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more general. It is applicable to any states in local equilibrium rather than just thermal
density matrix perturbed by external background fields. Finally we elaborate the formu-
lation for a conformal fluid, which contains some new features, and work out the explicit
form of the entropy current to second order in derivatives for a neutral conformal fluid.

KEYWORDS: Effective Field Theories, Space-Time Symmetries, Quantum Dissipative Sys-
tems

ARrRX1v EPRINT: 1701.07817

OPEN AcCESs, (© The Authors.

Article funded by SCOAP?. https://doi.org/10.1007/JHEP09(2017)096


mailto:paolog@uchicago.edu
mailto:michael.james.crossley@gmail.com
mailto:hong_liu@mit.edu
https://arxiv.org/abs/1701.07817
https://doi.org/10.1007/JHEP09(2017)096

Contents

5 O Qa @ » @®

Introduction

Action for fluctuating hydrodynamics
2.1 Action in the fluid spacetime

2.2 Formulation in physical spacetime

2.3 Consequences of local KMS condition

Classical limit
3.1 Small A expansion
3.2 Physical space formulation

Dynamical KMS symmetry
4.1 Proposal

4.2 The classical limit

4.3 Open issues at finite A

Dynamical KMS invariance and entropy current

5.1 Dynamical KMS invariance

5.2 Explicit tensor analysis to first order in derivative expansion
5.3 Entropy current

Frame choices from field redefinitions

6.1 General discussion of field redefinitions

6.2 Landau frame and generalized Landau frame

6.3 First order action in the generalized Landau frame
6.4 Dynamical KMS condition in Landau frame

6.5 Entropy current in Landau frame

Conformal fluids at second order in derivatives
7.1 Conformal fluids

7.2 Analysis at second order

7.3 Entropy current at second order

Conclusions and discussions

A simple argument

Absorbing V# by total derivatives

A special basis

Action for conformal fluids in fluid spacetime

Useful identities

© oo O O

11
11
13

15
16
17
19

19
19
22
23

24
24
26
27
29
30

31
32
34
35

36
37
37
38
39

41




1 Introduction

For a quantum many-body system in local thermal equilibrium, in generic situations,
the only long-lived modes are those associated with conserved quantities such as energy-
momentum tensor and conserved currents for some global symmetries. Recently, using this
as a starting point we proposed a new formulation of fluctuating hydrodynamics as a univer-
sal low energy effective theory of a quantum many-body system at a finite temperature [1].!
The theory gives a path integral formulation of hydrodynamics which systematically incor-
porates effects of fluctuations, including nonlinear interactions involving noises as well as
non-equilibrium fluctuation-dissipation relations. The conventional hydrodynamical equa-
tions of motion are recovered as saddle point equations, and the stochastic hydrodynamics
is recovered by truncating the noise part of the action to quadratic level.

We now summarize the salient aspects of the theory of [1]. For definiteness we will
consider a system with a U(1) global symmetry. Consider the closed time path (CTP)
generating functional for the stress tensor and U(1) current in a thermal density matrix pg

eVl gz Azl = Ty [U(+OO7 _OO§91,uVaA1M)p0UT(+OO,_00592/11/7/12/1)} (1.1)
— /DXlDX2 eifhydro[X1,g1,A1;X2792,A2} (1'2)

where U(t2,t1; guv, A,) is the evolution operator of the system from ¢; to ¢z in the presence
of a spacetime metric g, (sources for stress tensor) and an external vector field A, (sources
for the U(1) current). The sources are taken to be slowly varying functions and there are
two copies of them, one for each leg of the CTP contour. The second line (1.2) should
be imagined as obtained by integrating out all the fast modes of the system with xi2
denoting the remaining slow modes (hydrodynamical modes), and Ihydro is the effective
action for them. Again there are two copies of hydrodynamical modes. While in practice
the integrations from (1.1) to (1.2) cannot be done, Ipydr, can be obtained as the most
general local action once we have identified the dynamical variables x1 2 and the symmetries
Lydro should obey.

In [1] we developed an “integrating-in” procedure to identify the slow degrees of free-
dom associated with a conserved quantity. For the stress tensor this leads to a doubled
version of the Lagrange description of fluid flows, with the corresponding x12 given by
mappings X f o(0”) between a “fluid spacetime,” whose coordinates ¢ label fluid elements
and their internal clocks, and the two copies of physical spacetimes with coordinates X f 9
respectively. See figure 1. The slow degrees of freedom for the U(1) current are ¢j2(c®)
which can be interpreted as U(1) phase rotations in two physical spacetimes associated for
each fluid elements.? One also needs to introduce an additional scalar field 7(c®) which
gives the local proper temperature in fluid spacetime

—— =Tpe 7). (1.3)

LFor other recent discussions of fluctuating hydrodynamics, see [2-16, 16, 17, 17-21] and in holographic
context [22-24].

2Other recent work which uses effective action from CTP to describe fluctuating hydrodynamics in-
clude [11, 14-17]. In particular similar variables were also used in [11-17].
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Figure 1. Relations between the fluid spacetime and two copies of physical spacetimes. The red
straight line in the fluid spacetime with constant o* is mapped by X {‘ ,(c%, o) to physical spacetime
trajectories (also in red) of the corresponding fluid element.

Ty = % is the temperature at infinities where we take all external sources and dynam-
ical fields to vanish. Note that there is only one 7 field rather than two copies. The
standard variables such as local velocity and chemical potential are built from symmetric
combinations of Xﬁ 9, 1,2, while their antisymmetric combinations can be interpreted as
corresponding “noises.”

It turns out these variables are not enough. In order to ensure the unitarity of (1.1)
one needs to introduce anti-commuting partners (“ghosts”) for dynamical variables and
require the full action to satisfy a BRST-type fermionic symmetry.® In this paper we will
focus on the bosonic part and so will suppress all ghost variables below. The structure
with ghost sector is elucidated in [26, 27].

In terms of variables described above (1.2) can be written more explicitly as

Wl Aviga, Aa] — / DX1DX3Dipy Dipy D ¢ Thvavolhin. Bisha. Bt (1.4)

where (s = 1,2 and no summation over s)

M v H
hsab(a) = %{fjgsuu(xs(a))aaﬁ7 Bsa(a) = %{:VZASM(XS(U)) + 8&905(0) . (1'5)
hi,2 are pull-backs of the spacetime metrics to the fluid spacetime and similarly the first
terms in By o are pull-backs of spacetime vector sources. Due to conservation of the stress
tensor and U(1) current, Wgi, A1; g2, A2] should be invariant under independent diffeo-
morphisms of the two copies of spacetime and independent gauge transformations of Ay, As.
This is ensured by Ipyqro being a local action of hy 2,7, B1 2. By construction hy 2 and By o

are invariant under (s = 1,2)

0X) ox? 0X
g;uu(X;) = 3X§“ angsAp(XS)a A;u(X;) = @AsA(XS)a X;M(U) = f¥(Xs(o)) (1.6)
A;u = Ay — 8M)\3(X3), 90;(0) = ps(0) + As(Xs(0)) (1.7)

for arbitrary functions fi, fo and A1, Ao.

3The need for anti-commuting degrees of freedom and BRST symmetry in path integral formulation
of stochastic systems has been well known since 1970’s. See e.g. [25] for a review. Their presence for
fluctuating hydrodynamics has also been discussed recently in [16-19].



Iydro further satisfies the following symmetry conditions:
1. Invariant under spatial and time diffeomorphisms in the fluid spacetime
o — o' (a"), o’ = o° (1.8)
o' = 0" = f(a° 0", ol — ot (1.9)
These symmetry conditions define a fluid.

2. Invariant under a diagonal spatial-dependent shift

Or = or — A0, Pa = ¢a (1.10)

with ¢, = %(901 + p2) and @, = @1 — ¢2. This condition specifies a normal fluid as
compared to a superfluid.

3. Invariant under a Z reflection symmetry
Inyarolh1, Bis ha, Ba; 7| = —Inydro[h2, Ba; hi, Bi; 7] (1.11)

which is needed to be consistent with the behavior of (1.1) under complex conju-
gation. The condition implies that I;yqr, must be complex and in particular the
imaginary part of the action must be even under exchange of 1,2 indices. For the
path integral (1.4) to be bounded we further require that

Im Ihydro > 0 (1.12)
for any dynamical variables and external sources.

4. Vanish when we set all the sources and dynamical fields of the two legs to be equal, i.e.
I[h,B;h,B;7] =0 . (1.13)
Equations (1.11)—(1.13) are all consequences of unitary time evolution.

5. Local KMS condition which can be stated as follows. Setting the dynamical fields to
“background” values

1
Xiy =0, 12=0, € =+/—gr0, groo= 5(9100 + g200) - (1.14)

in the action and denoting the resulting expression as Is[g1, 41; g2, A2, we then im-
pose that

15[9179271417142] - IS[§17§27A17A2] (115)
where the tilde variables are defined as

1w () (—t+1i0,—7), Ay (x) = Aru(—t +1i0, —7),

SO . | (1.16)
g2;w(x) = gQ,uu(_t - Z(ﬁo - 9)7 _f)7 A2u(x) = A2u(_t - Z(BO - 9)7 _{E) .



for arbitrary € € [0, Sp]. This condition is to ensure that for py given by the thermal
density matrix (1.1) satisfies a condition* obtained by combining the Kubo-Martin-
Schwinger (KMS) condition with PT

Wigi(z), A1(x); g2(x), A2(z)] = Wlgi(z), A1(2); g2(x), A2 ()] . (1.17)

The action Ihydrolho, Bo; hi, B1; 7] is then obtained as the most general local action consis-
tent with the above conditions. In particular, at the level of equations of motion the local
KMS condition recovers all the standard constraints of hydrodynamics from the entropy
current condition and linear Onsager relations. Furthermore, it leads to new constraints
from nonlinear generalizations of the Onsager relations, and non-equilibrium fluctuation-
dissipation relations.

In this paper we further develop the formulation in a number of ways:

1. We work out in detail the classical limit of Ijygr,. There are many simplifications
in this limit. In particular, this enables a transparent formulation of the fluctuating
hydrodynamics in physical spacetime in the presence of arbitrary external fields. It
also helps to clarify issues related to field redefinitions and frame choice.

2. We replace the local KMS condition by an alternative formulation, which directly
acts on the dynamical fields. To distinguish it from (1.15) we will refer to it as dy-
namical KMS symmetry (or condition). The dynamical formulation is equivalent to
the previous one in the classical limit, but is more convenient to implement and more
general. It should be applicable to any states py in local equilibrium rather than
just thermal density matrix perturbed by external background fields. The dynamical
formulation has been recently used in [28] to prove the local second law of thermo-
dynamics and also leads to an explicit construction of the entropy current from a
Noether-like procedure.

3. We elaborate the formulation for a conformal fluid, which contains some new features.
We also give the explicit action of a neutral conformal fluid to the second order in
derivatives and work out the corresponding entropy current following the general
construction presented in [28].

The plan of the paper is as follows. In next section to help set up the notations we
review the action of [1] as well as implications of the local KMS condition. In section 3
we discuss the classical limit. In section 4 we present the formulation of dynamical KMS
symmetry. In section 5 we discuss the implications of dynamical KMS symmetry on the
action in the classical limit and work out the entropy current to first order in derivatives. In
section 6 we discuss field redefinitions and frame choices. In section 7 we discuss formulation
of fluctuating hydrodynamics for a conformal fluid, and work out the action and the entropy

*As explained in detail in [1], KMS condition relates W to a time-reversed one. To obtain a condition
on W itself one needs to combine it with a time reversal symmetry. Depending on the situation one could
combine it with 7 or PT or CPT. For our discussion of effective theory for a charged fluid we choose PT
for definiteness.



current for a neutral conformal fluid to second order in derivatives. We conclude with a

brief discussion of the quantum regime in section 8.

2 Action for fluctuating hydrodynamics

In this section to set up the notations we review the action for fluctuating hydrodynamics
for a relativistic system with a U(1) global symmetry. We will only be concerned with the

bosonic action.

2.1 Action in the fluid spacetime

To implement separate spatial and time diffeomorphisms (1.8)—(1.9), it is convenient to
decompose hi2 and Bj 2 into objects which have good transformation properties under
them (below s = 1,2)

hsgpdo®do® = —bg (dao - vsidai)2 + asijdaidaj,

Byado® = pgb(de® — vgdo®) + bydo® . (2.2)

To implement (1.11)—(1.13) it is convenient to further introduce symmetric and anti-
symmetric combinations (r — a variables)

1 1
E, = 3 (b1 + b2) , Eq =log (by'b1) Vai = Er(v1i — v2i), Vi = §Er(121i + v2;),
(2.3)
1 1 1 - 1
Arij = §(a1i]~ +a2j), Xa= 5 logdet(ay a1), = =log (a2 al) , (2.4)
1 1
o = 5(#1 + p2), fa = p1 — M2, bri = 5(512‘ +b2;), bg; = by — by (2.5)

where a1 2 denotes the unit determinant part of aj o and thus = is traceless. Note that 7
should be considered as a r-variable. u, can be identified as the local chemical potential.

The most general action which satisfies the symmetries listed in the Introduction can
be readily constructed using (2.3)—(2.5) and their derivatives

Tiyero = / dlo \JarE, L (2.6)

where £ is a scalar under (1.8)—(1.9), and can be written as a double expansion in terms of
the number of a-type fields (i.e. expanding in noises), and the number of derivatives. More
explicitly,

Thydro = W4 7@ 4o L=LD 4@ 4. (2.7)

where £(™) contains m factors of a-fields. From (1.11), £(™ is pure imaginary for even m
and real for odd m. Each £("™ can be further expanded in the number of derivatives

£ = p00) L p0l) (2.8)



with £0™) containing m derivatives. To first order in derivatives the most general £V

can be written as®

LY = —fiE, + foXa + fava — gEijDoamj — MVD;E, — Xoc Doby; + A2V, Dob,;
X016t DBy + As DtV + Ne Digt, Vi 4 Ay Dy, + Ag Digurcl, + - - - (2.9)

where f1 23 can be further expanded in derivatives as

f1 = €0+ f11DoT + f12Dg (log v/ det ar> + f138Y(0)Doji + higher derivatives, (2.10)
fo = po + fo1DoT — fao Dy <10g v/ det ar) + f23,8_1(0')D0,LAL + higher derivatives, (211)
f3 = no+ fs1DoT + f32Dy (log \/det a,,> — f33ﬁ_1(U)D0ﬂ + higher derivatives . (2.12)

In the above expressions indices are raised and lowered using a,., all coefficients are all real
functions of y,. and S(o), and®

Vg = Mg + Ea,“ra /l = MT/B(U)u Cai = bgi — ,U"I”Va’iu Dobri = Dob,; — MrDiEr . (213)

In (2.9)-(2.13) we have also used various covariant derivatives. For a scalar ¢ under time
diffeomorphism (1.9), the covariant time derivative is defined as

Dog = Eiaw : (2.14)

Note that E, and V;; do not transform as a scalar under (1.9). For them one can define a
combined object

DB, = Ei (0, + 0oVi) (2.15)

.
which transforms under (1.9) as a scalar and under (1.8) as a vector. The spatial covariant
derivatives for a scalar ¢ and a vector ¢; under (1.8) are defined respectively as

D¢ = 0;¢ + vi00¢ = d;9, (2.16)
Dig; = dij — T, (2.17)

where d; = 9; + v,;,0p and
. 1 . 1.
;‘k = iaf} (djarkl + dkarﬂ — dlarjk) = F;‘k + 5@:} (Urjaoarkl + Urkaoarjl — Urlaoarjk) (2.18)

with F;k the Christoffel symbol corresponding to ay;;.
To zeroth order in derivatives the most general £(20) can be written as

—iL20) = 511 E2 4 s99X2 + 53302 + 2519 F0Xa + 2513Fava
+2893XaVq + 17 tr EZ + ’r’uvaivm‘ + 27‘12Vaicai + 7"22(25@1', (2.19)

5This is the most general form which is valid for all dimensions. For specific dimensions one may
introduce more terms using e-symbols.

5The choice of these combinations makes the coefficients of various terms in the expressions of the stress
tensor and current simpler.



where again all coefficients are real and are functions of .., 3(c). Given that £ is pure
imaginary, in order for the path integral (1.4) to be well defined, the coefficients of (2.19)
must be such that the expression is non-negative for any choices of dynamical variables.

In (2.9) and (2.19) we have not imposed (1.14)—(1.15) whose consequences will be
discussed separately in section 2.3.

2.2 Formulation in physical spacetime

The action (2.9), (2.19) is formulated in the fluid spacetime. The advantage of this formu-
lation is that the action can be easily coupled to external sources and the symmetries of
the theory are easy to implement. A shortcoming is that connections with the dynamics
in physical spacetime and the standard form of hydrodynamic equations are not manifest.
Alternatively one can formulate the effective action in the physical spacetime. For this
purpose, introduce

Xt = XU{o) - XE(0),  X*(0) = L(XV(0) + XE(0)) (2.20)
We interpret X*(o) as the motion of a fluid element in the physical spacetime (now only
one copy) and X7 as statistical and quantum noises of that motion. One can then invert
XH*(o®) to obtain o*(X*), and treat X* as the coordinates of the physical spacetime
and o”(X) as dynamical variables. Other dynamical variables X} (), ¢y 4(0),7(0) are
now all considered as functions of X* through c%(X). To emphasize that X* are now
simply coordinates and not dynamical variables we will denote them as z#. The dynamical
variables are now o%(z), X4 (), ¢r.q(z), 7(2).
The background fields then have the form

[y (m + ;X“(:E)) ;A (x + ;X“@)) . 9o <m — ;X“(:E)) , Az <ZE — ;Xa@))

(2.21)
whose arguments depend on dynamical variables X}, and thus should be expanded in X/
when performing the noise expansion (2.7) in the action. Direct formulation in physical
spacetime is complicated as one does not have a canonical definition of the spacetime
metric. The obvious candidate g = %(91 + g2) does not make sense as ¢g; and g2 transform
under independent diffeomorphisms. Thus one cannot just add them. Similar statement
applies to A = %(Al + As).” Nevertheless, one could construct the theory by inverting
the action in the fluid spacetime. For example, in the absence of background fields one
finds (2.9) can be simply written as

o= / e [T 0, Xay + J*0upa] + O(a®) (2.22)

where T and J* are the hydrodynamic stress tensor and U(1) current obtained from (2.9).

"In next section we will see these difficulties go away in the classical limit.



2.3 Consequences of local KMS condition

Now let us turn to the local KMS condition (1.14)—(1.15). We will mention its consequences
and then discuss some open issues. Applying to (2.9) and (2.19), we can group consequences
of (1.15) into three types (with the first equation of (1.14), 0 = d%z" where z# = (2, Z)
denotes the spacetime coordinates):

1. For time-independent g;o and A, [ (1) should have a factorized form to leading
order g, = g1 — g2 and A, = A1 — Ao, i.e.

IV = Wigr, Ai] = Wlga, As] + O(g3, A2) (2.:23)

where W[g(Z), A(Z)] is some local functional defined on the spatial part (with coor-
dinate &) of the spacetime and satisfies

Wg(Z), A(F)] = W(g(—7), A(-7)] . (2.24)

Applying (2.23) to (2.9)-(2.12) we find various coefficients in £(1) should satisfy
standard thermodynamic relations

Opo 9o

€0+ Po — Hno = T ng = o (2.25)
o 0 0
Po Po
=—| — =[— 2.2
€0 + Po <8T>ﬂ’ no 58/1’ (2.26)
and
A5 = A\ + ,u)\lg, A7 = —Ao1 — ,u)\g, X =Ag=0. (2.27)

Equations (2.27) reproduce the equality-type constraints from the entropy current.
Note that W may be interpreted as the partition function of the system on a station-
ary manifold with metric g, (Z) and external source A, (%), and the above discussion
derives the partition function prescription proposed in [29, 30].

2. Non-equilibrium Onsager relations

where ¢; collectively denotes g,,,, A,with ¢ labeling different components of both g
and A. G;; is defined as

5215
B dbai (x)¢rj (y) S

where the subscript S in (2.29) denotes the procedure that after taking the differ-
entiation one should set g1, = 92 = G A1y = A2, = A, with both g, and A,

Gij(x,y; ¢i(7)] (2.29)

time-independent. The notation G(- - -] highlights that it is a function of z*, y*, but
a functional of ¢;(Z). Applying (2.28) to I(Y) one finds that

A2 = Aa1, —f13 = f31, fa3 = f32, —fi2 = for . (2.30)



Note that (2.30) are the standard constraints from linear Onsager relations. To the
first derivative order of (2.9) there is no difference whether one imposes (2.28) on
the full nonlinear action (2.9) or the linearized version (around the equilibrium). But
one expects additional nonlinear constraints to start appearing at second derivative
order [1].

3. Non-equilibrium fluctuation-dissipation relations which relate parameters of £
and £2):

r= gT(U), ri = MT1(0), ri2 = —A2T(0), 1o = XT(0), (2.31)

siu = fuT(o), si2= fi2T (o), s13 = fi3T(0), (2.32)
592 = fosT(0),  s23 — —@T(U) — o T(0), sy — fT(0), (2.33)

where T'(0) was introduced in (1.3). When applying to a system near equilibrium,
i.e. setting T'(o) and p(o) to equilibrium values equations (2.31)-(2.33) reproduce
precisely the standard fluctuation-dissipation relations, yet here they are derived for
arbitrary 7(c®) and p(c®) and thus are valid for far-from-equilibrium situations.® As
discussed below (2.19), the coefficients of (2.19) have to be such that right hand side
of (2.19) is always non-negative. From relations (2.31)—(2.33), this translates into
the statement that dissipative parameters such as the conductivity, shear and bulk
viscosities are non-negative [1]. This reproduces the inequality-type constraints from
the entropy current.

Note that to the orders of derivative expansion given in (2.9) and (2.19) there is no difference
between quantum or classical regime. Neither are the results sensitive to 6g.

The local KMS prescription (1.14)—(1.15) works very well, it reproduces of all the
known constraints on hydrodynamical equations, predicts new nonlinear Onsager relations
as well as non-equilibrium fluctuation-dissipation relations. Yet there are still a number of
deficiencies. Firstly there is an ambiguity in its formulation. A key element of (1.14) is
to set the “background value” of e” to y/—gr00 motivated from that in a curved spacetime

. . . . 1
with metric g, the local proper temperature is proportional to NETTR The value /—g,00
was chosen for e” as it is symmetric in 1,2 and reduces to \/—goo when g1 = go = g. The
choice of is clearly not unique. For example, another possibility is”

T = %(10g(—9100)+10g(—9200)) : (2.34)

Secondly, while there have been many supporting evidences that the prescrip-
tion (1.14)—(1.15) indeed ensures the KMS condition (1.17), there has not been a general
proof. Thirdly, the condition (1.17) should be physically equivalent regardless of choice
of # in (1.16). But in the the formulation (1.15) this is not clear. Finally, (1.15) is not
formulated directly in the dynamical variables which makes its implementation and use

8Recall all the coefficients are functions of 7(c*) and u(a®).
“Note that at the level of (2.9) and (2.19) using (2.34) does not make a difference.

,10,



inconvenient. In particular it relies on the feature that in Ijyqr, the dynamical variables
and background fields always come together in the form of hy 2 and Bj 2. This feature will
likely not hold in the presence of anomalies.

In section 3 we discuss the classical limit of (1.4) and show that the first three issues
mentioned in the previous paragraph are all addressed in that limit. In section 4 we
introduce a dynamical formulation which acts directly on the dynamical variables.

3 Classical limit

The path integrals (1.4) describe macroscopic behavior of quantum systems with a nonzero
h. In this section we consider the classical limit & — 0. Note in the classical limit the path
integrals (1.4) survive and describe classical statistical fluctuations.

3.1 Small h expansion

Following the discussion of [1], reinstating & we can write various background and dynamical
fields as

h h h h

9ipvy = Guv + §gap,u7 92pv = Guv — 59&;},1/7 Alu - A/L + EAa/u AQ;J, = A/J, - §Aa,u, (31)
h h h h

Xp =Xt oXi, Xy =X'-oXi o1 =9+ v p2=9 = 5% (32)

and 6, 5y in (1.16) become kb, h3y. Furthermore, suppose f (") is a coefficient in n-th order
action 1™ in the a-field (noises) expansion (2.7), then f(®) can be expanded in 7 as

" 1
f():hn—l

(fc(f) +0(h) +) : (3.3)
In (1.6)—(1.7), various transformation parameters can be written as
. 1 . 1 1 1
fi =f“+§ﬁf[;, 15 :f“—§hf(§‘, A :/\+§h)\a, )\22)\—55/\1 . (3.4)

In the h — 0 limit, the two diffeomorphisms (1.6) then become: (i) physical space
diffeomorphisms
XF 5 X(X) = fA(X), (3.5)

under which X/ transform as a vector, g, gau as symmetric tensors, and A, Ay, as
one-forms, and (ii) noise diffeomorphisms under which various quantities transform as

XC/LM(0—> = X} (o) + fi/(X (o)), QQW = Yo — L, 9w A:W = Aap — Lf, Ay - (3.6)

where £,, denotes Lie derivative along a vector w#. We emphasize that (3.6) are finite
transformations. The gauge transformations (1.7) become physical spacetime gauge trans-
formation

A= Au = QANX), AL, (X) = Aau(X) + 04 (Lx,N) . ¢'(0) = ¢(0) + A(X(0)), (3.7)
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and noise gauge transformation
App(X) = Aqu(X) = 9uda(X),  94(0) = ¢a(0) + Aa(X(0)) - (3.8)

We then find that in this limit

o (a
hiah = 0 XF 0, XY 01,0 (X1) = hap(0) + 5hg,,> +O(R),

(3.9)
h
Bia = 8, X{' A1,,(X1) + Oatp1 = Ba(o) + §B§“) +O(1?),
where
hap(0) = 0u X X" g (X), W% = 0, XP0,X" Gy (X), (3.10)
Bo = 9, XPAL(X) 4 dup(0), B = 8, X Copu(X) (3.11)
Ga,uz/(X) = Gaw + LX,9pws Caop = Aau(X) + au‘Pa(X) +Lx, A, (3.12)

and ¢q(X) = @q(0(X)). It can be readily checked that C,, and Ggp are invariant un-
der (3.6)—(3.8) and transform as a vector and tensor respectively under (3.5). The cor-
responding equations for hg, Bs are obtained from (3.9) by switching the signs before the
O(h) terms. We now have

1

 Inyarollin, Bis ha, By 7] = Inyarolhan, Bai i), BSs 7] 4+ O(h) (3.13)

As before decompose hyp, and B, as

hapdo®do® = —b% (do® — v;do?)” + agdoido? (3.14)
B,do® = pb(de® — vido®) + bido . (3.15)
and
oX" o oxn
900 = bul, Uuu,u =-1, wu,=guwu, Dot = —v;but + NP, u#)\l-“ =0 (3.16)

where uf is the local velocity field. We find various quantities in (2.3)—(2.5) become

E, =b, arij = Qij, Vii=Vi=bv; by=0b;, p=p (3.17)
1 oV ITRN% e ipyv Arv J
Ea = —§U u Gal“,(X), Vai =Uu )‘z Gaulu =E=1A AJ - d— 161 Ga/.u/? (318)
1 1

Xa = §AMVGQMV pa = u"Coy + §MuuuyGauV7 bai = /\gcflll + 1A Gap

(3.19)
and

Vg = [ba + Ea,ur = UNCaua Cai = bz - M’/‘Vai = AgCau . (320)

As anticipated from (3.10)—(3.12) all a-type fields can be obtained from C,;, and Gq -
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Now let us consider the KMS condition (1.17)—(1.16) in the &z — 0 limit. Equa-
tions (1.16) can be written as

m
S = o-0). dua) = u(-a) +ilao-a) H=m () B2

where ¢ = {9, A} and ¢q = {gauw, Aau}. Note that parameter ¢ has dropped out.
Equation (1.17) can be written as

W(o(z), pa(x)] = Wp(—2), ¢a(—2) +iLp,d(—)] . (3.22)

We emphasize that in (3.22) the shift in ¢, is a finite transformation so one cannot expand
the right hand side in Lg,¢(—x). Note that under (1.14) we have

hab = Guw0l0y, B9 = guuw ooy, Ba=A,0% B = A0 (3.23)

thus the local KMS prescription (1.15) implies that the action satisfies

Ihydro [haby Bg; hfz?’ Bc(La); T] = Ihydro[ilaln Ba§ il((;ll,)y Bc(la) ) 7:] (324)

where
(o) = hap(—0), Bu(0) = Ba(—0), #o)=7(-a)  (3.25)
W% (0) = B9 (=0) + iBoBohas(—0), B (0) = B (—0) + iBoBoBa(—0) . (3.26)

From an argument given in appendix A we can then immediately conclude from (3.24) that
the KMS condition (3.22) is satisfied at tree level.

3.2 Physical space formulation

In the A — 0 limit the physical spacetime formulation is much simplified. In fact the fluid
and physical spacetime formulations become essentially the same. In this subsection, rather
than starting from the fluid spacetime formulation we present an intrinsic formulation for
the fluid action in the physical spacetime itself.

In the classical limit, in the physical spacetime the dynamical variables are c%(x), p(z),
7(z) and X} (x), ¢q(z). The background fields are g, (), A, (2), gauw (), Agp(x) wWith g,
the physical spacetime metric. The action should be invariant under: (i) physical spacetime
diffeomorphism (3.5); (ii) noise diffeomorphism (3.6); (iii) gauge transformation (3.7); (iv)
noise gauge transformation (3.8); (v) time and spatial diffeomorphisms of ¢¢ (1.8)—(1.9)
which are now “global” symmetries; (vi) the diagonal shift (1.10) which is also now a global
symmetry; (vii) equations (1.11) and (1.13) which are now imposed on physical spacetime
action; (viii) the local KMS condition.

(ii)—(iv) imply that a-fields (including both background and dynamical variables) must
appear in the combinations Gy, Cay introduced in (3.12), as these are the only combina-
tions invariant under (3.6)—(3.8), while A, and ¢ must appear through B, = A, + 0,¢(z).
By using the time diffeomorphism (1.9) we can set 0 = 2°. In the absence of parity or
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time reversal breaking, invariance under (1.8) implies that the only invariant which can be
constructed is the velocity field u* defined by

ol Hod—1
OxH Oxtd—1

ub = 1 G*, j2 = jujm GH = eHHHa—1

V7

where € is the antisymmetric tensor and indices are raised and lowered by g,, and its

(3.27)

inverse. Note that j2 is not invariant under (1.8) and by definition
ufuy, = —1 . (3.28)

It can be readily checked the definition (3.27) coincides with that in (3.16). B, is not
invariant under shift (1.10) of ¢, but

p=u'B,, F, =0,B,-0,B, (3.29)

are invariant. Note that F},, does not depend on the dynamical variables.
To summarize, the only combinations of r-variables which can appear are

B(x) = o™, ¥, p, Fu, gu - (3.30)
Sometimes it is convenient to combine the first three variables further into
gt = B(x)u(z),  p(x) = B(x)u = B"(z)By, (3.31)

where B* is now unconstrained. Any scalar functions in the action must only depend on g

and f(x).

Now introducing notation
Ga,uM = (Ga,w, QCQM), M = (/L, d), Gaud = QCa“ (3.32)

we can write the full action as

Thydro = / dz\/—g L (3.33)
with
o0 o0 1
L=t =N imgmpar,  op=4 (3.34)
— — 0 nodd

where A, denotes the collection A, = {5", [i, F},,,, g, } and we have suppressed all spacetime
indices. The n-th term in (3.34) should be understood as

f(n) [Ar)Gy = fxi??~~un,M17~-~MN (Ar; Op) Gapynay (%) - Gappn, () (3.35)

where the notation fﬁ) .

as well as derivative operators acting on G, . The whole action should be diffeomorphism

My My (Ay; 0,,) indicate it is a function of A,, their derivatives,

invariant. The first few terms can be written explicitly as

1 1 1
L= §TuMGauM + 1W“V’MNGWMGWN + gY“Vp’MNPGauMGauNGapP +--, (3.36)
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with
1 1
§T”MGWM = TH (29a,w + VMXW> + M (Apa + Oupa + XV AL+ AV, X)L (3.37)

In the first term of (3.36) by integrating by part we can move all the derivatives on Gy
into T#M = (T* J*). One should keep in mind that W,Y still contain derivatives on
G’s. From coupling to gq. and Ay, we can thus identify 7" and J* as the hydrodynamic
stress tensor and U(1) current.

Note that in derivative counting, u”, u, 3, Gaun should all be counted as zeroth order.

In the absence of g,y and Agy,, the equations of motion of (3.34) by varying with
respect to r-variables can be consistently solved by setting X4 = ¢, = 0. The nontrivial
equations of motion arise from varying with respect to XA and ¢,, and only the first term
in (3.36) is relevant leading to

YV, T — P ], =0,  V,J"=0. (3.38)

The action (3.36) can also be reached by starting from the fluid spacetime action
and inverting X#(o). In particular, applying discussion parallel to that of appendix F
of [1] one can prove that all coefficients in (3.36) can indeed be expressed only in terms
of B, fi, Fly, gy The implications from the local KMS condition discussed earlier in
section 2.3 for the fluid spacetime action can also be translated to (3.36). In section 5
we will present an alternative way to work out those constraints using the new dynamical
formulation introduced in next section.

Now let us comment on the relation with previous literature. G, and C,, already
appeared in [12]! as well as the O(a) part of the action (3.36). But in [12] it was not
clear how to extend the action beyond O(a) at nonlinear level. Here we show that these
quantities are in fact exact. Also local KMS condition was not discussed there.

The physical spacetime formulation (in the gauge ¢ = 2°) shares some common el-
ements with the formulation of [2-11], in addition to having noise fields X%, ¢, the key
differences are that: (i) in (1.8) we require general spatial diffeomorphisms while in [2-11]
only volume-preserving diffeomoprhisms are allowed; (ii) we have an additional scalar field
7 which serves as local temperature. Suppose we only require volume-preserving diffeomo-
prhisms in (1.8), then \/—;2 in (3.27) is invariant and becomes a dynamical variable which
naively may be used to replace 7. However, by definition j* is exactly conserved regard-
less of the presence of dissipation. Such a conserved quantity appears to have no place in
dissipative hydrodynamics. In our construction the full spatial diffeomorphisms get rid of

42, and we supplement that by introducing 7. The resulting S* is then unconstrained.

4 Dynamical KMS symmetry

In this section we introduce an alternative to the local KMS condition. The new formu-
lation, to which we refer as dynamical KMS condition (or symmetry), directly acts on
dynamical variables. We first discuss the proposal at finite A in the fluid spacetime and
then discuss the classical limit. At the end we discuss some open issues at quantum level.

0G0 is equal to &v, which is defined at the beginning of section 4.2, and Clo, is xj;, which is defined
below eq. (4.16) there.
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4.1 Proposal
We propose that in the absence of background fields, the action I,yqro is invariant under
the following transformations on the dynamical variables (s = 1, 2)

Xl(~0) = =0}, XL(o) —insdy,  @s(—0) = @} p5(0),  Flo)=7(-0) (41)

ins<rs ins

with 1 = —60, 7o = fp — 6. In (4.1), @, is a one-parameter () diffeomorphism generated
by vector field

. €[ 0N\
w = E (@UO> 5 br =\ _hoo (42)

and ®3 denotes its push-forward map. To implement (4.1) one needs to analytically con-
tinue ®} to complex values of A\. In (4.1) the constant shifts in X/ are chosen so that in
the presence of background fields, if we transform the background fields as (1.16), hgq, and
By, transform as

hsap(0) = @5, hsap(—0), Bso(0) = @], Bso(—0), (4.3)

s ins 7 Sa

and the fluid spacetime action is invariant
Tngarolh1, B1; ha, Ba, 7] = Ihyarolhi1, Bi; ha, Ba; 7] - (4.4)

Now using a general result in appendix A we immediately conclude that (4.1) ensures (1.17)
at tree-level of the path integral (1.4). To ensure (1.17) at the level of the full path integral
(i.e. including all loops), one needs to extend transformations (4.1) to fermionic fields,
which will be discussed elsewhere.

In (4.2) the factor 1/b, is inserted so that w® is independent of choice of ¢%. @, is a
time diffeomorphism which can be written as

ul = u (0% \), u' = o (4.5)

where u°(c%; \) is obtained by solving the differential equation

d—uo = g(u‘l) uo()\ =0)= o0 (4.6)
dx b, ’ - ' '
We then have
PIXL (o) = X[ (ulx(0)), Aps(0) = ps(ul (o)) - (4.7)

At a heuristic level, one may interpret the action of ®7, =~ as shifting 6% by inse™ where
6" is a proper time defined by d6" = b.do”. We stress that, as in (1.14), it is the appearance
of €7 in (4.2) that “defines” it as the local inverse temperature. In other words, if we had
used some other function of 7 in (4.2) then it would be that function which should be
identified as the local temperature.

We should mention that if we replace @fns in (4.1) by @7, with some arbitrary param-
eter Ay, then one will still get (4.3) with again ins replaced by As. Furthermore one can
still use the argument of appendix A to conclude that (4.1) ensures (1.17) at tree-level of
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the path integral (1.4). We now show that \s are in fact required to be in, for X% to have
the right boundary conditions. We require at spacetime infinities both the background and
dynamical fields go to zero, i.e. at spacetime infinities, the physical and fluid spacetime
coincide and the system is in thermal equilibrium. Write

XH(o) = ot + (o) (4.8)

then 7# (which does not have to be small) should go to zero at the spacetime infinities of
the fluid spacetime. In (4.6) as u® — oo, we should have w” — 1 and thus

ul (o — o0) = ¥ + )\, u' =o' . (4.9)
Now using (4.7) and (4.9) we thus find that if we use ®,, in (4.1)
XH(o — 00) = —uly (—0)0l —insdy = a0k + (As — ins) oy, o — 00 . (4.10)

We thus conclude
As =105 - (4.11)
4.2 The classical limit

Let us look at transformations (4.1) in the classical limit A — 0. With the notations
introduced in section 3 we find!*

Xt(o) = =Xt (~0), Xio) = —X2(—0) —ip"(—0) +iBY (4.12)
@(0) = —p(—0), Pa(0) = —pa(—0) = i3"Dap(—0) (4.13)

where again 0 has dropped out and
Blo) = Boe™@, BTz foul, PP =Blo)u(0) = BuXMET . (4.14)

We then find that

hab(0) = hay(—0), 2 (0) = b (=0) + iLsha(—0) (4.15)
Ba(0) = Ba(—0), B\ (o) = B{9(~0) 4 iLsB.(—0) (4.16)

where L3 is the Lie derivative along vector 5.
Note that one can use the time diffeomorphism (1.9) to set

\V —hoo =’ (417)
in which case

B = Bo <£0> (4.18)

"We note that despite some resemblance of egs. (4.12) and (4.15) with the U(1)r transformation of [17]
(see e.g. eq. (5.2) there), they are fundamentally different. Here due to an additional spacetime reflection,
the transformation is a discrete Z» transformation. Many consequences of the theory depend crucially on
this feature. In contrast a U(1) transformation will lead to completely different (physically inconsistent)
results.
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and then the Lie derivatives in (4.15)—(4.16) become ordinary derivatives along the time
direction in the fluid spacetime. Equation (4.17) is a constraint between local temperature
and X# (o) which makes them no longer independent.

One can readily check that the above transformation is Z5. The above equations can
be written more explicitly in terms of various components as

&)(O') = (I)(—O'), for &= {b, Uiy Qg My bl} s (419)

and
Za(—0) = Eq(0) +iB(0) Dot (), Xa(=0) = Xa(0) +i(0) Dolog Va(o) (4.20)
2(—0) =Z(0) +i8(0) (a_lDoa)traceless (0), bai( — ) = bui(0) + i8(c)Dobi(o), (4.21)
fia(=0) = pa(0) +if(0) Dop(o), Vai(=0) = Vai(0) +iB(0) (DiE(0) — Di7 (7))
(4.22)
Va(=0) = va(o) + iDoji(0), Cai(—0) = ¢ai(0) + i(BDob; + D;7) . (4.23)

Note that with e™ = \/—g,00, the vector field (4.2) is given by
w’ =1+ O(h) (4.24)

and equations (4.15)—(4.16) become (3.25)—(3.26). We thus conclude that in the classi-
cal limit, the new prescription is precisely equivalent to (1.14)—(1.15). As a cross check,
applying (4.4) with (4.15)—(4.16) to (2.9) and (2.19) we find indeed identical results
to (2.25)-(2.33).

Finally let us write down the dynamical KMS transformation for fields in physical
spacetime. From (4.12)—(4.13) we immediately have

5'(z) = —o'(—x), T(x) =7(-2), @@)=—p(-z), (4.25)
Xt (—z) = =Xk (z) —iB"(x) +iB,  @a(—T) = —pa(z) — iB"Oup(x) (4.26)
and thus
it (x) = v (—x), (x) = p(—=), B (x) = BH(—x), (4.27)
Gy (—2) = Gop(2) + Ligugu (), Cop(—2) = Cop(x) + LipuBy(z) . (4.28)

The above transformations are again Z5. Using the unified notations of (3.32) we can also
write (4.28) as

éa,uM(—J}) = GaMM(a:) + EiguguM(a:) = GauM(CE) + i(I)TNM (4.29)
where g,nr = (9w, 2B,) and

®,, = VB, + V.8, Qg =2Lgu By (x) =2 (Vi — B"Fu) . (4.30)
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4.3 Open issues at finite i

As in the prescription for e in (1.14), here the choice of 1/b, factor in (4.2) is not unique.
Other than that we need something to make w® independent of choice of ¢°, we do not
have other criterion to fix it further at the moment. For example, instead of using b, we
could have used v/b1by or even use by for X; and by for Xs. In the classical limit all these
choices become the same and there is a unique b. In the classical limit 6 drops out and the
dynamical KMS transformation is a Z; symmetry of the action. At finite i, under (4.2) it
does not appear that (4.1) is a Zs transformation, and it is also not clear whether different
0 yields the same physics.

5 Dynamical KMS invariance and entropy current

To elucidate further the structure of the action for fluctuating hydrodynamics at classical
level, in this section we work out the implications of invariance of (3.34) under dynamical
KMS transformations (4.27)-(4.28). We will also explicitly construct the entropy current
to first derivative order using the procedure of [28].

5.1 Dynamical KMS invariance

Under a dynamical KMS transformation (4.27)-(4.29) we find (3.34) becomes
L=35"Lm =3 A ]Gy + i®,)" (5.1)
n=1 n=1

where f("* is obtained from f(™ with a sign flip on derivatives
O (A (2);0,) = FE o (A (2); ~0,) - (5.2)
The dynamical KMS condition can then be written as
L=L-V, V", (5.3)
Taking another tilde operation on the above equation and from its Z, nature we find that
VH=VH (5.4)

where the tilde operation on V* should understood as in (5.1), i.e. one replaces G, by
Go+i®, and then flips the sign of all the derivatives. Note that this is slightly different from
the tilde operation (4.25)—(4.29) defined for individual fields. Below throughout the paper
tilde operations on a quantity which is part of a Lagrangian should always be understood
this way.

We can expand V*# in terms of the number of a-fields and derivatives

oo oo
V=S VE= iV (5.5)
n=0 n,m=0
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where V;}' contains n factors of G, and V(ﬁfb m) contains n factors of G, and m derivatives.
Equation (5.3) can then be written order by order in a-expansion as

£ = (.c)n — 9,V (5.6)

where (£),, denotes O(a") terms in £. In particular, for n = 0 we have
(Z)O — 9V (5.7)
Since ®, contains one derivative, the dynamical KMS condition (5.3) couple n-th
derivative terms in f(!) with (n — 1)-th derivative terms in f(?), (n — 2)-th derivative terms

in f®) ete. all the way to zeroth derivative terms in f(™. More explicitly, using the
notation of (2.8), L™ with a fixed I = n 4+ m couple to one another. Introducing

I N O S S YR

n=1m=0 n+m=lI n+m=l
(5.8)
we then find that (5.3) reduces to £; being separately invariant
Li—Ly=0,, 1=1,2--. (5.9)

When one considers a truncation of £ in derivative and a-expansion one should do it in
terms of £; to be compatible with the dynamical KMS symmetry.

There is a simple way to impose dynamical KMS invariance (5.6) at order O(a™) with
n > 1, which also shows that one can set Vi with n > 1 to zero by absorbing such total

derivatives into the definition of the Lagrangian.!?

For this purpose let us consider a
Lagrangian density L. of the form (3.34), then due to Zs nature of the dynamical KMS

transformations,

L= % (Ec n EC) : (5.10)

where L. is defined as in (5.1), automatically satisfies dynamical KMS invariance. Note,
however, that £, contains terms with r-fields only, and the resulting £ violates the condi-
tion (1.13). We must then further require that O(a®) terms in £, be equal to zero, which
is simply (5.7). Thus the combination of (5.10) and (5.7) is enough to ensure (5.3).

With a £ built from (5.10), only V{" is nonzero. In particular, from (5.4) V¢ should
contain only even derivative terms as odd derivative terms change sign under tilde operation
at O(a). Furthermore, one can show that the even derivative part of (5.7) is automatically
implied by (5.10) and thus one needs to consider only the odd derivative part of (5.7). Now
using (5.9) we can write (5.7) more explicitly as

(E%H)O = (5(1,2@ + LZ2n=1) 44 £(2n+1’0>> =iV, Vh n=12-- (511)
0

(0,2n) 7

12See appendix B for an alternative argument.
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or in terms of notations of (3.34)

2n+1
> BRI, Ok = v,V (5.12)
k=1

where €, = (—1)™ for k = 2m + 1,2m + 2 and f*! denotes terms with / derivatives.
After imposing (5.10) and (5.7) we will need to perform a further integration by parts
for f() terms in the Lagrangian (3.34) so that in the first term of (3.36) there is no
derivative acting on G. This can generate a nonzero V/".
As an illustration of the procedures outlined above, let us consider (3.36) up to

L=Ly+Lo+Ly+ (5.13)

i.e. to two derivatives in T*M  one derivative in WH*MN ~and zero derivative in Y#P-MNP

We will use the notation T M +6 denote terms in T*M which contain n derivatives, and
similarly for others. We thus have

1 1 {

Ly = §T6LMGWM, Ly = §T1“MGauM + 4 [éW’MNGauMGavN’ (5.14)
1 i Lo

L3 = iTQMMGauM + EW{L 7]MNGG,UM(;’LWN + éYOﬂ p7MNPGaNMGaVNGaPP : (515)

Applying (5.10) we find
1 3
T = W Ny, Wt = Sy ey (5.16)
We next turn to O(a) dynamical KMS condition (5.12) which can be written explicitly as

1 * 1 * 1 *
§THM (I)T;LM_ZW#V’MN (I)ruMq)rVN_gtup’MNP (I)r,uM(I)ruN(I)er"" = v,uvbu : (517)

At first order derivative order (5.17) gives

| —"

570 Prun = ViV
where the second subscript of V' denotes the number of derivatives. At second derivative

order (5.17) is automatically satisfied from (5.16) with V(’S 1) = 0, and at third derivative
order using (5.16) we have

(5.18)

1 1
§T5LM(I)T“M + 7%uyp7MNP<Drqu)rqu)er = V#V'u (519)

16 (0,2) *

Note that the above expression also indicates that to second order in T*M there is no
derivative acting on Gg,as in (3.36). So there is no need to do further integration-by-parts
and to the current order V{* = 0.

In [28] we showed for any theory of the form (3.34) (in the absence of a-type sources
Gapw and Agy,) which satisfies (1.12) and is invariant under dynamical KMS transforma-
tions (4.27)—(4.28), there exists a current S* whose divergence is non-negative. From [28],
to second order in derivative expansion S* can be written as

sh=Vh

o — TG, — JF (5.20)

n
) V02
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Below we will work out its explicit form to first derivative order for a general charged fluid
and show it indeed reproduces the standard entropy current. In next section we will work
out its explicit expression at second derivative order for a conformal neutral fluid.

5.2 Explicit tensor analysis to first order in derivative expansion

We now expand various tensors above explicitly in terms of 7(x),u”, fi, guv, F. The
analysis becomes rather tedious at second order in derivatives for T*™. So we will only
write down the explicit expressions for THM to first order in derivatives. In section 7 we
give the explicit expression at second derivative orders for a conformal neutral fluid.

To first derivative order the most general T#M = (T J") can be written as

T = cutu” + pA* + 2ultg”) + S JH = nut + j#, (5.21)
with
e=¢€ +he, p=po+hy, I =-n", n=ng+h, A" =n"+u'u"
he = 07 + f120 + f138”" ()0,
hp = 2107 — fa20 + fo38~ ()0,
h = [3107 + fs20 — f3387 " (x)Op
G = Aoy Ot — Ao (A/Wayli + u)\F’\“> AT AP O, 4+ A A O,

¢ = =M Ou" + A (M”ayu n u,\FA“> A, T + A AR D, i,
2
0 =u'v,, 0=V, ut, oM = APAAPP <V>\up + V,uy — dlg,\pvauo‘> (5.28)
where all coefficients are functions of 7 and . We have used notations to coincide with
the stress tensor and current following from (2.9).
At zeroth derivative order, equation (5.18) requires €, po, ng satisfy the standard ther-

modynamic relations

Jpo Jpo
€0+ Po or ) no B 8[1, ) (5 9)
with
Vi o) = poB" . (5.30)

In other words, equation (5.18) imposes local first law of thermodynamics.
To examine implications of the first equation of (5.16) we also need to write down the

most general form of
WM = N M (5.31)

with zero derivative. More explicitly we can then write

Wém’yﬁ = snu“u”uauﬁ + SQQAHVAaﬁ — slg(u“u”Aaﬁ + uauﬁA“”)

1
+ 21 (u“u(O‘AB)” - u”u(o‘Aﬁ)“) +4r (A‘WA”W —~ dlAWAaﬁ> (5.32)

WEM = —spgufu?u® + sp3 AP U + 2rulPAV ) RO = g (5.33)

W#V’dd _ 833uuu1/ + 7,22A;U/ . (534)
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Again we have chosen notations to be consistent with fluid spacetime action (2.19). It
is also convenient to decompose ®,,); in terms of transverse traceless tensors, transverse

vectors, and scalars with respect to u*

(A“AA,,P — Lf_“”}&ﬂ) Dppy = B, A0\ = Bury,  utu' Dy, = —260T (5.35)
A ®,.,, =240, A P@ryg = 2802y,  uPpuq = 20[ (5.36)

where
Vi = Ouy — AL70,T, Vo = ﬂ_lAM”V,,[L —u"Fy, . (5.37)

Now plugging (5.32)—(5.37) into the first equation of (5.16) and comparing with the first
order part of (5.21), we again recover (2.27), (2.30), and (2.31)-(2.33). Note that the
Onsager relations follow from (5.31).

5.3 Entropy current

Using (5.30), to first order in derivative expansion the entropy current (5.20) has the form
St =popt =T B, — J"ja (5.38)

which recovers the standard result. Taking the divergence of the above expression, using
equations of motion (3.38) and (5.16), (5.18) we find that

1
V,.SH = Ewg‘”’MN B0 Py = Qo (5.39)

which agrees with the general result of [28]. (2 > 0 follows from (1.12). Now us-
ing (5.32)—(5.37) we can write the right hand side of the above equation as

2 2 2
QQ = B T’J“V(T,w + r11v] + r22vy + 211901 - V9

2 2
+811(67’)2 + 82202 + %(8&)2 + 2512001 + %93,& + :;1307‘8,&] . (5.40)
Using the ideal fluid equations of motion
no 31?0) 1, < Ipo )
vy, = ————V,, or = | — 0, -op=—|—] 0 5.41
Lp €0 + Po 2 (860 o 15} a ong 0 ( )
in (2 then we find
V5" = gnaﬂ”aw + BCO* + o B3, (5.42)
where
o = LQ (Tlln% — 2T12n0(60 + po) + 7"22(60 + p0)2) s (5.43)
(€0 + po)

¢ = B (511(0=po)? + s22 + 533(0np0)? + 25120-po — 25130-P0Oppo — 25239,p0) ,  (5.44)
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with d:.py = <‘g—§g) and Oppy = (g—ﬁg)e . In the first term of (5.42) we have used
no 0

the first equation of (2.31), and o, ¢ are precisely the expressions for conductivity and bulk
viscosity identified in [1], see equations (5.113) and (5.114) there.'® We have thus recovered
the standard form for the divergence of the entropy current.

6 Frame choices from field redefinitions

Going to higher orders in derivative expansion the analysis becomes very tedious. Even
at the order of T/ and wi »MN the Lagrangian is already pretty long. In this sec-
tion we show that the Lagrangian can be greatly simplified by taking advantage of field
redefinitions.

6.1 General discussion of field redefinitions

Let us write the Lagrangian in the form
L=L1+L, (6.1)

where £; given by (5.14), T} = eputu” + poA* and J}' = nou/ are the ideal stress tensor
and current, and £, denotes the rest of the Lagrangian. Note that the separation in (6.1)
is natural as £ and £, are invariant separately under the dynamical KMS condition, i.e.

/31 - El = Z.V,uv(l(l),g)a 'Cr - ET = au‘/;“, ‘/;M =VH- Z.V('l(l),o) (6'2)

We will denote the equations of motion of £; as
E, =0, Ey =0, Ey =0, (6.3)

where
Opo 1. dpo
E, = , Ey=-0 —_— 0, FE,=-0 - 0. (64
1 = (€0 + po)viy + nova, 1 T+ (aeo)no 2 3 o+ <8n0 . (6.4)
Note that £, is the transverse part of the first equation of (3.38) while Ej 5 are related to
the longitudinal part of the first equation and the second equation by a linear transform.'4
Let us first consider field redefinitions of the a-fields

X(lzl — Xél + 5Xé77 Pa = Pa + 580a s (65)

under which

Ga = G + 2V (40X ar)s Gapd — Gapa + 20,000 + 2 (0, (6XLA,) — FudXY) . (6.6)

13To compare (5.44) with (5.115) of [1] note that Mi 23 defined there are related to d:po and dnpo as
Jpo M, Opo M;3
_ __Ms 5.45
(880)n0 MQ’ (8710 o Mg ( )

“More explicitly, V,J* = —9rnoE1 + $0anoFs and u, V,T" = d,;e0F1 — 3¢0 Fo.
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§X} and §p, can be expanded in terms of number of derivatives and a-fields, e.g.
6Xap, = 5X(S}L) + ’L(SX(gi) + 6X0(Li) + .. (67)

where 5X(§Z) contains n factors of G, nr and all terms should start at zero derivative order.
Similarly with d¢,. The corresponding 5GELZ)M have similar expansions and all terms start
at first derivative order. Under (6.5), £; is invariant and

ET — ET -+ 5a£17 6a£1 = V“Ng — EuéXg — Eld)\al — EQ&)\QQ = VHNg — EQ(SX;X (68)
Eo =(Eu, B, Es), X7 = (0X),0 1,0M2) (6.9)
where §,L, has been reabsorbed into £, N§' = T} 6 X! + Ji' (6pa + 6 XY AL), Aa1, Aa2 are
linear combinations of u,dX% and dp, + §XYA,,Y% and E,, By were defined in (6.4). In
section 6.2 we will show how one can use (6.8) to set to zero terms in L, proportional to
zeroth order equations of motion (6.4), or proportional to their derivatives.

Let us now turn to field redefinitions of r-fields. Since the full Lagrangian depends on
the r-type dynamical fields only through u*, B(z) and p, we can in fact consider nonlocal
changes of r-variables ¢*, ¢ as far as the corresponding changes in u#, i are local. Consider
field transformations o — o' 4+ do', 7 — T + 6T, © — p + dp, with

do' = 8Mai/daob(5u“, o = ;55, dop = /dUOb5u (6.11)

which result in
ut — ut + out, B8 — B+ 00, = i+ . (6.12)

out, §3, 0 can be expanded in terms of number of derivatives and a-fields, e.g.
dut = duly + idu + dul + - - (6.13)

where duf, contains n factors of Gaunr. duly starts at first derivatives while duf with & > 1
start at zeroth derivatives. Similarly with 68 and du. Under (6.12), £, is invariant and

L, — L.+ 0,.Lq, 6L = Eauéu“ + Eg10€e0 + Eqo0ng = Egqdu®, (6.14)
FEoo = (Eaps a1, Ea1) ou® = (out, deg, ong), (6.15)

where deg = 080zeg + 61100, dng = 530310 + 610,10, and

Eoy = ((60 + p0)t’ Gaap + nocaa> Al (6.16)
1 v 1 8170 v 1 apo v
Eq = iu“u Gapz/ + 5 <8€0>n0 AF Gam/a Eqo = uuca,u + 5 <8n0 - A G‘ZW’ :

We can use (6.14) to make frame changes.
Below we give some general discussion how we can use (6.8) and (6.14) to simplify the
action and the imposing of dynamical KMS condition.

5More explicitly,
a1 = —0rc0u" 5 X 0a — 6Tn0(6<pa + (SXZAV), 0o = Baﬂsoua(SXw + Baﬂno(&pa + 5X5A,,) . (6.10)
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6.2 Landau frame and generalized Landau frame

Let us first consider the O(a) Lagrangian £(1) = $THM G 0r which can be written as

1
LW = 5 (au“u” + pA 4 2ug) 4 Z“”) Gapv + (nut + j#) Cop + V, HE (6.17)

where
u, XM =, = uy gt =0, At =0, (6.18)

and H! is an O(a) local expression of fields, i.e. it is linear in Gguar, and may contain
derivatives acting on it, as well as on v*, 7 and u. Using (6.17) we can further write £ ag

L =0 4 Q¥ E, + V,HY, QY = < L e n> (6.19)
€0+ Po
where
Lio, = %Tﬁff Gapm = é(@oA’”GW + J5 A Ca + %E’“’Gaw (6.20)
and
©g = p — £0-po — NIy e, T =" - 50:1?]90 q" . (6.21)

We can further isolate parts of ©g, J', " which are proportional to ideal fluid equations
of motion E,, or to their derivatives. Then (6.19) can be written as

r — E(l)

Lan

+ Q% Eaa + Eo K + V, HY (6.22)

where K¢ is an O(a) local expression of fields, Hj is an O(a) local expression of a- and
r-type fields, and now 0, J}', 2" in ££1a)n only contain tensors which are not related by
ideal equations of motion. Terms in £() that are proportional to derivatives acting on the
zeroth order equations have been incorporated in the third term of (6.22) upon integrating
them by parts. The total derivatives generated in this step have been incorporated in the
last term of (6.22), together with HE.16

Below the Landau frame Lagrangian refers to this minimal form. By choosing field

redefinitions
u® = —Q%, OXH = —KV (6.23)
from (6.8) and (6.14) we then obtain £(1) = E&)n + V, Hf, where N}’ that appears from

doing a-field redefinitions (6.8) has been absorbed in HY'.

We can generalize the above discussion to all orders in the a-field expansion. Since
L contains at least one factor of Gy,nr, we can always separate out such a factor and
decompose the coefficient of it in terms of tensors parallel and transverse to u¥, i.e.

L= % (c‘,’u“u” FPAR 4 2ulQY) 4 S“”> Gy + N +T1) Cop + V-, (6.24)

where
S =, Q= T =0, A St =0, (6.25)

For example if £, contains a term of the form AY(VHE1)Gapw we rewrite it as —FE1VH(A"Gapy) +
VH(E1AYGapuy). The first term contributes to Eo K and the second term contributes to HY.
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and H!, is a local expression of a- and r-type fields which is at least O(a). Note
E, P, Ot S and N,Z" include terms to all orders in the a-field expansion.
Similarly as in the earlier discussion we can further write (6.24) as

1
L= ELan + QaEaa + EOJCS‘ + VN/HZL, Qa - ( Q’u, g,N) y (626)
€0+ Po

where again H/ includes H!, as well as the total derivatives that come from integrating
by parts terms that contribute to E, K¢ above, and Ly, has the form

1 1
Llon = 5@AWGW + T Cp + 58“”AN‘1A,,5Gmﬁ (6.27)
with
O =P —E0py— Npeo, J=T"— —2 or (6.28)
€0+ Po

In (6.26) we again have separated possible terms which proportional to ideal fluid equations
of motion or to their derivatives. Note that O, J}', £# correspond respectively to the lowest
order terms of ©, J#,S* in the a-field expansion. By choosing du®, XS we can then set

L= Lran+ VuH", (6.29)

where again we absorbed Nj' in Hf. We will refer to (6.27) as in the generalized Landau
frame.

There is no unique way to write the Lagrangian in the form (6.24) since for a cross
term of Gy and C,y, one can consider it to be either proportional to G, or to Cgy. As
a result the generalized Landau frame Lagrangian (6.27) is also not unique. Equivalently,
from (6.26) and (6.27), we see that £, is invariant under

jM — ju + AvEga 00— 0+ AlEal + A2Ea2 (630)

1 1
OF — QF — (eg + po)A,C, € —E— iAlA‘“’GaW, N =N — §A2AWGWV . (6.31)

where A,, A1 2 are some arbitrary scalar functions (which again has an expansion in a-
fields). One could take advantage of the freedom of (6.30) to make further simplifications.
We will now illustrate this using an explicit example.

6.3 First order action in the generalized Landau frame

To illustrate the general discussion above more concretely, let us consider £y of (5.14),
which we copy here for convenience

1 i
Lo = 5T Goprr + WM Capni oy (6.32)

T{‘M is given by the first derivative part of (5.21), Wé”"MN given by (5.32)—(5.34), and their
coefficients satisfy (2.27), (2.30), and (2.31)—(2.33). Writing (6.32) in the form of (6.24)
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we have (up to the freedom mentioned at the end of last subsection)

E =h:+ % (snu)‘up — SlgA)‘p> Ga)\p — islgu)‘C’a)\, (6.33)
P=nh —i—i 592 AM — s10u™MiP ) )G, + 523U C (6.34)
D 9 22 12 alp 23 a\ .

Q" = "+ irput AP Goyp + ir12 AN Coy (6.35)

SHY — _no-l“’ + Qier:‘“’>’ N = hy, + %(—Slgu/\up + SlgA)\p)Ga)\p + ngguACa)\ (636)

IF = j* + irput AP Gy, + iraa A Coy (6.37)
In the tensor sector we then find

S — n (iﬂ_lAauA'ByGaaﬁ o O.;u/) _ iﬁ_lnAauA/Byéaa/j(—x), (638)

where in the above we used the first of (2.31) and (4.29) (see also (5.35)).
In the vector sector, using the shift (6.30) we can choose J* so that its order O(a)
term is proportional to Cy,. We then find that J# can be written as

no no C A
P\ Aot — (A A b LoAreC,,, 6.39
J < 12+50+p0 1)1)1 < 2+€0+p0 12>Uz +if o (6.39)

where we used (2.27), the first of (2.30) and (5.43). Now using ideal equations of mo-
tion (6.4) to eliminate v1, we can write the above equation further as

T = o (i L AP Chp — vh) = i Lo AP Crp(—1) (6.40)

In the scalar sector using the shift in (6.30) we can choose the O(a) term of © to be
proportional to A* Gy, resulting in

© = (fo1 — 0:=pofi1 — Onpof31)0T — (fo2 + Ocpofi2 + Onpofa2)d

U (6.41)
+ (f23 - 85]30]012 + anp0f33)5 18M + 55 lCAMVGaum
where we used (5.44). Further using equations of motion we then find
CES <261A‘“’GW — 0> = %/B*%Aﬂ”éaw(—x), (6.42)

where to write the O(a") part of © we used (2.30) and (2.32)-(2.33).
Finally collecting the above results together we find a remarkably simple expression

£2 = £Lan = %BichuyéauuAaﬁGaa,B + Z‘/Bilo'AuaéaaCau + %BilnA“aéuﬂéauuGaa,Bv
(6.43)
where the tilded variables should be evaluated at —z. Note that Ly,, is manifestly dy-
namical KMS invariant.
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6.4 Dynamical KMS condition in Landau frame

Starting with a dynamical KMS invariant action, after field redefinition changes (6.8)
and (6.14), the resulting action is in general no longer dynamical KMS invariant. This is
fine as the generating functional W{gi, A1; g2, A2] of (1.4) should be invariant under such
field redefinitions and remains KMS invariant.!” Thus it comes as a pleasant surprise that
the action involving 7% M can be written in a manifest dynamical KMS invariant form in
the generalized Landau frame. It would be interesting to explore whether this happens at
all odd derivative orders.

In this subsection to prepare for the explicit second order analysis in section 7 we give

M

some general discussion on how the dynamical KMS condition imposes constraints on 77

at even derivative orders.

We start with the Lagrangian obtained from (5.10) for which the dynamical KMS
condition is satisfied at O(a*) for k > 1 in the a-field expansion. One only needs to
impose (5.11), which we copy here for convenience

(52n+1>0 _ (5(1,211) +r@2n-1) 4 £(2n+1,0)> — iV“V(g oy M=1,2, . (6.44)
0 b
Field redefinitions for different n’s can be treated independently, so let us now consider a
specific n. Consider a field redefinition which takes 51(},%) to the Landau frame, i.e
02— p2m) _ By — §XOE, + YV, HY (6.45)
Lan ac a Mo pite - .

Su® is of O(a") and contains 2n derivatives, while 6 X2 is O(a) with 2n — 1 derivatives.
Note none of the other £™27+1=m) in (6.44) is affected by such redefinitions.
Under a dynamical KMS transformation

e

£ = £(20) _(Buy + iBEL)0u® — Eo(6X% +iB6Y®) + V,(HY +iZ")  (6.46)

Lan

where we have used that %(—x) = ou*(z), Eo(—2) = —E4(x), and

Eoo(—2) = Ego(z) + iEL(T) . (6.47)

Since 6X¢ and H} are O(a), under a dynamical KMS transformation they must have
the form

OXg(~w) = —(6X3(2) +ipoY(2), Hl(-w)=—(Hi(2) +iZ"(@))  (6.48)

for some 0Y* and Z* which are O(a’), and the overall minus sign on the right hand
side is due to that §X¢ and Hj have odd number of derivatives. Note that the tilde
operation in (6.46) should be understood in the sense as described below (5.4). One can
readily check that (6.46) does not affect the dynamical KMS invariance at O(a), which also
follows from that dynamical KMS transformation at order O(a) does not constrain even
derivative terms in £(1).

In evaluating the path integral beyond tree-level, one will have to be careful about potential changes
in the integration measures due to such field redefinitions.
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Now plugging (6.46) into (6.44) we find that

—_— 2n+1
(z&;ﬁ”))O +3 <££«’“’2"+1—’“>>0 = iV, VI 4 iBE,(5u® + 6Y®), (6.49)

k=2

where V! = V(’é ony + Z". Note that from (6.20)

— L
<££1a)n> =1if (@09 + T3 oy + 525 UW> . (6.50)
0

In appendix C we prove that at any derivative order m and tensor rank k, one can
always choose a set of basis of the form {v)"™#* .. opt e qf TR wlt TR where
oM are not related by the ideal fluid equations (6.4), and w&' " contain at least one
factor of (6.4) or their derivatives. For later reference, we call the first ones v-type tensors,
and the second ones w-type tensors.

Now with the definition below (6.22) for the Landau frame, we can then write (6.50)

solely in terms of v-type tensors, i.e.
<££1a)n> = Z a;v; (6.51)
0 i

where a; are functions of 7 and ji. Similar we can write

2n+1

3 < Lgﬁ,znﬂm) =S b+ 3 (6.52)
k=2 0 i s
Ve = (VVE) o + D dsws (6.53)
i
where (V,V3,) . contains only v; terms. Equation (6.49) can thus be written as
A(1,2n) _ Y
(22 )0 300 = (Vi) (6.54)
(2
and
> csws = dews + iBEL(Ju® + 6Y?) . (6.55)
S S
Equation (6.54) implies when imposing the dynamical KMS condition on E&in) we can set

all terms proportional to ideal equations of motion to zero. As we will see in next section,
this provides a great simplification.
6.5 Entropy current in Landau frame

In this subsection we show that the entropy current in Landau frame satisfies the local
second law up to terms that vanish on the ideal fluid equations of motion. To this aim,
we need to carefully track the steps in going from (6.49) to the equation of the entropy
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divergence. Recall that eq. (6.49) is a manipulation of the (2n + 1)th derivative order part
of (5.7). Summing (6.49) to the lower derivative orders of (5.7) we then find

m on j+1
> (%ﬁ) +ZZ< LIt ’“) = iV, Vi + iBEa(5u” + 6Y), (6.56)
J=0 j=0 k=2 0

where V5 =37 =0 %y > and where we assume that the Lagrangian at derivative order lower
than 2n is already in Landau frame. Using (6.20) we express the first term in (6.56) in
terms of the stress tensor and the charge current,

2n j+1

Tﬁg‘j =Yy ( LFIT1=FR) > — V, Vi 4 BE,(6u® +6Y%), (6.57)
j=0 k=2 0
integrating by parts,
2n j+1
P (v2n T ﬁM) = -V, I B =iy Y ( ’J“"“)) — BEL(0u® +6Y®), (6.58)
j=0 k=2 0
where
v T{faj\gﬁM - (V T{Zn JIljan 12 )ﬁl/ +V anlu” /BM - (/BIMI&) : (659)

The O(a®) part of the exact equations of motion for the Landau frame Lagrangian is

V. I = JﬁanF#”, Vudl,, = (6.60)

and imposing the above, eq. (6.58) becomes

2n j+1

M (v% M3 ) =-iy > <.c£kvj+1—’“>>o — BE,(6u® + 6Y°) . (6.61)

7=0 k=2

Eq. (6.61) has the same form as eq. (3.13) in [28], except that in (6.61) we have an
additional term on the r.h.s. which is proportional to the ideal fluid equations of motion,
whereas the first term was shown in [28] to be always non-negative. This shows that the
entropy current Sfan in Landau frame,

n
M . _
Stan = V" = Than Bar = (o +20)8" — Hpfi+ Y V3. (6.62)
j=1
is guaranteed to satisfy the local second law at all derivative orders, up to terms that vanish

on the ideal equations of motion.

7 Conformal fluids at second order in derivatives

In this section we consider the action for a conformal fluid which has some new elements.
We will also work out explicitly the corresponding entropy current to second order in
derivative expansion using (5.20) and show that it reproduces previous results.
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7.1 Conformal fluids

For a conformal system the generating functional (1.1) should in addition be invariant
under independent Weyl scalings of two metrics

W[gl,uz/a Al,ua 92uv, AQ#] = W[EQAlgl,uw Al,LLa 6’2)\292“% A2u] (71)

where A\s(z) are scalars, and s = 1,2. For this purpose it is convenient to introduce Weyl
invariant fluid spacetime metrics

. 1 1 1
hsab(g) = thsab(a)a Bs = BOGTS(U)a =74+ 57—(17 =T — §Ta (72)
where hg,, was defined in (1.5) and 7, is defined form the determinants of h14p and hogy,
e?@ = \/det(hihy ') . (7.3)
228 (X

Under Weyl scalings g, (X) — e )gsw,, 7o transforms as 7, — 7, + A1(0) — A2(0), and

ﬁsab are invariant if 7 transforms as
27(0) = 27(0) + Ai(0) + A2(0), As(o) = As(X(0)) . (7.4)
Equation (7.1) can be satisfied if we require the action to depend only on hsap and B, i.e.
conformal fluids : I = I[hy, By; ho; Bo] . (7.5)

All the other conditions discussed in the Introduction section remain the same.

One can immediately write down the action either in fluid spacetime or physical space-
time in parallel with earlier discussions using Bisap in place of hg,p, and dropping any explicit
7-dependence. For illustration we will consider a neutral fluid. In appendix D we discus-
sion the formulation of the action in the fluid spacetime with a finite % (before imposing
dynamical KMS symmetry). Here we concentrate on the classical limit.

In the & — 0 limit using (7.2), one finds

hias = haol0) + 515, (76)
with
hav(0) = 0uXPOX" G (X), B = 0 XP 0 X" Gy (X), (7.7)
G = B2(2) 9w, Gapw = (B7(2)gaw + LX0G1) traceless = B “2(2) (Gapw) raceless »
(7.8)
where ((z) is defined as in (1.3), and the traceless part of a tensor A is defined as
(A )racetess = A = gAaBQ Guv (7.9)

with gt the inverse of g,,. The action in physical space-time will now depend on
Buagw/» Ga;w with

1 .
Bt = gaoX“, b= \/—QW(%XM&)XV . (7.10)
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For spacetime derivatives we will always use the covariant derivative ﬁ# associated with
Guv- The dynamical KMS transformations (4.29) now have the form

/Bﬂ(x) — /BM(_x)v g,uu(x) — guu(_x)7 Ga/ﬂ/(_x) — Ga,uv(‘r) +2 <@(Mﬁy)>tra0eless ((L‘) )
11)

where we use g, and its inverse to raise and lower indices. In particular, note that in
terms of usual velocity field u*,

gl =pBu,  Bu=gwB’ =B @)gwus BBy = GuBtB = —1. (7.12)

Now the action can be written as
Ihydro = /ddx V —gﬁ, ﬁ = /Bdﬁ (7'13)

with

1., 4 1 s ~ A 1. A . A
L = iTuyGa,uz/ + ZWHp,VUGaMVGapU + gyupa’yaﬂGauuGapaGaaﬂ +-e (714)

where T, WH" 0 and YHPA90 are functions of BH, G, their derivatives, and deriva-
tive operators actlng on GWM Note that since Gawj is traceless, the trace compo-
nents T Y X#rpvo Juvs .. decouple from the action, and we shall thus take such
components to be zero in what follows. From (7.11), these hatted tensors are related
to the un-hatted ones through T = B~(@+2)(gp)Trv  Jreve — g=(d+d) () [reve and
ywrearof — g—(d+6) (m)}?upa,voﬂ.

To second order in derivative expansion, the dynamical KMS conditions can be imposed
using (5.16)—(5.19). At zeroth and first order the analysis are the same as before and we find

T8 = po((d = 1)B*B" + A*)
T = = (d = 1) f2208"B" — forf A —2), 81D — fo™
WE? = (d — 1)28928 8" 8B° + 302 A AP 1 (d — 1)399(8# 57 AP + P Ar)
+ Qfll(ﬂ#ﬁ(aAﬁ)V + ﬁl/ﬁ(aAﬂ)u) + 47aAoz<uAv>ﬁ7
where all coefficients are constants,
AW = g + BB, Oy = 2@<llﬁl/>a 0= @MBM’ 0= ﬁﬂ@/ﬁ’ (7.19)

and A<H”> denotes the symmetric transverse traceless part of a tensor A*”, i.e.

ASH> = ALHA PAY — ﬁAaﬁAaﬁﬁ“ . (7.20)

Invariance of £ under (7.11) gives the following relations among coefficients in (7.16)(7.18)
.1 R “ R .
r=3m 11 = A1, S22 = f22, (7.21)

which is the conformal limit of (2.31)—(2.33). Interestingly, equations (2.27) and (2.30) are
automatically satisfied in the conformal case.
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7.2 Analysis at second order

To obtain the explicit form of the entropy current (5.20) to second derivative order, in this
subsection we work out the constraint (5.19) for a conformal fluid for which it becomes
(7.22)

T Vb + Y47 BV 5aVaBs = ViV )

where 17(‘672) = Bd(x)‘/(gz), and we have used VNV(’SQ) = B_d(:c)@uf/(’ég). To simplify the
analysis we will apply the discussion of section 6.4: we will go to Landau frame and set to
zero terms that vanish on the ideal fluid equations of motion. Note in the conformal case

the ideal fluid equations V, T}" = 0 can be written as
9B,=0, 6=0. (7.23)

The explicit expression of 74" in Landau frame is
T = IR 4 fob 677 + fa@™H 0" + L6 P0Y + f(06)7>, (1.24)

with

o = NN By, (95) = AOA50s) — T AWAPD(50g) (725

where ]%ag is the Ricci tensor of g,,, and f1, f2, ... are constant, and where again we
neglected terms that vanish on (7.23), such as §#”. Similarly after writing down the most

O ppa,vo 3
Yo

general tensor form of , contracting it with @WB,,, and setting to zero all terms

proportional to (7.23), we find for the second term of (7.22) only one term survives

%ﬁ)ﬂf’a’”"%w&pg&aﬁ = %hlc}g&”a&w (7.26)

with h; a constant. Finally, the most general expression for f/(ﬁ?) is!®
Vo = (@R 00" a9+ 0@t o (R = 3" R) 8 (120
where w? = wy,,w" and c1, ¢y, ... are constant. In writing down (7.24)—(7.27) we have

used the identities of appendix E which guarantee that these are the most general second
order expressions.
Plugging (7.24), (7.26) and (7.27) into (7.22), and using again the identities of ap-
pendix E, we find
1, 4 1 1 1 1. 4
7f58(&2) + 7f3djuawyaa'uu + 7f2 + 7h1 &g&ya&uu + 7f1Ruya'/uz
4 2 2 16 2
1 (7.28)
= 10R + 20(6%) — 230,076, + 5@2}?#”&#”,

¥ Note that below we are identifying V¥ . with V! introduced below (6.49).

(0,2)
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where in evaluating the divergence @#V(’S 5) We again neglected terms that vanish on the
ideal fluid equations. Eq. (7.28) gives the relations

1 1 1
¢ =0, cy = 1f5, c3 = _Zf?” v = fi, fa= —§h1 7 (7.29)

Note that v; does not appear in the above relations as in (7.27) it multiplies a term of zero
divergence.'? Equation (7.29) gives
1

—dy; ~ ~ v 4 DY 1. VD
Vioa) =8V = 1(f502 = [30®)B" + 01V, oM + i <R“ - 59" R> B . (7.30)

In the above analysis we did not find the relation
fs+fa—=2f=0 (7.31)

which was observed as a universal relation in holographic theories dual to Einstein grav-
ity [31]. Equation (7.31) was moreover found to be present in the first order correction
in various higher derivative theories [32, 33], but fail non-perturbatively in Gauss-Bonnet
coupling [33, 34] (which was independently verified at second order in Gauss-Bonnet cou-
pling in [35]). Our conclusion is consistent with the discussion in [33] that such a relation

cannot hold universally in hydrodynamics.

7.3 Entropy current at second order

From (5.20) the expression for the entropy current at second order, for a conformal neutral
fluid, is

S =V

by~ T8 B =V (732

0,2)

where the second equality follows from that 73" is in Landau frame. The expres-
sion (7.32) with \/(’0‘72) given by (7.30) agrees precisely with the expression previously given
in [36, 37], except that with the method of [36, 37] ¢ was undetermined (see also [38]).
Taking the divergence of the total entropy current (5.20), using the equations of mo-
tion (3.38), (5.16), (5.18) and (5.19), the third order part of the entropy divergence is

1 174 ]‘ ,VO
(VuS*)s = =5 8" Cpyy + ViV ) = 76Y0" P®, 11 ®r o ® s (7.33)
which leads to .
(VuS*)s = —§Td_3fgagamaw, : (7.34)

Note that the right hand side of the above equation does not have a definite sign. This term
is subleading in derivative expansion compared with the first term in (5.42). Altogether,
up to third order we have

1 1
VSt = §T_1770’“’0W — de_?’fQJgJ”O‘JW (7.35)

19This comes from the identity [V, V,]Jo"” = 2R,,&"" = 0, which holds without imposing the ideal
fluid equations.
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As shown in [28], the entropy divergence can always be written as a square, up to higher
derivative terms. Applying the algorithm constructed in [28] we write (7.35) as

n 1 -1 Ny 1 d—2f2 u _vo ? 1 2d—5f22 woa B vy
V.St = §T n| oo — §T ;aaa - gT Faaaﬁavau (7.36)
the last term is fourth order in derivatives, hence it can be neglected, and we are left with

a non-negative divergence.

8 Conclusions and discussions

In this paper we further developed the fluctuating hydrodynamics proposed in [1] in a
number of directions. We first elucidated the structure of the hydrodynamic action in the
classical limit, which enables a transparent formulation of the action in physical spacetime
in the presence of arbitrary external fields. It also makes connections to some of the earlier
work [2-13] clearer. We then proposed a dynamical KMS symmetry which ensures local
equilibrium. The dynamical KMS symmetry is physically equivalent to the previously
proposed local KMS condition in the classical limit, but is more convenient to implement
and more general. It should be applicable to any states in local equilibrium rather than just
thermal density matrix perturbed by external sources. We then discussed making frame
choices using field redefinitions, which can be used to significantly simplify the action
and the imposition of the dynamical KMS symmetry. We discussed how to go to the
Landau frame and generalized Landau frame. Finally we proposed a formulation for a
conformal fluid, which requires introducing some new elements. We then worked out the
explicit form of the entropy current to second order in derivatives for a neutral conformal
fluid using the method of [28]. The result agrees nicely with that in previous literature.
We explicitly verified that, while with the existing methods part of the entropy current
remains undetermined, our procedure leads to a unique expression solely by using second
order transport data.

We pointed out some open issues regarding the formulation of dynamical KMS trans-
formations in the quantum regime. There is a potential ambiguity and at the moment
there is no obvious principle to fix it.

There are also other conceptual issues in the quantum regime. For example, let us
consider a neutral conformal fluid whose only scale is then the local inverse temperature 3
which provides the UV cutoff for the hydrodynamic effective action. This is, however, also
the typical scale of quantum fluctuations. While one can treat quantum effects perturba-
tively to maintain locality, it appears that there is no separation of scales and thus not
clear whether effective field theory approach still makes sense at all in the full quantum

regime.
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A A simple argument

For this purpose, we first note a general result regarding an on-shell action: suppose an
action has a symmetry

ITx; 9] = 1[x; ¢ (A.1)
where variables with a tilde are related to original variables by some transformation, then

Ionfshell[gb] = onfshell[(b] . (AZ)

To see this, note equation (A.1) implies that

o] = x'14], (A.3)

and thus

Ton—shen [¢] = I[XCI [¢]a ¢] = I[)Zd [(b], (5] = I[XCI [q;]v é] = Ion—shell[¢] . (A4)

B Absorbing V# by total derivatives
Dynamical KMS invariance requires
L—L=0,V". (B.1)

From Zs nature of the dynamical KMS transformation, acting on (B.1) with another dy-
namical KMS transform we find

L—L=-8,V", (B.2)

where we used that W = —a,ﬁ/ﬂ, where V*# is the dynamical KMS transform of V.
We then find

V=09, VH. (B.3)

Splitting V3" from V¥, ie. V¥ =iV}' + VI, we can write (B.1) as

~ 1 - 1 -
L L= 0V + SOuVE +0,V2) = 0,V + 50 — ,VE) (B.4)
Now redefining £ — £ — 0, V{' we then find that
L—L=id,V} (B.5)

ie. all V! in (5.5) with & > 1 can be set to zero by shifting £ by a total derivative.
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C A special basis

Consider a generic tensor TH!Fk which is an nth derivative order expression of u*, T

and p. This can be expanded in terms of a list of independent order n tensors
e g 1 g

u(n)l Sy u(n)m , L.e. -
T =N (7 ) uf (C.1)
=1

where ¢;(7, ) are functions of 7 and p, and where (C.1) can be seen as a generaliza-

tion of (5.23)-(5.27). In the reminder we shall show that the list of the ué‘ﬁ)z“’“ ’s can be

rearranged into a list constituted by ! FF L WU FE and wlUTERE L PR with
i (m)1 (mp (n)1 (n)q

p + ¢ = m, such that the wéﬁﬁ Hk’s contain at least one factor of E,, E; and E, (defined

in (6.4)), or one factor of derivatives acting on them, and such that the vég)lu ¥ are not

related through the ideal equations of motion E, = 0, i.e. it is not possible to find functions

c¢i(7, ) and a tensor wH1#k such that, for some v%}f”’“,

p

= el ©2)
1#]

For ease of notation, in the reminder we shall drop the space-time indices 1 - - - up and the

subscript (n).

First we choose a list of tensors v1,..., v, among u1,..., u, that are independent
after imposing F, = 0, with p < m. Up to permutations, we can assume that v; = uq, ...,
vp = up. This clearly implies that u,41,...,u,, are generated by vi,..., v, upon using
E, =0, i.e. there are functions ¢;;(7, pt) such that

P
ui:Zcijvj—Fwi_p, i=p+1,...,m, (C.3)
j=1
where w; = 0 after setting £, = 0, for i = 1,...,q, and ¢ = m — p. The latter property
implies that w; is proportional to either of F,,, F1 or Fs, or to derivatives acting on them.
Note that the w;’s are independent from each other and from the v;’s. To see this, assume
by contradiction that, for some w;, with 1 <14 < g, there are d;(7, 1) and e;(7, ) such that

p q
w; = Z djvj + Z e;jwj, (C4)
j=1 j=1
J#i
then, from (C.3),

p p q p
Uiy = ) Cirpg0i T Y djvj+ Y ej | Ujep = Y Ciaphvn
j=1 j=1 j=1 k=1
G
(C.5)
q q
=D | citpi +di =D echipg | ui+ D e,
=1 k=1 =1
’ ki T

which cannot happen, as w; is independent from uy, with k& # 7. This concludes the proof.
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D Action for conformal fluids in fluid spacetime

In this appendix, we elaborate more on the explicit form of the conformal charged fluid
action in fluid spacetime without taking A — 0 limit.

The discussion parallels that of a general fluid in section 2.1 so we will only highlight
the differences.

Using definition (7.2), we decompose Bgap = € 25 hgyp as

heapdo®do’ = —E2 (do° — vydo?)’ + agijdo’do’, (D.1)

with

—T. —27,
Ey =e "5b, Qgij =€ " Agij - (D2)

Instead of (2.2) it is more convenient to decompose Bs, as
Byodo® = [i,Es(do® — vgido®) + bydo? (D.3)

with fis = e us and the corresponding symmetric and antisymmetric combinations fi, =
$(fi1 + f12) and i, = fuu — fiz. Instead of (2.3)-(2.5), Ey.q, Xa are now defined as

1
Ey = (B + Bp) = (e7™by + e by), E, =log(Ey 'Er) = —7, + log (b 'b1), (D.4)

N =

1 1 _
Qpij = §(a1ij + Oézij), Xa = 5 log det(a2 1a1) . (D.5)

We also have 7., introduced in section 7.1, and =, v4;, vy, bai, by; are the same as those in
section 2.1.

We will now use a, to raise and lower 4, j indices. The time covariant derivative is
the same as (2.14) except that one should use E, defined as in (D.4). and the spatial
covariant derivatives are the same as (2.15)—(2.17) except that f‘;k should be replaced by
that associated with .45, more explicitly,

X2 —

. . 1 .

= 5041 (djarks + dpaji — djogji) = TG + §Oé§~l (V70001 + V1 O0 gt — Ve Dot )
(D.6)

with I‘;k the Christoffel symbol corresponding to a..

We can write the action as
/ dlo /o, E, L (D.7)

where the integration measure /a, E, differs from that of (2.6) by some factors of 7. Note
that equation (7.5) implies that there cannot be any dependence on 7., 7, other than those
included in hggp. £ to first derivative order and £®2) to zeroth derivative order are given
by (2.9)—(2.12) and (2.19) that one should eliminate all terms which involve 7 explicitly
and all coefficients are functions of [, only.

We now write down £ to second derivative order for neutral conformal fluids. For this
purpose we need to use the the torsion t;; and various curvatures introduced in section V A3
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of [1] except that they should be accordingly modified as those associated with «;.. The
torsion t;; is defined by

[D;, Djl¢ = t; Do, tij = Er(divr; — djurg), (D.8)

and the “Riemann tensor” Rklij by

[Dy, Djl¢k = Riji' ¢ + tij Doy (D.9)
with
Ry = d;Tt, — a0 + Tl — Tl (D.10)
Note that
Rija + Riji, = —tij Docvrp.- (D.11)

and as a result, there are two “Ricci tensors”:

Rj = Riji?, R3, = Rij, (D.12)

neither of which is symmetric. We also introduce

- ~ . 1
Wix = Rpy, + R%, = —t;;08' Doy, Sik =3 < ) (D.13)
where the second equality of the first equation follows from (D.11).
Now at second derivative order £(1) can be written as
U= fiEe + foxa + )\leaiajijDoaik + /\ngaiajijtik (D.14)

gDoarij + m1 D¢aij + meDocvir, Doajia®™ + 135 + naa™ ity + 775Wij] ;
where

fi = fur + fistr (Doae ' Doaa™) + figtr (o' Dia) + firSial + fisWizald + fiott;,

(D.15)
and fo has the same structure as fi. In (D.14)—(D.15), all coefficients are constants, and
we have dropped terms which vanish on the zeroth order equations of motion:

Tr (o 'Doay) =0,  D;E, =0. (D.16)

The A — 0 limit of the second line of (D.14) gives the second order stress tensor (7.24)
with the correspondence

m=—g@hHf),  m= Ak Th),

773:—%f17 Ny = 3%(4f3+11f1)7 5 :—%(2f5+f4+f1) - (D7)
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E

Useful identities

In this appendix we present the identities used in section 7. From

[@uv @V]Ba - Ruyaﬁﬁﬁy (El)

and contracting with AW or 3,, we find

N 1 ~
R, BB = —1(02 — &) (E.2)
A ~ 1, o
06, = 2Raw,5,8°‘ﬂﬁ - 5(0‘30'0”, + @, Gaw) (E.3)
0oy = 67, Wy (E.4)
. e 1 A
ALV, V56 = 2A1V ,(Ry58°) — 5a(aﬂ), (E.5)

where R;w = ]:Z”al,", and where we used that @WB“ = 6“@,&“ = 0. We also have the
Bianchi identity V,, (RW -1 gWR) —0.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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