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three-sphere surrounding the self-intersection. The spectrum is studied by taking small
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brane states, and subsequently quotienting by the monodromy. This reduces the differing

flavor algebras of the N = 2 theories to the same flavor algebra, as required by duality,

and projects out charged states, yielding an N = 1 superconformal theory on the D3-

brane. In one, a deformation of a rank one Argyres-Douglas theory retains its SU(2) flavor

symmetry and exhibits a charge neutral flavor triplet that is comprised of electron, dyon,

and monopole string junctions. From duality we argue that the monodromy projection

should also be imposed away from the conformal point, in which case the D3-brane field

theory appears to exhibit confinement of electrons, dyons, and monopoles. We will address

the mathematical counterparts in a companion paper.
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1 Introduction

Historically, the study of D3-branes has led to a rich array of physical phenomena in su-

persymmetric quantum and conformal field theories. For example, at orbifold singularities

D3-branes give rise to rich quiver gauge theories [1]; in F-theory [2] compactifications they

realize [3, 4] a variety of Seiberg-Witten theories [5, 6] and superconformal field theories

(SCFTs) of Argyres-Douglas [7, 8] and Minahan-Nemeschansky [9, 10], and also other the-

ories [11–15]; finally, most famously N D3-branes give rise to gravity [16, 17] in the large

N limit. Many of the most interesting results exist at strong coupling, but are tractable

due to SL(2,Z) invariance.

F-theory itself has a plethora of strongly coupled phenomena and SCFTs beyond its

D3-brane sectors. For example, its seven-brane configurations may realize exceptional

– 1 –



J
H
E
P
0
9
(
2
0
1
7
)
1
3
5

gauge symmetry and seven-brane structures, which is central to certain phenomenological

aspects of F-theory GUTs [18–20]; there is growing evidence that non-trivial seven-brane

structures, so-called non-Higgsable clusters [21, 22], are generic [22–27] in F-theory; and

in recent years there has been a resurgence of interest in 6d (1, 0) [28, 29] and 4d N = 1

SCFTs [15, 30] that arise from F-theory and in N = 2 SCFTs in general [31–33]. All of

these typically involve strongly coupled physics.

In this paper we initiate the study of string junctions on D3-brane theories that probe

non-trivial seven-brane configurations in lower (than eight) dimensional compactifications

of F-theory. Specifically, we will develop a mathematical and physical formalism for

studying the spectrum of D3-brane theories at certain isolated seven-brane singularities

(non-trivial self-intersections of an I1-locus) that should be extendable to broader classes

of singularities.

From the perspective of field theory these are interesting because the D3-brane theories

are N = 1 deformations of N = 2 theories, and our techniques give a new handle on

these N = 1 theories. Indeed, N = 1 deformations of N = 2 theories are known to

realize interesting physical phenomena, famously including monopole condensation and

confinement in the presence of an N = 1 deformation of Seiberg-Witten theory [5]. We

will see an analog of this in our systems, where the N = 1 deformations of Argyres-Douglas

or Minahan-Nemeschansky N = 2 theories strongly suggest the confinement of electrons,

dyons, and monopoles. This is one of the central physical results of our pape.

One physical aspect we will study is how duality arises geometrically from deforming

rather different N = 2 SCFTs. Specifically, the D3-brane theory we study in this pa-

per, which we call Theory h for brevity, is a deformation of two different N = 2 SCFTs

realized on D3-branes in simpler F-theory backgrounds. We will call the latter two The-

ory f and Theory g, and denote their flavor symmetries as Gf and Gg, which can take

values Gf ∈ {SU(2), SO(8), E7} and Gg ∈ {∅, SU(3), SO(8), E6, E8} with Gf 6= Gg in gen-

eral. Schematically, D3-brane positions relative to the seven-brane configurations in these

theories appears as

D3-brane

Theory g

t = 0

g-deform
ation

Theory h

f -
de
fo
rm
at
io
n

D3-brane
z = 0

Theory f

where the D3-brane theory h with flavor group Gh in the non-trivial seven-brane con-

figuration at the bottom may be obtained either from a deformation of the vertical or

horizontal seven-branes of theories f and g. The deformed N = 2 theories are necessarily

dual since the D3-brane theory in the non-trivial background can be obtained from either

deformation. Said differently, the coordinates that parameterize the Coulomb branches
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of the N = 2 theories are on equal footing as spatial coordinates from a ten-dimensional

perspective, and in the deformed theory the seven-branes that the D3-brane probes spread

out in both directions.

The seven-brane backgrounds that we study are easily described in F-theory. We will

study specific backgrounds, but our techniques should be generalizable to others as well.

They are described by an elliptic fibration Xh over C2 with coordinates (z, t) and with

fiber coordinates (x, y), which in Weierstrass form are given by

Xh : y2 = x3 − za x+ tb, (1.1)

where a ∈ {1, 2, 3}, b ∈ {1, 2, 3, 4, 5}; see work [34] of Grassi, Guralnik, and Ovrut for the

(a, b) = (1, 1) case. A seven-brane is localized on the locus ∆ = 0 where ∆ = −4z3a+27t2b.

Note that for b > 1 the elliptic threefold defined by (1.1) has an isolated singularity at

z = t = x = y = 0; we will address the role of the singularity in this context in a sequel

paper [35]. The worldvolume theory of the D3-brane at z = t = 0 is Theory h, and the

N = 2 SCFTs Theory f and Theory g are obtained by turning off the terms −zax and tb

in (1.1):

Xf : y2 = x3 + tb , Xg : y2 = x3 − zax . (1.2)

Theories f and g have different flavor symmetries, which must be reduced to a common

one by the deformation to Theory h. The “paradox” can be seen directly in the back-

ground (1.1), since Theory h may be obtained by taking a D3-brane to z = t = 0 via

coming in along the locus z = 0 or the locus t = 0. These processes naively look like

turning off mass deformations of Theory f and Theory g, respectively, but this cannot be

the full story since then the flavor symmetries would disagree. This (incorrect) conclusion

is obtained by looking too locally in the geometry, and by looking more globally the is-

sue is resolved. Specifically, torus knots or links on which seven-branes are localized arise

naturally in the geometry, and we will use them to reconcile the naive flavor symmetry

discrepancy between theories f , g, and h.

Throughout this work, our focus will be on the implications of the geometry for the

D3-brane spectrum, but there are many interesting questions for future work.

The sketch of our results are as follows. As is well-known, D3-brane probes of seven-

brane backgrounds in eight-dimensional F-theory compactifications have (p, q) string junc-

tions stretching between the D3-brane and the seven-brane. These describe a rich spectrum

of states in non-trivial flavor representations that are generally charged both electrically

and magnetically under the U(1) of the D3-brane. Mathematically, these string junctions

are topologically described by elements of relative homology; they are two-cycles in an

elliptic fibration X over a disc D relative a chosen fiber Ep above a point p, which means

they are two-chains that may have boundary in Ep. Thus, topologically a junction J

is J ∈ H2(X,Ep). Here the elliptic fiber Ep is the elliptic fiber over the D3-brane, so

the “asymptotic charge” a(J) := ∂J ∈ H1(E,Z) gives the electromagnetic charge of the

junction ending on the D3-brane. There is a pairing 〈·, ·〉 to the integers on H2(X,Ep)

that is the intersection pairing (·, ·) on closed classes, i.e. those with a(J) = 0. Finally,

– 3 –



J
H
E
P
0
9
(
2
0
1
7
)
1
3
5

following [36–38], the set

R := {J ∈ H2(X,Ep) | (J, J) = −2, a(J) = 0} (1.3)

has the structure of an ADE root lattice. In particular, we can use the intersection pairing

to compute the Cartan matrix

Aij := 2
(αi, αj)

(αi, αi)
, i, j = 1, . . . , rk(G) , (1.4)

where the αi ∈ R are those junctions that form simple roots of an underlying ADE algebra.

We will label the sets R with subscripts f , g, h to denote the relevant objects in theories

f , g, h, and in particular Rf , Rg, Rh define the flavor algebras Gf , Gg, Gh. Non-trivial

flavor representations and BPS states of Gf (Gg) can be constructed [27, 39] from string

junctions1 J ∈ H2(Xf , Ef ) (J ∈ H2(Xg, Eg)) with a(J) 6= 0, i.e. they are charged under

the U(1) of the D3-brane.

What changes geometrically for the D3-brane in this paper is that the lower-

dimensional F-theory background that it probes has seven-branes extending in multiple

directions. The seven-brane wraps the divisor defined by

−4z3a + 27t2b = 0 , (1.5)

and locally cuts out a knot or a link on a three-sphere near the singularity t = z = 0. String

junctions with one end on the D3-brane then have their other end on the link, and as the

D3-brane traverses the link and eventually comes back to its initial position there is an

associated monodromy action on the string junction states. The knot, or link, associated

to equation (1.5) has two canonical braid representations, the a-braid with 3a strands and

the b-braid with 2b strands. These braids define two solid tubes, which we call respectively

the f -tube and the g-tube. A transverse section of the g-tube, for example, is a disc, which

we call Dt(θz), parameterized by the angle θz and centered at z = 0. A transverse section

gives a natural string junction interpretation of the singularity of Xg, we then study the

associated action on states. Mathematically, these are monodromies

Mf : H2(Xf , Ef )→ H2(Xf , Ef ) Mg : H2(Xg, Eg)→ H2(Xg, Eg) , (1.6)

obtained from studying two one-parameter families of elliptic fibrations, and we will

compute them explicitly. See figure 1 for a pictorial representation of the f -tube with

(a, b) = (1, 1), its relation to the a-braid with 3a = 3 strands, and the monodromy induced

by identifying the various strands of the braid upon traversing the torus.

Though the flavor symmetries of the N = 2 theories generally differ, as captured by

the fact that generally H2(Xf , Ef ) 6= H2(Xg, Eg), one of our main results is that

H2(Xf , Ef )

Mf

∼= H2(Xg, Eg)

Mg
. (1.7)

1Xf,g and Ef,g are particular elliptic surfaces and elliptic fibers in those elliptic surfaces; they will be

defined in sections 3.2 and 3.3.
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Figure 1. We show the (trefoil) torus knot with (a, b) = (1, 1) along the f -tube. The braid

cyclically permutes the three points (green→ blue→ red→ green) corresponding to the vanishing

cycles. Hence they have to be identified, since the torus knot is actually closed, i.e. the circles at 0

and 2π on the left hand side are identified, cf. the right hand side. This identification gives rise to

a monodromy action.

That is, the string junctions that are invariant under the link-monodromy, and thus may

exist as massless states on the D3-brane theory at the isolated singularity, generate the

same lattice regardless of whether one takes the f or g perspective. Specifically, the link-

monodromy associated with the deformations2 reduces the flavor algebras Gf and Gg to

a common algebra Gh ∈ {∅, SU(2), SU(3)}. This leaves us mathematically with two Lie

algebras at each point, which share a common reduction. Interestingly, though Gh is

sometimes non-trivial, no U(1) charged string junctions are monodromy-invariant.

In summary, the theories we study are dual deformations of two different N = 2 SCFTs

and the geometry shows that the deformations sometimes break the flavor symmetry of

the N = 2 theories, but always break the U(1) gauge symmetry as deduced by the absence

of charged string junctions. This deformation yields an N = 1 SCFT for the D3-brane

at z = t = 0. One such theory, which is a deformation of the rank one Argyres-Douglas

theory H1, exhibits a charge neutral SU(2) flavor triplet that is comprised of electron,

dyon, and monopole string junctions, even though none of those charged junctions survive

the monodromy projection themselves.

We argue that duality also requires imposing the monodromy projection for theories

away from z = t = 0, in which case the N = 1 D3-brane theories are related to deformations

of massive N = 2 field theories, or deformation of one massive N = 2 field theory and one

N = 2 SCFT. Then the geometry implies that the D3-brane theory can exhibit massive

2For the sake of brevity, we will from now on implicitly talk about these deformed fibers/theories without

mentioning it explicitly every time.
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charge-neutral monodromy-invariant string junctions in non-trivial flavor representations

that are comprised of electron, monopole, and dyon string junctions. The presence of this

massive state, together with the absence of charged states, suggests an interpretation as

confinement of an electron, monopole, and dyon.

2 Review of seven-branes and string junctions

There is a rich literature on string junctions, and we review some aspects of them here.

String junctions have been introduced [40–43] as a generalization of ordinary open

strings stretching between D-branes in Type II theories. They occur as non-perturbative

objects in these theories and are hence closely related to F-theory, as first pointed out by

Sen in [44, 45]. One introduces (p, q)-strings that carry p units of NS-charge and q units

of Ramond-charge. In this notation a fundamental Type II string corresponds to a (1, 0)

string. Alternatively, in the context of Seiberg-Witten theory [5, 6] one can think of them

as states carrying p units of electric charge and q units of magnetic charge. Via an SL(2,Z)

action a (1, 0) string can be turned into a (p, q) string [46]. The (p, q) seven-branes are then

defined as seven-branes on which (p, q) strings can end. Note that, since D3-branes are

SL(2,Z) invariant, any (p, q) string can end on them and we need not attach a (p, q) label

to them. In the worldsheet description of the D3-branes, the 7-branes act as flavor branes.

String junctions arise if several (p, q) strings join at a common vertex. Since the overall

charge needs to be conserved at each vertex, this means that the sum of the incoming

(pi, qi) charges is zero.

The mathematics of string junctions has been worked out in [36, 39, 43] and in [23,

37, 38]. We will review the latter description since it makes direct contact with F-theory

geometries, as will be useful for describing the seven-brane backgrounds utilized in this

paper. This description can be related to the former if paths from the base point to

seven-branes can be chosen so as to reproduced the (p, q) labels of [39], for example.

We describe an elliptically fibered Calabi-Yau n-fold X via a Weierstrass model, i.e. we

start with the anti-canonical hypersurface E in P231 with homogeneous coordinates [x, y, w],

E : y2 − (x3 + fxw4 + gw6) = 0 . (2.1)

To describe a fibration over some (n − 1)-dimensional base B with canonical bundle KB

such that the whole space X is CY, f and g are sections of O(−4KB) and O(−6KB),

respectively. Models of this type always have a holomorphic section, the so-called zero

section, at [x, y, w] = [1, 1, 0]. The elliptic fiber becomes singular if E = dE = 0, which

means that the zero section is non-singular. We thus set w = 1 from now on when we wish to

study the singularities. In this case E becomes singular if the discriminant ∆ = 4f3 + 27g2

vanishes, i.e. on the locus {∆ = 0} ⊂ B.

For p ∈ ∆ such that π−1(p) is a Kodaira type I1 fiber (as will be the case when string

junctions are utilized), the singular fiber is an elliptic fiber where a one-cycle has vanished.

In this way a vanishing cycle is associated with a zero of ∆. In more detail, this association

works as follows: consider a discriminant with r vanishing loci ∆i with Kodaira I1 fibers.

We fix a base point p of B\∆ and a basis of the first homology of the fiber above p and

– 6 –
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⇒p

∆1

∆N−1

. . .

. . .

. . .

∆N−2

∆0

∆i

∆i+1

∆i p

Figure 2. We choose a junction basis as straight line paths from p to the vanishing loci ∆i. As

illustrated on the right hand side, a cycle vanishes as one starts from p and approaches ∆i.

choose a path γi starting at p and ending at ∆i. Upon reaching ∆i, a cycle πi ∈ H1(E)

vanishes, and if a basis on H1(E) is chosen this can be written as πi = (pi, qi)
T . This

corresponds to a (pi, qi) 7-brane along ∆i = 0 in F-Theory, cf. figure 2.

The inverse image of the path γi, Γi := π−1(γ), is a Lefschetz thimble, which looks like

the surface of a cigar and is commonly referred to as a “prong” in the junction literature.

This prong is a (pi, qi) string and has boundary ∂Γi = πi, which is called the asymptotic

charge in the literature. A multi-pronged string junction is then

J =
∑

JiΓi, (2.2)

with Ji ∈ Z. The absolute value |Ji| corresponds to the number of prongs ending on

the (pi, qi) 7-brane and the sign specifies their orientation. The asymptotic charge a(J)

of a general junction J is given as a(J) = ∂(J) =
∑
Ji ∂Γi. Note that string junctions

with asymptotic charge a(J) = (0, 0) are two-spheres and can be thought of as 7 − 7

strings (perhaps passing through a D3-brane at p), whereas junctions with a(J) 6= 0 are

3 − 7 strings, or perhaps a part of a larger junction, the remainder of which ends on a

seven-brane.

The picture is simplified for elliptic surfaces, which can be useful for higher dimensional

fibrations since, when restricted to a patch, a local model for an elliptic fibration can be

thought of as a family of elliptic surfaces. Consider the case of a disc D, a neighborhood in

one of the bases of those elliptic surfaces that is centered at p, where ∆i intersects D at a

point qi and the paths γi are chosen to be straight lines from p to qi, which gives rise to an

ordered set of vanishing cycles [38]. Let X
π−→ D be the elliptic surface and Ep := π−1(p).

Then the Γi form a basis, the “junction basis” on the relative homology H2(X,Ep). There

is a pairing 〈·, ·〉 on H2(X,Ep) that becomes the intersection pairing (·, ·) on closed classes

in H2(X,Ep), i.e. those elements of H2(X,Ep) that are also in H2(X,Z). In certain cases,

such as the qi being obtained from the deformation of a Kodaira singular fiber [47] with

associated ADE group g, there is a distinguished set of interesting junctions

R := {J ∈ H2(X,Ep) | a(J) = 0 , (J, J) = −2} (2.3)

that furnish the non-zero weights of the adjoint representation of g from the collection of

seven-branes. This is the gauge symmetry on the seven-brane of the singular (undeformed
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limit) in which the qi collide, or alternatively the flavor symmetry on the D3-brane probing

the seven-brane.

3 D3-branes near seven-brane self-intersections: traversing links

In this paper we are interested in D3-brane theories located at certain isolated singulari-

ties in non-trivial seven-brane backgrounds; the isolated singularity is located at the self-

intersections of the seven-brane. To study these theories we will first consider D3-brane

theories near these singularities, and the effect on the spectrum of moving them around

loops in the geometry. We will study the implications for the D3 brane at the singularity

in section 4.

3.1 The seven-brane background, links, and braids

We will take the F-theory description of the seven-brane background, utilizing a Weierstrass

model as discussed. If the base B of the Weierstrass model is comprised of multiple patches,

then the associated global Weierstrass model across the entirety of B may be restricted to

a patch, giving a local Weierstrass model, which suffices here since the D3-brane sits at a

point in the elliptic fibration and is affected only by local geometry.

We study a D3-brane in a particular collection of self-intersecting seven-brane back-

grounds defined by the local Weierstrass model

y2 = x3 − zax+ tb, ∆ = −4z3a + 27t2b , (3.1)

and the integers a ∈ {1, 2, 3}, b ∈ {1, 2, 3, 4, 5}. The seven-branes are localized on ∆ = 0

and the D3-brane will move around near the origin (z, t) = (0, 0) ∈ C2, where the seven-

brane self-intersects (technically, where it is singular in the base). In section 4 we will

study the D3-brane theory at z = t = 0.

We wish to study the local structure of this codimension two singularity by surrounding

it with a three-sphere and moving the D3-brane around on the three-sphere. The knot, or

link, associated to equation (1.5) has two canonical braid representations, the a-braid with

3a strands and the b-braid with 2b strands. These braids define two solid tubes, which

we will call the f -tube or g-tube. Writing z = rze
iθz and t = rte

iθt , the three-sphere of

radius R is |z|2 + |t|2 = r2
z + r2

t = R2 and the discriminant locus is 4r3a
z e

3iaθz = 27r2b
t e

2ibθt .

On the discriminant 3aθz = 2bθt modulo 2π. Intersecting the discriminant locus with the

three-sphere gives a link L∆

L∆ := {S3} ∩ {∆ = 0} , (3.2)

which is a (3a, 2b) torus link (torus knot if 3a and 2b are coprime); that is the seven-branes

intersect the three-sphere at a torus link. It can be described by either of the equations

4(R2 − r2
t )

3a/2e3iaθz = 27r2b
t e

2ibθt , 4r3a
z e

3iaθz = 27(R2 − r2
z)
be2ibθt . (3.3)

Consider a one-parameter family of discs, Dt(θz), centered at t = 0 with parameter θz.

The first equation intersects each member of the family at a collection of points, and as θz

– 8 –
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is varied in the positive direction from 0 to 2π the intersection points encircle the origin,

creating a spiral that could be thought of as sitting on a tube. For a pictorial representation

see e.g. figure 7. Call this the g-tube. Alternatively, there is also a one-parameter family

of discs Dz(θt); the second equation intersects a member of this family at some points, and

the whole family at a spiral that sits on the f -tube, see e.g. figure 8b.

Formally, associated to the g-tube and f -tube, respectively, are periodic one real pa-

rameter families of elliptic surfaces

Xθz

πθz−−→ Dt(θz), Xθt

πθt−−→ Dz(θt). (3.4)

We will be interested in studying the string junctions in the members of these families Xg :=

Xθz=0 and Xf := Xθt=0, and also the monodromy action on string junctions associated

with taking a loop in the family. For consistency of notation, we will also define πg := πθz=0

and πf := πθt=0.

3.2 General analysis of the g-tube

We now study string junctions emanating from the seven-brane link and ending on a D3-

brane sitting on the three-sphere, as well as the seven-brane action on the D3-spectrum

associated with traversing the g-tube. We must specify the initial location of the D3-brane.

We choose this point p to be r2
z = R2, θz = 0, t = 0, which sits on the three-sphere and at

the origin of the disc in the g-tube at θz = 0. Mathematically, the selection of this point

selects a distinguished fiber in the elliptic fibration Eg = π−1
g (p) from which to build the

relative homology associated with string junctions. We will be more precise about this

definition in a moment.

We must study Eg, define a basis of cycles there, and determine the action on this

basis of cycles as θz varies from 0 to 2π, i.e. as the D3-brane travels down the g-tube. At

t = 0, the Weierstrass model simplifies to

y2 = x(x+ z
a
2 )(x− z a2 ) = x(x+R

a
2 eiθz

a
2 )(x−R a

2 eiθz
a
2 ) (3.5)

and defines a one-parameter family of elliptic curves depending on θz. At p, where θz = 0,

y2 = x(x + R
a
2 )(x − R a

2 ) and the elliptic curve is a double cover of the x-plane with four

branch points a 0, ±R a
2 , and ∞. We will study the first three points, which sit on the

real axis. If a = 1, note that as θz passes from 0 to 2π the points at ±
√
R swap via

a counterclockwise rotation. In general we find that the root at R
a
2 becomes the root

at (−1)aR
a
2 . This determines some monodromy Mg ∈ SL(2,Z) that can be computed

explicitly, and to do so it is convenient to choose a basis of one-cycles.

We will consider two different bases and ensure that they give the same theory of string

junctions. The elliptic curve is a double cover of the x-plane with branch points at 0, −R a
2

and R
a
2 . Let Z (W ) be a straight line connecting 0 to −R a

2 (+R
a
2 ) on the x-plane. Some

details of the analysis can be easily understood in a small neighborhood U of x = 0 and its

inverse image Ũ in the double cover. Let ũ be a local coordinate on Ũ and u = ũ2 a local

coordinate on U , and Z̃ and W̃ the inverse images of Z and W in the double cover. Z|U
sits along the negative Re(u)-axis and W |U along the positive Re(u) axis; therefore Z̃|Ũ
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sits along the entire Im(ũ)-axis and W̃ |Ũ sits along the entire Re(ũ)-axis. Z̃ (W̃ ) is an S1,

and there is an orientation according to whether the circle is traversed coming out from

ũ = 0 along the positive or negative Im(ũ) (Re(ũ)) axis. Note that this distinction is lost

in U , since coming out from ũ = 0 along the positive or negative axis corresponds to the

same path of exit from u = 0 due to the double cover.

The two bases of H1(Eg,Z) that we study are defined as follows. In basis one, abusing

notation, define Z to be Z̃ with the orientation associated with departing ũ = 0 along

the positive Im(ũ)-axis, and W to be W̃ with the orientation associated with departing

ũ = 0 along the positive Re(ũ)-axis. In basis two, W is the same as in basis one, but Z

is instead defined to be Z̃ with the opposite orientation, i.e. departing ũ = 0 along the

negative Im(ũ)-axis. In the usual complex structure on Ũ , defined by the phase of ũ going

counter-clockwise rather than clockwise,3 {W,Z} ({Z,W}) determine a positive basis on

the tangent space T0(Ũ) in basis one (two), and therefore W · Z = 1 (Z ·W = 1) in basis

one (two). The intersection product of arbitrary one-cycles in the usual complex structure

is (p, q) · (r, s) = ps − rq, where (p, q) and (r, s) are one-cycles in some basis. To use

this intersection product, we can choose W = (1, 0)T and Z = (0, 1)T in basis one and

W = (0, 1)T and Z = (1, 0)T in basis two. Using the notation of [23], we define

π1 =

(
1

0

)
, π2 =

(
−1

−1

)
, π3 =

(
0

1

)
, π1 + π2 + π3 = 0, (3.6)

with the usual intersection product, and we will map onto this language later. The cycle

π2 will be used in the next section.

Traveling down the g-tube via θz passing from 0 to 2π rotates counter-clockwise in x

by aπ and counter-clockwise in y by aπ/2. The latter gives an action on the bases

Basis One: (W,Z) 7→ (Z,−W ) for a = 1, (W,Z) 7→ (−W,−Z) for a = 2,

(W,Z) 7→ (−Z,W ) for a = 3,

Basis Two: (W,Z) 7→ (−Z,W ) for a = 1, (W,Z) 7→ (−W,−Z) for a = 2,

(W,Z) 7→ (Z,−W ) for a = 3.

All of these can be seen by direct inspection of figure 3. The associated monodromy

matrices are Ma
1 (Ma

2 ) with

M1 =

(
0 −1

1 0

)
, M2 =

(
0 1

−1 0

)
. (3.7)

Having determined the bases on H1(Eg,Z), let us determine the vanishing cycles. We

do this on the three-sphere at θz = 0, where we read off the vanishing cycles by following

straight line paths from the D3-brane at p to the seven-branes. The seven-branes intersect

the three-sphere at a link, and at θz = 0 this determines a set of points in a disc centered

at t = 0 that are the solutions to the equation

4(R2 − r2
t )

3a
2 = 27r2b

t e
2ibθt , (3.8)

3Equivalently, i =
√
−1 versus i = −

√
−1.
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0 R
a
2−R

a
2

x Ũ

0

Z W
U Z̃

W̃

(a) Cycle choice in basis one.

0 R
a
2−R

a
2

x Ũ

0

Z W
U Z̃

W̃

(b) Cycle choice in basis two.

Figure 3. In this figure we illustrate two different choices of bases for the cycles in the x- and

y-plane for the g-tube.

which requires

θt =
πk

b
, k ∈ {0, 1, . . . , 2b− 1} . (3.9)

The rt-dependent part of (3.8) is satisfied for some r∗t ∈ R+, and therefore the seven-branes

intersect the disc Dt(0) at the 2b points pk = r∗t e
iπk
b , and each of the vanishing cycles may

be read off by following a straight line path from p to pk. Let us determine the vanishing

cycles explicitly using a simple analysis from calculus. The Weierstrass model over Dt(0) is

y2 = x3 − (R2 − r2
t )

a
2 x+ rbte

ibθt (3.10)

which on any straight line path from t = 0 to pk simplifies to

y2 = x3 − (R2 − r2
t )

a
2 x+ rbte

iπk =: vk(x) . (3.11)

At rt = 0 (that is, at p), the cubic vk(x) has three real roots, and it is positive for real

x ∈ [−R, 0] and negative for real x ∈ [0, R]. Letting rt vary from 0 to r∗t , all of the roots

remain real, but two of them collide at rt = r∗t . To determine which two roots collide,

note that

∂vk
∂rt

= art(R
2 − r2

t )
a
2
−1x+ (−1)kb rb−1

t (3.12)

so that ∂vk/∂rt|x=0 is positive for k even and negative for k odd. Then the center and

right root collapse for k even as rt goes from 0 to r∗t , and the center and left root collapse

for k odd. That is, if k is even (odd) the vanishing cycle is W (Z). Since we choose to

index our seven-branes starting from k = 0, the ordered set of vanishing cycles is

{W,Z,W,Z, . . .} (3.13)

where the W , Z pair repeats b times, for a total of 2b vanishing cycles. Note that this set

applies to both bases discussed above since vanishing cycles do not have a sign, but the

basis choice must carefully be taken into account when studying monodromy associated

with taking closed paths in the geometry (as we will see).
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Finally, before studying examples we briefly discuss the map on seven-branes that is

induced by the braid upon traveling down the g-tube. At θz = 0 the kth seven-brane is at

an angle in the t-plane given by θt = πk/b, due to points on the discriminant satisfying

2bθt = 2πk. Upon traveling down the g-tube, θz varies from 0 to 2π and the z term in

the discriminant picks up a phase e6πia so the associated phase condition on discriminant

points becomes

2bθt = 2πk + 6πa = 2πk̃ , (3.14)

where k̃ = (k + 3a) mod 2b. So a seven-brane that starts with index k spirals down

the g-tube and becomes the seven-brane with index k + 3a modulo 2b. This seven-brane

mapping, together with undoing the SL(2,Z) action on Eg associated with traveling down

the g-tube will induce a map on string junctions, allowing for the comparison of closed

cycles representing simple roots and the determination of whether or not traveling down

the g-tube gives an outer automorphism on string junctions.

3.3 General analysis of the f-tube

In the discussion of the f -tube we can proceed similarly to the analysis of the previous

section. This time we choose the point p of the D3-brane to be at rt = R2, θt = 0,

z = 0 and study the string junctions with respect to the elliptic fiber Ef = π−1
f (p). The

corresponding one-parameter family of Weierstrass models at z = 0 read

y2 = x3 + tb =
(
x+R

b
3 e

2πi
3
bθt
2π

)(
x+R

b
3 e

2πi
3

(1+
bθt
2π

)
)(

x+R
b
3 e

2πi
3

(2+
bθt
2π

)
)
. (3.15)

At p, we have θt = 0 and the curve is a double cover of the x-plane, this time with

the four branch points; three at −R b
3 e

2πik
3 , k = 0, 1, 2, and one at ∞. We focus on the

first three. Upon traveling from θt = 0 to θt = 2π, we find that these points are permuted

according to k → (k + b) modulo three. Consequently, it is convenient to phrase the

following discussion in terms of segments W,U,Z that connected the three branch points.

Let W connect the k = 0, 1 branch points, U connect the k = 1, 2 branch points, and Z

connect the k = 2, 0 branch points. Let Uk be local neighborhoods of the branch point

k = 0, 1, 2, and Ũk be the inverse image of these neighborhoods in the double cover.

Let us look at the neighborhood U0 and its double cover Ũ0 in more detail. We choose

local coordinates such that W is oriented along the positive Re(u0)-axis. The angle of Z

is 2π
6 (π6 ) in U0 (Ũ0). Note that the cycle U is not visible in this local neighborhood. By a

similar analysis as in the g-tube, W · Z = 1 and we take W = π1 and Z = π3.

Upon traversing the f -tube from θt = 0 to θt = 2π, we find a counter-clockwise rotation

by 2πb
3 in the x-plane. When b = 1, this rotates the Z segment to the W segment on the

left hand side of figure 4, and similarly the W (U) segment to the U (Z) segment. This

mapping of segments determines the mapping of each associated cycle up to a sign. Let

us determine the signs, writing Z 7→ awW , W 7→ auU , U 7→ azZ with aw, au, az = ±1.

Encircling the origin three times via going from θt = 0 to θt = 6π we have Z 7→ awauazZ,

U 7→ azawauU , W 7→ auazawW . This corresponds to a 2π rotation in U0, and therefore a

rotation by π in Ũ0, which reverses the orientation of the cycle, requiring awauaz = −1. At
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0 R
b
3

U2

−R
b
3

U0

U1

Ũ0

x

0

U

W

Z

W̃

Z̃

iR
b
3

−iR
b
3

Figure 4. In this figure we illustrate our basis choice for the cycles in the x- and y-plane for the

f -tube. Ũ0 is the inverse image in the double cover of U0 in the x-plane.

this point there are two possibilities: all ai negative, or one negative. However, preserving

the intersection of the cycles under the mapping, or alternatively symmetry considerations,

requires aw = au = az = −1. Thus, for b = 1 one rotation in θt gives Z 7→ −W , W 7→ −U ,

and U 7→ −Z. For general b, the braid acts as

(W,U,Z) 7→ (−1)b (U,Z,W ) for b = 1, 4, (W,U,Z) 7→ (−1)b (Z,W,U) for b = 2, 5,

(W,U,Z) 7→ −(W,U,Z) for b = 3.

Recalling W = π1, Z = π3 from the previous paragraph and also U+W +Z = 0 the matrix

M =

(
1 −1

1 0

)
, (3.16)

encodes the monodromy, which is given by M b.

In order to determine the vanishing cycles we proceed similarly to the previous sec-

tion. The discriminant of the Weierstrass model at θt = 0, intersected with the three-

sphere, yields

4r3a
z e

3iaθz = 27(R2 − r2
z)
b ⇒ θz =

2πk

3a
, k ∈ {0, 1, . . . , 3a− 1} . (3.17)

We study again the solutions of the Weierstrass equation along straight line paths from

z = 0 to pk = r∗ze
2πik
3a , which reads

y2 = x3 − raze
2πik
3 x+ (R2 − r2

z)
b
2 =: vk(x) . (3.18)

As rz varies from 0 to r∗z , two roots collide and we determine which ones by studying the

imaginary part. Starting from k = 0, we find the ordered set of vanishing cycles

{U,W,Z,U,W,Z, . . .} (3.19)

such that the 3a vanishing cycles are given by repeating the vanishing cycles U,W,Z a

total of a times. Finally, we find that upon traveling down the f -tube by varying θt from

0 to 2π, the t term in the discriminant is rotated by a phase e4πib, such that

3aθz = 2πk + 4πb = 2πk̃, k̃ = (k + 2b) mod 3a (3.20)

which means that the braid induces a permutation which sends the seven-brane with index

k to the seven-brane with index (k + 2b) modulo 3a.
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p

p1pc

p̂

pN−1

pN−2

pc+1

. . .

. . .

. . .

p0

(a) Tube and second base point at θ = 0.

pN−2

p

pc+1

p̂

pN−1

pc

p0

p1

. . .

..
. ..
.

(b) Tube and second base point at θ = 2π.

Figure 5. This figure illustrates the motion of the second base point under the permutation

induced by the braid. The cone given by p, p0 and p1 is moved to the cone originally corresponding

to p, pc and pc+1.

3.4 Braid action on intersection form

In the previous sections we studied an elliptic fibration over a disc with the inverse image

of the origin of the disc being a smooth elliptic curve. For unified notation in this section,

we take the elliptic fibration to be X
π−→ D with π−1(0) = E. String junctions are elements

of two-cycles relative E, i.e. J ∈ H2(X,E).

Following [38], we can define a self-intersection pairing 〈J, J〉 for a given junction

J =
∑

i JiΓi written in terms of a basis Γi (the junction basis) on H2(X,E), where the

boundary of the junction is ∂Γi =: γi ∈ H1(E,Z). Then the pairing is

〈J, J〉0 = −
N−1∑

k>l≥1

JkJl γk · γl −
N−1∑

l=0

J2
l . (3.21)

Note that the first index l = 0 is skipped in the first sum. This is the case since the

pairing is a pairing on relative classes which depends on choosing a second base point p̂

nearby the first base point p. The rays that connect the base point p to the points pk on

the discriminant locus divide the plane into cones. In writing (3.21), we have arbitrarily

put this second base point into the 0th cone between p0 and p1. Since the intersection

pairing depends on which cone the second base point p̂ lies in, we indicate the cone used in

the pairing on relative homology with a subscript 〈·, ·〉i. While this choice is irrelevant for

the intersection pairing on classes with vanishing asymptotic charge, it becomes relevant

for junctions whose asymptotic charge is non-zero, which correspond to matter states.

Consequently, if we want to compare these junctions at θ = 0 and θ = 2π, we need to track

the motion of the second base point upon traveling down the g- or f -tube. If the braid

induces a permutation γi 7→ γi+c where the indices are to be read mod N − 1, the cone p̂

is in also moves counter-clockwise by c, so p̂ ends up in the (c− 1)th cone, cf. figure 5. The

– 14 –



J
H
E
P
0
9
(
2
0
1
7
)
1
3
5

new intersection form then reads

〈J, J〉c−1 = −
N−1+c∑

k>l≥c
JkJl γk · γl −

N−1∑

l=0

J2
l , (3.22)

where the indices in the first sum are to be read modulo N − 1.

3.5 Monodromy action on bases of string junctions

Having performed a general analysis of the g-tube and f -tube, we are ready to state the

associated action on relative homology, which will be utilized in examples to perform a

map on simple roots, studying associated Lie algebraic structure in the quotient.

Let us begin with the g-tube. The results of [38] shows that the thimbles or prongs Γi
with i = 0, · · · , 2b − 1 form a basis for the relative homology H2(Xg, Eg), that is, a basis

of string junctions. Each thimble has an associated vanishing cycle ∂Γi ∈ H1(Eg,Z), and

the results of the previous section show that

∂Γi = W for i even, ∂Γi = Z for i odd.

The combined action of the braid map and monodromy on Eg induces the following map

in basis 1:

Γi 7→ (−1)b
a
2
cΓ(i+3a) mod 2b for i even, Γi 7→ (−1)b

a
2

+ 1
2
cΓ(i+3a) mod 2b for i odd,

(3.23)

where b·c is the floor function, bxc = n for x ∈ R, n ∈ Z, where n is the largest integer

satisfying n ≤ x.

We now turn to the f -tube. Now there are prongs Γi with i = 0, . . . , 3a− 1 that form

a basis on relative homology H2(Xf , Ef ). The results of the previous section show that

∂Γi = U for i mod 3 = 0, ∂Γi = W for i mod 3 = 1,

∂Γi = Z for i mod 3 = 2. (3.24)

The braid map and the monodromy on Ef induce a map on the basis

Γi 7→ (−1)b Γ(i+2b) mod 3a ∀i,

which is simpler than that of the g-tube.

Summarizing, when the D3-brane traverses the f -tube or g-tube it is taking a small,

closed loop in the geometry near the seven-brane self-intersection at z = t = 0. The seven-

branes spiral around the D3-brane as it traverses the tube; since string junctions end on

the spiraling seven-branes and the D3-brane, this induces a monodromy on string junction

states. Mathematically, in the f -tube and g-tube we have computed the monodromy maps

Mf : H2(Xf , Ef )→ H2(Xf , Ef ) Mg : H2(Xg, Eg)→ H2(Xg, Eg) , (3.25)

which act on the string junction spectrum ending on the D3-brane.
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4 D3-branes and duality-required monodromy quotients

Let us finally study the D3-brane theory at the codimension two singularity z = t = 0

where the seven-brane described by the Weierstrass model

y2 = x3 − zax+ tb (4.1)

self-intersects. This is the theory that we called Theory h in the introduction, and to study

it we will use the geometric action of section 3.

Recall from the introduction that this D3-brane theory can be naturally thought of in

terms of deformations of a simpler seven-brane background, in which the D3-brane realizes

an N = 2 SCFT. These theories, which we call Theory f and Theory g for brevity, are

defined to be the D3-brane theory at z = t = 0 in the seven-brane background

Theory f : y2 = x(x2 − za)
Theory g: y2 = x3 + tb. (4.2)

Each is an SCFT of Argyres-Douglas [7, 8], Minahan-Nemeschansky [9, 10], or massless

Nf = 4 Seiberg-Witten [5, 6] type, and in general the flavor symmetries of these theories

are different simple Lie groups of different rank. The possible flavor symmetries for Theory

f and Theory g are

Gf ∈ {SU(2), SO(8), E7}
Gg ∈ {∅, SU(3), SO(8), E6, E8}, (4.3)

respectively. Deforming each of these seven-brane backgrounds to the same seven-brane

background described by (4.1), keeping the D3-brane fixed at z = t = 0, gives two different

descriptions of the deformed D3-brane theory. These dual descriptions must have the same

global symmetries, and therefore the deformation must reduce Gf and Gg to some common

group Gh. Theory f and Theory g have massless flavors.

Alternatively, the necessary reduction to a common flavor group Gh can be seen in

the fixed background (4.1). In the g-tube the D3-brane is at t = 0 z = Reiθz , with R the

three-sphere radius. The Weierstrass model over the associated disc centered at t = 0 is

y2 = x3 −Raeiaθzx+ tb (4.4)

where ordinarily R 6= 0 would be thought of as a mass deformation with massive flavors

in representations of Gg. Then the limit R 7→ 0 takes the D3-brane to the singularity at

z = t = 0 and the flavors become massless. Similar statements apply to the f -tube theory,

which has massive flavors in representations of Gf that become massless as the D3-brane

moves to z = t = 0. But the D3-brane theory at z = t = 0 does not care about its path to

z = t = 0, and thus there must be something wrong with the description of that theory as

the massless limit of N = 2 SCFTs with flavor symmetries Gf and Gg that generally differ.

The resolution is simple: z and t are not simply mass deformations of an N = 2 theory

with a one-dimensional Coulomb branch, but are both dimensions of space into which
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the D3-brane may move and the seven-brane may extend. In particular, the deformation

breaks the supersymmetry on the D3-brane to N = 1 since the seven-brane background

now preserves 8 supercharges and the D3-brane is half BPS. So there is no paradox, as

long as the non-trivial extension of the seven-branes into both directions reduces Gf and

Gg to some common group Gh.

It is natural to expect that the reduction arises from the seven-brane monodromy on

string junctions. The correct prescription is that the string junctions in the spectrum of

the D3-brane at z = t = 0 are those junctions from the g-tube and the f -tube theories

that are invariant under the associated monodromies Mg and Mf . Thus, though the

flavor symmetries away from z = t = 0 are generally different as encoded in the fact that

generally4 Rg 6= Rf and H2(Xg, Eg) 6= H2(Xf , Ef ), if the spectrum on the D3-brane at

z = t = 0 is the monodromy-invariant spectrum, one expects an isomorphism

H2(Xf , Ef )

Mf

∼= H2(Xg, Eg)

Mg
. (4.5)

In fact this is always the case, as computed for all fifteen examples with a ∈ {1, 2, 3} and

b ∈ {1, 2, 3, 4, 5} in appendix A using the monodromy action on the junction basis derived

in section 3.5. More specifically, quotienting by Mf and Mg projects out any U(1)-charged

junctions, so that the only junctions in the quotient have asymptotic charge zero. In some

cases there are no monodromy-invariant junctions, though there are in others; in the latter

case there is a set of shortest junctions5 which has the structure of either an SU(2) or

SU(3) root lattice that matches across the two different monodromies. This establishes

the isomorphism and the existence of the duality-required common flavor group Gh which

in these examples is Gh ∈ {∅, SU(2), SU(3)}. Specifically, defining the set of monodromy

invariant junctions on the D3-brane to be Jinv := H2(Xf , Ef )/Mf
∼= H2(Xg, Eg)/Mg, the

root junction lattice of Gh is

Rh = {J ∈ Jinv | (J, J) = −2, a(J) = ∂J = 0}. (4.6)

The data for each of the fifteen examples is given in table 1.

In detail, the computational steps are as follows: for a given set (a, b), the vanishing

cycles of theory f and g are determined, as is the braid action B. In order to analyze the

theory in the f - or g-tube, we first construct the root junctions (i.e. those junctions J with

a(J) = 0 and (J, J) = −2) and from them the simple root junctions. We then determine the

map of the asymptotic charges under the braid action and find that asymptotic charge zero

states are mapped to asymptotic charge zero states. This establishes that the braid action

is an automorphism on the root lattice. In order to find out whether the automorphism

is inner or outer, we construct the Weyl group and check whether the action induced by

the braid on the simple roots is a Weyl group element. In all cases we only find inner

4Using the definition from the introduction, the root junction lattice of the flavor algebra associated

with Gf,g is Rf,g = {J ∈ H2(Xf,g, Ef,g) | (J, J) = −2, a(J) = ∂J = 0}.
5Note that if a junction J is invariant so is nJ , n ∈ Z. These junctions fall into higher-dimensional

irreducible representations whose highest weights have Dynkin labels (2n) or (n, n) for SU(2) or SU(3),

respectively.
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(a, b) Torus Link Ff Gf Fg Gg Gh One Red. Both Red.

(1, 1) (3, 2) III SU(2) II ∅ ∅ X

(1, 2) (3, 4) III SU(2) IV SU(3) SU(2) X

(1, 3) (3, 6) III SU(2) I∗0 SO(8) ∅ X

(1, 4) (3, 8) III SU(2) IV∗ E6 SU(2) X

(1, 5) (3, 10) III SU(2) II∗ E8 ∅ X

(2, 1) (6, 2) I∗0 SO(8) II ∅ ∅ X

(2, 2) (6, 4) I∗0 SO(8) IV SU(3) SU(3) X

(2, 3) (6, 6) I∗0 SO(8) I∗0 SO(8) ∅ X

(2, 4) (6, 8) I∗0 SO(8) IV∗ E6 SU(3) X

(2, 5) (6, 10) I∗0 SO(8) II∗ E8 ∅ X

(3, 1) (9, 2) III∗ E7 II ∅ ∅ X

(3, 2) (9, 4) III∗ E7 IV SU(3) SU(2) X

(3, 3) (9, 6) III∗ E7 I∗0 SO(8) ∅ X

(3, 4) (9, 8) III∗ E7 IV∗ E6 SU(2) X

(3, 5) (9, 10) III∗ E7 II∗ E8 ∅ X

Table 1. The data associated to the theories f , g and h that we study. The last two columns

indicate whether either Gf or Gg is reduced to obtain Gh (second-to-last), or both (last).

automorphisms. Subsequently we construct the monodromy-invariant root junction, i.e.

those in Rh. The simplest way to do so is to find the eigenspace of the braid map B with

eigenvalue one. The eigenvectors can then be expressed in terms of the simple roots of the

original algebra. Since in all examples the only invariant states have asymptotic charge

zero, we find that there are no monodromy-invariant charged states. All these steps are

automated in a Mathematica notebook which we provide in [48].

We would like to understand more about the physics of the strongly coupled theory of

the D3-brane at z = t = 0, which we call Theory h, based on the geometry. Henceforth

we will denote it with the superscript (a, b) in order to talk about the D3-brane theory at

z = t = 0 in a fixed seven-brane background defined by a and b. Similarly, the associated

N = 2 theories that deform to the N = 1 theory h(a,b) will be denoted fa, gb. h(a,b) is a

deformation of two different theories that generally do not have a Lagrangian description;

we will therefore make conjectural statements about the quantum D3-brane theory h(a,b)

purely from the geometry, attempting to find a unified description of the physics.

For every theory h(a,b) the geometry implies some common features:

• Two dual descriptions of h(a,b) in terms of distinct deformations of distinct N = 2

SCFTs fa and gb, where fa and gb have holomorphic gauge coupling τ = i and

τ = e2πi/3, respectively. Interestingly, these are not SL(2,Z) equivalent.
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• fa and gb are well known theories with massless charged monopoles and dyons:

Theory Flavor Symmetry

f1 H1 Argyres-Douglas SU(2)

f2 Nf = 4 Seiberg-Witten SO(8)

f3 E7 Minahan-Nemeschansky E7

g1 H0 Argyres-Douglas ∅
g2 H2 Argyres-Douglas SU(3)

g3 Nf = 4 Seiberg-Witten SO(8)

g4 E6 Minahan-Nemeschansky E6

g5 E8 Minahan-Nemeschansky E8

• The deformations of fa and gb give the same D3-brane theory h(a,b) with no massless

charged particles, which stems from the fact that the monodromy invariant junction

lattice Jinv defined by (4.5) consists only of junctions with asymptotic charge zero.

• At least one of the flavor symmetries of fa or gb is reduced by the deformation.

Given the last two bullet points, it is tempting to interpret the physics as deformation-

induced condensation of some number of monopoles or dyons, which may or may not have

been in non-trivial flavor representations according to whether or not the flavor symmetry

is reduced by the deformation. Dually, one might interpret this as confinement since the

monodromy reduction removes the charged states, leaving behind charge neutral string

junctions that are topologically comprised of charged string junctions that no longer exist

individually in the spectrum. This interpretation is further supported by the fact that

the charge neutral string junctions are in higher dimensional flavor representations than

their charged constituents. Note that this interpretation in terms of confinement would be

unconventional, however, since the monodromy-invariant charge neutral string junction for

the D3-brane theory at the origin corresponds to a collapsed cycle and therefore a massless

state, rather than having a confinement scale mass. Nevertheless, such a massless junction

does exist.

The mass issue associated with the conventional confinement interpretation disappears,

however, if the D3-brane is moved away from z = t = 0 along the z- or t-axis. Then the

monodromy invariant charge neutral string junction that passes through the D3-brane

has finite size, and therefore a mass, in which case it may be interpreted as confined

state comprised of an electron, monopole, and dyon. This interpretation requires that the

charged states are also projected out for the D3-brane away from the origin, i.e. that the

monodromy reduction also occurs in that theory. Instead of presenting a detailed study of

metric data, string junction masses, and identification of states to motivate the monodromy

reduction, we would like to again argue from duality.

Consider a D3-brane at a fixed point paway ∈ C2 where z = 0, t = t∗ 6= 0. In the

seven-brane background y2 = x3 − zax the D3-brane at paway is one of the N = 2 SCFTs

– 19 –



J
H
E
P
0
9
(
2
0
1
7
)
1
3
5

fa with flavor symmetry Gf , whereas in the seven-brane background y2 = x3 + tb it is a

massive N = 2 quantum field theory with flavor symmetry Gg determined by b; the latter

is simply movement of the D3-brane on its Coulomb branch away from its SCFT point.

One may describe the D3-brane at paway in the deformed background y2 = x3−zax+tb as a

deformation of either of these theories, and therefore again the differing flavor symmetries

Gf and Gg must be reduced to some common flavor symmetry Gh on the D3-brane at paway

in the deformed seven-brane background. The only way that we know for this duality-

required reduction to occur is by quotienting by the monodromy of section 3.5. A similar

argument holds if paway ∈ C2 is instead z = z∗ 6= 0, t = 0.

Doing so, the N = 1 D3-brane theory at paway in the deformed seven-brane background

can exhibit (depending on a and b) a charge neutral monodromy invariant massive string

junction that is comprised of charged string junctions that do not exist in the spectrum

themselves. In one example that we will discuss, such a monodromy invariant junction is

J = Γ1 + Γ2 + Γ3 (4.7)

where Γ1, Γ2, and Γ3 carry electric, magnetic, and dyonic charges but themselves do not

exist in the spectrum due to the monodromy projection. It is natural to this phenomenon

as electron-monopole-dyon confinement.

We will discuss this physics in the two simplest cases, h(1,1) in section 4.2 and h(1,2)

in section 4.3. All of the details presented here are explicitly computed in appendix A.

However, before we do so, we will look at the scaling dimensions and the flow of the

corresponding SCFTs.

4.1 Scaling dimensions and RGE flow of the N = 2 SCFTs

Though we have focused primarily on geometric issues in this paper, would also like to

study the resulting SCFTs on the D3-brane along the lines of [11, 15, 34]. To this end we

study the scaling dimensions of the deformation operators, and study how their properties

correlate with the reduction properties of Gf and Gg that we have derived geometrically.

Using the procedure of [49], we construct the holomorphic (3, 0) form of the elliptically

fibered (local) CY-threefold. Starting from a Weierstrass model, we can write

Ω =
dz ∧ dx ∧ dt
∂V/∂y

=
dz ∧ dx ∧ dt

2y
. (4.8)

Since the torus fiber volume is unphysical we demand [Ω] = 2. Homogeneity of the Weier-

strass model then allows to compute the scaling dimensions in terms of a and b from an

associated linear system of equations.

For computing the scaling dimensions one would naively start with the Weierstrass

model

y2 = x3 − zax+ tb. (4.9)
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There are four unknowns, [x], [y], [t], [z], as well as three equations from homogeneity, and

one from the normalization6 [Ω] = 2. This fixes the scaling dimensions to

[x] =
4ab

d
, [y] =

6ab

d
, [z] =

8b

d
, [t] =

12a

d
(4.10)

where we have defined

d := 6a+ 4b− ab = a(6− b) + 4b = b(4− a) + 6a. (4.11)

Note that for the minimal singularities a < 4, b < 6 and thus d > 0. In order to study

which of these theories can flow to a unitary N = 1 theory we check for which the scaling

dimensions are larger than one. From (4.10) we find

6a

4 + a
≤ b ≤ 6a

4− a. (4.12)

These inequalities are satisfied for

{a = 1, b = 2}, {a = 2, b = 2, 3, 4, 5}, {a = 3, b = 3, 4, 5}. (4.13)

In the other cases we have either [z] < 1 or [t] < 1, see table 2. This is typically interpreted

as a decoupling of the non-unitary operator, such that its scaling dimension is set to one,

and the occurrence of an accidental U(1). While this is necessary in order to make sense

out of an otherwise unphysical, non-unitary theory, we could use (4.9) for those cases where

the scalings of z and t do not violate the unitarity bound. However, we are viewing Theory

h as a deformation of either Theory f or g, and this is made explicit in our next approach,

the results of which fits nicely with the monodromy reduction, as we shall discuss now.

Having in mind that Theory h arises as a deformation of two different N = 2 theories,

the natural starting point for the scaling dimensions is the Weierstrass model

y2 = x3 − εzzax+ εtt
b, (4.14)

where an appropriate rescaling of the Weierstrass model and change of variables allows for

the elimination of εz or εt, yielding

case i): y2 = x3 − εzax+ tb ,

case ii): y2 = x3 − zax+ εtb ,
(4.15)

in which case turning on ε 6= 0 can be thought of as deforming the N = 2 theories g and

f , respectively. The equations for the scaling dimensions are then given by

case i): 3[x] = 2[y] = [ε]+a[z]+[x] = b[t], [Ω] = 2 = [z]+[x]+[t]−[y] , (4.16a)

case ii): 3[x] = 2[y] = a[z]+[x] = [ε]+b[t], [Ω] = 2 = [z]+[x]+[t]−[y] . (4.16b)

6Note that the authors of [15] remark that this method, which is based on the Gukov-Vafa-Witten

expression for the superpotential [50], might not be valid if the theory is altered by inclusion of the latter.
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In both cases we have the same number of equations from homogeneity and normalization

as compared to the naive approach, but one more variable [ε], and therefore one needs

additional physical input to fix the scaling dimensions.

This additional physical input is the following. Consider, for example, the case of a

D3-brane at t = 0 in the background of case i),

y2 = x3 − εzax+ tb. (4.17)

In the limit ε → 0 this recovers the N = 2 theory, and movement of the D3-brane in the

z-direction simply moves it along the seven-brane at t = 0 without changing the N = 2

physics on the D3-brane. This implies that in the limit ε → 0, z is a free field in a

hypermultiplet and therefore should have scaling dimension [z] = 1. Setting [z] = 1, the

equations (4.16a) become

3[x] = 2[y] = [ε] + a+ [x] = b[t], 1 = [x] + [t]− [y], (4.18)

and we note that the three equations that do not involve the scaling dimension [ε] of the

parameter ε are precisely the equations that determine the scaling dimensions of the N = 2

theory, with normalization set by the Seiberg-Witten differential, so [x], [y], [t] are that of

the N = 2 theory, and t is the Coulomb branch operator. This fixes [ε] for any fixed (a, b),

and one could perform a similar calculation for y2 = x3 − zax+ εtb that deforms the other

N = 2 theory. For each of these types of deformations and every (a, b), [ε] is computed in

table 2. We find that ε is irrelevant if

b <
6a

4 + a
in case i), b >

6a

4− a in case ii) (4.19)

We thus see that the cases are mutually exclusive and that they cover the rest of the models

which do not satisfy (4.12).

Comparing the different approaches, we make the following observations:

• Though the deformation is irrelevant in some cases, i.e. [ε] < 0, it still affects the

infrared physics since ε enters into the J-invariant of the elliptic curve

J =
4f3

4f3 + 27g2
, (4.20)

and therefore affects the holomorphic gauge coupling τ on the D3-brane. Such irrel-

evant operators that affect low energy physics are often called dangerously irrelevant

operators, and we comment again on them in a moment.

• In those cases where the naive analysis gives rise to a non-unitary field and it is thus

interpreted as a free field, it appears in a deformation with ε which is irrelevant.

• Using the approach where we start with an explicit deformation parameter ε, we ob-

serve

a) [ε] > 0 if and only if the flavor symmetry of the N = 2 theory is reduced by the

deformation,

b) [ε] = 0 if and only if the associated flavor symmetry is preserved,

c) if [ε] < 0 then the flavor symmetry may or may not be reduced.
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(a,b)
Which flavor Non-unitary [ε] in deformed N = 2 theory

is reduced field case i) case ii)

(1, 1) Gf z −1
5 1

(1, 2) Gg — 1 0

(1, 3) Gf , Gg t 3 −1

(1, 4) Gg t 7 −2

(1, 5) Gf , Gg t 19 −3

(2, 1) Gf z −6
5 5

(2, 2) Gf — 0 4

(2, 3) Gf , Gg — 2 3

(2, 4) Gf , Gg — 6 2

(2, 5) Gf , Gg — 18 1

(3, 1) Gf z −11
5 17

(3, 2) Gf , Gg z −1 16

(3, 3) Gf , Gg — 1 15

(3, 4) Gf , Gg — 5 14

(3, 5) Gf , Gg — 17 13

Table 2. Overview table of SCFT scaling dimensions. For fixed (a, b) the flavor symmetry reduction

is listed, as is the non-unitary field of method one, and the scaling dimension of the deformation

parameter ε of the N = 2 theories using method two.

Note that in some cases duality requires reduction, and therefore ε can effect the low

energy physics even for the case [ε] < 0. For example, in the case (a, b) = (1, 4) we see

that Gf = Gh = SU(2) but Gg = E6. The ε associated with case ii) satisfies [ε] < 0 and

monodromy reduction reduces E6 to SU(2); this effect is required for duality and cannot

flow away in the IR, justifying the use of the term dangerously irrelevant operator for the

deformation of the N = 2 theory with E6 flavor symmetry. We hope to return to a more

detailed treatment of these operator analyses in the future.

4.2 Example: a flavor-breaking deformation of H1 Argyres-Douglas theory

The theory h(1,1) can be described as deformed H0 or H1 Argyres-Douglas theory. This was

also an example studied in [34]. The theory f1, which is H1 Argyres-Douglas, has massless

monopoles, electrons, and dyons with an SU(2) flavor algebra encoded in a three-pronged

string junction J = Γ0 + Γ1 + Γ2 that has asymptotic charge zero. An arbitrary string

junction is written as J =
∑3

i=1 JiΓi and the deformation induces an action according

to (A.13),

(Γ1,Γ2,Γ3) 7→ (−Γ3,−Γ1,−Γ2) . (4.21)
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Quotienting by this action gives a trivial lattice of string junctions for the theory h(1,1) as

viewed from the point of view of the deformation of theory f1. That is, both the charged

and charge neutral string junctions are projected out in the quotient.

On the other hand, one can also consider h(1,1) as a deformation of another N = 2

SCFT g1, which is H0 Argyres-Douglas theory. There is no flavor algebra, but there are

massless charged monopoles and dyons, cf. table 4. Deforming this theory to obtain h(1,1)

gives an action on the basis of string junctions of the H0 theory, cf. (A.4)

(Γ1,Γ2) 7→ (−Γ2,Γ1) . (4.22)

Quotienting by this action (which is a different quotient and initial junction lattice than

from the f1 point of view) also gives the lattice of string junctions for the theory h(1,1),

which is again trivial. Here there is no flavor symmetry to break, but the spectrum after

deformation no longer has charged states.

We will say more in the next example, since the most interesting features occur when

there are string junctions that survive the monodromy projection. We simply conclude

here that from both points of view the theory h(1,1) has no invariant string junction states.

4.3 Example: another H1 deformation with electron-dyon-monopole bound

states

Let us turn to h(1,2), which is more interesting since the residual flavor symmetry after

deformation is SU(2), as can be seen from table 1. h(1,2) can be described as a deformation

of f1 or g2, which are the H1 and H2 Argyres-Douglas theories.

Thought of as a deformation of f1, which has SU(2) flavor symmetry, the deformation

induces the action (A.14) on the basis of string junctions

(Γ1,Γ2,Γ3) 7→ (Γ2,Γ3,Γ1) . (4.23)

Unlike the deformation of f1 associated with the h(1,1) theory (where the Weierstrass

model is deformed by t instead of t2) in this case the junction J = Γ1 + Γ2 + Γ2 is left

invariant by the deformation-induced monodromy. Together with −J , this leaves an SU(2)

flavor algebra intact on the D3-brane theory h(1,2). However, there are no monodromy-

invariant charged junctions. The U(1) gauge symmetry has been broken, but the SU(2)

flavor symmetry remains intact.

Moving the D3-brane away from z = 0 along the z-axis to z = z∗ as prescribed

previously, the string junctions J and −J become finite size. This implies that for the

D3-brane at z = z∗, t = 0, the seven-brane deformation induces the condensation of a

monopole in a trivial flavor representation of the H1 Argyres-Douglas theory. The displaced

D3-brane theory has no charged states, but does exhibit a massive charge neutral flavor

adjoint of SU(2) that becomes massless as it is moved back to the SCFT point. Since

charged junctions are absent, it is natural to interpret the massive charge neutral flavor

adjoint with root junctions (J, 0,−J), where J = Γ1 + Γ2 + Γ3, as a confined state made

of the (anti-)dyon Γ1 = π2, electron Γ2 = π1, and monopole Γ3 = π3.

Let us see whether a similar picture emerges from the point of view of the deforma-

tion of theory g2, which has SU(3) flavor symmetry. The ordered set of vanishing cycles

– 24 –



J
H
E
P
0
9
(
2
0
1
7
)
1
3
5

associated to theory g2 (which are that of a deformed type IV fiber) are {π1, π3, π1, π3}.
So with our conventions where π1 and π3 define electric and magnetic charge for the D3-

brane theory, Γ1 and Γ3 are electrons, Γ2 and Γ4 are monopoles, and appropriate sums are

(anti-)dyons with electric and magnetic charge −(1, 1). The deformation of this theory to

arrive at h(1,2) (which is to deform the Weierstrass model y2 = x3 + t2 by zx) induces the

action (A.20) on the junction basis

(Γ1,Γ2,Γ3,Γ4) 7→ (Γ4,−Γ1,Γ2,−Γ3). (4.24)

Prior to deformation, the junction lattice has dimension four, but after deformation one

must quotient by this action to obtain the junctions of the h(1,2) theory. This quotient

lattice has dimension one and is an SU(2) generated by J = Γ1 − Γ2 − Γ3 + Γ4. Written

this way, J is comprised of an electric junction Γ1, an (anti-)dyonic junction −Γ2−Γ3, and

a monopole junction Γ4. Alternatively this can be seen by constructing the decuplet of

the original SU(3) forms from an electric quark, dyonic quark, and monopole quark; this

decuplet contains J .

Moving the D3-brane away from z = t = 0 to z = z∗, t = 0 this junction becomes

massive, and it is again natural to interpret it as a confined object comprised of an electron,

dyon, and monopole string junction. We see again, this time from the deformation of

theory g2, that h(1,2) has a charge neutral flavor adjoint of SU(2) that can be interpreted

as a confinement of an electron, dyon, and monopole when the D3-brane is placed away

from the SCFT point at z = t = 0.

5 Conclusions and outlook

In this paper we studied N = 1 D3-branes in non-trivial seven-brane backgrounds that

have dual descriptions as deformations of two N = 2 SCFTs or QFTs with different

flavor symmetries. Via a geometric analysis involving string junctions and seven-brane

link induced monodromy, we demonstrated that the dual descriptions have a common

reduced flavor symmetry (as they must) and the deformation of the N = 2 theories removes

their charged states. Duality also requires that the monodromy be imposed on the D3-

brane theory away from the origin in the deformed seven-brane background, which is the

SCFT point. After imposing the monodromy quotient, the states of the deformed theory

(both at and away from the SCFT point) are charge neutral and in higher dimensional

representations of the flavor symmetry, if it exists.

If the charge neutral states are also massive, this is the behavior of quark confinement

into baryons and mesons, or alternatively of monopole condensation under electric-magnetic

duality; the charge neutral junctions of the displaced D3-brane theory in the deformed

seven-brane background are indeed such massive states. Compared to the conventional

case, though, the charge neutral states in the theories we study are not comprised purely

of confining electric states (e.g. of the Cartan subalgebra of QCD), but instead arise from

electric, magnetic, and dyonic states.
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Having summarized the physics of our results, let us give more details.

The D3-branes are located at or near the non-trivial self-intersection of a seven-brane

background described by a Weierstrass model. The associated elliptic fibration is smooth at

complex codimension one in its base, but the seven-brane self-intersects in codimension two

near the D3-brane. Albeit occurring rather frequently, such seven-brane configurations (and

corresponding singularities) have not received much attention in the past, and we study

them via torus knots (or links) and string junctions that appear naturally in the geometry.

In more detail, there are apparent discrepancies when studying the codimension two

singularity from different points of view in codimension one, which we call Theories f and

g, and it is critical to resolve these discrepancies. Applying and extending the techniques

for studying singularities via deformations and string junctions introduced in [27, 37, 38],

we construct the flavor algebra and representations of Theories f and g, but find that the

deformed seven-brane background reduces or completely breaks the flavor algebra and the

charged states are projected out, giving rise to a Theory h (a D3 theory at the SCFT point

where the seven-brane self-intersects) consistent with approaching it from either Theory f

or g (i.e. approaching the codimension two singularity along two different codimension one

loci). The reduction is obtained from a monodromy induced by the seven-branes wrapped

on a torus knot or link. We argued that the monodromy quotient should also be imposed

on the spectrum of the D3-brane displaced from SCFT point, since duality still requires

flavor symmetry reduction to a common group.

We interpret the physical meaning of our results based on our geometric analysis,

since there is no known Lagrangian description for the theories we discuss. The two theo-

ries f and g by themselves correspond to well-known N = 2 theories whose BPS spectra

can be constructed; they are theories of Seiberg-Witten, Argyres-Douglas, or Minahan-

Nemeschansky. Theory h is dually described as a deformation of Theory f or g, and these

deformations break the supersymmetry to N = 1. The geometry implies that Theory h

never has charged states, but does have charge neutral states in higher dimensional flavor

representations. These gain a mass when the D3-brane associated with Theory h is dis-

placed from the origin, which we interpret as deformation-induced monopole condensation

or (dually) confinement; it is deformation-induced since charged states of the N = 2 theo-

ries emerge in the limit of the undeformed seven-branes. The flavor symmetry of at least

one of the N = 2 theories is broken, giving a common flavor symmetry group for Theory h,

Gh ∈ {∅, SU(2), SU(3)}. In a few cases, the deformation does not break the flavor symme-

try, which can be interpreted and as the condensation of flavor-neutral charged BPS states

of one of the underlying N = 2 theories. We will discuss the mathematical aspects of Gh
in another publication [35].

In one of the examples, we compared the junctions invariant under the braid action

associated with the link, and find that in the monodromy invariant junction of Theories f

or g that survives in Theory h is built from three junctions of the N = 2 theory that carry

one unit of electric, magnetic, and dyonic charge, which we interpret as a confined state

of these when the D3-brane is moved away from the origin. To the best of our knowledge,

such theories have not been described previously.
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While the examples we present in this paper is exhaustive for the specific type of

codimension two singularity we look at (i.e. a = 1, 2, 3 and b = 1, 2, 3, 4, 5 are the only

possibilities leading to minimal models in codimension two), many points remain open.

First, it would be interesting to study and interpret our results in terms of five-branes as

done in [34]. Second, it would be interesting to apply the same techniques to other types of

singularities that could potentially give rise to iterated torus knots. From the CFT point

of view it would be very interesting to study these new theories h more in-depth. From

the mathematical point of view it would be worthwhile to establish a connection between

the intersection pairing and monodromy used in knot theory and the techniques we have

utilized, which involve monodromy on the second homology of a one parameter family of

elliptic surfaces. It would also be interesting to study other aspects of the mathematics;

e.g. for b > 1 the elliptic threefold defined by (1.1) has an isolated singularity at z =

t = x = y = 0, which we will study in this context in a sequel mathematics paper [35].

Furthermore, the monodromy reduction of the theories and the mass of the string junctions

associated with it should be reflected in properties of the metric. It would therefore be

worthwhile to study metric data in such setups.
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A Examples

In this section we apply the general discussion of sections 3 and 4 to concrete examples.

We limit our discussion to minimal Weierstrass fibrations, which means 1 ≤ a ≤ 3 and

1 ≤ b ≤ 5, so there are 15 cases to be studied.

Let us fix some notation to help us be brief in each example. Let Ff and Fg be the

Kodaira fibers in the f -tube and g-tube, respectively, with associated ADE singularities

(in those surfaces) Gf and Gg. An overview over all 15 cases can be found in table 1. For

these cases L∆ is a (3a, 2b) torus knot or link. If gcd(3a, 2b) > 1 then these are not coprime

and the link has multiple components, which happens if and only if either Ff or Fg are

I∗0 fibers.

We have collected the vanishing cycles for the gauge groups relevant to our study in

table 3. Each of the strands sj of the torus knot or link is associated with a vanishing

cycles πi, i = 1, 2, 3. Upon traversing the knot or link in the f -tube we find that a (3a, 2b)

– 27 –



J
H
E
P
0
9
(
2
0
1
7
)
1
3
5

Knot/Link Ff Fg
Vanishing cycles

g-tube (t = 0) f -tube (z = 0)

(3, 2) III II {π1, π3} {π2, π1, π3}
(3, 4) III IV {π1, π3, π1, π3} {π2, π1, π3}
(3, 6) III I∗0 {π1, π3, π1, π3, π1, π3} {π2, π1, π3}
(3, 8) III IV∗ {π1, π3, π1, π3, π1, π3, π1, π3} {π2, π1, π3}
(3, 10) III II∗ {π1, π3, π1, π3, π1, π3, π1, π3, π1, π3} {π2, π1, π3}
(6, 2) I∗0 II {π1, π3} {π2, π1, π3, π2, π1, π3}
(6, 4) I∗0 IV {π1, π3, π1, π3} {π2, π1, π3, π2, π1, π3}
(6, 6) I∗0 I∗0 {π1, π3, π1, π3, π1, π3} {π2, π1, π3, π2, π1, π3}
(6, 8) I∗0 IV∗ {π1, π3, π1, π3, π1, π3, π1, π3} {π2, π1, π3, π2, π1, π3}
(6, 10) I∗0 II∗ {π1, π3, π1, π3, π1, π3, π1, π3, π1, π3} {π2, π1, π3, π2, π1, π3}
(9, 2) III∗ II {π1, π3} {π2, π1, π3, π2, π1, π3, π2, π1, π3}
(9, 4) III∗ IV {π1, π3, π1, π3} {π2, π1, π3, π2, π1, π3, π2, π1, π3}
(9, 6) III∗ I∗0 {π1, π3, π1, π3, π1, π3} {π2, π1, π3, π2, π1, π3, π2, π1, π3}
(9, 8) III∗ IV∗ {π1, π3, π1, π3, π1, π3, π1, π3} {π2, π1, π3, π2, π1, π3, π2, π1, π3}
(9, 10) III∗ II∗ {π1, π3, π1, π3, π1, π3, π1, π3, π1, π3} {π2, π1, π3, π2, π1, π3, π2, π1, π3}

Table 3. Vanishing cycles for the various torus knots or links.

torus knot or link can be described as a braid with sj strands, j = 1, . . . , 3a, which induces

a permutation sj → sj+2b modulo 3a. Similarly, in the g-tube the (3a, 2b) torus knot or

link can be described as a braid with 2b strands, which induces a permutation sj → sj+3a

modulo 2b.

Next we address the string junctions following the conventions of [38]. As we have

discussed in detail in the previous section, traveling down the g- or f -tube rotates the

straight line paths that start at p end on a seven-brane at pk. However, in each slice all

pk are rotated by the same amount, which means that the paths δk that connect p with

pk never cross each other. In particular, this means that no Hanany-Witten moves [51]

are introduced. Thus, the only effect of traversing the torus knot or link is a permutation

of the strands, which leads to a permutation plus a possible sign flip of the vanishing

cycles associated with them. This gives the action on relative homology (string junctions)

presented in section 3.5.

Let us now go through each of the 15 examples. We group the discussion according

to the 7 distinct Kodaira singular fibers that occur in the slice of the f -tube (g-tube) at

θt = 0 (θz = 0); they are {II, III, IV, I∗0 , IV ∗, III∗, II∗}.

A.1 Type II fibers

The type II singularities occur in the g-tube for b = 1. We thus have to look at the

(3a, 2) torus knot or links, cf. figure 6 for the braid representation and figure 7 for the tube
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(a) Braid of (3, 2) torus knot. (b) Braid of (6, 2) torus link.

(c) Braid of (9, 2) torus knot.

Figure 6. The braids corresponding to the type II fibers in the g-tube, which have b = 1.

Figure 7. A visualization of the g-tube for (a, b) = (1, 1) as θz is varied from 0 to 2π. The

dashed line represents the path traveled by the base point p at the center Dt(0). The strands are

seven-branes and the color coding matches that of figure 6a.

representation for a = 1. As discussed in section 3.2 the vanishing cycles are

{W,Z} . (A.1)

This example is rather special in that this cuspidal curve does not give rise to a non-trivial

Lie algebra. In terms of string junctions, this means that there are no string junctions

corresponding to simple roots, i.e. no junctions J with (J, J) = −2 and a(J) = 0.

In basis one we have W = π1 and Z = π3, using the cycle labels of (3.6) and the usual

intersection product of one-cycles (p, q) · (r, s) = ps − rq. Written this way, the vanishing

cycles are thus

{π1, π3} . (A.2)

Using (3.21), the I-matrix reads

I =

(
−1 1

2
1
2 −1

)
, (A.3)

from which we find that there are no junctions J of (J, J) = −2 and a(J) = (0, 0). There

are, however, BPS junctions with (J, J) = −1 and non-vanishing asymptotic charge, cf.

table 4a. Note that if a junction J is BPS, then −J will also be BPS and its asymptotic

charge will be the negative of the former.
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θz = 0 θz = 2π

a(J) J a(J ′) J ′

(1, 0) (1, 0) (0, 1) (0, 1)

(0, 1) (0, 1) (−1, 0) (−1, 0)

(−1,−1) (−1,−1) (1,−1) (1,−1)

(a) Junctions with (J, J) = −1 in basis 1.

θz = 0 θz = 2π

a(J) J a(J ′) J ′

(1, 0) (0, 1) (0,−1) (−1, 0)

(0, 1) (1, 0) (1, 0) (0, 1)

(1,−1) (−1, 1) (−1,−1) (−1,−1)

(b) Junctions with (J, J) = −1 in basis 2.

Table 4. Junctions with self-intersection −1 in bases one and two for b = 1 in the g-tube. As can

be seen, the sign of the second entry of the junction vector is flipped after the braid action.

Let us turn to study the cases associated with differing values of a.

a = 1. From (3.23) the braid induces an action on the junction basis Γi = ei ∈ Z2

given by

B =

(
0 −1

1 0

)
, (A.4)

which leaves no junctions invariant; the invariant sublattice has dimension 0.

In more detail, the braid action permutes the junction entry vectors j0 and j1 and

subsequently flips the sign of the (now) first entry j1. As a consequence, this means that in

this basis states with asymptotic charge a = (a1, a2) are mapped to states a′ = (−a2, a1).

We have collected the string junctions before and after the braid action in table 4a. As

explained in section 3.4, in order to check the self-intersection of the states at θt = 2π, we

have to use a new I-matrix that takes the motion of the base point p̂ into account. With

respect to this new intersection form

I ′ =

(
−1 −1

2

−1
2 −1

)
, (A.5)

we find that the self-intersection (J, J) = −1 is preserved throughout the g-tube, as it

should be since it is a topological quantity. Indeed, the self-intersection of the third junc-

tion7 at θz = 2π, J = {−1, 1}, would have self-intersection (J, J) = −3 if we were to use I

instead of I ′.
7We do not write the cycles explicitly in J when the choice of cycles is clear; here we work in basis one,

so the first entry of J comes with π1 and the second with π3.

– 30 –



J
H
E
P
0
9
(
2
0
1
7
)
1
3
5

Before moving on to the cases a = 2, 3 let us compare our results with those obtained

from using basis 2. If we have done everything correctly we must reach the same conclu-

sions. In basis two we have W = (0, 1) = π3 and Z = (1, 0) = π1. The vanishing cycles

{W,Z} are therefore

{π3, π1} . (A.6)

The monodromy on Eg induced by traversing the g-tube acts as W 7→ −Z and Z 7→ W ,

i.e. π3 7→ −π1 and π1 7→ π3. Note, written as an action on π1 and π3 this monodromy is

the same as that of the previous basis. The difference is that the vanishing cycles have

changed, as has the I-matrix,

I =

(
−1 −1

2

−1
2 −1

)
. (A.7)

The braid and the mapping of the cycles induces the following action on the junctions:

B =

(
0 1

−1 0

)
. (A.8)

Thus, the action in this basis corresponds again to permuting the two junction vector

entries, but this time it is followed by a sign flip of the second entry. Since the first

junction vector entry comes with π3 = (0, 1), this means, however, that again the sign of

the second entry of the asymptotic charge is flipped. Hence the asymptotic charges of the

BPS string junctions after traveling down the g-tube are independent of the base choice.

We have collected the BPS junctions with (J, J) = −1 in this basis in table 4b. We

find again that with respect to the new intersection form

I ′ =

(
−1 1

2
1
2 −1

)
, (A.9)

the self-intersection is left unchanged. Since this analysis carries over to the other cases as

well, we will use basis one throughout the rest of the paper.

a = 2. From (3.23) the braid induces an action on the junction basis Γi = ei ∈ Z2

given by

B =

(
−1 0

0 −1

)
, (A.10)

which leaves no junctions invariant; the invariant sublattice has dimension 0.

a = 3. From (3.23) the braid induces an action on the junction basis Γi = ei ∈ Z2

given by

B =

(
0 1

−1 0

)
, (A.11)

which leaves no junctions invariant; the invariant sublattice has dimension 0.
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Irrep asymp. charge weight junctions

1 (1,0) {(0,1,0)}
1 (1,2) {(-1,0,1)}
2 (0,1) {(-1,-1,0),(0,0,1)}
2 (1,1) {(-1,0,0),(0,1,1)}

Table 5. Junction vectors with self-intersection −1 in the f -tube for a = 1. We give their

irreducible representations under the flavor SU(2), their asymptotic charges, and the corresponding

junctions. Since the 1 is real and the 2 is pseudo-real, the negatives of these junctions are in the

spectrum as well.

A.2 Type III fibers

The type III singularities occur in the f -tube for a = 1. We thus look at the (3, 2b)

torus knots or links with 1 ≤ b ≤ 5. In this case we find an SU(2) gauge algebra with

states transforming in the fundamental representation. However, again the braid cannot

induce non-trivial outer automorphisms since all automorphisms are inner for SU(2). The

vanishing cycles are given in table 3, from which we find the intersection matrix

I =



−1 1

2 −1
2

1
2 −1 1

2

−1
2

1
2 −1


 . (A.12)

The simple root junction is given by α1 = (1, 1, 1), which can be checked to have asymptotic

charge (0, 0) and self-intersection −2.

Let us turn to study the cases associated with differing values of b.

b = 1. The braid and the tube action for (a, b) = (1, 1) in the f -tube are given in figure 8.

From (3.24) the braid induces an action on the junction basis Γi = ei ∈ Z3 given by

B =




0 −1 0

0 0 −1

−1 0 0


 , (A.13)

which leaves no junctions invariant; the invariant sublattice has dimension 0. The asymp-

totic charge of a junction J at θt = 0 is given by a(J) = (J1 − J0, J2 − J0). At θt = 2π,

we find a′(J) = (J1 − J2, J1 − J0). Consequently a(J) = (a1, a2) 7→ a′(J) = (a1 − a2, a1),

from which we see again that states of asymptotic charge (0, 0) are mapped to states with

asymptotic charge (0, 0), i.e. the braid acts as an automorphism on the root junctions.

We list the junctions J with (J, J) = −1 in table 5. There are two singlets and two

doublets (plus their conjugates) of the flavor group SU(2). They correspond to the BPS

states of the undeformed N = 2 theory. Note that they are projected out under the braid

action, since they carry non-vanishing asymptotic charge.
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(a) Braid of (3, 2) torus knot. (b) f -tube of (3, 2) torus knot.

(c) Braid of (3, 4) torus knot. (d) Braid of (3, 6) torus link.

(e) Braid of (3, 8) torus knot. (f) Braid of (3, 10) torus knot.

Figure 8. The braid and the f -tube presentation for the type III fiber with a = 1.

b = 2. From (3.24) the braid induces an action on the junction basis Γi = ei ∈ Z3 given by

B =




0 0 1

1 0 0

0 1 0


 , (A.14)

which determines a non-trivial braid invariant sublattice of the junction lattice generated by

Junction J (J, J) a(J)

(1, 1, 1) −2 (0, 0)
.

We see that the generator of braid invariant junctions is the simple root α1 of Gf = SU(2),

so Gh = SU(2). The asymptotic charges map as a(J) = (a1, a2) 7→ a′(J) = (−a2, a1 − a2),

which shows again that the braid acts as an automorphism on the root junctions.

b = 3. From (3.24) the braid induces an action on the junction basis Γi = ei ∈ Z3

given by

B =



−1 0 0

0 −1 0

0 0 −1


 , (A.15)

which leaves no junctions invariant; the invariant sublattice has dimension 0, so Gh = ∅.
The braid induces a map on asymptotic charges map as a(J) = (a1, a2) 7→ a′(J) =

(−a1,−a2), which shows again that the braid acts as an automorphism on the root junc-

tions. The braid maps α1 7→ −α1, as in the b = 1 case.
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b = 4. From (3.24) the braid induces an action on the junction basis Γi = ei ∈ Z3 given by

B =




0 1 0

0 0 1

1 0 0


 , (A.16)

which determines a non-trivial braid invariant sublattice of the junction lattice generated by

Junction J (J, J) a(J)

(1, 1, 1) −2 (0, 0)
.

We see that the invariant junctions are generated by the root α1 of Gf = SU(2), and

therefore the braid invariant subalgebra of Gf is Gh = SU(2). Again it can be shown that

the braid gives an automorphism on roots.

b = 5. From (3.24) the braid induces an action on the junction basis Γi = ei ∈ Z3 given by

B =




0 0 −1

−1 0 0

0 −1 0


 , (A.17)

which leaves no junctions invariant; the invariant sublattice has dimension 0, so that Gh =

∅. The braid is given in figure 8f. The asymptotic charges map as a(J) = (a1, a2) 7→
a′(J) = (a2, a2 − a1), and we see that the asymptotic charge zero states are mapped to

asymptotic charge zero states. The braid induces a Weyl reflection of the (simple) root

junction, α1 7→ −α1.

A.3 Type IV fibers

Type IV knots or links are obtained from the g-tube for b = 2, i.e. from (a, b) = (3a, 4)

torus knots or links. The I-matrix in basis one is given by

I =




−1 1
2 0 1

2
1
2 −1 −1

2 0

0 −1
2 −1 1

2
1
2 0 1

2 −1


 . (A.18)

See table 6 for the associated junction vectors with self-intersection −1. We can choose a

set of simple root junctions given by

α1 = {0, 1, 0,−1} , α2 = {1, 0,−1, 0} . (A.19)

While there exists an outer automorphism folding SU(3) to Sp(1), we find a Weyl group

element that corresponds to the braid action and consequently the induced automorphism

is inner. Again we have to quotient by this action, which changes the rank of the resulting

flavor group as discussed in the following.
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Irrep asymp. charge weight junctions

1 (1,−1) {(0,−1, 1, 0)}
1 (2, 1) {(1, 0, 1, 1)}
1 (1, 2) {(1, 1, 0, 1)}
3 (1, 0) {(0,−1, 1, 1), (0, 0, 1, 0), (1, 0, 0, 0)}
3 (0, 1) {(0, 0, 0, 1), (0, 1, 0, 0), (1, 1,−1, 0)}
3 (−1,−1) {(−1,−1, 0, 0), (−1, 0, 0,−1), (0, 0,−1,−1)}

Table 6. Junction vectors with self-intersection −1 in the g-tube for b = 2. We give their irreducible

representations under the flavor group SU(3), their asymptotic charges, and the corresponding

junctions. Again, the negatives of these junctions are in the spectrum as well and correspond to

the respective conjugate irreps.

a = 1. From (3.23) the braid induces an action on the junction basis Γi = ei ∈ Z4

given by

B =




0 −1 0 0

0 0 1 0

0 0 0 −1

1 0 0 0


 , (A.20)

which determines a non-trivial braid invariant sublattice of the junction lattice generated by

Junction J (J, J) a(J)

(1,−1,−1, 1) −6 (0, 0)
.

We see that the generator of the invariant junction β1 = (1,−1,−1, 1) = α2−α1 is a linear

combination of the simple roots α1, α2 of Gg = SU(3). This junction β1 is the simple root

for the reduced algebra Gh = SU(2).

Note that we have now seen that Gh = SU(2) for the case (a, b) = (1, 2) in both

the f -tube and g-tube. For this (a, b) Gf = SU(2) and is not reduced to obtain Gh, but

Gg = SU(3) and is reduced to obtain the same Gh. That is, we have derived Gh using two

different points of view, the f -tube and g-tube.

a = 2. From (3.23) the braid induces an action on the junction basis Γi = ei ∈ Z4

given by

B =




0 0 −1 0

0 0 0 −1

−1 0 0 0

0 −1 0 0


 (A.21)
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which determines a non-trivial braid invariant sublattice of the junction lattice generated by

Junction J (J, J) a(J)

(1, 0,−1, 0) −2 (0, 0)

(0, 1, 0,−1) −2 (0, 0)

.

We see that the generators of the invariant junctions are βi = αi, i.e. precisely the simple

roots of Gg = SU(3), and therefore Gh = SU(3).

Note that in this case a and b are not co-prime and the braid is actually a link with

two components. The asymptotic charges map as (a1, a2) 7→ (−a1,−a2) so that junctions

J with a(J) = 0 map to junctions J ′ with a(J) = 0; the braid gives an automorphism

of the roots, which in this case is trivial. As we shall see when we next analyze the I∗0
cases, the result G = SU(3) matches again perfectly with the result from the f - tube in

the (a, b) = (2, 2) case.

a = 3. From (3.23) the braid induces an action on the junction basis Γi = ei ∈ Z4

given by

B =




0 0 0 1

−1 0 0 0

0 1 0 0

0 0 −1 0


 , (A.22)

which determines a non-trivial braid invariant sublattice of the junction lattice generated by

Junction J (J, J) a(J)

(1,−1,−1, 1) −6 (0, 0)
.

We see that the generator of invariant junctions is β1 = (1,−1,−1, 1) = α1 − α2, a linear

combination of the simple roots of Gg = SU(3) that itself generates an algebra Gh = SU(2).

In this case the asymptotic charges are mapped as (a1, a2) 7→ (a2,−a1), therefore

preserving the asymptotic charge of junctions J with a(J) = 0, so the braid induces an

automorphism of roots.

A.4 Type I∗0 fibers

This case is special since the fiber type I∗0 can occur both in the f - and the g-tube. In

the former, the corresponding torus knot or link is given by a = 2 for arbitrary b and in

the latter by b = 3 for arbitrary a. Note that the D4 Dynkin diagram allows for outer

automorphisms that fold it to either B3 or G2. However, we find that all braid actions

induce inner automorphisms.
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The f-tube analysis. An I∗0 fiber is obtained in the f -tube when a = 2. In that case

the I-matrix reads

I =




−1 1
2 −1

2 0 1
2 −1

2
1
2 −1 1

2 −1
2 0 1

2

−1
2

1
2 −1 1

2 −1
2 0

0 −1
2

1
2 −1 1

2 −1
2

1
2 0 −1

2
1
2 −1 1

2

−1
2

1
2 0 −1

2
1
2 −1



, (A.23)

which leads to a set of simple roots that in the junction basis Γi are

α1 = {0, 0, 0, 1, 1, 1} , α2 = {0, 0, 1, 0, 0,−1} ,
α3 = {0, 1, 0, 0,−1, 0} , α4 = {1, 0,−1,−1, 0, 1} .

(A.24)

b = 1. From (3.24) the braid induces an action on the junction basis Γi = ei ∈ Z6

given by

B =




0 0 0 0 −1 0

0 0 0 0 0 −1

−1 0 0 0 0 0

0 −1 0 0 0 0

0 0 −1 0 0 0

0 0 0 −1 0 0



, (A.25)

which leaves no junctions invariant; the invariant sublattice has dimension 0; thus Gh = ∅.
The asymptotic charges are mapped as (a1, a2) 7→ (a1 − a2, a1) which preserves a(J)

for junctions with a(J) = 0, and therefore the braid induces an automorphism on the roots.

The action on the simple roots reads

α1 7→ −α1 − α2 − α3 − α4 , α2 7→ α3 , α3 7→ α2 + α4 , α4 7→ −α2 − α3 , (A.26)

and there is no invariant subalgebra, as determined also directly from B.

b = 2. From (3.24) the braid induces an action on the junction basis Γi = ei ∈ Z6

given by

B =




0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

1 0 0 0 0 0

0 1 0 0 0 0



, (A.27)

which determines a non-trivial braid invariant sublattice of the junction lattice generated by

Junction J (J, J) a(J)

(1, 0, 1, 0, 1, 0) −4 (0, 0)

(0, 1, 0, 1, 0, 1) −4 (0, 0)

.
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We see that the invariant junctions βi are a linear combination of the simple roots

β1 = α1 + 2α2 + α4 , β2 = α1 + α3 , (A.28)

of Gf = SO(8). These generate a braid invariant algebra Gh = SU(3).

The asymptotic charges in this case are mapped as (a1, a2) 7→ (−a2, a1−a2). The map

on the simple roots reads

α1 7→ α1 + α2 + α3 , α2 7→ α2 + α4 , α3 7→ −α2 , α4 7→ −α2 − α3 − α4 . (A.29)

From the Cartan matrix (1.4) we see that the two simple roots βi correspond to an SU(3)

flavor algebra. As alluded to above, this matches the g-tube result from the type IV fiber.

b = 3. From (3.24) the braid induces an action on the junction basis Γi = ei ∈ Z6

given by

B =




−1 0 0 0 0 0

0 −1 0 0 0 0

0 0 −1 0 0 0

0 0 0 −1 0 0

0 0 0 0 −1 0

0 0 0 0 0 −1



, (A.30)

which leaves no junctions invariant; the invariant sublattice has dimension 0; thus Gh = ∅.
The braid map in this case is minus the identity. Hence all junctions, and consequently

their associated asymptotic charges are mapped to their negatives. The map induces an

automorphism on roots, but there is clearly no invariant subalgebra: any junction is an

eigenvector of the braid map with eigenvalue −1.

b = 4. From (3.24) the braid induces an action on the junction basis Γi = ei ∈ Z6

given by

B =




0 0 0 0 1 0

0 0 0 0 0 1

1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0



, (A.31)

which determines a non-trivial braid invariant sublattice of the junction lattice generated by

Junction J (J, J) a(J)

(1, 0, 1, 0, 1, 0) −4 (0, 0)

(0, 1, 0, 1, 0, 1) −4 (0, 0)

.

We see that the invariant junctions βi are a linear combination

β1 = α1 + 2α2 + α4 , β2 = α1 + α3 , (A.32)
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of the simple roots of Gf = SO(8), which generate an algebra G = SU(3). The asymptotic

charges transform as (a1, a2) 7→ (a2−a1,−a1), maintaining the asymptotic charge of a(J) =

0 junctions, and thus giving an automorphism of the roots. The action on the simple roots is

α1 7→ α1 + α2 + α3 + α4 , α2 7→ −α3 , α3 7→ −α2 − α4 , α4 7→ α2 + α3 , (A.33)

which leaves β1 and β2 invariant. Note that even though the action on the simple roots

differs from the b = 2 case (in fact, one is the inverse of the other), the invariant combination

of simple roots βi are the same.

b = 5. From (3.24) the braid induces an action on the junction basis Γi = ei ∈ Z6

given by

B =




0 0 −1 0 0 0

0 0 0 −1 0 0

0 0 0 0 −1 0

0 0 0 0 0 −1

−1 0 0 0 0 0

0 −1 0 0 0 0



, (A.34)

which leaves no junctions invariant; the invariant sublattice has dimension 0; thus Gh = ∅.
The asymptotic charges map as (a1, a2) 7→ (a2, a2 − a1), which leave fixed the asymptotic

charge of junctions with a(J) = 0, and the braid therefore induces an automorphism of the

roots. The simple roots map as

α1 7→ −α1 − α2 − α3 , α2 7→ −α2 − α4 , α3 7→ α2 , α4 7→ α2 + α3 + α4 . (A.35)

This map does not have an eigenspace with eigenvalue 1, which of course matches the same

fact about B.

The g-tube analysis. An I∗0 fiber is obtained in the g-tube when b = 3, in which case

the I-matrix is given by

I =




−1 1
2 0 1

2 0 1
2

1
2 −1 −1

2 0 −1
2 0

0 −1
2 −1 1

2 0 1
2

1
2 0 1

2 −1 −1
2 0

0 −1
2 0 −1

2 −1 1
2

1
2 0 1

2 0 1
2 −1



. (A.36)

The resulting root junctions are

α1 = {0, 0, 0, 1, 0,−1} , α2 = {0, 0, 1, 0,−1, 0} ,
α3 = {0, 1,−1,−1, 1, 0} , α4 = {1, 0,−1, 0, 0, 0} .

(A.37)

– 39 –



J
H
E
P
0
9
(
2
0
1
7
)
1
3
5

a = 1. From (3.23) the braid induces an action on the junction basis Γi = ei ∈ Z6

given by

B =




0 0 0 −1 0 0

0 0 0 0 1 0

0 0 0 0 0 −1

1 0 0 0 0 0

0 −1 0 0 0 0

0 0 1 0 0 0



, (A.38)

which leaves no junctions invariant; the invariant sublattice has dimension 0; thus Gh = ∅.
The maps induced by the braid acts as (a1, a2) 7→ (−a2, a1) which leaves the asymptotic

charge of junctions J with a(J) = 0 fixed, thereby giving an automorphism on roots. The

map on simple roots is

α1 7→ −α4 , α2 7→ −α1 − α2 − α3 , α3 7→ α1 + 2α2 + α3 + α4 , α4 7→ α1 , (A.39)

and there is no invariant subspace of the αi under this map, as expected from B.

a = 2. From (3.23) the braid induces an action on the junction basis Γi = ei ∈ Z6

given by

B =




−1 0 0 0 0 0

0 −1 0 0 0 0

0 0 −1 0 0 0

0 0 0 −1 0 0

0 0 0 0 −1 0

0 0 0 0 0 −1



, (A.40)

which leaves no junctions invariant; the invariant sublattice has dimension 0; thus Gh = ∅.
Note that this case gives rise to a (6, 6) torus link and is thus completely identical to

the previously discussed case in the f -tube with b = 3. It is a nice cross-check that we

find the braid action to be minus the identity as well. Hence the asymptotic charges and

simple roots are mapped to their negatives and the invariant subspace is trivial.

a = 3. From (3.23) the braid induces an action on the junction basis Γi = ei ∈ Z6

given by

B =




0 0 0 1 0 0

0 0 0 0 −1 0

0 0 0 0 0 1

−1 0 0 0 0 0

0 1 0 0 0 0

0 0 −1 0 0 0



, (A.41)

which leaves no junctions invariant; the invariant sublattice has dimension 0; thus Gh = ∅.
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The asymptotic charges are mapped as (a1, a2) 7→ (a2,−a1). The simple roots are

mapped as

α1 7→ α4 , α2 7→ α1 + α2 + α3 , α3 7→ −α1 − 2α2 − α3 − α4 , α4 7→ −α1 , (A.42)

which is the same as in the a = 1 case up to a total minus sign. There is no invariant

subspace of this map, as expected from the more general map B on general junctions.

A.5 Type IV∗ fibers

The IV∗ fibers occur in the g-tube for b = 4. The corresponding I-matrix is

I =




−1 1
2 0 1

2 0 1
2 0 1

2
1
2 −1 −1

2 0 −1
2 0 −1

2 0

0 −1
2 −1 1

2 0 1
2 0 1

2
1
2 0 1

2 −1 −1
2 0 −1

2 0

0 −1
2 0 −1

2 −1 1
2 0 1

2
1
2 0 1

2 0 1
2 −1 −1

2 0

0 −1
2 0 −1

2 0 −1
2 −1 1

2
1
2 0 1

2 0 1
2 0 1

2 −1




(A.43)

For the simple root basis we find

α1 = {0, 1,−1,−1, 0,−1, 1, 1} , α2 = {0, 0, 0, 0, 0, 1, 0,−1} ,
α3 = {0, 0, 0, 0, 1, 0,−1, 0} , α4 = {0, 0, 1, 0,−1, 0, 0, 0} ,
α5 = {1, 0,−1, 0, 0, 0, 0, 0} , α6 = {0, 0, 0, 1,−1,−1, 1, 0} .

(A.44)

There is an outer automorphism which folds E6 to F4, which is, however, not realized by

any of the braid action in these examples. Thus as in the previous cases (as well as in the

cases to be discussed subsequently), the braid induces inner automorphisms only.

a = 1. From (3.23) the braid induces an action on the junction basis Γi = ei ∈ Z8

given by

B =




0 0 0 0 0 −1 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 −1

1 0 0 0 0 0 0 0

0 −1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 −1 0 0 0 0

0 0 0 0 1 0 0 0




, (A.45)

which determines a non-trivial braid invariant sublattice of the junction lattice generated by

Junction J (J, J) a(J)

(1,−1,−1, 1, 1,−1,−1, 1) −12 (0, 0)
.
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We see that the invariant simple root junction βi is the linear combinations

β1 = −α1 − 2α2 − α4 + α5 (A.46)

of the simple roots of Gg = E6, which themselves generate an algebra Gh = SU(2).

The asymptotic charges are mapped by the braid as (a1, a2) 7→ (−a2, a1), fixing the

asymptotic charge of junctions J with a(J) = 0, and thereby giving an automorphism on

the roots. For the simple roots, we find

α1 7→ α1 + α2 + α3 + α4 + α5 + α6 ,

α2 7→ −α5 ,

α3 7→ −α1 − 2α2 − 2α3 − α4 − α6 ,

α4 7→ α2 ,

α5 7→ α3 + α6 ,

α6 7→ α1 + 2α2 + 3α3 + 2α4 + α5 + α6 .

(A.47)

The invariant subspace has dimension one and is precisely that subspace spanned by β1.

a = 2. From (3.23) the braid induces an action on the junction basis Γi = ei ∈ Z8

given by

B =




0 0 −1 0 0 0 0 0

0 0 0 −1 0 0 0 0

0 0 0 0 −1 0 0 0

0 0 0 0 0 −1 0 0

0 0 0 0 0 0 −1 0

0 0 0 0 0 0 0 −1

−1 0 0 0 0 0 0 0

0 −1 0 0 0 0 0 0




, (A.48)

which determines a non-trivial braid invariant sublattice of the junction lattice generated by

Junction J (J, J) a(J)

(1, 0,−1, 0, 1, 0,−1, 0) −4 (0, 0)

(0, 1, 0,−1, 0, 1, 0,−1) −4 (0, 0)

.

We see that the invariant junctions βi are the linear combinations

β1 = α3 + α5 , β2 = α1 + 2α2 + α3 + α4 , (A.49)

of the simple roots of Gg = E6, which themselves generate an algebra Gh = SU(3).
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The asymptotic charge map (a1, a2) 7→ (−a1,−a2) acts trivially on junctions with

a(J) = 0, so that the braid gives an automorphism of roots. The simple roots map as

α1 7→ α1 + 2α2 + 3α3 + 2α4 + α5 + 2α6 ,

α2 7→ −α3 − α6 ,

α3 7→ −α4 ,

α4 7→ −α5 ,

α5 7→ α3 + α4 + α5 ,

α6 7→ −α1 − α2 − α3 .

(A.50)

The invariant subalgebra is spanned by the two simple roots. Inspection of the Cartan

matrix (1.4) associated to βi reveals that the invariant flavor algebra of the original E6 is

SU(3). Note that this is in accordance with the result from the (a, b) = (2, 3) case in the

f -tube. There, the I∗0 singularity was reduced to an invariant SU(3) subgroup.

a = 3. From (3.23) the braid induces an action on the junction basis Γi = ei ∈ Z8

given by

B =




0 0 0 0 0 0 0 1

−1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 −1 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 −1 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 −1 0




, (A.51)

which determines a non-trivial braid invariant sublattice of the junction lattice generated by

Junction J (J, J) a(J)

(1,−1,−1, 1, 1,−1,−1, 1) −12 (0, 0)
.

We see that the invariant simple root junction β1 is the linear combination

β1 = −α1 − 2α2 − α4 + α5 , (A.52)

of the simple roots of Gg = E6, which generates an algebra Gh = SU(2).

This case yields (a1, a2) 7→ (a2,−a1) for the asymptotic charges, so the braid generates

an automorphism on roots, and map the simple roots

α1 7→ α2 + 2α3 + 2α4 + α5 + α6 ,

α2 7→ −α3 − α4 − α5 ,

α3 7→ −α2 ,

α4 7→ −α3 − α6 ,

α5 7→ −α1 − α2 − α3 − α4 ,

α6 7→ α2 + α3 .

(A.53)

Note that the invariant combination of root β1 is the same as the invariant simple root

found in the a = 1 case.
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A.6 Type III∗ fibers

Type III∗ occur in the f -tube for a = 3. The I-matrix reads

I =




−1 1
2 −1

2 0 1
2 −1

2 0 1
2 −1

2
1
2 −1 1

2 −1
2 0 1

2 −1
2 0 1

2

−1
2

1
2 −1 1

2 −1
2 0 1

2 −1
2 0

0 −1
2

1
2 −1 1

2 −1
2 0 1

2 −1
2

1
2 0 −1

2
1
2 −1 1

2 −1
2 0 1

2

−1
2

1
2 0 −1

2
1
2 −1 1

2 −1
2 0

0 −1
2

1
2 0 −1

2
1
2 −1 1

2 −1
2

1
2 0 −1

2
1
2 0 −1

2
1
2 −1 1

2

−1
2

1
2 0 −1

2
1
2 0 −1

2
1
2 −1




. (A.54)

We can choose the set of simple root junctions

α1 = {1,−1,−1, 0, 1, 0,−1, 0, 1} , α2 = {0, 1, 0,−1,−1, 0, 0,−1,−1} ,
α3 = {0, 0, 0, 0, 0, 0, 1, 1, 1} , α4 = {0, 0, 0, 0, 0, 1, 0, 0,−1} ,
α5 = {0, 0, 0, 0, 1, 0, 0,−1, 0} , α6 = {0, 0, 1, 0,−1,−1, 0, 1, 0} ,
α7 = {0, 0, 0, 1, 0,−1,−1, 0, 1} .

(A.55)

All automorphisms of E7 are inner.

b = 1. From (3.24) the braid induces an action on the junction basis Γi = ei ∈ Z9

given by

B =




0 0 0 0 0 0 0 −1 0

0 0 0 0 0 0 0 0 −1

−1 0 0 0 0 0 0 0 0

0 −1 0 0 0 0 0 0 0

0 0 −1 0 0 0 0 0 0

0 0 0 −1 0 0 0 0 0

0 0 0 0 −1 0 0 0 0

0 0 0 0 0 −1 0 0 0

0 0 0 0 0 0 −1 0 0




, (A.56)

which leaves no junctions invariant; the invariant sublattice has dimension 0; thus Gh = ∅.
The asymptotic charges are mapped according to (a1, a2) 7→ (a1 − a2, a1) and the

simple roots according to

α1 7→ −α2 − α3 − α4 − α5 − α6 ,

α2 7→ α1 + 2α2 + 3α3 + 3α4 + 2α5 + α6 + α7 ,

α3 7→ −α1 − 2α2 − 3α3 − 3α4 − 2α5 − α6 − 2α7 ,

α4 7→ α2 + α3 + α4 + α5 + α7 ,

α5 7→ α1 + α2 + α3 + 2α4 + α5 + α6 + α7 ,

α6 7→ −α1 − α2 − α3 − 2α4 − 2α5 − α6 − α7 ,

α7 7→ −α2 − α3 − 2α4 − α5 − α7 .

(A.57)

There is no non-trivial invariant subalgebra.

– 44 –



J
H
E
P
0
9
(
2
0
1
7
)
1
3
5

b = 2. From (3.24) the braid induces an action on the junction basis Γi = ei ∈ Z9

given by

B =




0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 1

1 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0

0 0 0 0 1 0 0 0 0




, (A.58)

which determines a non-trivial braid invariant sublattice of the junction lattice generated by

Junction J (J, J) a(J)

(1, 1, 1, 1, 1, 1, 1, 1, 1) −6 (0, 0)
.

We see that the invariant simple root junction βi is a linear combination

β1 = α1 + 2α2 + 5α3 + 6α4 + 4α5 + 2α6 + 3α7 , (A.59)

of the simple roots of Gf = E7, which generates Gh = SU(2). This matches g-tube case of

the same (a, b), which has a IV fiber in the g-tube and was also reduced to SU(2).

The maps are in this case (a1, a2) 7→ (−a2, a1 − a2) and

α1 7→−α2−α3−α4 , α2 7→−α3−α4−α5−α6−α7 ,

α3 7→α2+2α3+3α4+2α5+α6+2α7 , α4 7→α1+α2+α3+α4+α5+α6 ,

α5 7→−α4−α5−α6 , α6 7→−α1−α2−α3−α4−α7 ,

α7 7→−α1−2α2−2α3−2α4−2α5−α6−α7 .

(A.60)

for the asymptotic charges and the simple roots, respectively.

b = 3. From (3.24) the braid induces an action on the junction basis Γi = ei ∈ Z9

given by

B =




0 0 0 −1 0 0 0 0 0

0 0 0 0 −1 0 0 0 0

0 0 0 0 0 −1 0 0 0

0 0 0 0 0 0 −1 0 0

0 0 0 0 0 0 0 −1 0

0 0 0 0 0 0 0 0 −1

−1 0 0 0 0 0 0 0 0

0 −1 0 0 0 0 0 0 0

0 0 −1 0 0 0 0 0 0




, (A.61)

which leaves no junctions invariant; the invariant sublattice has dimension 0; thus Gh = ∅.
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The asymptotic charges are mapped as (a1, a2) 7→ (−a1,−a2) and the simple root

string junctions as

α1 7→ −α2 − α3 − α4 − α5 , α2 7→ α1 + 2α2 + 3α3 + 4α4 + 3α5 + α6 + 2α7 ,

α3 7→ −α3 − 2α4 − α5 − α7 , α4 7→ −α5 − α6 ,

α5 7→ −α2 − α3 − α4 − α7 , α6 7→ α2 + α3 + 2α4 + α5 + α6 + α7 ,

α7 7→ −α1 − α2 − α3 − α4 .

(A.62)

The flavor algebra after the quotient by the braid action is trivial, matching the corre-

sponding I∗0 case.

b = 4. From (3.24) the braid induces an action on the junction basis Γi = ei ∈ Z9

given by

B =




0 1 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0

0 0 0 0 1 0 0 0 0

0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 1

1 0 0 0 0 0 0 0 0




, (A.63)

which determines a non-trivial braid invariant sublattice of the junction lattice generated by

Junction J (J, J) a(J)

(1, 1, 1, 1, 1, 1, 1, 1, 1) −6 (0, 0)
.

We see that the invariant junction β1 is the linear combination

β1 = α1 + 2α2 + 5α3 + 6α4 + 4α5 + 2α6 + 3α7 , (A.64)

of the simple roots of Gf = E7, which generates an algebra Gh = SU(2). This invariant

SU(2) algebra matches the reduced flavor group of the IV∗ case of the g-tube.

We find (a1, a2) 7→ (a2 − a1,−a1) and

α1 7→ −α1 − 2α2 − 2α3 − 3α4 − 2α5 − α6 − α7 , α2 7→ α1 + α2 ,

α3 7→ α3 + α4 , α4 7→ α5 ,

α5 7→ α4 + α7 , α6 7→ α2 + α3 ,

α7 7→ α6 .

(A.65)
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b = 5. From (3.24) the braid induces an action on the junction basis Γi = ei ∈ Z9

given by

B =




0 0 0 0 0 0 0 0 −1

−1 0 0 0 0 0 0 0 0

0 −1 0 0 0 0 0 0 0

0 0 −1 0 0 0 0 0 0

0 0 0 −1 0 0 0 0 0

0 0 0 0 −1 0 0 0 0

0 0 0 0 0 −1 0 0 0

0 0 0 0 0 0 −1 0 0

0 0 0 0 0 0 0 −1 0




, (A.66)

which leaves no junctions invariant; the invariant sublattice has dimension 0; thus Gh = ∅.
For this case the maps are given by (a1, a2) 7→ (a2, a2− a1) for the asymptotic charges

and by

α1 7→−α1−2α2−2α3−2α4−α5−α7 , α2 7→α1+α2+2α3+2α4+α5+α7 ,

α3 7→−α1−α2−2α3−2α4−α5−α6−α7 , α4 7→α1+α2+α3+2α4+α5+α6+α7 ,

α5 7→−α4 , α6 7→−α7 ,

α7 7→−α1−α2−α3−2α4−2α5−α6−α7 , (A.67)

for the simple roots. The invariant flavor algebra is trivial.

A.7 Type II∗ fibers

Finally, we obtain type II∗ fibers in the g-tube for b = 5. We find the I-matrix

I =




−1 1
2 0 1

2 0 1
2 0 1

2 0 1
2

1
2 −1 −1

2 0 −1
2 0 −1

2 0 −1
2 0

0 −1
2 −1 1

2 0 1
2 0 1

2 0 1
2

1
2 0 1

2 −1 −1
2 0 −1

2 0 −1
2 0

0 −1
2 0 −1

2 −1 1
2 0 1

2 0 1
2

1
2 0 1

2 0 1
2 −1 −1

2 0 −1
2 0

0 −1
2 0 −1

2 0 −1
2 −1 1

2 0 1
2

1
2 0 1

2 0 1
2 0 1

2 −1 −1
2 0

0 −1
2 0 −1

2 0 −1
2 0 −1

2 −1 1
2

1
2 0 1

2 0 1
2 0 1

2 0 1
2 −1




(A.68)

From the root junctions of E8 we choose the following set of simple roots:

α1 = {1,−1, 1, 1, 0, 1,−1, 0,−1,−1} , α2 = {0, 1,−2,−1, 0,−1, 1, 0, 1, 1} ,
α3 = {0, 0, 1, 0,−1, 0, 0, 0, 0, 0} , α4 = {0, 0, 0, 0, 1, 0,−1, 0, 0, 0} ,
α5 = {0, 0, 0, 0, 0, 0, 1, 0,−1, 0} , α6 = {0, 0, 0, 0, 0, 0, 0, 1, 0,−1} ,
α7 = {0, 0, 0, 1,−1,−1, 0,−1, 1, 1} , α8 = {0, 0, 0, 0, 0, 1,−1,−1, 1, 0} .

(A.69)

Note that all automorphisms of E8 are inner.
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a = 1. From (3.23) the braid induces an action on the junction basis Γi = ei ∈ Z10

given by

B =




0 0 0 0 0 0 0 −1 0 0

0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 −1

1 0 0 0 0 0 0 0 0 0

0 −1 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0

0 0 0 −1 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 −1 0 0 0 0

0 0 0 0 0 0 1 0 0 0




, (A.70)

which leaves no junctions invariant; the invariant sublattice has dimension 0; thus Gh = ∅.
This matches the reduction from the corresponding f -tube, where the Gf = SU(2) flavor

algebra was reduced to a trivial one as well.

We find that the asymptotic charges are mapped via (a1, a2) 7→ (−a2, a1). The map

for the simple roots is

α1 7→ −α2 − α3 ,

α2 7→ α2 + α3 + α4 + α5 + α6 + α7 ,

α3 7→ α5 + α8 ,

α4 7→ α6 ,

α5 7→ −α2 − 2α3 − 3α4 − 4α5 − 3α6 − α7 − 2α8 ,

α6 7→ −α1 − α2

α7 7→ α1 + 2α2 + 2α3 + 3α4 + 3α5 + 2α6 + α7 + 2α8 ,

α8 7→ α1 + 2α2 + 3α3 + 4α4 + 5α5 + 3α6 + α7 + 2α8 .

(A.71)

This action does not have an invariant subspace, as already deduced from B.

a = 2. From (3.23) the braid induces an action on the junction basis Γi = ei ∈ Z10

given by

B =




0 0 0 0 −1 0 0 0 0 0

0 0 0 0 0 −1 0 0 0 0

0 0 0 0 0 0 −1 0 0 0

0 0 0 0 0 0 0 −1 0 0

0 0 0 0 0 0 0 0 −1 0

0 0 0 0 0 0 0 0 0 −1

−1 0 0 0 0 0 0 0 0 0

0 −1 0 0 0 0 0 0 0 0

0 0 −1 0 0 0 0 0 0 0

0 0 0 −1 0 0 0 0 0 0




, (A.72)
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which leaves no junctions invariant; the invariant sublattice has dimension 0; thus Gh = ∅.
The Gg = E8 flavor algebra is again reduced to a trivial algebra, as is the case for the

corresponding SO(8) flavor algebra in the f -tube analysis.

The asymptotic charges and the simple root maps are (a1, a2) 7→ (−a1,−a2) and

α1 7→−α2−α3−α4−2α5−α6−α7−α8 , α2 7→α2+α3+α4+α5+α6+α7+α8 ,

α3 7→α1+α2+α3+α4+α5 , α4 7→−α1−α2 ,

α5 7→−α3 , α6 7→−α4−α5−α6−α7 , (A.73)

α7 7→α1+2α2+3α3+4α4+5α5+4α6+2α7+2α8 ,

α8 7→−α2−α3−2α4−2α5−α6−α8 ,

respectively. There is no invariant subspace for this map, as already deduced from B.

a = 3. From (3.23) the braid induces an action on the junction basis Γi = ei ∈ Z10

given by

B =




0 1 0 0 0 0 0 0 0 0

0 0 −1 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0

0 0 0 0 −1 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 −1 0 0 0

0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 −1 0

0 0 0 0 0 0 0 0 0 1

−1 0 0 0 0 0 0 0 0 0




, (A.74)

which leaves no junctions invariant; the invariant sublattice has dimension 0; thus Gh = ∅.
This matches with the reduction of E7 to a trivial algebra in the f -tube.

We find for the asymptotic charges that (a1, a2) 7→ (a2,−a1) and for the simple roots

α1 7→−α1−2α2−2α3−2α4−2α5−α6−α7−α8 ,

α2 7→α1+3α2+4α3+5α4+6α5+4α6+2α7+3α8 ,

α3 7→−α2−2α3−2α4−2α5−α6−α8 , α4 7→−α4−α5−α6−α7 ,

α5 7→−α5−α8 , α6 7→α5 ,

α7 7→α3+α4+α5+α6+α7+α8 , α8 7→α4+α5+α8 .

(A.75)

There is no invariant sublattice, as already deduced from B.
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[32] P.C. Argyres, M. Lotito, Y. Lü and M. Martone, Geometric constraints on the space of

N = 2 SCFTs II: Construction of special Kähler geometries and RG flows,

arXiv:1601.00011 [INSPIRE].
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