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Abstract: We investigate entanglement entropy in Gauss-Bonnet gravity following a

global quench. It is known that in dynamical scenarios the entanglement entropy probe

penetrates the apparent horizon. The goal of this work is to study how far behind the

horizon can the entanglement probe reach in a Gauss-Bonnet theory. We find that the

behavior is quite different depending on the sign of the Gauss-Bonnet coupling λGB. For

λGB > 0 the behavior of the probes is just as in Einstein gravity; the probes do not reach

the singularity but asymptote to a locus behind the apparent horizon. We calculate the

minimum radial position rmin reached by the probes and show that for λGB > 0 they ex-

plore less of the spacetime behind the horizon than in Einstein gravity. On the other hand,

for λGB < 0 the results are strikingly different; for early times a new family of solutions

appears. These new solutions reach arbitrarily close to the singularity. We calculate the

entanglement entropy for the two family of solutions with λGB < 0 and find that the ones

that reach the singularity are the ones of less entanglement entropy. Thus, for λGB < 0

the holographic entanglement entropy probes further behind the horizon than in Einstein

gravity. In fact, for early times it can explore all the way to the singularity.
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1 Introduction

The gauge gravity correspondence postulates the equivalence of a gravity theory and a

(non-gravitational) quantum field theory at the boundary. For many years this duality

has been successfully applied to translate intractable problems in strongly coupled field

theories to manageable calculations in the gravity theory. It is also possible to use the

correspondence in the reverse direction and learn about quantum gravity. In particular,

how to reconstruct the bulk geometry from CFT boundary data is a fascinating question.

Much work has been done in this direction in the last few years and many puzzles and

surprises have been found along the way. The holographic entanglement entropy (HEE)

prescription of Ryu and Takayanagi (RT) [1] has played a crucial role in these discoveries.

And the covariant generalization by Hubeny, Rangamani and Takayanagi (HRT) [2] allowed

us to study the time-dependence of HEE. However, our understanding of how local bulk

information is encoded in the boundary theory is not yet complete.

Since AdS/CFT geometrizes field theory observables relating them to geometrical con-

structions one can ask how much of the spacetime geometry is accessible to the field theory

observables?. This line of work was started in [3, 4] and developed in [5]. In [3] it was

shown that spacelike extremal surfaces cannot penetrate the horizon of an asymptotically

AdS static black hole but they do penetrate the horizon of a dynamical black hole. It was
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also noted [3, 4] that even though the probes can explore behind the horizon they do not

reach arbitrarily close to the singularity. This behavior was later shown to be related to

the linear growth of the entanglement entropy as a function of time [6].

A parallel observation in this line of thought comes from the study of HEE in static

AdS black holes with compact boundaries. Typically there are two families of extremal

surfaces [4] and we are instructed to choose the one of minimal area as the dual of the

entanglement entropy. Which family is the one of minimal area changes depending on

where we are in parameter space. The switchover defines a region that the entanglement

probe cannot explore and that is dubbed entanglement shadow [7].

Given these limitations of the HEE to access the bulk and thus to be used to reconstruct

it, it is natural to consider that the HEE might not be the right probe. Indeed, other objects

(causal holographic information [8], entwinement [9]) have been proposed either as more

natural constructions or as being more suited for bulk reconstruction but it is not clear

what is their field theory dual.

In this work we take a different approach; instead of changing the probe we investigate

a different theory of gravity. The limitations of the HEE to access the bulk that we

mentioned above have been studied in Einstein gravity. Thus, it is natural to ask how

are these results modified in a higher derivative theory. Such is the aim of the present

work. We study holographic entanglement entropy in a dynamical (Vaydia type) scenario

in Gauss-Bonnet gravity where the collapse of a null shell results in the formation of an

asymptotically AdS black hole. Previous studies of HEE in this background have been

focused on thermalization time of the field theory [10–12].

In holography, higher order derivative terms in the gravity theory correspond to α′

corrections to the bulk supergravity and to inverse t’Hooft corrections in the field theory;

they are the natural framework where holography can be used to study QFTs at finite but

large coupling. Gauss-Bonnet (GB) gravity has been extensively studied as prototype of a

higher derivative theory. From the early results on violations of the η/s bound [13, 14] and

transport coefficients [15–17] to recent studies of holographic liquids [18] and anisotropic

plasmas at finite coupling [19], it has been a favorite holographic laboratory where to study

finite coupling effects because its equations of motion are second order and asymptotically

AdS black hole analytic solutions are known. Let us underline couple of points. First, it is

known that the central charges of the CFT are sensitive to higher derivative terms but the

precise CFTs duals to GB are not known. Second, in [16] the authors derived bounds for

the GB coupling, λGB, such that the dual boundary field theory is causally well behaved.

For a four dimensional CFT the bound is −.0199 < λGB < .09. The numerical results

we present in this work correspond to values of λGB within that window. However, more

recently, it was pointed out in [20] that if λGB is treated non-perturbatively bulk causality

problems arise. Nevertheless, we can take a pragmatic approach and treat GB as scenario

where to explore effects of curvature-squared terms in geometrical objects like HEE. We

are interested in features not present in Einstein gravity. Furthermore, Grozdanov, Kaplis

and Starinets [21–23] found that some properties of weakly coupled field theories, including

emergence of quasiparticles, can be obtained from GB with negative coupling. Thus, we

could conjecture that our results for negative GB coupling — which, as we will see, is
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precisely the case where we find new features — might be relevant for the physics of a

hypothetical dual field theory at finite coupling.

In the present work our interest is not to make contact with a particular field the-

ory, but rather — since AdS/CFT geometrizes field theoretical concepts — to explore

a geometrical question with possible implications for QFTs at large but finite coupling.

We want to understand if in dynamical setting in a higher derivative theory the holo-

graphic entanglement entropy probes further behind the horizon than in Einstein gravity.

In [2] Hubeny, Rangamani and Takayanagi (HRT) presented a covariant generalization of

the holographic entanglement entropy prescription of RT. This proposal enabled the holo-

graphic study of time dependent phenomena and out of equilibrium physics. The linear

growth of entaglement entropy as a function of time typical of ergodic systems was ob-

tained holographically and the thermalization time explored in scenarios with and without

chemical potential [24–27]. The extension of the RT proposal to Gauss-Bonnet theories

was initiated in [28] and [29]. In [30, 31] the authors generalized the proposal to arbitrary

higher derivatives theories and presented a covariant prescription. Recently, in [32] it was

shown that as long as long as the bulk obeys the null energy condition, the covariant pre-

scription for the entanglement entropy HRT is compatible with causality of the field theory.

This point was further explored in higher derivative theories in [33].

We study HEE in a Gauss-Bonnet black hole formed by collapsing a null shell. We

find that for λGB > 0 the HEE surfaces behave just as in Einstein gravity: they penetrate

the horizon but stop at a limiting locus and do not reach the singularity. Furthermore,

we calculate the minimum point the geodesics can reach behind the horizon and show

that for λGB > 0 the HEE explores less than HEE in Einstein gravity. For λGB < 0 the

results are strikingly different: at early times the solutions become double valued with one

family reaching the singularity and the other not. Given these two families of solutions

the prescription instruct us to choose the one of minimal entropy. We find that it is the

family that reaches the singularity the one that has minimal entropy. Thus, our results

indicate that for λGB < 0 the holographic entanglement entropy can explore all the way to

the singularity. For later times the two families join and again and HEE no longer explores

close to the singularity.

Note that throughout the literature related to GB (violation of η/s, hyperbolicity,

quasinormal modes etc.), the effects depend crucially on the sign of λGB. As previously

mentioned, in [21] the authors found that for negative values of the coupling, GB gravity

correctly reproduces qualitative effects found in weakly coupled theories. And it is precisely

for negative λGB that in the present work we find extremal surfaces (HEE) that reach the

singularity. We ellaborate on this point in the Conclusions.

This paper is organized as follows: in section 2 we summarize some known facts of GB

gravity and present the background we will use in the rest of the paper. As a warmup we

calculate spacelike geodesics in section 3 ans show that already for spacelike geodesics the

curves that reach arbitrarily close to the singularity exist when λGB < 0. In section 4 we

present the study of HEE in a Vaidya Gauss-Bonnet background for postive and negative

coupling, we explain the numerical procedure and present the results. In the last section

(section 5) we present the conclusions and several possible directions that are, in our

opinion, interesting to investigate.
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2 Gauss-Bonnet gravity

In the framework of the AdS/CFT correspondence, higher derivatives terms are expected

to arise as quantum or stringy corrections to the classical action. Thus, it is compelling

to consider an effective action where the cosmological constant and Einstein terms are

supplemented by curvature corrections. In this section we will gather some well known

facts about one particular such theory: Gauss-Bonnet gravity.

Let us consider five dimensional Gauss-Bonnet gravity. This theory is the simplest

of Lovelock theories which are known to yield second order equations of motion in spite

containing higher derivative terms in the action. They are free of pathologies and are

solvable. In fact, many black hole solutions with AdS asymptotics are known [34].

The action is given by (following the notations in [35], see also [29])

Sgrav =
1

16πGN

∫
d5x
√
−g
(
R+

12

L2
+
λGBL

2

2
L(2)

)
, (2.1)

L(2) = RµνρσR
µνρσ − 4RµνR

µν +R2 (2.2)

Here GN denotes the five-dimensional Newtons’s constant, R denotes the Ricci-scalar; the

cosmological constant is given by Λ = −12/L2, where L is some length scale. Varying the

action in (2.1), we get the following equation of motion in (2.1)

Rµν −
1

2
gµν

(
R+

12

L2
+
λGBL

2

2
L(2)

)
+ λGBL

2H(2)
µν = 0, (2.3)

H(2)
µν = RµρσλR

ρσλ
ν − 2RµρR

ρ
ν − 2RρσR

ρ σ
µ ν +RRµν . (2.4)

In some sense, the tensor H(2)
µν can be thought of as an external energy-momentum tensor

sourced by the higher derivative terms.

A solution of the equation of motion (2.3) is1 [38],

ds2 = −L
2

z2

f(z)

f0
dv2 +

L2

z2

(
− 2√

f0
dzdv + dx̄2

)
, (2.5)

f(z) =
1

2λGB

[
1−

√
1− 4λGB(1−mz4)

]
. (2.6)

The background in (2.5) represents an asymptotically AdS-space black hole solution of

Gauss-Bonnet gravity where L is related to the radius of curvature and the event-horizon

is located at zeh = m−1/4. We have expressed the above solution in Eddington-Finkelstein

coordinates, which are defined by

dt = dv +
√
f0

dz

f(z)
(2.7)

where t is the boundary time. Near the boundary, where z → 0, v → t. The constant f0

has been chosen such that limz→0f(z) = f0,

f0 =
1

2λGB

(
1−

√
1− 4λGB

)
. (2.8)

1We do not consider the solution with f(z) = 1
2λGB

[1 +
√

1− 4λGB(1−mz4)] since it contains ghosts

and is unstable [36, 37].
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we chose to normalize the coordinates in (2.5) such that at the boundary gtt/gxx|z→0 = −1.

In Poincarè patch, the background in (2.5) takes the following form

ds2 = −L
2

z2

f(z)

f0
dt2 +

L2

z2
dx̄2 +

L2

z2

dz2

f(z)
. (2.9)

Note that the parameter L is related to the AdS curvature scale L̃ as L̃2 = L2/f0. The

temperature of this solution is,

T =
m1/4

πL2

1√
f0

(2.10)

Note that the event horizon is always located at

zeh = m−1/4 (2.11)

regardless of the value of λGB. The curvature singularity that occurs at z =∞ for λGB ≥ 0

is shifted to a finite radial position,

zs =
1

√
2m1/4λ

1/4
GB

(−1 + 4λGB)1/4 (2.12)

for λGB < 0.

Finally, througout this paper we will work with very small values of the Gauss-Bonnet

coupling, λGB = ±0.05 as representativs of positive and negative Gauss-Bonnet couplings.

2.1 Time dependent background

We will now us discuss a time-dependent generalization of the background in (2.5). In

order to do so, we need to couple the action Sgrav in (2.1) with an external source term

Sext to yield

S = Sgrav + κSext,

where κ is some coupling which we do not specify here. A simple solution of the following

form can be obtained

ds2 = −L
2

z2

f(z, v)

f0
dv2 +

L2

z2

(
− 2√

f0
dzdv + dx̄2

)
, f0 =

1

2λGB

(
1−
√

1− 4λGB

)
, (2.13)

f(z, v) =
1

2λGB

[
1−

√
1− 4λGB(1−m(v)z4)

]
. (2.14)

Here m(v) is a function that is hitherto undetermined. It is straightforward to check that

the external source must yield the following energy-momentum tensor

(16πGN )κT extµν =
3

2
z3dm

dv
δµvδνv. (2.15)

Thus a null energy condition on the external energy momentum tensor will give the con-

dition m′(v) ≥ 0. Null energy condition in the bulk is related to strong subadditivity

in the boundary [39, 40]. We want to preserve both of them so we will choose a profile
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that satisfies m′(v) ≥ 0.2 Since this is a time-dependent geometry we need to identify the

apparent horizon.

A trapped surface T is a co-dimension two spacelike submanifold such that the expan-

sion of both “ingoing” and “outgoing” future directed null geodesics orthogonal to T is

everywhere negative. The boundary of the trapped surfaces is the apparent horizon.

In what follows, we will closely follow [41]. For the background in (2.13) the vectors

tangent to the ingoing and outgoing null geodesics are given by

l− = −∂z , l+ = − z
2

L2
∂v +

z2

2L2
f
√
f0∂z (2.16)

such that

l− · l− = 0 , l+ · l+ = 0 , l− · l+ = −1 . (2.17)

Now the volume element of the co-dimension two spacelike surface (orthogonal to the above

null geodesics) is given by

Σ =

(
L

z

)3

. (2.18)

The expansions are defined to be

θ± = L± log Σ = lµ±∂µ (log Σ) , (2.19)

where L± denotes the Lie derivatives along the null vectors l±. The apparent horizon is

then obtained by solving the equation Θ = 0, where Θ = θ+θ− is the invariant quantity.

In this case we find

Θ =
9

2L2
f(zah, v) = 0 (2.20)

gives the location of the apparent horizon,

zah = m(v)−1/4 (2.21)

The event horizon, on the other hand, is a null surface in the geometry (2.13),

N = z − zeh(v), Gµν∂µN∂νN = 0, (2.22)

which gives the evolution of the event horizon,

z′eh(v) = − 1

2
√
f0
f(zeh, v). (2.23)

It is clear form (2.20) that the position of the apparent horizon does not depend on λGB.

However, the position of the event horizon does albeit mildly (see figure 1).

Our goal in the next sections is to study non-local probes in (2.13) that evolves between

a vacuum AdS geometry with radius and an asymptotically AdS black hole solution of

Gauss Bonnet action (2.1). We will be particularly interested in comparing how far behind

the apparent horizon the different probes can reach. Our main interest is the behavior

of the entanglement entropy, section 4. However, we will first analyze spacelike geodesics

which already illustrate some novel features also present in the entanglement entropy.

2This implies that our solutions should produce an S(`) that is concave and monotonically increasing [39]

and we will see in section 4.2 that they indeed do.
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Figure 1. The dashed lines are the event horizons for λGB = 0.05, −0.05 The red line is the

apparent horizon which is independent of λGB and the other lines are the singularity for different

values of λGB = −.0.005, −0.05, −.5, −1. from bottom to top respectively. We have used m(v) =
1
2

(
1 + tanh

(
v

0.1

))
.

3 Spacelike geodesics

In this section we will study space-like geodesics in the background (2.13). This will serve as

a warmup to the entanglement entropy problem we will tackle in the next section. We are

interested in space-like geodesics that start and end on the boundary. That is, they connect

the two boundary points: (t, x1) =
(
tb,− `

2

)
and (t′, x′1) =

(
tb,

`
2

)
, all other coordinates are

taken to be identical at the two end points. Such a geodesic is parametrized by v = v(x)

and z = z(x) where x1 ≡ x.

To find spacelike geodesics in the background (2.13) we extremize the following La-

grangian

L =
1

z(x)

√
f0 − f(z, v)v′(x)2 − 2

√
f0v′(x)z′(x) (3.1)

The equations of motion are3

z′′(x) = Z[v(x), z(x)]

v′′(x) = V[v(x), z(x)] (3.2)

The equations of motion will be solved subject to boundary conditions

z(l/2) = z(−l/2) = z0 and z′(0) = v′(0) = 0

where l/2 denotes the distance in the boundary and z0 is the IR cutoff. The Lagrangian (3.1)

does not depend explicitly on x, the corresponding conserved quantity is,

1

z(x)2L
= C1. (3.3)

We will be working with a thin shell, m(v) = 1
2(1+tanh(v/v0)) with v0 = 0.01. As the

parameter v0 goes to zero, this function approximates a step function. Thus, in the limit

3The explicit form of the functionals Z[v(x), z(x)] and V[v(x), z(x)] are given in appendix B.
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Figure 2. Effective potential Veff(r) for m = 1 and different values of J . Left panel: λGB = .05.

Right panel: λGB = −0.05. In the lower panel we have included the SAdS case for comparison.

v0 → 0 the spacetime is given by the gluing of two static geometries. Let us pause and, to

gain some intuition, briefly study the behavior of geodesics in static Gauss Bonnet spaces.

If M(v) = m, v is a cyclic variable and its associated momentum is conserved,

−f(z)v′(x)−
√
f0z
′(x)

z(x)2L
= C2 (3.4)

Thus, in the static case we have two conserved quantities (3.3) and (3.4). It is in-

structive to find the effective potential in this case since it will illustrate the differences for

λGB > 0 and λGB < 0 that will persist in the dynamic case. Solving (3.3) for v′(x) and

substituting in (3.4) we get

z′(x)2 = E2 − Veff (3.5)

where

Veff = f(z, λGB)

(
1− J

2

z2

)
. (3.6)

For convenience we have redefined the constants as E = C2
C1

√
f0(λGB) and J = 1

C1
. In

figure 2 we plot Veff for different values of C1 as a function of r = 1/z. Note the different

behavior of the potential for λGB > 0 and λGB < 0. For λGB > 0 the potential is similar to

the Schwarzchild AdS5 (SAdS5); it reaches a maximum for some value of 0 < r < rh and

– 8 –



J
H
E
P
0
9
(
2
0
1
7
)
1
2
7

the value of the maximum grows with large J . The growth of this maximum becomes less

pronounced as we increase λGB. For λGB < 0 the potential is qualitatively different. For

small values of J it is a concave function that reaches its maximum at some rs < r < rh
similar to the positive λGB case. However, for large J the concavity of the potential

changes and reaches its maximum at the singularity rs. We identify the critical value of J
at which this change occurs,

Jcrit ∼
1

2
√
−λGB(1 + 2λGB)

. (3.7)

The existence of this different regimes in the case of negative λGB is clearly asociated with

the fact that the singularity has shifted from r = 0 to r−1
s = 1√

2m1/4λ
1/4
GB

(−1 + 4λGB)1/4.

This different behavior of Veff for λGB < 0 and λGB > 0 will be reflected in the time

dependent case.

Now we are ready to proceed with the time dependent case with M(v) in (2.13) given

by m(v) = 1
2

(
1 + tanh v

v0

)
. We want to solve the differential equations (3.2) subject to

the following boundary conditions

z(0) = z∗, z′(0) = 0, v(0) = v∗, v′(0) = 0

So far z∗ and v∗ are two free parameters that generate the numerical solutions for z(x) and

v(x). Once a solution is obtained the boundary data can be read off,

z(l/2) = z0 v(l/2) = tb.

Note that the numerically nontrivial part is to look for appropriate parameters (z∗, v∗)

such that the cutoff z0 is a small number.4 We will expand on the details of the numerical

procedure in section 4.1 when we deal with the HEE probes that is our main objective.

We solve the equations of motion and look for geodesics that cross the horizon and

are anchored at the boundary. We find that the case of negative λGB presents some new

features. There are geodesics that, as in SAdS-Vaidya, cross the horizon but do not reach

the singularity and asymptote to a limiting surface. But there is also — for some range

of parameters — a new family of boundary anchored geodesics that do reach arbitrarily

close to the singularity. It is remarkable that this strikingly different behavior depends

crucially on the sign of λGB and is present even for such a small value of the coupling as

λGB = −0.05. In figure 3 we plot some representative solutions.

4 Entanglement entropy

The proposal for computing entanglement entropy is modified acording to the formula

obtained in [28, 29]

SEE =
1

4GN

∫
Σ
d3ξ
√
γ(1 + λGBL

2RΣ) +
1

2GN

∫
∂Σ
d2ξ
√
hK, (4.1)

4Our solutions have z0 ∼ 10−5.
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Figure 3. Representative geodesics for negative λGB and different boundary time. Left panel: the

new family of solutions (red curves) that reach the singularity. Right panel: the standard solutions

(blue curves) that asymptote to a critical surface and do not reach the singularity. In both panels

the black curve is the singularity and the green curve is the apparent horizon.

where Σ denotes the three dimensional surface anchored at the two dimensional boundary

of the region A; ξ denotes the worldvolume coordinates on the surface and h denotes the

induced metric on this surface. The quantity RΣ denotes the Ricci scalar constructed from

the induced metric on Σ and the last term in (4.1) is the Gibbons-Hawking boundary term

that one needs to introduce to have well a defined variational problem. The proposal (4.1)

was initially put forward for time independent situations. In [30, 31] the authors generalize

the proposal of [28, 29] and presented a covariant prescription valid for more general theories

of higher derivatives.

Throughout this paper we will study the “rectangular strip” in the backgrounds (2.13).

Assuming translational invariance in two of the directions we can parametrize the extremal

area surface by the third coordinate, x, and we have z(x), v(x). We denote the width of

the rectangular strip `, that is `
2 < x < `

2 . The induced metric on the co-dimension two

surface is given by

ds2 =
L2

z2
(dx2

2 + dx2
3) +

L2

z2

(
1− f

f0
v′2 − 2√

f0
v′z′
)
dx2, (4.2)

where once more we have ′ ≡ d/dx. This now gives

√
γ =

L3

√
f0

1

z3

(
f0 − fv′2 − 2

√
f0v
′z′
)1/2

, (4.3)

λGBL
2√γRΣ =

(
2L3λGB

√
f0

) z′2

z3
(
f0 − fv′2 − 2

√
f0v′z′

)1/2 +
dF

dz
, (4.4)

where

F (x) =
(

4L3λGB

√
f0

) z′

z2
(
f0 − fv′2 − 2

√
f0v′z′

)1/2 (4.5)

Clearly, the total derivative term will not contribute to the equations of motion. Fur-

thermore, the dF/dx term is exactly cancelled by the Gibbons-Hawking term.5 Thus, the

5Note that in [30, 31] the prescription does not include a boundary term and dF/dx is not cancelled.
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functional that needs to be extremized is given

SEE =
L3

4GN
√
f0

∫
dx

z3

[(
f0 − fv′2 − 2

√
f0v
′z′
)1/2

+
2λGBf0z

′2(
f0 − fv′2 − 2

√
f0v′z′

)1/2
]
. (4.6)

The equations of motion derived from (4.6) are,

z′′ =
Fz(z, z

′, v, v′)

G(z, z′, v, v′)
(4.7)

v′′ =
Fv(z, z

′, v, v′)

G(z, z′, v, v′)
(4.8)

where we are not writing explicitly the x dependence in z(x), v(x) and ′ denotes derivative

with respect to x.

Fz =
√
f0f(z, v)

[√
f0v
′2 [(6λGBzz

′2 − z
)
∂zf(z, v)− 24z′2

]
(4.9)

+ 4zv′3z′∂zf(z, v) + zv′4∂vf(z, v) + 6f
3/2
0

(
2λGBz

′2 − 1
)
− 24f0v

′z′
(
λGBz

′2 − 1
) ]

+ v′2f(z, v)2
[
zv′2f (1,0)(z, v)− 24

√
f0v
′z′ − 12f0

(
λGBz

′2 − 1
)]

+ f0zv
′[v′∂vf(z, v) + 2z′∂zf(z, v)

] [
6λGB

√
f0z
′2 −

√
f0 + 2v′z′

]
− 6v′4f(z, v)3

Fv = zv′∂zf(z, v)

[
− 2
√
f0z
′ [v′2 − 4λGBv

′2f(z, v) + 4f0λGB

]
(4.10)

+ v′
[
f0 − v′2f(z, v)

]
+ 10f0λGBv

′z′2
]
− 2

[
f0 − v′

(
v′f(z, v) + 2

√
f0z
′
)]

×
[
2
√
f0

(
λGBzv

′2∂vf(z, v) + 3z′
(√

f0λGBz
′ + v′

))
+ 3v′2f(z, v)− 3f0

]
G = 2

√
f0z

[
(4λGBf(z, v) + 1)

(
v′2(−f(z, v))− 2

√
f0v
′z′ + f0

)
− 6f0λGBz

′2
]

(4.11)

We will solve these equations of motion subject to the initial conditions,

z(0) = z∗, z′(0) = 0 (4.12)

and,

v(0) = v∗, v′(0) = 0. (4.13)

Thus a particular solution is labeled by (z∗, v∗). We are interested in (z∗, v∗) that

produce surfaces anchored at the boundary. We also want relate this constants to boundary

quantities ` and tb. The numerical procedure used to do this is explained below.

It is clear that the solutions of the extremization procedure will be the same whether dF/dx is present or

not. However, the value of the entanglement entropy might change. In the present case one can check that

the contribution of dF/dx is divergent and thus will be subtracted after normalization.We thank Tomás

Andrade for comments on this issue.
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4.1 Numerical procedure

In order to solve the equation of motion numerically we employ the Dormand-Prince

method [42]. This method, widely used to solve systems of differential equations, uses

six evaluations to compute the fourth and fifth order solutions and employs them to esti-

mate the relative error. Once the the error is determined, the program uses an automatic

step adjusting procedure. In the present work we use the C language implementation of

the Dormand- Prince method provided by [43]. Notice that the homology condition, in this

case equivalent to demanding that the surface is anchored at the boundary, is not included

a priori on the system of differential equations. Thus, imposing the homology condition

serves as a criterion to select “good” initial conditions. Because the solutions diverge at the

boundary, it is not possible to set the initial conditions there. Fortunately, the symmetries

of the problem guarantee the existence of a maximum point z∗,

z(0) = z∗, z′(0) = 0 (4.14)

Eq. (4.14) fixes the initial conditions for z(x). In a similar way we impose the initial

conditions for v(x),

v(0) = v, v′(0) = 0. (4.15)

Tus, we can parametrize the set of all solutions by (z∗, v∗). To relate the parameters (z∗, v∗)

with the parameters at the boundary (`, tb) we notice that by symmetry,

z(±`/2) = 0 and v(±`/2) = tb. (4.16)

These equations establish a relation between the two set of parameters. However, it is

not possible to solve them in closed form. Instead, we proceed numerically and scan de

parameter space (z∗, v∗) in the region z∗ ∈ (0, 10] and v∗ ∈ [−10, 10]. We divide the intervals

in different subregions and use a grid of 600× 600 or 800× 800 within each subregion. The

grid size and the region to explore were chosen to maximize the number of curves satisfying

the homology condition and crossing the apparent horizon. In order to solve the system of

differential equation over the grid in a more efficient way we divide the process into 10 or

20 parallel processors. Once we have a list of (z∗, v∗) that produce solutions anchored at

the boundary, the values ` and tb can just be read off using (4.16). Note that the precision

with which those values are determined depends on the grid step, we keep a precision in

the boundary condition determination of ±0.05

Having a set of solutions that satisfy the homology condition we proceed to calculate

the entanglement entropy which is given by the functional (4.6) evaluated on-shell. This

integral is divergent at the boundary. In Einstein gravity this is solved using the conserved

quantity to write the integral in terms of z, imposing a UV cut-off z0 and subtracting the

divergent contribution. In static Gauss-Bonnet backgrounds the divergent contribution can

be computed in a similar way by subtracting the vacuum contribution. However, it will de-

pend on λGB since vacuum Gauss-Bonnet is an AdS space but with a λGB dependent radius.

In the dynamic case we have to impose a UV cut-off in a consistent way, i.e. that

will match the static cut-off in the asymptotic late time limit. In order to achieve this
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we employ the numerical integration algorithm itself. We impose a desire precision and a

maximal number of step reduction, once reached those values the integral is declared as

divergent and the integration finished at that value of x.

4.2 Results

We carried out a numerical study of HEE in backgrounds with λGB = 0.05 and λGB =

−.05 as representatives of theories with positive and negative λGB. We summarize our

results below:

• For positive λGB the behavior of the extremal surface solution of (4.7) is qualitatively

similar to the case of Einstein gravity, the probe reaches behind the horizon but

does not reach the singularity. However, if we denote rEH
min the minimum reached in

Einstein gravity and r̃min the minimum reached when λGB > 0, the difference is that

r̃min & rEH
min, thus the entanglement probe explores less spacetime behind the horizon

in the case of λGB > 0, see figure 4.

• For λGB < 0 the behavior is strikingly different. For early times and ` ≥ 2.5 a new

family of solution appears. That is, for a given tb and ` two solutions are possible:

one that behaves just like λGB > 0, we denote this family M0, and one that probes

arbitrarily close to the singularity, MS , figure 5.

• We studied the minima, rmin, reached by the extremal surfaces when λGB < 0 and

present the results in figure 6, left panel. We can see that for early times the family

MS probes arbitrarily close to the singularity rSmin ∼ rs, where r−1
s is defined in (2.12).

As time increases rSmin becomes larger and for later times the minima converge such

that rSmin ∼ r0
min ∼ r̃min ∼ rEH

min.

• After evaluating the entanglement entropy functional (4.1) we find that the one that

penetrates deeper behind the horizon is the minimal one, and thus represents the

entanglement entropy figure 6.

• In figure 6, right panel, we only present a zoom of the linear growth region to show

that the new solutions are the ones of less entropy. The later time evolution follows

the standard pattern of stabilization at the thermal value. However, for early times

the HEE seems to present a discontinuity related to the sudden appereance of the new

solutions. Corroborating the existence of this discontinuity requires more numerical

evidence and we leave it as a problem we will return to in the future.

• As a check of our solutions we calculated entanglement entropy as a function of `. The

concavity of this curve is associated with the validity of strong subadditivity [39], [44].

We find that our solutions obey SSA as expected.

• As mentioned in section 4 the prescription of for the entanglement entropy in a Gauss

Bonnet theory is not a minimal area as in Einstein gravity. It is natural to ask if

the new effects seen here for λGB < 0 are due to the extra term in the functional

or if they are already present in a extremal volume. In order to elucidate this point
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Figure 4. The minimum point reached by a given entanglement entropy surface for Einstein

gravity (SAdS), green, λGB > 0, red, and λGB < 0, blue. Top panel: rmin as function of the

boundary separation `. Bottom panel: rmin as function of the boundary time tb.
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Figure 5. Representatives of the two families of extremal surfaces for negative Gauss Bonnet

coupling, λGB = −.05. The family MS , red curves, contains surfaces that probe arbitrarily close

to the singularity. The family M0, dashed curves, is very similar to the SAdS and λGB > 0, they

explore behind the horizon but do not reach the singularity.
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Figure 7. Entanglement entropy as a function of ` for λGB = −.05 (left panel) and λGB = .05

(right panel).

we calculate the extremal volume for strip regions in an asymptotically AdS Gauss

Bonnet black hole (2.13) and find a similar behavior in the case of λGB < 0. We

present the corresponding figures in appendix C.

5 Conclusions and future directions

The main motivation of this work is a simple question, how far behind the horizon does

the HEE probe reach in dynamical Gauss-Bonnet backgrounds?. Much is known about the

similar question in Einstein gravity but previous studies in Gauss-Bonnet have focused

in finding the thermalization time and not in the reach of the probes. In the AdS/CFT

context higher derivative theories are interesting because they are dual to field theories
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with corrections in 1/
√
gYMN . We chose Gauss-Bonnet as example of a higher derivative

theory because of its solvability; there are black hole solutions known analytically. We take

Gauss-Bonnet as a toy model where to learn features of holographic entanglement entropy

in a higher derivative theory. As a warmup we studied geodesics in a Vaidya-Gauss-Bonnet

background. When λGB is positive there are no surprises, the spacelike geodesics behave as

in Einstein gravity. Namely, they penetrate behind the apparent horizon but not arbitrarily

close to the singularity; they asymptote to certain surface. A different and novel behavior

appears when we consider λGB < 0: the solutions become double valued. A new family of

solutions that can reach arbitrarily close to the singularity appears.

The holographic entanglement entropy prescription for higher derivative theo-

ries [30, 31] we study the entanglement entropy in a Vaidya Gauss-Bonnet background and

quantify how much behind the horizon the probes reach, rmin, and find that for λGB > 0

the probes explore less than in Einstein gravity, i.e. rGB
min > rEH

min.

For λGB < 0 we find two family of solutions: one that behaves very similar to Einstein

gravity and a new one that reaches arbitrarily close to the singularity. Having two solutions

the HRT prescription instruct us to choose the one of minimal entropy. We find that the

surfaces reaching the singularity are the ones of minimal entropy. Thus, for λGB < 0 the

holographic entanglement entropy can probe all the way to the singularity. This is the main

result of the present work. As a check of our solutions we verify the concavity of S(l)

impliying that SSA is respected.

Let us pause and take stock of our results. We found that for λGB < 0 the HEE

exhibits a striking new behavior; it probes all the way to the singularity.6 Our results

provide an explicit example -the first to our knowledge- of HEE exploring all the space

behind the horizon. Since this does not occur in Einstein gravity our work underlines

the fact that more general theories of gravity — that can potentially be duals of more

realistic field theories — present this novel behavior. Furthermore, the fact that this only

happens for the negative sign of the GB coupling points to a tantalizing connection with the

results of [21]. Recall that throughout the literature on GB holography ( violation of η/s

bound [14], quasinormal modes [23], hyperbolicity [45], etc.) the results depend crucially

on the sign of the coupling. For example the violation of the bound η/s ≤ 1
4π occurs

only if λ > 0, negative λ does not violate the bound. The work of [21] indicates that GB

with negative coupling reproduces physics of weakly coupled theories. In our work we find

that only for negative λ the extremal surfaces reach the singularity i.e. only for negative

λ the entanglement surface explores the whole space — albeit for a brief time. It is then

tempting to conjecture that this is a disctinve feature of dynamical gravity backgrounds

dual to finite coupling QFTs. This is an issue that deserves more study.

6It is natural to ask “how does the field theory see the singularity?”. The dynamical gravity problem

studied here is dual to a far-from-equilibrium process. Namely, thermalization of a strongly coupled QFT

following a global quench. The study of such processes in field theory is notoriously difficult, particularly

in strongly coupled theories. Some understanding of the evolution of the entanglement entropy in similar

settings exists but a detailed field theoretical calcutaion of this process from first principles is missing. Our

results present the expected linear growth expected of the EE. Thus, what we could surmize is that the

holographic description of this process at strong but finite coupling needs to access all of the spacetime

behind the horizon. We thank the referee for raising this question.
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Let us point some open problems and future directions related to the present work;

• Lionhearted effort: because of its time dependent nature, the problem studied here

is numerically intensive. We have concentrated in λGB = 0.05 and λGB = −0.05

as representatives of positive and negative couplings. A complete analysis scanning

over a range of values of λGB would certainly be desirable and interesting and might

uncover interesting physics as |λGB| becomes larger. In particular, the solutions for

negative λGB that can reach the singularity exist only for a very short time after the

probe has crossed the shell. It would be interesting to understand the behaviour of

these solutions as λGB grows more negative. For example, will these solutions exist for

a larger time as λGB becomes more negative? Or is the opposite true, that for larger

negative λGB these solutions cease to exist? The only way to answer these questions

is a full numerical analysis over the λGB parameter space. Another issue that could

be investigated is if beyond the range of tb studied here the entanglement entropy is

continuos or not. Our preliminary results seem to indicate that it is discontinuos if

λGB < 0 but more numerical evidence is needed.

• An inmediate generalization of the present work would be to study spacetimes bound-

ary regions other than the strip, in particular spherical regions.

• It would be interesting to ask the same question investigated here in other higher

derivative theories like more general Lovelock theories where many black hole solu-

tions are known [34]. Also, thermalization in hyperscaling violating backgrounds was

investigated in [46, 47] and higher derivative corrections in [48, 49]. Thus, extending

the present work to hyperscaling violating geometries seems a viable and interesting

endeavor.

• In the same spirit of understanding how much of the bulk does the HEE probes, it

would be interesting to consider an asymptotically global AdS static black hole in

Gauss-Bonnet gravity and study the entanglement shadow. We expect that entangle-

ment shadow will increase or decrease (as compared to Einstein gravity) depending

on the sign of λGB.

• It would be interesting to perform as similar study with different holographic probes

like the causal holographic information. The acausality of the boundary theory or

the breakdown of hyperbolicity in the bulk [45] for finite λGB might be reflected in

some particular behavior of the causal holographic information surface χA.

• In [50] a formalism was developed to study black hole formation in a weak field limit.

As shown in [51] some of the interesting physics discovered using the Vaidya model for

charged black holes [25] can be captured in the weak field approach. Although valid

only after a certain time after collapse, the advantage of the perturbative approach

is that it is numerically simpler. Thus, it would be interesting to investigate scalar

collapse in a Gauss Bonnet theory in the weak field limit and see if some of the results

presented here can be also obtained in that framework.

We hope to return to some of these problems in the near future.
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A Gibbons-Hawking term

In this appendix we provide details of the calculation of the boundary term,

SGH =

∮
∂Σ

√
hK. (A.1)

To fix notation, recall that the integral (A.1) is over the boundary of the codimension 2

surface Σ with induced metric γ, h is the metric induced at the boundary and K the trace

of the extrinsic curvature of Σ.

As we saw in (4.2), the metric induced in the co-dimension two surface is

γabdx
adxb =

L2

z2

(
1− f

f0
v′2 − 2√

f0
v′z′
)
dx2 +

L2

z2
(dx2

2 + dx2
3), (A.2)

The unit norm vector perpendicular to the boundary is clearly in the x direction,

η =

(
L

z

√(
1− f

f0
v′2 − 2√

f0
v′z′
)
, 0, 0

)

the trace of the extrinsic curvature is then

K = γab∇aηb = 2
z′
√
f0

L
√
f0 + fv′2 − 2

√
f0v′z′

Now, the determinant of the metric induced at the boundary is simply L2

z2
. Thus we have

SGH =

∮
∂γ
dx2dx32L

z′
√
f0

z2
√
f0 + fv′2 − 2

√
f0v′z′

which exactly cancels the term
∫
dF
dx in (4.4).

B Equations of motion

B.1 Extremal volume

L =
1

z3

√
f0 − f(z, v)v′2 − 2

√
f0v′z′ (B.1)
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The equations of motion are,

z′′ =
Fz(z, z

′, v, v′)

G(z, z′, v, v′)
(B.2)

v′′ =
Fv(z, z

′, v, v′)

G(z, z′, v, v′)
(B.3)

where we are not writing explicitly the x dependence in z(x), v(x) and ′ denotes derivative

with respect to x.

Fz =−
(

6f(z, v)2v′2 + f(z, v)(6f0 + 12
√
f0v
′z′ + zv′2∂zf(z, v)) (B.4)√

f0zv
′ (v′∂vf(z, v) + 2z′∂zf(z, v)

) )
Fv = 6f0 − 12

√
f0v
′z′ + v′2(−6f(z, v) + z∂zf(z, v)) (B.5)

G = 2
√
f0z (B.6)

B.2 Geodesics

L =
1

z

√
f0 − f(z, v)v′2 − 2

√
f0v′z′ (B.7)

The equations of motion are,

z′′ =
Fz(z, z

′, v, v′)

G(z, z′, v, v′)
(B.8)

v′′ =
Fv(z, z

′, v, v′)

G(z, z′, v, v′)
(B.9)

Fz = −
(

2f(z, v)2v′2 + f(z, v)(2f0 + 4
√
f0v
′z′ + zv′2∂zf(z, v)) (B.10)√

f0zv
′ (v′∂vf(z, v) + 2z′∂zf(z, v)

) )
Fv = 2f0 − 4

√
f0v
′z′ + v′2(−2f(z, v) + z∂zf(z, v)) (B.11)

G = 2
√
f0z (B.12)

C Extremal volume results

In order to understand if the effects found for λGB in the entanglement entropy are due to

the correction in the prescription for (4.1) or are inherent to extremal surfaces in Gauss-

Bonnet we study volumes in the background (2.13). These are purely geometrical objects

that are not dual to any observable in the field theory. We find, figures 8, 9, that for

λGB < 0 there are extremal volume surfaces that, for early times, reach the singularity.
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Figure 8. Left panel: r vs v profile of representative geodesics with λGB = −0.05 and fixed

` = 1.35. Right panel: r vs v profile of representative geodesics with λGB = −0.05 and fixed tb = 2.
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Figure 9. Left panel: x vs z profile of representative geodesics with λGB = −0.05 and fixed

` = 1.35. Right panel: x vs z profile of representative geodesics with λ = −0.05 and fixed tb = 2.
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