence.7 This ambiguity could be fixed by e.g.,

7Actually one can include finite contributions to the stress tensor (A.2) (and (3.15)) from H1 and H2

with separate coefficients. For simplicity we do not do it, and our choice above is such that the stress tensor

is traceless.
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imposing supersymmetry on the boundary [23], but this is not particularly well motivated

in our set up.

B Hydrodynamic expansions

The following are the solutions obtained in a power series expansion in k. They are valid

for all 0 < v ≤ 1. We set for simplicity µ = 1.

B.1 AdS5

Gravitational polarization:

ZT (v) = 1− 1

4
log
(
1 + v2

)
k2 +

1

128

(
π2 − 4(log 2)2 + 8 log

(
2

1− v2

)
log
(
1 + v2

)
+ 8 log 2 log

(
1− v4

)
− 8Li2

(
1 + v2

2

)
− 2Li2

(
1− v4

))
k4 +O

(
k6
)
, (B.1)

ZV (v) = 1− v4 − 1

4
v2
(
1− v2

)
k2

+
1

32

(
v2(1− v2)− 2v4 log v −

(
1− v4

)
log
(
1 + v2

))
k4 +O

(
k6
)
, (B.2)

ZS(v) = 1 + v4 +
1

12

(
−4v2

(
1 + v2

)
+
(
1 + v4

)
log
(
1 + v2

))
k2 +O

(
k4
)
. (B.3)

These are all finite and indeed analytic functions at v = 1.

The solutions of the constraint equations are

htt(v) = C
√

1− v4
(
1 + v4

)
+
H̄

6

(
1− v2

) (
1− v4

)
k2 +O

(
k4
)

(B.4)

h(v) = 2H̄ − 2C
√

1− v4 +
H̄

6

(
log
(
1 + v2

)
− 2

(
1 + v2

))
k2 +O

(
k4
)

(B.5)

hzz(v) = h̄zz + C
(

1−
√

1− v4
)

− H̄

6

(
v2 + log

(
1 + v2

)
− 6C arcsin(v2)

)
k2 +O

(
k4
)
. (B.6)

Observe here the presence of an integration constant C, which corresponds to

C = h̄tt −
H̄

6
k2 +O

(
k4
)
. (B.7)

This constant corresponds to the gauge freedom discussed in (2.22), (2.23). The gauge-

invariant function ZS(v) is independent of it, but when C 6= 0 the metric functions htt, h,

hzz are not analytic at the horizon position v = 1. Therefore if we choose a gauge where

the metric is analytic on the horizon, this implies that (restoring now µ, and adding the

next order in k)

h̄tt =
H̄

6

(
k2
√
µ

+
k4

24µ
(π − 12 + 6 log 2)

)
+O

(
k6
)
. (B.8)
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Electric polarization:

ZE(v) = 1− v2 +
1

4

(
2v2 log (2v)−

(
1 + v2

)
log
(
1 + v2

))
k2 +O

(
k6
)
. (B.9)

B.2 AdS4

Gravitational polarization:

ZV (v) = 1− v3 − 1

2
(1− v)v2k2

− 1

108

(
9v(1−v)(2+v)+ 2

√
3
(
1−v3

)(
π − 6 arctan

(
1 + 2v√

3

)))
k4 +O

(
k6
)

(B.10)

ZS(v) = 1 +
v3

2
− v2k2

2
+

1

216

(
36v

(
1 + v2

)
+
√

3
(
2 + v3

)(
π − 6 arctan

(
1 + 2v√

3

))
− 9

(
2 + v3

)
log
(
1 + v + v2

))
k4 +O(k6) , (B.11)

with metric functions

htt(v) =
H̄

24
k2
(
− 4v2(1− v3) +

(
2 + v3

)√
π(1− v3) Γ

(
5
3

)
Γ
(
7
6

)
+ v2

(
−2 + v3 + v6

)
2F1

(
1,

7

6
;

5

3
; v3
))

+O
(
k4
)
, (B.12)

hxx(v) = H̄

(
1− k2

12

(√
π(1− v3) Γ

(
5
3

)
Γ
(
7
6

) + v2
(

4−
(
1− v3

)
2F1

(
1,

7

6
;

5

3
; v3
))))

+O
(
k4
)
, (B.13)

hzz(v) = h̄zz + H̄

(√
π
(
1−
√

1− v3
)

Γ
(
5
3

)
12Γ

(
7
6

) − 1

40
v2
(

10 + v3 2F1

(
1,

7

6
;

8

3
; v3
)))

k2

+O
(
k4
)
. (B.14)

Since the expressions are cumbersome, here we have already chosen the analytic gauge,

which determines (now with µ restored)

h̄tt(k) = H̄

(
k2

µ2/3

√
π Γ
(
5
3

)
12Γ

(
7
6

) − k4

9µ4/3

(
1−

√
3π3/2

9Γ
(
2
3

)
Γ
(
5
6

)))+O(k6). (B.15)

Electric polarization:

ZE(v) = 1− v +
k2

2

(
2(2v + 1)√

3
arctan

(
2v + 1√

3

)
− π(5v + 1)

3
√

3

+ v log 3− log
(
v2 + v + 1

))
+O(k4) .

(B.16)
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Figure 4. Values of h̄tt(k) in the analytic gauge, for AdS5 and AdS4. Solid blue: numerical results.

Dashed red: perturbative expansions in powers of k, eqs. (B.8), (B.15).

C Analytic gauge

In the main text we have discussed that certain choices of the radial coordinate v lead

to metric functions htt(v), h(v), hzz(v) that behave like ∼
√

1− µvn near the horizon at

v = µ−1/n. This non-analyticity is inconvenient for showing that the horizon is regular. For

instance, if one changes (t, v)→ (x+, v) where the latter are ingoing Eddington-Finkelstein

coordinates, then if the v-gauge is not analytic the metric in these coordinates is singular at

the horizon. Proving horizon regularity requires to first perform a change of the type (2.22)

to an analytic radial gauge. Nevertheless, invariants such as the surface gravity can be

computed in any radial gauge.

The transformations (2.22) alter h̄tt. Figure 4 gives the values of h̄tt(k) that result

when taking the analytic gauge. We compare them with the hydrodynamic calculations of

appendix B.
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