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1 Introduction

In many cases the problem of supersymmetric compactification to four-dimensional

Minkowski or AdS space can be reformulated as the problem of existence of SU(3) structures

with appropriate torsion classes parameterized by the “fluxes”. Although this approach

has lead to great progress in the construction of string vacua, the search for manifolds with

suitable SU(3) structures has been far less systematic than the construction of Calabi-Yau

manifolds, for which powerful algebro-geometric tools are available.

– 1 –



J
H
E
P
0
9
(
2
0
1
7
)
1
3
3

In [1] it was proposed to use smooth compact toric varieties (SCTV) as a class of

manifolds for which tools from both algebraic and differential geometry can be used, and

develop a formalism suitable for the description of SU(3) structures on SCTV. The idea

is to use the canonical structure that comes with the symplectic quotient description of

the SCTV (metric, complex structure, set of coordinates), and construct on it a different

(nonintegrable in general) almost complex structure associated with a globally-defined

SU(3) structure.

The construction of SU(3) structures on SCTV proposed in [1] relies on the existence of

a one-formK in the parent space of the symplectic quotient, satisfying certain requirements.

Thus the problem of constructing SU(3) structures on SCTV is reduced to the problem of

constructing one-forms K satisfying the requirements of [1]. Although that reference gave

some examples of suitable one-forms, and many more were subsequently constructed in [2],

no general formula for K exists satisfying the requirements of [1]. As a result, the search

for SU(3) structures on SCTV had up to now proceeded on a case-by-case basis.

In the present paper we extend the formalism of [1] for SCTV to construct globally-

defined SU(3) structures on the class CP1 over M , where M is an arbitrary two-dimensional

SCTV. As in [1], our construction is based on the existence of a one-form K which, in our

case, is naturally distinguished by the structure of the bundle. This one-form does not have

the right U(1) charge (in symplectic-quotient terminology) for the procedure of [1] to go

through. A different procedure is used instead, which can be thought of as a generalization

of the supersymmetric ansatz of [3, 4] to the toric case, exploiting the local SU(2) structure

of the base M of the fibration.

More specifically we give a general formula, eq. (4.11) below, for globally-defined SU(3)

structures on all CP1 bundles whose U(1) charges satisfy eq. (4.1). The latter equation

can always be satisfied for any two-dimensional SCTV base, and amounts to choosing

a specific twisting of the CP1 bundle. The SU(3) structures thus constructed admit a

space of deformations parameterized by certain functions, described below eq. (4.12). The

associated torsion classes depend on these functions, and are nonvanishing in general.

This method can also be used to construct SU(3) structures on S2 bundles over B4,

where B4 is Kähler-Einstein but not necessarily toric, in which case we have an SU(3)-

structure ansatz of the general form of [3, 4]. Provided B4 has positive scalar curvature,

i.e. if it is CP1×CP1, CP2, or one of the del Pezzo surfaces dP3, . . . , dP8 [5], the total space of

the S2 bundle is complete and the associated metric is regular. We show that the parameter

space includes SU(3) structures of LT type, suitable for N = 1 AdS4 compactifications of

massive IIA.

The outline of the remainder of paper is as follows. In section 2 we review the formalism

of [1] for SCTV, and introduce the tools that will be used in the rest of the paper. The

toric CP1 bundles are described in section 2.4. In section 3 we work out in detail the

example of CP1 over CP2. This is the simplest example in the class of toric CP1 bundles

over M , but it already captures the main idea of the construction. The SU(3) structure is

constructed in section 3.2. Section 4 discusses the construction of SU(3) structures on toric

CP1 bundles over general two-dimensional SCTV. Section 5 discusses the construction of

SU(3) structures on S2 bundles over four-dimensional Kähler-Einstein bases. We conclude
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in section 6. For ease of presentation, many technical details have been moved to the

appendices.

2 Review of the formalism

In order to fix the notation and make the paper self-contained, in this section we give a

review of the SCTV formalism developed in [1]. Along the way we introduce the tools that

will be useful in the rest of the paper. The description of the toric CP1 bundles is given at

the end of the section.

There are various equivalent ways to define a toric variety see e.g. [6], or [7] for an

introduction for physicists. In the following we will use the symplectic quotient description,

which turns out to be the best suited for the explicit construction of G-structures and the

associated differential calculus. The starting point of the symplectic quotient description is

a parent space Ck, with coordinates {zi, i = 1, . . . , k}, and a set of s linearly-independent

integer k-vectors Qai , {a = 1, · · · , s} called the charges. Let M̃ be the real submanifold

defined by the following set of moment map equations,

Qai |zi|2 = ξa . (2.1)

The real parameters ξa are the so-called, Fayet-Iliopoulos parameters: they correspond to

Kähler moduli, parametrizing the sizes of cycles of the toric variety. On the other hand

the topology of the variety is independent of the ξa as long as we stay inside the Kähler

cone, defined by the conditions ξa > 0. In the following we will always assume this to be

the case. The associated toric variety M is given by the quotient M = M̃/U(1)s where

the phase vector φa ∈ U(1)s acts on the coordinates zi ∈ M̃ through the following gauge

transformations,

zi → φ · zi := eiQ
a
i φazi . (2.2)

Hence M is a manifold of complex dimension d = k−s: the equations (2.1) can be thought

of as removing s real “radial” directions, whereas the action of (2.2) removes s real ‘angular’

directions. In total the equations (2.1), (2.2) remove s pairs consisting of one radial and

one angular variable, which may be thought of as s complex variables.

Since the Qa are independent as k-vectors, one may choose a set S of s indices such

that Qab , b ∈ S, is invertible. The open set {zb 6= 0, b ∈ S} ⊂ Ck then descends to a well-

defined open set in M , denoted by US . On this patch one can then use the zb coordinates to

compensate the U(1)s action on the zα coordinates, where the index α takes values in the

complement of S, α ∈ {S. One may then define the following gauge-invariant quantities,

ti := zi
∏
a∈S

z
−QabQ

b
i

a , (2.3)

where we have set,

Qab := (Qab )
−1 . (2.4)

Thus, provided |QS | := | detQab∈S | = 1, the map,

ϕS : US → Cd

[zi] 7→ (tα)α∈{S ,
(2.5)
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where d := k−s, is a well-defined homeomorphism, while the transition functions ϕS ◦ϕ−1
S′

are biholomorphic and rational. The charts (US , ϕS) form a holomorphic atlas on M =⋃
|QS |=1 US : the tα, α ∈ {S, define d gauge-invariant local holomorphic coordinates on US .

Note that for i = c ∈ S, we thus find tc = 1. The existence of this covering of M is related

to the condition of smoothness for general toric varieties, and can be checked explicitly for

the cases we consider here.

To take a simple example, consider the case s = 1 and Q = (1, · · · , 1). The corre-

sponding toric variety is the complex projective space CPk−1. Indeed (2.1) gives ‖z‖2 = ξ,

i.e. M̃ = S2k−1. Taking the U(1) quotient, M can be written as M = (Ck\{0})/C∗, the set

of complex lines in Ck. On the patch Uj = {zj 6= 0}, the local coordinates take the form,

ti =
zi
zj
, (2.6)

which we recognize as the set of canonical coordinates of CPk−1. The zi on the other hand

correspond to homogeneous coordinates of CPk−1.

2.1 Differential forms

We have seen that toric varieties are equipped with systems of complex coordinates which

can easily be made explicit. Moreover it is often advantageous to work directly in the

parent space Ck using the homogeneous coordinates zi. We will be interested in particular

in globally-defined differential forms on the manifold M . One way to construct a differential

form on M is to start from its local expression on a patch, and make sure a regular global

extension exists by checking its compatibility with the transition functions of the cotangent

bundle. Working directly in Ck drastically simplifies this problem: since the topology of

the parent space is trivial, a single expression suffices to define differential forms globally.

From this point of view the key question is to identify the differential forms of Ck which

descend to well-defined forms on M .

In the following we review how the formalism of [1] can be used to treat this question.

Let Φ be a differential form on Ck. In order for Φ to descend to a well defined form on

M , it should be well-defined on M̃ . Hence it should be compatible with the moment map

equations (2.1) which imply,

Qai z̄idzi +Qai zidz̄i = 0 . (2.7)

Consequently Φ should not have any components along the <ηa, where we have defined,

ηa := Qai z̄idzi . (2.8)

In other words, we require,

ι<(V a)Φ = 0, (2.9)

where V a is the dual of ηa (with respect to the canonical metric of Ck),

V a := Qai zi∂zi . (2.10)

Moreover, Φ should be compatible with the quotient (2.2). On the other hand the U(1)s

action in (2.2) is generated by the vector fields =(V a). Hence the U(1)s invariance can be

stated in terms of the following two conditions:
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1. Φ must be constant along U(1)s orbits, i.e. L=(V a)Φ = 0 .

2. Φ should not have any components along the orbits, i.e. ι=(V a)Φ = 0 .

These conditions have a natural interpretation: first note that a form Φ has charge qa if it

is an eigenvector of the Lie derivative L=(V a),

L=(V a)Φ = qaΦ . (2.11)

We then see that the first of the two conditions above is simply the gauge invariance of

Φ, i.e. the condition that the total charge of Φ vanishes. Moreover the second condition

combined with (2.9) gives,

ιV aΦ = ιV̄ aΦ = 0 , (2.12)

which is equivalent to Φ being vertical with respect to V a.

Thus in order to construct a well-defined form on M descending from a form Φ on

Ck, the gauge invariance of Φ must be imposed from the outset. On the other hand,

the verticality condition is purely algebraic and can be imposed by projecting out the

components along ηa.

Let us now come to the explicit construction of the vertical projector. We introduce

the real symmetric matrix,

gab := ηa(V b) = QaiQ
b
i |zi|2 . (2.13)

The projection P of a (1, 0)-form Φ is then given by,

P (Φ) = Φ− g̃abιV a(Φ)ηb , (2.14)

where g̃ = g−1. This definition of P can be readily extended to all (k, l)-forms [1]. In the

following it will be useful to define the vertical projections, Dzi, of the one-forms dzi,

Dzi := P (dzi) = dzi − g̃abQajQbi z̄jzidzj = dzi − hijziz̄jdzj , (2.15)

(no sum over i) where we have set,

hij := QaiQ
b
j g̃ab . (2.16)

The Dzi are the building blocks that we will use to construct global forms on M . Note

however that since they are not gauge invariant, one must compensate their charge by

appropriate (charged) coefficients.

On the other hand the (singular) form Dzi/zi is both gauge invariant and vertical

and therefore admits an expression in terms of the local coordinates ti. On the patch US
we have,

dti
ti

=
dzi
zi
−
∑
a∈S

s∑
b=1

QabQbi
dza
za

, (2.17)

where we took (2.3) into account. Setting i = c ∈ S then gives dtc = 0, cf. (2.4). This

leaves us with d linearly-independent one-forms dtα, α ∈ {S. We can then compute,

Dzi
zi

=
dti
ti
− hij |zj |2

dtj
tj

. (2.18)
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where we took into account that: hij |zj |2Qbj = g̃cdQ
c
iQ

d
j |zj |2Qbj = g̃cdQ

c
i g

db = Qbi . As

expected, given that the form on the left-hand side of (2.18) is vertical and gauge invariant,

the result can be expressed in terms of the local coordinates alone. Note also that the

gauge-invariant |zj |2 can be expressed as a function of ti using (2.1).

Conversely, (2.17) can be used to express dti as a function of Dzi, since dti is vertical

by definition. We now have all the necessary tools to translate back and forth between the

local coordinate system {ti} on M and the global coordinate system {zi} on Ck.

2.2 The hermitian metric

A useful object on an almost complex manifold M is the hermitian metric,

h = hij̄ dzi ⊗ dz̄j̄ , (2.19)

where hij̄ can be thought of as a hermitian positive-definite matrix. The real and imaginary

parts of h are real bilinear forms, so that,

h = g− iJ , (2.20)

where g is symmetric, positive definite and can be identified with the Riemannian metric,

while J is antisymmetric and can be identified with the almost symplectic form –which is

a (1, 1)-form with respect to the almost complex structure. In other words the hermitian

metric contains both the metric and the almost symplectic form of M .

On toric varieties there is a canonical hermitian metric,

h(ξa) = P (dzi ⊗ dz̄i) = Dzi ⊗Dz̄i . (2.21)

As we have already noted, the Dzi above are not linearly independent and do not form a

basis of the cotangent bundle of M . Using (2.18) it is not difficult to see that the hermitian

metric takes the following form in local coordinates,

h(ξa) =
|zi|2

|ti|2
dti ⊗ dt̄i − hjk

|zj |2

|tj |2
|zk|2

|tk|2
t̄jdtj ⊗ tkdt̄k , (2.22)

where we have made use of the identity hijhik|zi|2 = hjk which can be shown by taking

into account the various definitions.

In this case J is in fact the Kähler form of the toric manifold,

J =
i

2
Dzi ∧ Dz̄i . (2.23)

Although Dzi are not closed, it can readily be verified that dJ vanishes as it should.

Let us illustrate the above with the example of CPk−1: on the patch Uk we have

g = ξ and hij = 1
ξ . Moreover (2.1) gives |zk|2 = |zα|2

|tα|2 = ξ
1+t2

, where t2 :=
∑

α |tα|2;

α = 1, . . . , k − 1. Hence,

h(ξ) = ξ

(
dti ⊗ dt̄i

1 + t2
− η ⊗ η̄

)
, (2.24)
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where η := 1
1+t2

t̄idti. We thus recover the Fubini-Study metric and its associated

Kähler form.

A hermitian metric also gives rise to a scalar product “·” on forms on M . Since P 2 = P ,

the calculation of the scalar product on vertical forms can be done in the parent space Ck

using the flat metric. Then, using (2.15) we find:

Dz̄i · Dzj = 2(δij − hij z̄izj) , (2.25)

which shows that the Dzi are not orthogonal.

2.3 SU(d) structures

A Riemannian 2d-dimensional manifold M with metric g and associated (g-compatible)

almost complex structure I admits a reduction of its structure group to U(d). At each

point over M , the almost complex structure I, which need not be integrable, splits the

cotangent space of M into a holomorphic and an antiholomorphic subspace, corresponding

to the spaces of (1,0)-forms and (0,1)-forms with respect to I. Furthermore a holomorphic

top form can be defined, i.e. a (d, 0)-form with respect to I, which transforms as a section

of the canonical bundle of I. The canonical bundle of I is trivial, and so has vanishing

Chern class: c1(I) = 0, precisely when it has a non vanishing global section, i.e. when there

is a nowhere-vanishing holomorphic top form. In that case the structure of the manifold is

further reduced to SU(d). An equivalent description of an SU(d) structure on M is given

by a complex decomposable d-form Ω and a real two-form J such that,

Ω ∧ J = 0 ;
id(d+2)

2d
Ω ∧ Ω∗ =

1

d!
Jd . (2.26)

In this formulation the Riemannian metric on M is constructed from the pair (J,Ω).

In six real dimensions (d = 3) it is well-known that the topological obstruction for

the existence of an SU(3) structure is that the manifold should be spin. We can make

contact with the discussion of the previous paragraph by noting that c1(I) modulo 2 is a

topological invariant, and c1(I) is even in cohomology iff M is spin.1 Moreover the torsion

classes characterizing the SU(3) structure are given by the decomposition of (dJ, dΩ),

dJ =
3

2
=(W1Ω∗) +W4 ∧ J +W3

dΩ = W1 J ∧ J +W2 ∧ J +W5 ∧ Ω ,
(2.27)

where W1 is a function, W2 is a (1, 1)-form, W3 is a real (2, 1) ⊕ (1, 2)-form, W4 is a real

one-form and W5 is a (1, 0)-form.

As follows from the previous discussion, it is not always possible to construct an SU(d)

structure on an arbitrary toric variety M . Although Ck has a canonical SU(k) structure

1Note however that c1(I) itself is not a topological invariant. A well-known counterexample is CP3

which admits both a non-integrable almost complex structure (with c1(I) = 0) and an integrable one (with

c1(I) 6= 0). In both cases c1(I) is even in cohomology, as of course it should, since CP3 is spin.

– 7 –
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given by,

J̃ =
i

2
dzi ∧ dz̄i (2.28)

Ω̃ =
∧
i

dzi, (2.29)

Ω̃ does not in general descend to M . One can always define,

Ĵ := P (J̃) , (2.30)

which is vertical and gauge invariant: it is the almost symplectic form associated with the

hermitian metric (2.22). However P (Ω̃) vanishes trivially since there are no (k, 0) forms on

M . To obtain a (d := k− s, 0)-form on M we must contract Ω̃ with each of the V a vectors,

so that,

Ω̂ :=
1√

det g

∏
a

ιV aΩ̃ . (2.31)

But then Ω̂ has the same charge as Ω̃, i.e. qa =
∑

iQ
a
i , and so it is not gauge invariant.

On the other hand the pair (Ĵ , Ω̂) does satisfy the compatibility equations (2.26), thus

defining a local SU(d) structure on M . Moreover Ω̂ admits a simple expression in terms of

local coordinates2 on US . After some straightforward manipulations we obtain,

Ω̂ = (−1)SQS

∏
i zi√

det g

∧
α

dtα
tα

, (2.32)

where a ∈ S, α ∈ {S and we have defined,

(−1)S := (−1)
∑
a∈S a+

(s+1)(s+2)
2 . (2.33)

In [1] a prescription was given for the construction of global SU(d) structures on M .3 It

relies on the existence of a one-form K on Ck with the following properties:

1. It is vertical and (1,0) with respect to the complex structure of Ck.

2. It has half the charge of Ω̃.

3. It is nowhere-vanishing.

Given a one-form K on Ck satisfying the conditions above, [1] showed that a global SU(3)

structure on M can be constructed, and provided explicit examples of such a K for certain

toric CP1 bundles. Many more examples of K were provided for other toric varieties in [2],

which also provided explicit computations of the torsion classes of the associated SU(3)

structures. However there is no known construction for K that would be applicable in

2Thus defined, Ω̂ is compatible with the transition functions, but the zi are not strictly functions on US
since they are not gauge-invariant. A local form could be constructed by substituting zi with |zi|, at the

cost of losing the compatibility with the transition functions.
3Originally presented for d = 3, the presciption of [1] is in fact directly generalizable to any dimension.
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general, even for a subclass of SCTV, and the search for SU(3) structures on SCTV had

so far proceeded in a case by case fashion.

In the following we will present a construction of SU(3) structures valid for toric CP1

bundles over any 2d SCTV. As we will see, our method is not equivalent to the prescription

of [1], although it also makes use of a certain (1,0)-form on Ck.

2.4 Toric CP1 bundles over SCTV

In [8], the classification of SCTV in three (complex) dimensions was shown to reduce to

the classification of certain weighted triangulations of the two-dimensional sphere. In [1]

it was shown how to systematically translate the results of [8] into the symplectic quotient

language reviewed previously. In the following we will be interested in the subclass of

the classification of [8] corresponding to CP1 bundles over a two-dimensional SCTV base.

However the formalism applies generally to the case of CP1 bundles over SCTV, so in this

subsection we will keep the dimension of the base arbitrary.

The U(1) charges of these bundles are given by the following set of (s + 1) × (k + 2)

matrices,

QAI =

(
qai −na 0

0 1 1

)
, (2.34)

where A = 1, . . . , s + 1, I = 1, . . . , k + 2; na ∈ N, a = 1, . . . , s, are integers specifying

the twisting of the CP1 bundle over a SCTV M ; qai , a = 1, . . . , s, i = 1, · · · , k, are the

U(1) charges of the symplectic quotient description of M , which is therefore of complex

dimension d = k − s. (In subsequent subsections we will specialize to the case d = 2.)

The total space of the bundle is constructed by appending two coordinates and one

new charge to those of M (given by the qai ), as in (2.34), thus obtaining a space of complex

dimension d+ 1. We will use the following notation for the data related to the fiber,

u := zk+1 ; v := zk+2 ; ξ := ξs+1 . (2.35)

The last charge Qs+1
i defines a CP1 fiber over M , while the integers na determine the

twisting of the bundle. Indeed the moment map equations for the total space read,

k∑
i=1

qai |zi|2 = ξa + na|u|2 ; |u|2 + |v|2 = ξ . (2.36)

Thus the last two coordinates define a sphere of radius
√
ξ, while the first n coordinates

define locally an Mρ whose “radii” (ρa)2 := ξa + na|u|2 depend on the fiber. The twisting

can be thought of as a consequence of the modified U(1)s+1 action.

We would now like to construct a metric that exhibits the bundle structure, i.e. a

metric of the form hd+1 = hd + hCP1 , where hd is a metric on M and hCP1 is a metric on

the fiber CP1, possibly modified by a connexion on the base. By expanding the canonical

metric (2.21) we find,

hd+1(ξA) = hd((ρ
a)2) +

ĝ

g
|u|2|v|2 ε⊗ ε∗ , (2.37)
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where the details of the computation, which are somewhat involved, can be found in ap-

pendix A together with the definitions of the various quantities in the second term of the

right-hand side above. The one-form ε can be thought of as an analogue of the vertical

displacement along the fiber.

3 CP1 over CP2

Let us now examine in detail the construction of an SU(3) structure on the CP1 bundle

over CP2. This is the simplest example in the class of 3d SCTV of the form CP1 bundle

over M , where M is a 2d SCTV, but it already captures the main idea of the construction.

We will treat the general case in section 4.

The toric data in this case are: k = 5 (the complex dimension of the parent space), s =

2 (the number of charges), d = 3 (the complex dimension of the toric variety). Explicitly

the charges are given by,

Q =

(
1 1 1 −n 0

0 0 0 1 1

)
, (3.1)

where n ∈ N. The corresponding moment map equations read, using the notation intro-

duced in section 2.4,

|z1|2 + |z2|2 + |z3|2 = ξ1 + n|u|2

|u|2 + |v|2 = ξ .
(3.2)

This is a CP1 bundle over CP2, with twisting parameterized by n. We can make this more

explicit in local coordinates: on the patch U1,5 := {z1, v 6= 0} we define,

t2 :=
z2

z1
; t3 :=

z3

z1
; t4 :=

zn1 u

v
.

Hence t2, t3 are local coordinates parameterizing a CP2 whereas, for z1 fixed, t4 is a local

coordinate on a CP1. For n = 0, the bundle becomes trivial and we obtain the direct

product CP2 × CP1. We can also see explicitly that the toric variety can be covered with

patches of the form US , as in (2.3): in the present case S is given by the pair (i, j) where

i = 1, 2, 3 and j = 4, 5, and the moment map equations (3.2) exclude the simultaneous

vanishing of z1, z2, z3 or that of u, v. To make contact with our previous discussion of

local coordinates, we can check here that |QS | = 1 for all the S defined above. On the

other hand for the patch U4,5 we do not get compatible local coordinates in general, since

QS′={4,5} = −n, however this patch is not used in the covering of the toric variety by US .

Let us now calculate explicitly the various objects introduced in section 2. Since the

base is defined by only one charge qi = (1, 1, 1), the calculations are rather simple. We

have,

ĝ = ρ2

Vi =
n

ρ2

V =
n2

ρ2

g = ξρ2 + n2|u|2|v|2 .

(3.3)
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We thus find,

ε =
dt4
t4

+ n η ,

where we have set,

η :=
1

1 + t2
(t̄2dt2 + t̄3dt3) ; t2 := |t2|2 + |t3|2 . (3.4)

If we now introduce,

Γ :=
|u|2|v|2

g
,

the decomposition of the metric (2.37) can be written,

h = ρ2hCP2 + Γρ2

∣∣∣∣dt4t4 + n η

∣∣∣∣2 , (3.5)

where hCP2 is the hermitian Fubini-Study metric of CP2 with unit radius, cf. eq. (2.24).

We see the fibration structure appearing naturally in (3.5): the displacement along t4
is modified by a connection, proportional to η, depending on the variables of the CP2 base,

t2, t3. Moreover,

dη = 2iĵ , (3.6)

where ĵ is the Kähler form of CP2, cf. eq. (2.24). For vanishing n the connection piece

drops out from the vertical displacement and the metric becomes that of a direct product

as excpected.

3.1 Comparison with the literature

Endowed with the hermitian metric (2.24), the base CP2 of the CP1 fibration is a Kähler-

Einstein manifold obeying,

dĵ = 0 ; Rmn = λ gmn . (3.7)

i.e. ĵ is closed and the Ricci tensor is proportional to the metric. With our conventions,

setting ξ = 1 gives λ = 6. Identifying the CP1 fiber with S2 (by forgetting the complex

structure), M can be thought of as an S2 fibration over a Kähler-Einstein base B4, denoted

by S2(B4). These spaces appear naturally in the context of supersymmetric AdS4 com-

pactifications of M-theory on the so-called Y p,q(B4) spaces [9, 10], which can be thought of

as S1 fibrations over S2(B4). Compactifying M-theory on an appropriately chosen S1 then

leads to N = 2 type IIA solutions of the form AdS4 × S2(B4) [3]. The latter can be de-

formed to solutions of massive IIA for any Kähler-Einstein base B4 [4], although regularity

requires B4 to have positive curvature.

In the conventions of [10] the S2(B4) metric reads,

g = U−1dρ̃2 + ρ̃2gCP2 + q (dψ +A)2 , (3.8)

where ρ̃ ∈ [ρ̃1, ρ̃2] and ψ ∈ [0, 2π/3] are the coordinates of the S2 fiber (for general λ the

period of ψ is 4π/λ); U and q are positive functions of ρ̃, vanishing at ρ̃1 et ρ̃2. The circle

– 11 –
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parameterized by ψ is fibered over the [ρ̃1, ρ̃2] interval. The connection A is a one-form on

the base B4 obeying,

dA = 2ĵ . (3.9)

At the endpoints of the ρ̃ interval the ψ circle contracts to a point, thus resulting in a

total space with the topology of S2. The period of ψ is fixed by requiring the metric to be

smooth at the endpoints, i.e. that,

U−1dρ̃2 + q dψ2 → du2 + u2dψ̃2 , for ρ̃→ ρ̃1, ρ̃2 , (3.10)

where u is a function of ρ̃ that vanishes at the endpoints ρ̃1, ρ̃2, and we have defined an

angular variable ψ̃ := λψ/2 with period 2π.

Moreover the ψ coordinate parameterizes an S1 fibration in the canonical bundle of

B4. To see this, note that the connection of the canonical bundle of a Kähler-Einstein

space with curvature normalized as in (3.7) obeys,

dP = λĵ , (3.11)

cf. appendix B. Comparing with (3.9) we see that P = λA/2, and so the vertical dis-

placement along the S1 fiber, cf. the last term in (3.8), is proportional to (dψ̃ + P), as

required for the canonical bundle. The fact that λ is positive for CP2 guarantees that the

total space of the S1 fibration, written in local coordinates in (3.8), extends globally to a

smooth five-dimensional (squashed) Sasaki-Einstein space.

To make contact with the coordinates of (3.5), we must rewrite the CP1 fiber coordinate

t4 in terms of a pair of real coordinates. Using the formulas of section C we can rewrite the

Riemannian metric g and Kähler form J associated with (3.5) for n 6= 0. The result reads,

g =
1

n2Γ
dρ2 + ρ2gCP2 + Γρ2 (dϕ+ n=η)2 , (3.12)

and,

J = ρ2ĵ +
ρ

n
dρ ∧ (dϕ+ n=η) , (3.13)

where we are using local coordinates on the patch U1,5, and ϕ ∈ [0, 2π] denotes the phase

of t4. The CP1 fiber is parameterized by the (ρ, ϕ) coordinates: ϕ parameterizes a circle,

fibered over the interval ρ ∈ [ρ1, ρ2] = [
√
ξ1,
√
ξ1 + nξ], whose radius vanishes at the end-

points. Indeed Γ vanishes for u = 0 or v = 0 which correponds respectively to ρ = ρ1 and

ρ = ρ2, following from the moment map equations (3.2). Moreover it can be checked that

the metric is smooth there.

Furthermore we need to deform the canonical hermitian metric of the toric variety by

introducing two warp factors F (ρ), G(ρ) along the base and fiber respectively,

h = F (ρ)

3∑
i=1

Dzi ⊗Dz̄i +G(ρ)
∑
i=4,5

Dzi ⊗Dz̄i . (3.14)

It can then be seen that the functions F (ρ), G(ρ) together with a change of variables

ρ̃ = ρ̃(ρ) may be chosen so that the real and imaginary parts of (3.14) reduce to the metric

– 12 –
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in (3.8) and the form J+ of [10] respectively, provided we set n = 3. The details of this

exercise can be found in appendix C.

The condition n = 3 is also important for the existence of a globally-defined SU(3)

structure. We turn to the construction of this structure in section 3.2. Note however that

the canonical metric of the SCTV, eq. (2.21), is smooth by construction for all n ∈ N. This

can also be verified explicitly by examination of the local form of the metric in terms of

the coordinates (2.3) in each patch US .

3.2 The SU(3) structure

In this section we will set F = G = 1 for simplicity of presentation: the two warp fac-

tors F (ρ), G(ρ) discussed in section 3.1 can be easily reinstated without changing any of

the conclusions.

Specializing the formalism of section 2.3 to the present example we obtain a local SU(3)

structure (Ĵ , Ω̂), where Ĵ is obtained from (3.13) by setting n = 3. On the other hand

we have,

Ω̂ = − z2
5√

det g
dt2 ∧ dt3 ∧ dt4 , (3.15)

which is not gauge invariant, so this SU(3) structure is not globally defined. In fact neither

of the two local SU(3) structures (J±,Ω±) of [10] can be globally extended: in the following

we will see how to make contact with their results.

Let us first define a local SU(2) structure (ĵ, ω) on CP2, where,

ω =
1

(1 + t2)3/2
dt2 ∧ dt3 , (3.16)

and ĵ is the Kähler form of CP2, cf. eq. (2.24), so that,

ω ∧ ĵ = 0

ω ∧ ω∗ = 2ĵ ∧ ĵ .
(3.17)

This SU(2) structure is only locally defined since ω has a singularity at z1 = 0, as can be

seen by using the transition functions to rewrite ω in a patch where z1 is allowed to vanish.

The SU(3) structures of [10] are then obtained by appending the contribution of the fiber

coordinate,

J± := ρ2ĵ ± i

2
K ∧K∗ ; Ω+ := ρ2 ω ∧K ; Ω− := ρ2 ω ∧K∗ , (3.18)

where,

K := ρ
√

Γ ε . (3.19)

We see that exchanging K ↔ K∗ is equivalent to (J+,Ω+)↔ (J−,Ω−).

To better understand the global properties of the Ω±, let us start from their local

expression on the patch U1,5,

Ω+ = e−iϕ
|z5|2√
det g

dt2 ∧ dt3 ∧ dt4

Ω− = eiϕ
|z5|2√
det g

dt2 ∧ dt3 ∧ (dt̄4 + 3t̄4η̄) .
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We can see that the singularity in ω has been compensated by wedging with K, K∗. On the

other hand, we can rewrite Ω± in the patch U1,4 by using the transition function t5 = 1/t4,

Ω+ = eiϕ
|z1|6|z4|2√

det g
dt2 ∧ dt3 ∧ (−dt5)

Ω− = e−iϕ
|z1|6|z4|2√

det g
dt2 ∧ dt3 ∧ (−dt̄5 + 3t̄5η̄) .

We see that Ω± has singularities of the form eiϕ = t4/|t4| = |t5|/t5 at t4 = 0 and t5 = 0:

indeed the phase of a complex number z is ambiguous at z = 0. It is always possible to

soak up one of the two singularities by multiplying or dividing by eiϕ, but never both at

the same time. Hence e±iϕΩ± are well-defined at t4 = 0 but singular at t5 = 0, whereas

e∓iϕΩ± are well defined at t5 = 0 but singular at t4 = 0. This problem does not arise for

J±, since K ∧K∗ does not suffer from any phase ambiguities.

The way out is then to construct an Ω which combines both e±iϕΩ± and e∓iϕΩ±. We

can take a hint from the supersymmetric SU(3) structure of [4] which we know is globally

well-defined. We use a new coordinate θ instead of ρ, defined by |u|2 = ξ sin2 θ
2 . Thus we

see that |v|2 = ξ cos2 θ
2 and ρ2 = ξ1 + n ξ sin2 θ

2 , which means that θ = 0 or π for ρ = ρ1

(corresponding to t4 = 0) or ρ = ρ2 (corresponding to t5 = 0), respectively. The idea is

then to modify ω → ω̂ by including the problematic phase eiϕ, then define another form

ω̃ with the property that ω̃ varies from ω̂ to ω̂∗ as θ varies from 0 to π. More specifically

we define,

ω̂ := eiϕω

j̃ := sin θ<ω̂ + cos θ ĵ

ω̃ := cos θ<ω̂ − sin θ ĵ + i=ω̂ ,
(3.20)

so that the SU(3) structure is given by,

J := ρ2j̃ +
i

2
K ∧K∗

Ω := ρ2 ω̃ ∧K .
(3.21)

The relations (3.17) ensure that (2.26) is satisfied. Moreover at θ = 0 we have Ω = eiϕΩ+,

whereas at θ = π we have Ω = −
(
eiϕΩ−

)∗
. The two singularities have thus been regularized

and Ω is globally defined. Thus the pair (J,Ω) is a globally-defined structure SU(3) on

the manifold.

Let us make one final comment: the prescription of [1] for constructing global SU(3)

structures, reviewed at the end of section 2.3, gives a form Ω which is of type (2,1) with

respect to the integrable complex structure of the toric variety. We see that the prescrip-

tion used here can never coincide with that of [1]: the form Ω defined in eq. (3.21) is of

mixed type, varying from (3,0) at θ = 0 to (1,2) at θ = π, with respect to the integrable

complex structure.
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4 CP1 over general SCTV

We will now show how to construct a globally-defined SU(3) structure on a canonical

(defined in eq. (4.1) below) CP1 bundle over a SCTV of complex dimension d = 2. This

is a generalization, to any SCTV base, of our construction of a globally-defined SU(3)

structure on CP1 over CP2, discussed in section 3.2.

As we saw explicitly in the special case of CP1 over CP2, the canonical metric of the

SCTV, eq. (2.21), is smooth for any twisting of the bundle parameterized by na ∈ N. On

the other hand the existence of a globally-defined SU(3) structure imposes a topological

constraint and hence a constraint on the na, as we explain in the following. This constraint

is automatically satisfied for the canonical CP1 bundle.4

We start with a (d + 1)-dimensional toric CP1 bundle over a d-dimensional base M ,

whose charges were given in (2.34). The CP1 bundle will be called canonical if the charge

of zk+1, defining the twisting of the bundle, is taken to compensate exactly for the charges

of the base, i.e.,

na =
k∑
i=1

qai . (4.1)

As emphasized in [2], the topological condition for the existence of an SU(3) structure on

the total space of the SCTV is that its first Chern class should be even. Condition (4.1)

guarantees that there is no topological obstruction for the existence of an SU(3) structure.

This can be seen as follows: the first Chern class of the SCTV is given by,

c1 =
k+2∑
I=1

DI , (4.2)

where we have denoted by DI the divisors corresponding to {zI = 0}. On the other hand on

a toric variety there are as many linearly-independent divisors as there are U(1) charges [7].

In our case the fact that the local coordinates defined by S in (2.3) are gauge-invariant is

equivalent to the linear relations,

DI −
∑
A∈S

s+1∑
B=1

QABQBI DA = 0 . (4.3)

Taking the charges (2.34) into account, and inserting into (4.2) then leads to,

c1 =
∑
A∈S

(
s∑
b=1

QAb

(
k∑
i=1

qbi − nb
)

+ 2QAs+1

)
DA , (4.4)

which, as advertised, is even if the bundle is canonical. More generally, we see that a

globally-defined SU(3) structure exists provided (
∑k

i=1 q
a
i − na) are even for all a [2].

4We use the term canonical metric for the metric (2.21) of the SCTV, which is defined for all na, i.e. for

all topologies. On the other hand we use the term canonical CP1bundle for the topology defined in eq. (4.1).

Hopefully this will not lead to confusion.
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We define the usual toric coordinates and a local SU(d+1) structure (Ĵ , Ω̂) as explained

in section 2.3. We recall that Ω̂ is not gauge-invariant: for the canonical CP1 bundle it has

charge,

Q(Ω̂) =


0
...

0

2

 , (4.5)

where we took (4.1) into account.

Following the strategy of section 3.2 we would like to define the analogue of the local

SU(2) structure (ĵ, ω̂) on the base M , cf. (3.20). As in that case we first note that the CP1

fiber distinguishes a one-form K, which we normalize such that K∗ ·K = 2,

K :=
1√

1− hk+2 k+2|v|2
Dv =

√
g

ĝ

Dv
|u|

. (4.6)

Note that K is not globally defined since it is not gauge-invariant. This can be seen

explicitly by taking the u→ 0 limit, in which Dv vanishes. Indeed in this limit we have,

K ∼
√
g

ĝ
v
ū

|u|
du ∼ ei(ϕv−ϕu)du ,

where ϕu, ϕv denote the phases of u, v. However K ∧K∗ does not suffer from any phase

ambiguity, so that,

ĵ := Ĵ − i

2
K ∧K∗ , (4.7)

is globally well-defined. Furthermore a somewhat tedious calculation which can be found

in appendix D shows that Ω̂ can be simplified to,

Ω̂ =
(−1)d√

ĝ

∑
Ŝ

(−1)ŜqŜ

∏
a∈Ŝ

za
∧
α∈{Ŝ

Dzα

 ∧ eiϕuK . (4.8)

Its contraction with K is given by,

1

2
K∗ · Ω̂ =

eiϕu√
ĝ

∑
Ŝ

(−1)ŜqŜ

∏
a∈Ŝ

za
∧
α∈{Ŝ

Dzα

 , (4.9)

which is not gauge-invariant. A gauge-invariant local holomorphic form ω̂ on the base can

be constructed as follows,

ω̂ :=
1

2
e−iϕvK∗ · Ω̂ . (4.10)

Let us now specialize to d = 2. We can apply the procedure of section 3.2 and modify

the local SU(2) structure (ĵ, ω̂) in order to construct a global SU(3) structure. Since we

have |u|2 + |v|2 = ξ, we can define a parameter θ ∈ [0, π] such that |u| =
√
ξs sin θ

2 and
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|v| =
√
ξs cos θ2 . By the same argument as in section 3.2, the SU(3) structure (J,Ω)

given by,

J := j +
i

2
K ∧K∗

Ω := ω ∧ e−iϕvK ,
(4.11)

where,

j := sin θ<ω̂ + cos θ ĵ

ω := cos θ<ω̂ − sin θ ĵ + i=ω̂ ,

can be seen to be globally-defined. Its associated metric is the canonical metric of the

SCTV, given in (2.21), (2.37).

The expressions above can be thought of as a natural extension of the ansatz of [3, 4]

to the toric case. Note however that, contrary to the simple case discussed in section 3,

ĵ, ω̂ depend in general on the S2-fiber coordinates and should be thought of as forms on

the total space. Moreover, except for simple bases such as CP2 or CP1 × CP1, there is

not a simple relation between the exterior differential of the connection one-form in K and

the two-forms on the base, cf. appendix D.1 for more details. As a result, the associated

torsion classes are all nonvanishing in general.

This structure could be easily modified by multiplying (j, ω) and K by functions of

the coordinates of the S2 fiber. The associated metric will be modified accordingly to,

h3 = |h|2 h2 + |f |2 ĝ
g
|u|2|v|2K ⊗K∗ , (4.12)

for some functions of the fiber coordinates, f , h. Indeed modifying the local SU(2) structure

via ω → h2ω, j → |h|2ω, K → fK results in the metric (4.12). More generally, an

orthogonal transformation can be applied on the triplet (j,<ω,=ω), without changing the

metric h2 of the base.

Provided f , h are smooth and nowhere-vanishing, the topology of the total space is that

of the SCTV CP1 over M . The metric (4.12) is smooth, since it is a smooth deformation of

the canonical metric (2.37) of the SCTV. In some cases allowing f , h to have singularities

or zeros can lead to a smooth metric on a total space of different topology. We will see an

example of this phenomenon in section 5 where an apparently singular metric on S2 over

CP2 is in fact the local form of the round metric on S6.

5 LT structures on S2(B4)

We will now show that the sphere bundles of the form S2(B4), where B4 is any four-

dimensional Kähler-Einstein space of positive curvature, admit regular globally-defined

SU(3) structures of LT type, i.e. such that all torsion classes vanish except for W1 and

W2. This is the generic type of SU(3) structure that appears in supersymmetric AdS4

compactifications of massive IIA supergravity [11].
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Let ĵ be the Kähler form of B4, normalized as in (B.7), (B.8) with λ = 6, and let (ĵ, ω̂)

be a local SU(2) structure on B4 so that,

ω̂ ∧ ω̂∗ = 2ĵ ∧ ĵ ; ĵ ∧ ω̂ = 0 ;

dP = 6 ĵ ; dĵ = 0 ; dω̂ = iP ∧ ω̂ ,
(5.1)

where P is the canonical bundle of B4, cf. appendix B. We define the following SU(3)

structure,

J = |h|2j +
i

2
K ∧K∗

Ω = h2ω ∧K ,

(5.2)

where h is a complex function of θ and,

j := cos θ ĵ + sin θ <(eiψω̂)

ω := − sin θ ĵ + cos θ <(eiψω̂) + i =(eiψω̂)

K := fdθ + ig(dψ + P) ,

(5.3)

with ψ ∈ [0, 2π) and f , g real functions of θ. The associated metric reads,

g = |h|2g4 + f2dθ2 + g2(dψ + P)2 , (5.4)

with g4 the Kähler-Einstein metric of B4. This ansatz is of the same general form as that

of [3, 4]. However here we shall impose different conditions on the torsion classes, leading

to an SU(3) structure of LT type instead. As we show below, these conditions can be solved

analytically for the functions f , g, h parameterizing the ansatz.

Using eq. (5.1), one can then compute the torsion classes of the SU(3) structure (5.2),

W1 = − i
3

h

h∗

(
1

f
+

sin θ

g
+ 6

g sin θ

|h|2

)
W2 =

i

3

h

h∗

(
1

f
+

sin θ

g
− 12

g sin θ

|h|2

)
J⊥

W3 =
1

2

(
1

f
− sin θ

g
+ 6

g sin θ

|h|2

)
<Ω⊥

W4 =

(
|h2|′

f |h2|
− 6 cos θ

g

|h2|

)
dθ

W5 =

(
h′

fh
+

g′

2fg
− cos θ

2g

)
K ,

(5.5)

where we have introduced the primitive forms,

J⊥ = |h|2 j − iK ∧K∗

Ω⊥ = |h|2 ω ∧K∗ .
(5.6)

Moreover, as we show in appendix E, one can impose W3 = W4 = W5 = 0 provided,

f = α

(
1− 6α2 sin2 θ

H

)−1

; g = α sin θ ; h =
√
H(θ) eiβ , (5.7)
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with,

H(θ) :=
1

3

(
x̃+

x̃2

B
+B

)

B :=

(
27H3

0

2
+ x̃3 + 3

√
3

√
27H6

0

2
+ x̃3H3

0

)1/3

x̃ := 9α2 sin2 θ ,

(5.8)

where the real constants α, β and H0 ≥ 0 are the parameters of the solution.

For H0 > 0 the functions f , h are nowhere vanishing. Moreover the θ → 0, π limit gives

a regular metric, provided the period of ψ is 2π. Then by the same argument as in [4, 9],

the SU(3) structure (5.2) is globally-defined and the associated metric (5.4) is regular and

complete: the (ψ, xµ) space, where xµ are the coordinates of B4, parametrizes a circle fibra-

tion in the canonical bundle L over B4; it extends to a complete, regular five-dimensional

Sasaki-Einstein manifold provided B4 is Kähler-Einstein of positive curvature [12]. The

(ψ, θ) space parameterizes a smooth S2, so that the total space has the same topology as

L ×U(1) CP1, in the notation of [9]. The nonvanishing torsion classes read,

W1 = −2i

3

e2iβ

α

W2 =
2i

3

e2iβ

α

(
1− 9α2 sin2 θ

H

)
J⊥ .

(5.9)

Therefore the S2(B4) bundles admit SU(3) structures of LT type, rendering them suitable

as compactification spaces for supersymmetric AdS4 solutions of massive IIA [11]. Note

that unlike the LT SU(3) structures on S2(CP2) discussed in [13] from the point of view of

twistor spaces (cf. appendix F) or in [14] from the point of view of cosets, the structure (5.9)

does not obey dW2 ∈ (3, 0)⊕ (0, 3).5 Indeed a direct calculation gives,

dW2 = e2iβ

(
1− 9α2 sin2 θ

H

)(
2i

3α2

(
1− 9α2 sin2 θ

H

)
<(e−2iβΩ)− 6i sin2 θ

H
<Ω⊥

)
.

(5.10)

As a consequence, if these manifolds are to be used as compactification spaces for massive

IIA, the Bianchi identity for the RR two-form will require the introduction of (smeared) six-

brane sources. Another difference from the LT structures of [13, 14] is that the discussion of

this section applies to any S2(B4) bundle with Kähler-Einstein base, not only to B4 = CP2.

In the case H0 = 0, on the other hand, one obtains the solution,

f = 3α ; g = α sin θ ; h = 3α sin θ eiβ . (5.11)

This corresponds to the nearly Kähler limit, in which also W2 vanishes. Moreover the

θ → 0, π limit results in a conical metric of the form,

g ∼ dθ2 + θ2ds2
5 , (5.12)

5It should be possible to make contact with the results of [13, 14] by suitably acting on the vielbein by

an orthogonal transformation. There does not seem to exist a simple ansatz for this transformation, which

may be rather involved as it could a priori depend on all coordinates.
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where,

ds2
5 := g4 +

1

9
(dψ + P)2 , (5.13)

is the canonically normalized metric of a five-dimensional Sasaki-Einstein base written as

a circle fibration on the canonical bundle over B4; the normalization is such that the cone

metric (5.12) is Ricci-flat. Hence for H0 = 0 the metric presents conical singularities in

general, unless B4 is CP2, in which case the associated Sasaki-Einstein metric (5.13) is

that of the round sphere, and the associated cone (5.12) is not only Ricci-flat but also flat.

Going back to the metric (5.4) we obtain,

g = 9α2
(
dθ2 + sin2θ ds2

5

)
. (5.14)

We thus see that in the smooth case, B4 = CP2, we obtain a round S6 of radius 3α.

We thus recover the well-known result that the round S6 admits an associated nearly-

Kähler structure.

Let us finally note that we may relax the condition on B4, so that B4 is any four-

dimensional Kähler manifold (not necessarily toric, or Einstein). In this case the torsion

classes can also be explicitly calculated, cf. appendix G, however we do not expect the

structure to admit a global extension to a complete space with a regular metric.

6 Conclusions

The construction of SU(3) structures on SCTV had up to now proceeded on a case-by-case

basis. In the present paper we gave a formula for a globally-defined SU(3) structure valid

on all canonical CP1 bundles over two-dimensional SCTV. This SU(3) structure admits a

space of deformations parameterized by certain functions, on which the associated torsion

classes depend. The construction is genuinely different from that in [1]: as opposed to the

construction in that reference, it produces a holomorphic three-form of varying type (with

respect to the integrable complex structure of the SCTV).

Having a general formula for the SU(3) structure opens up the possibility of a system-

atic (possibly automatized) scan for flux vacua. Such a procedure has been successfully

carried out in the case of solvmanifolds [15] and cosets [14], and would be interesting to

undertake also in the class CP1 over SCTV considered here. It could be extended to CP1

fibrations over noncompact toric varieties, as the formalism does not rely on compactness

other than in the input of the U(1) charges specifying the toric variety [16].

The construction of the SU(3) structure was also applied to the case of S2(B4) bundles.

These spaces first appeared as six-dimensional bases of seven-dimensional Sasaki-Einstein

spaces in the context ofN = 2 AdS4 vacua of M-theory [9]. It was subsequently realized [10]

that reducing along the so-called α-circle produces a (warped) N = 2 AdS4 × S2(B4) vac-

uum of IIA. The relevant supersymmetric SU(3) structure, whose existence was implicitly

inferred in [10], was first constructed explicitly in [3] for the case B4 = CP2. The general-

ization to arbitrary B4 was given in [4].

In the present paper we showed that the S2(B4) spaces also admit a different SU(3)

structure of LT type, thus making them suitable for N = 1 compactifications of massive
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IIA. However, these solutions require (smeared) six-brane sources, complicating their phys-

ical interpretation. It is possible that a more general orthogonal rotation of the local SU(2)

structure acting on the triplet (j,<ω,=ω) may produce a sourceless LT structure, although

the analysis becomes rather cumbersome in this case and we have been unable to obtain a

conclusive result.6

A Decomposition of the metric

In this section we fill in some of the details leading up to eq. (2.37). We start by defining

the vertical one-forms using the formalism introduced in section 2.1, for the total bundle.

The various objects are thus given in terms of the charges QAI . Expressing them in terms

of the charges of the base qai we have,

ĝab := qai q
b
i |zi|2

ĥij := ĝabq
a
i q
b
j

D̂zi := P̂ (dzi) = dzi − ĥijziz̄jdzj ,

where hatted symbols are used to denote objects relative to the base, in order to distin-

guish from the objects constructed in (2.1). Note that ĝ, ĥ, D̂zi live on the same space as

their non-hatted counterparts, which are the relevant objects for the definition of forms

in the symplectic quotient description. This means that they do not have any a priori

interpretation as objects on the base. For example, the |zi|2 do not verify the moment map

equations of the base but those of the total bundle, and thus ĝ, ĥ and D̂zi depend on the

radii. A quick calculation confirms that the D̂zi do obey the expected algebraic relations,

k∑
i=1

qai z̄iD̂zi = 0 .

Recall the form of the canonical metric on a SCTV (the generalization of the Fubiny-Study

metric of CP1),

hd+1 =
k+2∑
I=1

DzI ⊗Dz̄I .

We will now decompose this metric into base and fiber components. Since the Dz depends

on the matrix gAB, the key here will be to decompose it and its inverse along the different

bundle directions.

The definition of QAI leads to:

gAB =

(
ĝab + nanb|u|2 −na|u|2

−nb|u|2 ξ

)
.

6If the existence of a sourceless LT structure could be established within the context of the ansatz of

the present paper, it would exist for all S2(B4) spaces, not only for B4 = CP2, as our ansatz only relies

on the Kähler-Einstein property of the base. As already remarked, a sourceless LT structure does exist on

S2(CP2) [13, 14], but seems to rely on the special properties of CP2 as a selfdual Einstein manifold [17].

This is not taken into account by our ansatz, and would not be applicable to the other Kähler-Einstein

bases B4: CP2 is the only Kähler-Einstein four-manifold of positive curvature that is also selfdual.
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Moreover we need to express the inverse gAB while keeping track of the inverse, ĝab, of ĝab.

For this purpose we first need to compute the determinant g = det gAB,

g =

∣∣∣∣∣ ĝ + nnT |u|2 n|u|2

nT |u|2 ξ

∣∣∣∣∣ =

∣∣∣∣∣∣ ĝ + nnT |u|2
(

1− |u|
2

ξ

)
0

nT |u|2 ξ

∣∣∣∣∣∣ = ξ det

(
ĝ +

1

ξ
|u|2|v|2nnT

)
.

We now use the property of multilinearity of the determinant to expand this expression. We

then get all different terms of order s−m in g and m in nnT . But since ranknnT = 1, only

the terms of order zero or one remain. The terms of order one are merely the determinant

of ĝ where the column a has been replaced by the vector na

ξ |u|
2|v|2 n. By expanding along

this same column, we exhibit the cofactors of ĝ which are independent of this exact column,

and are related to the inverse matrix,

det(ĝ, ga ↔ n) =
∑
a

cof(ĝ)abn
b = ĝ ĝabn

b .

Thus we have:

g = ξ

(
ĝ +

na

ξ
|u|2|v|2ĝ ĝabnb

)
= ĝ(ξ + ĝabn

anb|u|2|v|2) .

The same trick can be used to compute the inverse matrix:

gs+1 s+1 =
1

g
det(ĝ + nnT |u|2) =

ĝ

g
(1 + ĝabn

anb|u|2) .

Moreover,

ga s+1 =
1

g
det(ĝ, ga ↔ −|u|2 n) =

ĝ

g
|u|2 ĝabnb .

The last cofactors are somewhat more complicated, since they involve double cofactors.

Eventually we get:

gab = ĝab −
ĝ

g
|u|2|v|2 ĝacnc ĝbdnd .

It is now possible to compute the hµν . Let us introduce the objects

V := ĝabn
anb , Vi := ĝacq

a
i n

c , (A.1)

in terms of which we obtain,

hij = gabq
a
i q
b
j = ĥij −

ĝ

g
|u|2|v|2 Vi Vj

hik+1 = ga s+1q
a
i − gabqai nb = − ĝ

g
Vi|v|2

hik+2 = ga s+1q
a
i =

ĝ

g
Vi|u|2

hk+1 k+1 = gs+1 s+1 − 2gas+1n
a + gabn

anb =
ĝ

g
(1 + V |v|2)

hk+1 k+2 = gs+1 s+1 − gas+1n
a =

ĝ

g

hk+2 k+2 = gs+1 s+1 =
ĝ

g
(1 + V |u|2) .

(A.2)
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We can now compute the DzI ,

Dzi
zi

=
D̂zi
zi

+
ĝ

g
Vi|u|2|v|2 ε , (A.3)

where,

ε =
du

u
− dv

v
+ Vj z̄jdzj . (A.4)

The last two coordinates correspond to colinear one-forms,

Du
u

=
ĝ

g
|v|2 ε; Dv

v
= − ĝ

g
|u|2 ε .

Finally the canonical metric reads,

hd+1 = Dzi ⊗Dz̄i +Du⊗Dū+Dv ⊗Dv̄

= D̂zi ⊗ D̂z̄i +
ĝ

g
Vi|u|2|v|2 D̂zi ⊗ z̄iK∗ + c.c.

+ ViVi|zi|2
ĝ2

g2
|u|4|v|4 ε⊗ ε∗ +

ĝ2

g2
|u|2|v|2ξ ε⊗ ε∗ .

(A.5)

On the other hand we have,

Viz̄iD̂zi = ĝabn
a qbi z̄iD̂zi = 0 ; V 2

i |zi|2 = V ,

so that the metric simplifies to,

hd+1(ξA) = hd((ρ
a)2) +

ĝ2

g2
|u|2|v|2(ξ + V |u|2|v|2) ε⊗ ε∗ (A.6)

= hd((ρ
a)2) +

ĝ

g
|u|2|v|2 ε⊗ ε∗ . (A.7)

Note that this decomposition remains valid in the complex local coordinates ti, tk+1, on

the chart US defined by S = Ŝ ∪ {k + 2}, in which ε can be written as,

ε =
dtk+1

tk+1
+

k∑
i=1

Vi|zi|2
dti
ti

.

The D̂zi happen to be the projections on the space generated by the dti, in fact they are

related to the dti by the relations (2.18) where we take ĥij instead of hIJ . This justifies

that in the decomposition (A.6), the metric on the base is exactly the canonical metric

whose radii vary along the fiber.

B Kähler-Einstein manifolds

A Kähler manifold of real dimension 2d corresponds to the case of a local SU(d) structure

where W5 is the only nonvanishing torsion class,

dJ = 0 ; dΩ = iP ∧ Ω , (B.1)

– 23 –



J
H
E
P
0
9
(
2
0
1
7
)
1
3
3

cf. (2.27). The local structure (J,Ω) can also be expressed in terms of bilinears of a locally-

defined spinor ζ on M . In terms of this spinor eq. (B.1) can be written equivalently,

∇mζ =
i

2
Pmζ , (B.2)

where P := 2=W5 is a real one-form. (Note that the existence of the complex structure

allows us to reconstruct the torsion W5 from its imaginary part alone.) Moreover (B.2)

can be inverted to obtain P from the covariant spinor derivative,

Pm = −2iζ†∇mζ . (B.3)

From (B.3), (B.2), using ∇[m∇n]ζ = 1
8Rmnpqγ

pqζ we obtain,

dP = R , (B.4)

where R is the Ricci form. Hence P can be identified with the connection of the canonical

bundle of M . On the other hand, the Ricci tensor is obtained from the Riemann tensor via,

Rmn =
1

2
RmnpqJ

pq = RmpnqJ
pq . (B.5)

On a Kähler manifold the Ricci form, the Ricci tensor and the Ricci scalar obey,

Rmn = Jm
pRpn ; RmnJmn = R . (B.6)

Furthermore for a Kähler-Einstein manifold such that,

Rmn = λgmn , (B.7)

eqs. (B.7), (B.6) imply,

R = λJ , (B.8)

but in general the Ricci form need not be proportional to the Kähler form.

The above relations are valid for arbitrary dimension. Specializing to four real dimen-

sions we adopt the notation (J,Ω) → (ĵ, ω̂), in accordance with the main text. We may

decompose any two-form Φ on the basis of a local SU(2) structure (ĵ, ω̂) as follows:

Φ = ϕĵ + Φ̃ + χω̂ + ψω̂∗ , (B.9)

where ϕ := 1
4 ĵ
mnΦmn is the trace of Φ, and Φ̃ is (1,1)-traceless: ĵmnΦ̃mn = 0. Equivalently,

ĵ ∧ Φ̃ = 0 . (B.10)

It is also straightforward to show that (ĵ, ω̂) are selfdual forms while (1,1)-traceless forms

are anti-selfdual,

? (ĵ, ω̂) = (ĵ, ω̂) ; ? Φ̃ = −Φ̃ . (B.11)

In particular for the Ricci form the expansion reads,

R =
1

4
Rĵ + R̃ . (B.12)

Moreover the above properties can be used to calculate,

R∧R =

(
1

4
R2 − 1

2
RmnR

mn

)
vol4 , (B.13)

where the volume is given by,

vol4 =
1

2
ĵ ∧ ĵ . (B.14)
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C Real coordinates

In this section we explain in detail how to rewrite the hermitian metric (3.5) in terms of

real coordinates, and make contact with the metric (3.8). Let us start by rewriting the

CP1 fiber coordinate t4 in terms of a pair of real coordinates. It is not necessary to do

the same for t2, t3, since the coordinates of the CP2 base do not appear explicitly in (3.8).

Using eq. (2.36), |t4| can be written in terms of ρ and the base coordinates,

|t4|2 =
|z1|2n|z4|2

|z5|2
=

ρ2n

(1 + t2)n
ρ2 − ρ2

1

ρ2
2 − ρ2

. (C.1)

Let ϕ ∈ [0, 2π] be the phase of t4, so that t4 becomes a function of t2, t3, ρ, ϕ,

dt4
t4

=
ρdρ

ρ2 − ρ2
1

+
ρdρ

ρ2 − ρ2
1

+ n
dρ

ρ
− n d(t2)

2(1 + t2)
+ idϕ

=
dρ

n ρΓ
− n<η + idϕ .

Moreover we set,

ε :=
dt4
t4

+ n η =
dρ

n ρΓ
+ i (dϕ+ n=η) . (C.2)

The term |ε|2 := ε⊗ ε̄ appears naturally in (3.5) through the contribution,

ε⊗ ε̄ =
1

n2ρ2Γ2
dρ2 + (dϕ+ n=η)2 − i 1

nρΓ
dρ ∧ (dϕ+ n=η) . (C.3)

The last term on the right-hand side above contributes to the Kähler form, while the rest

contributes to the metric. Setting ψ := ϕ/n and A := =η, we recover the terms appearing

in (3.8), provided we set n = 3. Moreover the relative coefficient between the dρ2 and the

(dψ+A)2 term is fixed in the expression of |ε|2, and this determines the change of variables

ρ → ρ̃(ρ) by comparing with (3.8). However, performing this change of variables in (3.5)

does not directly bring us to the metric of (3.8): there remain two coefficients that still

need to be adjusted. This can be achieved by introducing the two warp factors of eq. (3.14)

as we now show.

Let us go back to the expression of the metric in terms of Dzi. In local coordinates

we have,

Dz1

z1
= nΓε− η

Dz2

z2
=

dt2
t2

+ nΓε− η

Dz3

z3
=

dt3
t3

+ nΓε− η

Dz4

z4
= ρ2 ρ

2
2 − ρ2

n det g
ε

Dz5

z5
= ρ2 ρ

2
1 − ρ2

n det g
ε .

(C.4)

– 25 –



J
H
E
P
0
9
(
2
0
1
7
)
1
3
3

It follows that the term
∑3

i=1Dzi⊗Dz̄i gives the hermitian metric of CP2 plus a |ε|2 term,

whereas Dz4,Dz5 only contribute to |ε|2. Let us define,

h = F (ρ)
3∑
i=1

Dzi ⊗Dz̄i +G(ρ)
∑
i=4,5

Dzi ⊗Dz̄i

= Fρ2 hcp2 +

(
F +

(
1

n2Γ
− 1

)
G

)
n2ρ2Γ2|ε|2

= Fρ2 hcp2 +

(
F +

(
1

n2Γ
− 1

)
G

)(
dρ2 + n4ρ2Γ2 (dψ +A)2 − in2ρΓ dρ ∧ (dψ +A)

)
.

(C.5)

We can then adjust F ,G, and ρ so that,

Fρ2 = ρ̃2(
F +

(
1

n2Γ
− 1

)
G

)
dρ2 =

1

U
dρ̃2(

F +

(
1

n2Γ
− 1

)
G

)
n4ρ2Γ2 = q .

(C.6)

These equations can easily be decoupled by first solving for ρ, then for F and finally for G.

D General SCTV base

In the following we give the details of the derivation of eq. (4.8). The first step is writing ω̂

in terms of Dz. However this exercice is rather involved, since the Dz are not independent

and because of the ambiguity in the decomposition of wedge products. Our starting point

is eq. (2.31),

Ω̂ =
1
√
g

∧
A

QAJ zJ∂zJ ·
∧
I

dzI .

In this expression, we notice that the expansion of the contraction with the horizontal

vectors amounts to choosing a set S of s+ 1 integers between 1 and k + 2, corresponding

to the indices of the contracted coordinates. We compute,

Ω̂ =
1
√
g

∑
S

(−1)SQS
∏
A∈S

zA
∧
α∈{S

dzα ,

cf. (2.33), where QS is the determinant of the submatrix of QAI whose columns are indexed

by S. Notice that if S contains duplicates, or if it does not select independent columns,

the determinant vanishes. Thus the sum selects only the sets S for which the matrix QBA
is invertible. The sign (−1)S is the signature of the permutation required to put the s+ 1

indices of S in the first position, namely:

(−1)S = σ(S, {S) = (−1)
∑
a∈S + 1

2
(s+1)(s+2) . (D.1)

We would now like to decompose Ω̂ with respect to the bundle structure. We therefore

distinguish four cases:
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1. S ⊂ [|1, k|]

2. S = Ŝ ∪ {k + 1} where Ŝ ⊂ [|1, k|], ]Ŝ = s− 1

3. S = Ŝ ∪ {k + 2}

4. S = Š ∪ {k + 1, k + 2} where Š ⊂ [|1, k|], ]Š = s− 2

In the first case we get QS = 0, since rank qai = d < d + 1. In cases 2 and 3 we can

easily see that QS = qŜ := det(qba)a∈Ŝ , while (−1)S = (−1)Ŝ(−1)d for case 2, and (−1)S =

(−1)Ŝ(−1)d+1 for case 3. We can now write,

Ω̂ =
(−1)d+1

√
g

∑
Ŝ

(−1)ŜqŜ

∏
a∈Ŝ

za
∧
α∈{Ŝ

dzα ∧ (vdu− udv) +
1
√
g

Σ4 ,

with Σ4 to be determined. In case 4 we get,

QS = det(qba,−nb)a∈Š

= det

(
qba,−

k∑
i=1

qbi

)

= −
k∑
i=1

det(qba, q
b
i ) .

In the sum, if i ∈ Š, the determinant cancels out, leaving only a sum over {Š, so that,

Σ4 = −
∑
Š

∑
β∈{Š

(−1)S det(qa, qβ)a∈Š
∏
a∈Š

zau v
∧
α∈{Š

dzα .

We are now ready include this sum in the one over the Ŝ, which appears in cases 2 and

3: we just need to make the change of variable Ŝ = Š ∪ {β}. However dzβ appears in

the product, thus we need to shift it to the last position. At the same time we need to

move it to its right place inside det(qa, qβ) so as to maintain the increasing order of Ŝ. The

number of shifts needed to do so is the number of shifts required to bring β from its place

to the end in {Š plus the number of shifts to bring it from the end to its place in Š; since
{Š ∪ Š = [|1, k|], this is exactly the number of shifts required to bring β from its place to

the end in [|1, k|], i.e. k − β. The last sign we need to compute is,

(−1)S = (−1)
∑
a∈Š a+(k+1)+(k+2)− 1

2
(s+1)(s+2)

= (−1)
∑
a∈Ŝ a−β+(k+1)+(k+2)− 1

2
s(s+1)−(s+1)

= −(−1)Ŝ(−1)k−β+(d+1) .

Having expressed everything in terms of Ŝ and β, it is now possible to transform the sum∑
Š

∑
β∈{Š in

∑
Ŝ

∑
b∈Ŝ ,

Σ4 = (−1)d+1
∑
Ŝ

(−1)ŜqŜ

∏
a∈Ŝ

za
∧
α∈{Ŝ

dzα ∧

u v∑
b∈Ŝ

dzb
zb

 .
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To get a more symmetrical expression we can simply complete the sum
∑

dzb/zb, since the

missing terms can be trivially added thanks to the wedge product. The final expression

is thus,

Ω̂ =
(−1)d+1

√
g

∑
Ŝ

(−1)ŜqŜ

∏
a∈Ŝ

za
∧
α∈{Ŝ

Dzα

 ∧(vDu− uDv + u v

k∑
i=1

Dzi
zi

)
.

The dz were ultimately replaced by Dz because Ω̂ is vertical. Now recall that the expres-

sion (A.3) decomposes Dzi into base and fiber parts. Since the metric decomposes correctly

into (A.6), the D̂zi are orthogonal to K. Besides, the fiber part can be shown to cancel

out in the first factor, so that the first parenthesis is orthogonal to K. Thus we can take

the second factor to be proportional to K, and the proportionality factor can be found by

computing,

K∗·

(
vDu− uDv + u v

k∑
i=1

Dzi
zi

)

=
2√

1− hk+2 k+2|v|2

(
v(0− hk+1,k+2v̄ u)

− u(1− hk+2,k+2|v|2) + u v

k∑
i=1

(0− hk+2 i)

)

=
2u√

1− hk+2 k+2|v|2

(
− 1 + |v|2

(
− hk+1,k+2 + hk+2,k+2 −

k∑
i=1

hk+2 i

))
.

(D.2)

On the other hand,

k∑
i=1

hk+2 i = gABQ
A
k+2

k∑
i=1

QBi

= gABQ
A
k+2(QBk+2 −QBk+1)

= hk+2,k+2 − hk+2,k+1 ,

so that,

K∗ ·

(
vDu− uDv + u v

k∑
i=1

Dzi
zi

)
= −2

√
g

ĝ

u

|u|
.

Hence Ω̂ simplifies to the expression in (4.8).

D.1 Torsion classes

For a generic SCTV base all torsion classes are nonvanishing. We will not write them down

explicitly in this case, as they are rather cumbersome and not particularly illuminating.

The computation boils down to determining the exterior differentials of ω̂ and K. In the

following we give some details of the calculation.
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In the notation of (2.35), K and (ĵ, ω̂) can be written as follows,

K =

√
g

ĝ

Dv
|u|

; ĵ = Ĵ − i

2
K ∧K∗ ; ω̂ =

1

2
e−iϕvK∗ · Ω̂ . (D.3)

In terms of the D̂zi, we have,

ĵ :=
i

2
D̂zi ∧ D̂z̄i

ω̂ :=
ei(ϕu−ϕv)

√
ĝ

∑
Ŝ(−1)ŜqŜ

∏
a∈Ŝ za

∧
α∈{Ŝ D̂zα .

Up to a phase (required for gauge invariance) this coincides with the canonical local SU(2)

structure of the base. In particular this implies that ĵ is Kähler at fixed fiber coordinates.

The dependence of ĵ on the fiber coordinates is such that Ĵ is Kähler.

We can also rewrite everything in local complex coordinates on the

patch S = Ŝ ∪ {k + 2}:

K = −

√
ĝ

g
|u|v

(
dtk+1

tk+1
+ Vi|zi|2

dti
ti

)
ω̂ =

ei(ψ+
∑
α ψα)

√
ĝ

(−1)ŜqŜ

∏
i

|zi|
∧
α

dtα

tα
= f

∧
α

dtα

tα
,

(D.4)

where ψ,ψα are the phases of tk+1, tα. We can now introduce real coordinates θ, ψ on the

fiber with |u|2 = ξ sin2 θ
2 :

K =
1

2

(
γdθ +

ξ

γ
sin θ i(dψ +A)

)
,

where γ =
√

g
ĝ =

√
ξ + 1

2ξ
2 V sin2 θ and A = Vi |zi|2=dti

ti
= Vi |zi|2 dψi. We also get,

dA =
i

2
Vi D̂zi ∧ D̂z̄i +

i

4
sin θdθ ∧ V 2

i (z̄iD̂zi − ziD̂z̄i) .

Differentiating ω̂ leads to another one-form,

dω̂ =
df

f
∧ ω̂

=

(
− ξ

2
Vi(1− ĥii|zi|2) sin θdθ + idψ

+
∑
j

idψj +
1

2
(1− ĥjj |zj |2)

(
D̂z̄j

z̄j
− D̂zj

zj

))
∧ ω̂ . (D.5)

Alternatively, in terms of ti,

dω̂ =

(
−ξ

2
Vi(1− ĥii|zi|2) sin θdθ + i

(
dψ +A+ dψi|zi|2(hii − hijhjj |zj |2)

))
∧ ω̂ .
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We can write,

A′ := A+ dψi|zi|2(hii − hijhjj |zj |2) = A+B ,

where B comes from the derivatives of ĝ and is nonvanishing in general. For simple bases

such as CP2 or CP1×CP1, ĝ is constant and thus B vanishes. The dθ term comes from the

deformation of the base metric along the direction θ. Note also that at fixed θ, dA′ ∝ R
where R is the Ricci form of the base, cf. (B.4).

E LT structures

In this section we fill out the details leading up to eq. (5.8). Plugging the following general

ansatz in the decomposition of dJ, dΩ,

dJ =
3α1

2
=Ω− 3α2

2
<Ω + α3<K + α4=K + α5<Ω⊥ + α6=Ω⊥

dΩ = a1J ∧ J + a2K
∗ ∧ Ω + a3J

⊥ ∧ J ,
(E.1)

for some real and complex parameters α1, . . . , α6 and a1, . . . , a3 respectively, and using

eqs. (5.1), (5.2), (5.3), we arrive at the torsion classes given in (5.5). Imposing W3 = W4 =

W5 = 0 leads to,

W3 :
1

f
− sin θ

g
+ 6

g sin θ

|h|2
= 0

W4 :
|h2|′

f |h2|
− 6 cos θ

g

|h2|
= 0

W5 :
h′

fh
+

g′

2fg
− cos θ

2g
= 0 .

(E.2)

From W5− W̄5 we see that the phase of h must be constant but is otherwise unconstrained

by the equations, i.e.,

h = |h|eiβ , (E.3)

for some real constant β ∈ [0, 2π). Moreover we set H := |h|2, for some nonnegative

function H. Since dψ is not defined at θ = 0, π, regularity requires that the coefficient of

dψ + A should vanish at the poles. It is therefore convenient to set g := G sin θ for some

function G. The equations now read,

1

f
− 1

G
+ 6

G sin2 θ

H
= 0

H ′ − 3 sin 2θ Gf = 0

H ′

H
+
G′

G
+ cot θ − f cot θ

G
= 0 ,

(E.4)

where we have assumed that f , h are nonvanishing. Plugging the first two into the third

then implies,

G = α , (E.5)
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for some real constant α. The system is then solved as in eq. (5.8), where H satisfies,

H ′
(

1− 6α2 sin2 θ

H

)
= 3α2 sin 2θ . (E.6)

We immediately see that H(θ) = 9α2 sin2 θ is a special solution. Moreover the differential

equation imposes H(π−θ) = H(θ). It is thus convenient to introduce a new function ϕ(x),

where x := sin2 θ and H := 9α2xϕ(x), in terms of which the equation becomes,

ϕ− 2
3

ϕ− ϕ2
ϕ′ =

1

x
. (E.7)

Integrating over x between X0 and X we obtain,∫ X

X0

ϕ− 2
3

ϕ− ϕ2
ϕ′dx = log

X

X0
, (E.8)

where ϕ0 := ϕ(X0). On the other hand,

ϕ− 2
3

ϕ− ϕ2
= −2

3

1

ϕ
− 1

3

1

ϕ− 1
. (E.9)

Since ϕ ≥ 0 and ϕ− 1, ϕ0 − 1 have the same sign, we find,

− 2

3
log

ϕ

ϕ0
− 1

3
log

ϕ− 1

ϕ0 − 1
= log

X

X0
, (E.10)

which leads to,

ϕ2(ϕ− 1) =
X3

0

X3
ϕ2

0(ϕ0 − 1) . (E.11)

Rewriting the above in terms of H which, contrary to ϕ, is necessarily everywhere well-

defined, we obtain,

H2(H − 9α2X) = H2
0 (H0 − 9α2X0) = constant . (E.12)

We can henceforth assume X0 = 0 without loss of generality, which leads to,

H2(H − 9α2X)−H3
0 = 0 . (E.13)

It is easy to see that the above polynomial in H is increasing for negative H, until it attains

the value −H3
0 ≤ 0 at H = 0. It then decreases until H = 6α2X, from which point on it

becomes increasing. Therefore if we impose H0 > 0 the polynomial only vanishes once, for

H > 6α2X ≥ 0. For H0 = 0, there are two solutions: H = 0 (which must be discarded)

and the special solution H = 9α2X. We conclude that for any H0 ≥ 0, there is a unique

solution to the differential equation with the boundary conditions H(0) = H0 = H(π); it

is given in eq. (5.8) of the main text.
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F Twistor spaces

There is an alternative description of the total space of the CP1 fibration over CP2 in terms

of twistor spaces. More generally, for the purposes of the present section we may replace

the CP2 base by any four-dimensional Kähler space B4.

Consider B4 equipped with its canonical complex structure Î and a hermitian metric

g. Let us introduce a complex zweibein z1, z2, so that Îzk = i zk, for k = 1, 2. These forms

are of course only locally defined, since B4 is not parallelizable in general. We can thus

express the metric and the local SU(2) structure on B4 in terms of the complex zweibein,

g = z1z̄1 + z2z̄2

ĵ =
i

2
(z1 ∧ z̄1 + z2 ∧ z̄2)

ω̂ = z1 ∧ z2 .

At any one point x ∈ B4, ĵx, ω̂x form an SU(2) structure on the tangent space TxB4.

The latter is equipped with a complex structure and a scalar product given by Îx and gx
respectively. Moreover the relation,

Îkm = gknĵmn ,

allows us to identify the complex structure with a real selfdual form. The latter are

parameterized as follows, see appendix B,

jx = αĵx +
β

2
ω̂x +

β∗

2
ω̂∗x ,

where α is real and α2 + |β|2 = 1. Hence the space of complex structures Ix compatible

with the metric gx forms a sphere whose coordinates θ ∈ [0, π], ψ ∈ [0, 2π) are defined by

α = cos θ, β = sin θeiψ, so that Ix is associated with the two-form,

jx = cos θ ĵx + sin θ <(eiψω̂x) .

Extending this procedure to each point on B4 then defines an almost complex structure I

over the whole manifold (unlike Î, I will not be integrable in general). Over each point

on B4 an almost complex structure compatible with the metric of B4 can be thought of

as a point on the sphere S2 parameterized by (θ, ψ). Hence the space of almost complex

structures on B4 is a fiber bundle S2 over B4 denoted by Tw(B4), the twistor space of B4.

The zweibein z1, z2 is no longer compatible with the almost complex structure I asso-

ciated with the real two-form j given above. Rather we define,

f1 := cos
θ

2
ei
ψ
2 z1 + i sin

θ

2
e−i

ψ
2 z̄2

f2 := cos
θ

2
ei
ψ
2 z2 − i sin

θ

2
e−i

ψ
2 z̄1 ,

(F.1)
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so that Ifk = ifk. In terms of the new zweibein the local SU(2) structure and the met-

ric read,

g = f1f̄1 + f2f̄2

j =
i

2

(
f1 ∧ f̄1 + f2 ∧ f̄2

)
ω = f1 ∧ f2 = cos θ <(eiψω̂)− sin θ ĵ + i =(eiψω̂) ,

which is precisely of the form of (3.20). Let us also note that the choice of zweibein

compatible with I is only determined up to a phase. The latter leaves j and the metric

invariant but acts nontrivially on ω, thus changing the SU(2) structure.

We have seen that Ix(θ, ψ) defines an almost complex structure on the base. Together

with the natural complex structure of the sphere (thought of as a CP1) we can construct

an almost complex structure on the total space,

I± =


Ix(θ, ψ) 04×2

02×4

0 ± 1
sin θ

∓ sin θ 0

 ,

so that f1, f2 and K = dθ+i sin θ(dψ+A) are eigenforms of I± with eigenvalue ±i. We can

thus take (f1, f2,K) as the vielbein on Tw(B4). More generally we could modify (f1, f2,K)

by introducing “warp factors” as in (5.3) below.

G Torsion classes for Kälher base

As mentioned in section 5 we may relax the condition on the base of S2(B4), so that B4 is a

generic four-dimensional Kähler manifold. The torsion classes can also be straightforwardly

calculated in this case. Note however that this is only a local calculation: without additional

constraints, we do not expect there to exist a global extension to a complete space.

Let us postulate a globally-defined SU(3) structure as in (5.3) on a CP1 bundle with

metric,

g6 = |h|2g4 +KK∗ ; K = fdθ + ig(dψ +A) , (G.1)

where f, g, h are a priori complex functions; θ and ψ parameterize the S2 fiber; the one-

form A satisfies (B.1), (B.4) for (J,Ω) → (ĵ, ω̂). We will impose further restrictions on

f, g, h; these functions must be regular and non-vanishing, except for g which must vanish

at θ = 0 and θ = π. The most general situation we will consider here is that df , dg, dh

live on the space spanned by K,K∗ (this restricts the dependance on the coordinates).

Explicitly we expand,

df = f1K + f2K
∗ , (G.2)

and similarly for g, h. It is also possible restrict the dependance on θ alone.
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The calculation of the torsion classes proceeds in the same fashion as in appendix E,

with the following result,

W1 = − 2i

3

h

h∗

(
g + f sin θ

fg∗ + f∗g
+
R

2
g

sin θ

|h|2

)
W2 =

2i

3

h

h∗

(
g + f sin θ

fg∗ + f∗g
−Rg sin θ

|h|2

)
J⊥

W3 = − 1

2
(fg∗ + f∗g)dθ ∧ R̃+ <

(
g − f sin θ

fg∗ + f∗g
+
R

2
g

sin θ

|h|2

)
Ω⊥

W4 = d(log |h2|)− R

2|h2|
(fg∗ + f∗g) cos θdθ

W ∗5 =
1

fg∗ + f∗g

(
f cos θ + f1g − fg1 − (f∗g2 + f2g

∗)− 2(fg∗ + f∗g)
h2

h

)
K∗ .

(G.3)

Our degrees of freedom in the above are a somewhat redundant: a phase change of K can

be absorbed in h so that f or g can be taken real. Let us also note that in general a cross

term (fg∗ − f∗g)dθ(dψ + A) appears in the metric. If we want this to vanish, we must

impose f and g to be colinear, so that they can both be taken real.

Furthermore if we want to impose W4 = 0, we must restrict h to depend only on θ, in

which case we get,

h1 =
g∗h′

fg∗ + f∗g
; h2 =

gh′

fg∗ + f∗g
. (G.4)

Therefore f and g must also be restricted so that R (f∗g + fg∗) is a function of θ alone.
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