
J
H
E
P
0
9
(
2
0
1
7
)
0
9
5

Published for SISSA by Springer

Received: February 27, 2017

Revised: August 5, 2017

Accepted: August 22, 2017

Published: September 20, 2017

Effective field theory of dissipative fluids

Michael Crossley, Paolo Glorioso and Hong Liu

Center for Theoretical Physics, Massachusetts Institute of Technology,

Cambridge, MA 02139, U.S.A.

E-mail: michael.james.crossley@gmail.com, paolog@uchicago.edu,

hong liu@mit.edu

Abstract: We develop an effective field theory for dissipative fluids which governs the

dynamics of long-lived gapless modes associated with conserved quantities. The resulting

theory gives a path integral formulation of fluctuating hydrodynamics which systemati-

cally incorporates nonlinear interactions of noises. The dynamical variables are mappings

between a “fluid spacetime” and the physical spacetime and an essential aspect of our

formulation is to identify the appropriate symmetries in the fluid spacetime. The theory

applies to nonlinear disturbances around a general density matrix. For a thermal density

matrix, we require an additional Z2 symmetry, to which we refer as the local KMS con-

dition. This leads to the standard constraints of hydrodynamics, as well as a nonlinear

generalization of the Onsager relations. It also leads to an emergent supersymmetry in the

classical statistical regime, and a higher derivative deformation of supersymmetry in the

full quantum regime.

Keywords: Effective Field Theories, Space-Time Symmetries, Quantum Dissipative Sys-

tems, Supersymmetric Effective Theories

ArXiv ePrint: 1511.03646

Open Access, c© The Authors.

Article funded by SCOAP3.
https://doi.org/10.1007/JHEP09(2017)095

mailto:michael.james.crossley@gmail.com
mailto:paolog@uchicago.edu
mailto:hong_liu@mit.edu
https://arxiv.org/abs/1511.03646
https://doi.org/10.1007/JHEP09(2017)095


J
H
E
P
0
9
(
2
0
1
7
)
0
9
5

Contents

1 Introduction 1

1.1 Motivations 1

1.2 Dynamical degrees of freedom 2

1.3 Equations of motion 7

1.4 Symmetry principles 8

1.5 Ghost fields and BRST symmetry 11

1.6 Thermal ensemble and KMS conditions 14

1.7 KMS conditions and supersymmetry 16

1.8 Various limits and expansion schemes 19

1.9 Plan for the rest of the paper 20

2 Generating functional for closed time path integrals 21

2.1 Closed time path integrals 21

2.2 Nonlinear response functions 23

2.3 Time reversed process and discrete symmetries 24

2.4 Thermal equilibrium and the KMS condition 26

2.5 The classical statistical limit 27

2.6 Constraints on response functions from KMS conditions 28

3 Relations with standard formulations 30

3.1 Recovering hydrodynamical equations of motion 30

3.2 Constraints on hydrodynamics 31

3.3 Recovering stochastic hydrodynamics 33

3.4 Correlation functions 34

4 A baby example: stochastic diffusion 35

4.1 Quadratic order 35

4.1.1 The quadratic action 35

4.1.2 Off-shell currents and constitutive relations 37

4.1.3 BRST invariance and supersymmetry 38

4.1.4 The full generating functional 39

4.2 Cubic order 40

4.2.1 The cubic action 40

4.2.2 BRST invariance and supersymmetry 42

4.2.3 Multiplet of currents 43

4.3 A minimal model for stochastic diffusion 44

4.3.1 Linear stochastic diffusion 44

4.3.2 Action for a variation of stochastic Kardar-Parisi-Zhang equation 45

– i –



J
H
E
P
0
9
(
2
0
1
7
)
0
9
5

5 Effective field theory for general charged fluids 46

5.1 Preparations 46

5.1.1 Organization of variables 46

5.1.2 Covariant derivatives 48

5.1.3 Torsion and curvature 49

5.2 The bosonic action 50

5.2.1 General structure 50

5.3 Stress tensor and current operators 52

5.3.1 General discussion 52

5.3.2 Lowest order in a-field expansion 53

5.4 Formulation in the physical spacetime 54

5.5 The source action 56

5.6 Constraints on constitutive relations from local KMS conditions 57

5.6.1 Spatial partition function condition 57

5.6.2 Generalized Onsager relations 59

5.7 Non-equilibrium fluctuation-dissipation relations 59

5.8 Non-negativity of transport coefficients 60

5.9 Full action to O(a2) in physical spacetime 61

5.10 Stochastic hydrodynamics 62

5.11 Entropy current 62

5.12 Two-point functions 63

6 Discussion 66

A Explicit forms of various response and fluctuation functions 67

B Fluctuation-dissipation theorem at general orders 67

B.1 Properties of various Green functions 67

B.2 KMS conditions in terms of correlation functions 69

B.3 Implications for response functions 70

C KMS conditions for tree-level generating functional 71

D Derivative expansion for vector theory at cubic order 72

E Useful formulas 73

E.1 Integrability conditions 73

E.2 Variations with respect to background metric and gauge field 73

F Structure of stress tensor and current at order O(a0) 74

– ii –



J
H
E
P
0
9
(
2
0
1
7
)
0
9
5

1 Introduction

1.1 Motivations

Hydrodynamical phenomena are ubiquitous in nature, governing essentially all aspects

of life. Hydrodynamics has also found important applications in many areas of modern

physics, from evolution of galaxies, to heavy ion collisions, to classical and quantum phase

transitions. More recently, deep connections have also emerged between hydrodynamics

and the Einstein equations around black holes in holographic duality (see e.g. [1–3]).

Despite its long and glorious history, hydrodynamics has so far been formulated only

at the level of the equations of motion (except for the case of ideal fluids), which cannot

capture effects of fluctuations. In a fluid, however, fluctuations occur spontaneously and

continuously, at both the quantum and statistical levels, the understanding of which is

important for a wide variety of physical problems, including equilibrium time correlation

functions (see e.g. [4, 5]), dynamical critical phenomena in classical and quantum phase

transitions (see e.g. [6, 7]), non-equilibrium steady states (see e.g. [8]), and possibly tur-

bulence (see e.g. [9]). In holographic duality, hydrodynamical fluctuations can help probe

quantum gravitational fluctuations of a black hole. Currently, the framework for dealing

with hydrodynamical fluctuations is to add fluctuating dissipative fluxes with local Gaus-

sian distributions to the stress tensor and other conserved currents [10, 11] (see e.g. [8, 12]

for recent reviews). Such a formulation does not capture nonlinear interactions among

noises, nor nonlinear interactions between dynamical variables and noises, nor fluctuations

of dynamical variables. The situation becomes more acute for fluctuations around non-

equilibrium steady states or dynamical flows, where the presence of nontrivial backgrounds

of dynamical variables could induce new couplings and long-range correlations [8].

Another unsatisfactory aspect of the current formulation of hydrodynamics is that it

is phenomenological in nature. While it works well in practice, the underlying theoretical

structure is obscure. More explicitly, the equations of motion are constrained by various

phenomenological conditions on the solutions. One is that the second law of thermody-

namics should be satisfied locally [11], namely, there should exist an entropy current whose

divergence is non-negative when evaluated on any solutions. The entropy current con-

straint imposes inequalities on various transport parameters such as the non-negativity of

viscosities and conductivities. It also gives rise to equalities relating transport coefficients.

For example, for a charged fluid at first derivative order, one of the transport coefficients is

required to vanish, even though the corresponding term respects all symmetries. Another

condition is the existence of a stationary equilibrium in the presence of stationary exter-

nal sources, which again imposes various equalities among transport coefficients. A third

condition is that the linear response matrix should be symmetric as a consequence of mi-

croscopic time reversal invariance, the so-called Onsager relations. While these constraints

appear to be enough to first order in the derivative expansion, it is not clear whether

they are the complete set of constraints at higher orders. Clearly a systematic formulation

of the constraints from symmetry principles would be desirable. Recently, an interesting

observation was made in [13–16] that the equality constraints from the entropy current

appear to be equivalent to those from requiring that in a stationary equilibrium, the stress
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tensor and conserved currents can be derived from an equilibrium partition function. The

physical origin of the coincidence, however, appeared mysterious.

In this paper, assuming that a general quantum statistical system has a liquid phase,

we develop a path integral formulation for dissipative fluids as a low energy effective field

theory from symmetry principles. This formulation provides a systematic treatment of sta-

tistical and quantum hydrodynamical fluctuations at the full nonlinear level. With noises

suppressed, it recovers the standard equations of motion for hydrodynamics with all the

phenomenological constraints incorporated. Furthermore, we find a new set of constraints

on the hydrodynamical equations of motion, which may be considered as nonlinear gener-

alizations of Onsager relations. Truncating to quadratic order in noises in the action, we

recover the previous formulation of fluctuating hydrodynamics based on Gaussian noises.

As illustrations, we derive actions which generalize (a variation of) the stochastic Kardar-

Parisi-Zhang equation and the relativistic stochastic Navier-Stokes equations to include

nonlinear interactions of noises.

Interestingly, we also find unitarity of time evolution requires introducing in the low

energy effective action additional anti-commuting fields and a BRST-type symmetry, which

also survive in the classical limit. Thus even incorporating classical statistical fluctuations

consistently requires anti-commuting fields.

Our formulation also reveals connections between thermal equilibrium and supersym-

metry at a level much more general than that in the context of the Langevin equation.1

In particular, we find hints of the existence of a “quantum deformed” supersymmetry in-

volving an infinite number of time derivatives. Connections between supersymmetry and

hydrodynamics have also been conjectured recently in [22].

The search for an action principle for fluids has a long history, dating back at least

to [23] and subsequent work including [24, 25] (see [26–28] for reviews), essentially all of

which were for ideal fluids. Recent investigations include [22, 29–46, 49–51]. We will discuss

connections to these earlier works along the way.

We will restrict our discussion to a charged fluid with a single global symmetry in the

absence of anomalies. Generalizations to more than one conserved current or non-Abelian

global symmetries are immediate. Anomalies, the non-relativistic formulation, superfluids,

as well as study of physical effects of the theory proposed here will be given elsewhere.

When a system is near a phase transition or has a Fermi surface, there are additional

gapless modes, which will also be left for future work.

In the rest of this section, we outline the basic structure of our theory.

1.2 Dynamical degrees of freedom

We are interested in formulating a low energy effective field theory for a quantum many-

body system in a state described by some density matrix ρ0. As usual, to describe the time

evolution of a density matrix and expectation values in it, we need to double the degrees of

freedom and use the so-called closed time path integral (CTP) or the Schwinger-Keldysh

1See e.g. [17–20]. See also Chap. 16 and 17 of [21] for a nice review on supersymmetry and the Langevin

equation.
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formalism

Tr (ρ0 · · ·) =

∫
ρ0

Dψ1Dψ2 e
iS[ψ1]−iS[ψ2] · · · , (1.1)

where ψ1,2 collectively denote dynamical fields for the two legs of the path, S[ψ] is the

microscopic action of the system, and · · · denotes possible operator insertions. In this

formalism, both dissipation and fluctuations can be incorporated in an action form, which

is thus ideal for formulating an effective field theory for dissipative fluids. Aspects of the

CTP formalism important for this paper will be reviewed in section 2.

Now, let us assume that the density matrix ρ0 is such that the system is in a liquid

phase, and that the only long-lived gapless modes of the system in ρ0 are hydrodynamical

modes, i.e. those associated with conserved quantities such as the stress tensor and con-

served currents for some global symmetries.2 We will be interested in the behavior of the

system at scales much larger than typical microscopic relaxation distance and time scales.

In such a regime, each spatial point represents a very large number of microscopic con-

stituents which interact very fast, and the system can be considered as in local equilibrium.

Let us imagine integrating out all other modes in (1.1), and obtain a low energy effective

theory for hydrodynamical modes only:

Tr (ρ0 · · ·) =

∫
Dχ1Dχ2 e

iShydro[χ1,χ2;ρ0] · · · , (1.2)

where χ1,2 collectively denote hydrodynamical fields for the two legs of the path, and Shydro

is the low energy effective action (hydrodynamical action) for them. Note that in the CTP

formalism, there are two sets of hydrodynamical modes χ1,2, which will be important for

incorporating dissipative effects and noises in an action principle. Note that Shydro no

longer has the factorized form of (1.1), and ρ0 is encoded in the coefficients of the action.

The standard formulation of hydrodynamics arises as the saddle point equation of the path

integral (1.2).

While such an integrating-out procedure cannot be performed explicitly, following the

usual philosophy of effective field theories, we should be able to write down Shydro in a

derivative expansion based on general symmetry principles. The challenges are basic ones:

(i) what the hydrodynamical modes χ1,2 are, as it is clear that the standard hydrodynamical

variables such as the velocity field and local chemical potential are not suited for writing

down an action; (ii) what the symmetries are.

To answer the first question, a powerful tool is to put the system in a curved spacetime

and to turn on external sources for the conserved currents. Due to (covariant) conservation

of the stress tensor and currents, the corresponding generating functional should be invari-

ant under diffeomorphisms of the curved spacetime, and gauge symmetries of the external

sources. These symmetries then suggest a natural definition of hydrodynamical modes as

Stueckelberg-like fields associated to diffeomorphisms and gauge transformations.

2It is a very interesting question whether other continuous media such as solids or liquid crystals can

also be formulated in terms of conservation laws using the formalism developed here. We will leave this for

future research (see also footnote 1.4 in section 1.4).
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To illustrate the basic idea, let us consider the generating functional for a single con-

served current Jµ in a state described by some density matrix ρ0,

eW [A1µ,A2µ] = Tr
(
ρ0Pei

∫
ddxA1µJ

µ
1 −i

∫
ddxA2µJ

µ
2

)
, (1.3)

where P denote the path orderings. Given that Jµ1,2 are conserved, we have

W [A1µ, A2µ] = W [A1µ + ∂µλ1, A2µ + ∂µλ2] (1.4)

for arbitrary functions λ1, λ2, i.e. W is invariant under independent gauge transformations

of A1µ and A2µ. Since we do expect presence of terms in W at zero derivative order, this

implies that W [A1µ, A2µ] can not be written as a local functional of A1µ, A2µ. We interpret

the non-locality as coming from integrating out certain gapless modes, which are identified

with the hydrodynamic modes associated with conserved currents J1,2. In order to obtain

a local action we need to un-integrate them. From (1.4) one can readily guess the answer:

we can write W as

eW [A1µ,A2µ] =

∫
Dϕ1Dϕ2 e

iI[B1µ,B2µ], (1.5)

where

B1µ ≡ A1µ + ∂µϕ1, B2µ ≡ A2µ + ∂µϕ2, (1.6)

and I is a local action for B1µ, B2µ. The integrations over Stueckelberg-like fields ϕ1,2 re-

move the longitudinal part of A1,2µ, and by definition, W obtained from (1.5) satisfies (1.4).

We thus identify ϕ1,2 as the hydrodynamical modes associated with Jµ1,2.

This discussion can be generalized immediately to also include the stress tensor Tµν ,

turning on the source of which corresponds to putting the system in a curved spacetime.

The generating functional now becomes

eW [g1µν ,A1µ;g2µν ,A2µ] = Tr
[
U1(+∞,−∞; g1µν , A1µ)ρ0U

†
2(+∞,−∞; g2µν , A2µ)

]
, (1.7)

where U1 is the evolution operator for the system in a curved spacetime with metric g1µν

and external field A1µ, and similarly with U2. Due to (covariant) conservation of the stress

tensor and the current, W is invariant under independent diffeomorphisms of g1,2 and

“gauge transformations” of A1,2:

W [g1, A1; g2, A2] = W [g̃1, Ã1; g̃2, Ã2], (1.8)

where

g̃sµν(x) =
∂yσs
∂xµ

gsσρ(ys(x))
∂yρs
∂xν

, Ãsµ(x) =
∂yσs
∂xµ

Aσ(ys(x)) + ∂µλs(x), s = 1, 2, (1.9)

and yσ1,2(x), λ1,2 are arbitrary functions.

Due to (1.8), for the same reason as in the vector case, W can not be a local functional

of g1,2 and A1,2. Again interpreting the non-locality as coming from integrating out hydro-

dynamical modes, we can write W as a path integral of a local action over gapless modes

– 4 –
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obtained from promoting the symmetry transformation parameters of (1.9) to dynamical

fields, i.e.

eW [g1,A1;g2,A2] =

∫
DX1DX2DτDϕ1Dϕ2 e

iI[h1,B1;h2,B2;τ ], (1.10)

where (s = 1, 2 and no summation over s)

hsab(σ) =
∂Xµ

s

∂σa
gsµν(Xs(σ))

∂Xν
s

∂σb
, Bsa(σ) =

∂Xµ
s

∂σa
Asµ(Xs(σ)) + ∂aϕs(σ) (1.11)

and I is a local action of h1,2, τ, B1,2. As in the earlier example, integrations over the

Stueckelberg-like fields Xµ
1,2(σa) and ϕ1,2 guarantee that W as obtained from (1.10) will au-

tomatically satisfy (1.8). Note that, except in the implicit dependence of background fields,

Xµ
s , ϕs always come with derivatives and thus describe gapless modes. We have also intro-

duced a new scalar field τ(σ) which will be interpreted as describing local temperatures.

The low energy effective field theory on the right hand side of (1.10) is unusual as the

arguments Xµ
1 , X

µ
2 of background fields g1(X1), A1(X1) and g2(X2), A2(X2) are dynamical

variables.3 In particular, the spacetime σa where hab(σ) and Ba(σ
a) are defined is not

the physical spacetime, as the physical spacetime is where background fields gµν and Aµ
live. The spacetime represented by σa is an “emergent” one arising from promoting the

arguments of background fields to dynamical variables.

Despite the original microscopic theory (1.1) being formulated on a closed time path

integral in the physical spacetime, the effective field theory (1.10) is defined on a single

“emergent” spacetime, not on a Schwinger-Keldysh contour. The CTP nature of the mi-

croscopic formulation is reflected in the doubled degrees of freedom and in various features

of the generating functional W which we will impose below.

We will interpret the spacetime spanned by σa as that associated with fluid elements:

the spatial part σi of σa labels fluid elements, while the time component σ0 serves as an

“internal clock” carried by a fluid element. In this interpretation, Xµ
1,2(σa) then corresponds

to the Lagrange description of fluid flows. With a fixed σi, Xµ
1,2(σ0, σi) describes how a

fluid element labeled by σi moves in (two copies of) physical spacetime as the internal

clock σ0 changes. This construction generalizes the standard Lagrange description, where

σ0 coincides with the physical time. In our current general relativistic context, it is more

natural for a fluid element to be equipped with an internal time. The relation between σa

and Xµ
1,2(σ) is summarized in figure 1. Below, we will refer to σa as the fluid coordinates

and the corresponding spacetime as the fluid spacetime.

While in hindsight, one could have directly started with a doubled version of the stan-

dard Lagrange description, the “integration-in” procedure described above shows that such

a phenomenological description does arise naturally as dynamical variables characterizing

low energy gapless degrees of freedom of a general quantum many-body system.

Parts of these variables also have been considered in the literature, although the start-

ing points were different. For example, the fields Xµ(σ) already appeared in [24, 25]. In

3Such kind of theories are often referred to as parameterized field theories and have been used as toy

models for quantizing theories with diffeomorphisms [52–54].
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Fluid spacetime Physical spacetimePhysical spacetime

HorizonUV UV

Complexified bulk direction

Figure 1. Relations between the fluid spacetime and two copies of physical spacetimes. The

red straight line in the fluid spacetime with constant σi is mapped by Xµ
1,2(σ0, σi) to physical

spacetime trajectories (also in red) of the corresponding fluid element. In the holographic context,

the fluid spacetime corresponds to the horizon hypersurface, and the two copies of physical space-

times correspond to two asymptotic boundaries of AdS. Xµ
1,2 describe relative embeddings of these

hypersurfaces.

the recent ideal fluid formulation of [36–44], a single set of σi(Xµ) is used, which was subse-

quently generalized to the doubled version in the closed time path formalism in an attempt

to include dissipation [31, 37]. The set Xµ(σ), ϕ(σ) for a single side arises naturally in

the holographic context as first pointed out in [55], which along with [39, 40] has been an

important inspiration for our study. The doubled version of Xµ
1,2(σa), ϕ(σa) in the closed

time path formalism first appeared in [32–34] (see also [56]). In the holographic context,

Xµ
1,2(σa), correspond to the relative embeddings between the horizon hypersurface, which

can be identified with the fluid spacetime, and the two asymptotic boundaries of AdS,

which correspond to the physical spacetimes [55–57]. Similar variables were also employed

in [22, 35, 45, 46].

The interpretation of σa as the fluid spacetime immediately leads to an identification of

the standard hydrodynamical variables in terms of our variables Xµ
s , τ, ϕs. With Xµ

s (σ0, σi)

corresponding to the trajectory of a fluid element σi moving in physical spacetime, then

− d`2s = gsµν
∂Xµ

s

∂σ0

∂Xν
s

∂σ0
(dσ0)2 (1.12)

is the proper time square of the motion, and the fluid velocity is given by

uµs (σ) =
δXµ

s

δ`s
=

1

bs

∂Xµ
s

∂σ0
, bs =

√
−∂X

µ
s

∂σ0
gsµν

∂Xν
s

∂σ0
, gsµνu

µ
su

ν
s = −1 . (1.13)

– 6 –
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Similarly, interpreting Bsa(σ) as the “external sources” for the currents of fluid elements in

fluid space, we can define the local chemical potential µ(σ) (recall that for an equilibrium

system, the chemical potential for a conserved charge is defined as the zeroth component

of the external source for the corresponding current)

µs(σ) =
1

bs
Bs0(σ) = uµs (σ)Asµ(Xs(σ)) +

1

bs
∂0ϕs(σ) . (1.14)

The reason for the 1/bs prefactor in (1.14) is the same as that in (1.13): to convert from

dt to the local proper time d`s. Finally we define the local proper temperature in fluid

space as

T (σ) =
1

β(σ)
= T0e

−τ(σ), (1.15)

where T0 = 1
β0

is a reference scale.4 Note that there is only one τ field rather than two

copies. In contrast to other fields, it is defined only in the fluid spacetime. It should be

considered as an intrinsic property associated with each fluid element.

1.3 Equations of motion

Given an action I in (1.10), we define the “off-shell hydrodynamical” stress tensors and

currents as

δI

δg1µν(x)

∣∣∣∣
τ,X

≡ 1

2

√
−g1T̂

µν
1 (x),

δI

δA1µ(x)
≡
√
−g1Ĵ

µ
1 (x), (1.16)

δI

δg2µν(x)

∣∣∣∣
τ,X

≡ − 1

2

√
−g2T̂

µν
2 (x),

δI

δA2µ(x)
≡ −

√
−g2Ĵ

µ
2 (x) . (1.17)

In (1.16)–(1.17), xµ denotes the physical spacetime location at which T̂µνs , Ĵµs (s = 1, 2) are

evaluated, and should be distinguished from either σ or X, as X’s are dynamical variables

and σa labels fluid elements. T̂µνs and Ĵµs are operators in the quantum effective field

theory (1.10) of Xµ
s , τ and ϕs. They are the low energy counterpart of the stress tensor

Tµν and current Jµ of the microscopic theory (1.1). By definition, correlation functions

of (1.16)–(1.17) in (1.10) should reproduce those of the microscopic theory in the long

distance and time limit with choices of a finite number of parameters in (1.10).

By construction, hsab and Bsa, and so the action, are invariant under physical space-

time diffeomorphisms, which have the infinitesimal form

δXµ = −ξµ(X), δgµν(X) = ∇µξν +∇νξµ, δAµ(X) = ∂µξ
νAν + ξν∂νAµ, (1.18)

where for notational simplicity we have suppressed the index s = 1, 2 for each quantity in

the above equation, i.e. there are two identical copies of them. Similarly, Bsa is invariant

under a gauge transformation of Asµ with a shift in ϕs:

Aµ → Aµ − ∂µλ(X), ϕ(σ)→ ϕ(σ) + λ(X(σ)), (1.19)

4When ρ0 is a thermal density matrix, T0 is the temperature of ρ0. In this case it can also be interpreted

as the temperature at time and spatial infinities.

– 7 –
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with s again suppressed. The invariance of the action under (1.18)–(1.19) immediately

implies that the equations of motion for ϕ’s are simply the conservation equations for

currents in each segment of the contour, and the equations of motion for X’s are the

conservation equations for the stress tensors (see also similar discussion in [32, 33]),

ϕs eom : ∇sµĴµs = 0, (1.20)

Xµ
s eom : ∇sν T̂ νs µ − Fsµν Ĵνs = 0 . (1.21)

Note that in the above equations, ∇sµ are covariant derivatives in physical spacetimes.

1.4 Symmetry principles

We now consider the symmetries which should be satisfied by the hydrodynamical action

I in (1.10). Let us start with diffeomorphisms of σa and possible gauge symmetries of Bsa.

We require that I should be invariant under:

1. Time-independent reparameterizations of spatial manifolds of σa, i.e.

σi → σ′i(σi), σ0 → σ0 ; (1.22)

2. Time-diffeomorphisms of σ0, i.e.

σ0 → σ′0 = f(σ0, σi), σi → σi ; (1.23)

3. σ0-independent diagonal “gauge” transformations of Bsa, i.e.

B1i → B′1i = B1i − ∂iλ(σi), B2i → B′2i = B2i − ∂iλ(σi), (1.24)

or equivalently

ϕr → ϕr − λ(σi), ϕa → ϕa, (1.25)

with ϕr = 1
2(ϕ1 + ϕ2), ϕa = ϕ1 − ϕ2.

Equation (1.22) corresponds to a (time-independent) relabeling of fluid elements,

while (1.23) can be interpreted as reparameterizations of the internal time associated with

fluid elements. Note that in (1.23) we allow time reparameterization to have arbitrary

dependence on σi, which physically can be interpreted as each fluid element having its

own choice of time. In contrast, we do not allow (1.22) to depend on σ0. Requiring

invariance under

σi → σ′i(σi, σ0) (1.26)

means allowing different labelings of fluid elements at different times. This would be too

strong, as it would treat some physical fluid motions as relabelings. The same conclusion

can also be reached from the combination of (1.26) with (1.23) amounting to full diffeomor-

phism invariance of σa, under which one of the Xµ’s can then be gauged away completely,

which would be too strong.

The origin of (1.24) can be understood as follows. In a charged fluid, each fluid

element should have the freedom of making a phase rotation. As we are considering a global
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symmetry, the phase cannot depend on time σ0, but since fluid elements are independent of

one another, they should have the freedom of making independent phase rotations, i.e. we

should allow phase rotations of the form eiλ(σi), with λ(σi) an arbitrary function of σi only.

As Bsa are the “gauge fields” coupled to charged fluid elements in the fluid space, we thus

have the gauge symmetry (1.24) of Bsa. This consideration also makes it natural that in a

superfluid, when the U(1) symmetry is spontaneously broken, (1.24) should be dropped.

We emphasize that (1.22)–(1.24) are distinct from the physical spacetime diffeomor-

phisms (1.18) and gauge transformations (1.19). They are “emergent” gauge symmetries

which arise from the freedom of relabeling fluid elements, choosing their clocks, and acting

with independent phase rotations.5 These symmetries “define” what we mean by a fluid.6

Indeed we will see later they are responsible for recovering the standard hydrodynamical

constitutive relations including all dissipations. These symmetries should be considered as

gauge symmetries, as configurations related by these transformation are physically equiv-

alent. Thus one should take care in treating them when “quantizing” the theory.

The local symmetries (1.22)–(1.24) are not yet enough to fix the action I. By definition,

the generating functional (1.7) also has the following properties (see section 2 for their

derivation)

Reflectivity condition : W ∗[g1, A1; g2, A2] = W [g2, A2; g1, A1], (1.27)

Normalization condition : W [g,A; g,A] = 0 (1.28)

both of which have to do with unitarity of time evolution.

Let us first look at the reflectivity condition (1.27) which is a Z2 symmetry of the

generating functional W . It can be achieved by requiring the off-shell action I to satisfy:

4. A Z2 reflection symmetry

I∗[h1, B1;h2, B2; τ ] = −I[h2, B2;h1, B1; τ ] . (1.29)

Equation (1.29) implies that terms in the action I which are even under 1↔2 must be pure

imaginary. Since we expect such terms to be generically generated when integrating out

modes, the action I is in general complex. For the path integral (1.10) to be well defined,

we should also require that

5. The imaginary part of I is non-negative.

We will see later that this condition requires that noises have exponentially decaying dis-

tributions and leads to the non-negativity of various transport coefficients when combined

with the local KMS conditions to be discussed below.

Now consider the unitarity condition (1.28), which implies that when setting

g1µν = g2µν = gµν , A1µ = A2µ = Aµ , (1.30)

5Note that (1.24) can be considered as a generalization of the chemical shift symmetry introduced in [40]

for a single patch.
6It is interesting to speculate that by modifying these symmetries, one may be able to describe other

continuous media such as solids or liquid crystals. We will leave this for future research.
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the path integral (1.10) becomes “topological”, as W is independent of Aµ and gµν . In

terms of correlation functions in the absence of sources, equation (1.28) implies that all

correlation functions of T̂µνa and Ĵµa vanish among themselves, where

T̂µνa ≡ T̂
µν
1 − T̂

µν
2 , Ĵµa ≡ Ĵ

µν
1 − Ĵ

µν
2 . (1.31)

To see this, let us adopt a simplified set of notation denoting the background fields (i.e.

gsµν and Asµ) collectively as φs and dynamical variables as χs, with χr,a, φr,a respectively

symmetric and anti-symmetric combinations of various quantities, i.e.7

χr =
1

2
(χ1 + χ2), χa = χ1 − χ2, φr =

1

2
(φ1 + φ2), φa = φ1 − φ2 . (1.32)

Similarly the currents associated with φs (i.e. T̂µνs and Ĵµs ) will be collectively denoted as

Js. We then have (schematically)

J1 =
δI

δφ1
, J2 = − δI

δφ2
, Ja =

δI

δφr
, Jr =

δI

δφa
. (1.33)

In terms of this notation, the path integral (1.10) can be written as

eW [φr,φa] =

∫
DχrDχa e

iI[χr,χa;φr,φa] , (1.34)

and (1.28) implies that when φa = 0,

eW [φ] =

∫
DχaDχr e

iI[χa,χr;φ], I[χa, χr;φ] ≡ I[χa, χr;φr = φ, φa = 0], (1.35)

should not depend on φ = (gµν , Aµ) at all. Thus, from (1.33), all correlation functions of

Ja must be zero.

We now show that at tree level of (1.10) (or (1.34)), this can be achieved by requir-

ing that:

6. The action is zero when we set all the sources and dynamical fields of the two legs to

be equal, i.e.

I[χr, χa = 0;φr, φa = 0] = 0, (1.36)

or, in our original notation,

I[h,B;h,B; τ ] = 0 . (1.37)

At tree-level, we have

Wtree[φr, φa] ≡ iIon−shell[φr, φa] = iI[χcl
a , χ

cl
r ;φr, φa], (1.38)

where χcl
a,r[φr, φa] denote solutions to the equations of motion. Given (1.36), when φa = 0,

any term in I must contain at least one power of χa. Thus, χcl
a = 0 must always be a

solution to the resulting equations of motion. With the standard boundary conditions

that χa must vanish at spatial and temporal infinities, this is the unique solution. It

7There is only one τ which should be considered as a r-field.
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then follows that with φa = 0, the classical on-shell action always vanishes identically, i.e.

Wtree[φr, φa = 0] = 0.

It can readily be seen, however, that beyond the tree level (1.37) is not enough to

ensure (1.28). We will give a detailed discussion in the next subsection and here just state

the result. To ensure (1.28) at the level of full path integrals, in addition to (1.37) we

need to

7. Introduce a fermionic (“ghost”) partner cr,a for each of the dynamical fields χr,a, and

add a “ghost” action Igh to the original action:

IB = I[χa, χr;φa, φr] + Igh[ca, cr, χa, χr;φa, φr], (1.39)

so that when φa = 0, the full action IB is invariant under the following BRST-type

transformation (to which below we will simply refer as BRST transformation):

δχir = εcir, δcir = 0, δcia = εχia, δχia = 0 . (1.40)

Here, ε is a fermionic constant and i labels different fields. Now the full path integral

becomes

eW [φr,φa] =

∫
DχrDχaDcaDcr e

iIB [ca,cr,χr,χa;φr,φa] . (1.41)

Note that the currents Jr,a will now also depend on the ghost fields.

As will be discussed in the next subsection, given a bosonic action I the condition of BRST

invariance does not fix the ghost action Igh and the symmetric current Jr uniquely, i.e. there

is freedom to parameterize them.

For a general density matrix ρ0, we believe items 1 − 7 listed above are the minimal

set of symmetries needed to be imposed to describe a fluid. For specific ρ0, there can be

more symmetries. We will describe the example of thermal ensemble in section 1.6.

Recent works [32, 33, 45, 46] also share some elements with our discussion here. In par-

ticular, ref. [45] started from the CTP formulation of the generating functional to deduce a

hydrodynamical action at quadratic level. Refs. [32, 33] proposed a classification of trans-

ports from entropy current using similar variables and also considered doubling degrees of

freedom as in the CTP formulation. While this paper was being finalized, reference [22]

(see also [47, 48]) appeared which also pointed out that the path integral for hydrody-

namical effective field theory should possess a topological sector and BRST invariance to

ensure (1.28). See also [12, 45, 46].

1.5 Ghost fields and BRST symmetry

We now elaborate on how to ensure the unitarity condition (1.28) beyond the tree level.

To gain some intuition, let us first look at how to do this at one loop. With φa = 0,

from (1.37), I can be expanded in powers of χa as

I = Ei(χr, φ)χia +O(χ2
a), (1.42)
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where indices i, j now collectively denote both field species and momenta. At one loop

order, only the terms linear in χa contribute, and we find8

eW =

∫
DχrDχa e

iχiaEi+··· =

∫
Dχr

(∏
i

δ(Ei(χr, φ))

)
. (1.43)

Clearly the above expression depends nontrivially on φ from the determinant in evaluating

the delta functions. To cancel the determinant, we can add to the action an additional

term I1 of the following form

eiI1 = detEij , Eij ≡
∂Ej
∂χir

, (1.44)

so that the path integral from the full action

IB = I + I1 (1.45)

is independent of φ at one-loop level. Now using a standard trick we can introduce “ghost”

partners cir, c
i
a for χia, χ

i
r to write

eiI1 =

∫
DcrDca e

iciaEijc
j
r . (1.46)

cir,a have the same quantum numbers as χia,r, except that they are anti-commuting variables.

The full path integral at one-loop order can then be written as

eW =

∫
DχrDχaDcrDca e

iIB , (1.47)

with

IB = χiaEi + cirEijc
j
a + · · · . (1.48)

Notice that IB has a BRST-type of symmetry

δχir = εcir, δcir = 0, δcia = εχia, δχia = 0, (1.49)

with ε an anti-commuting constant. We can write (1.49) in terms of the action of a nilpotent

differential operator

Q = cir
δ

δχir
+ χia

δ

δcia
, Q2 = 0, (1.50)

and the action (1.48) is BRST exact, i.e.

IB = Q
(
ciaEi

)
+ · · · . (1.51)

Now it can be readily seen that if we can make the full action to be BRST invariant,

and variation with respect to φ to be BRST exact, then W will be independent of φ to

8Note that Ei = 0 are in fact the standard hydrodynamical equations in the presence of background

fields φ, as will be clear from the discussion of section 3.1.
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all loop orders. Suppose IB[φa = 0] is invariant under (1.49) and under a variation of φ

we have

Ja =
δIB
δφ

= QV, (1.52)

for some operator V . We then have under variation of φ:

eW δW = i

∫
DχrDχaDcrDca (QV ) eiIB = i

∫
DχrDχaDcrDcaQ

(
V eiIB

)
= 0, (1.53)

where in the second equality we have used that IB is BRST invariant and in the third

equality we have used that Q can be written as a total derivative under the path integration.

To make the full action I[χr, χa;φ] BRST invariant, note that from (1.36) it contains

at least one factor of χa, i.e. we can write it as

I[χr, χa;φ] = χiaFi(χr, χa;φ) . (1.54)

We can then construct a BRST invariant action:

IB[ca, cr, χr, χa;φ] = χiaFi + cir
∂Fj
∂χir

cja = QΨ, Ψ = ciaFi . (1.55)

Note that the choice of Fi is not unique, as (1.54) is invariant under the following redefi-

nition of Fi:

Fi → Fi + χjafji(χr, χa;φ), fij = −fji . (1.56)

Under (1.56), Ψ and IB change as

Ψ→ Ψ + χiafijc
j
a, IB → IB + ckr

∂fij
∂χkr

χiac
j
a . (1.57)

Clearly there is much more freedom in writing down a BRST invariant action

than (1.57). For example, in the construction above we set φa = 0 at the beginning.

But we could have kept the φa dependence, which could lead to a different BRST invariant

action. More explicitly, from (1.36) we can write the full action as

I[χr, χa;φr, φa] = φaJ
(0)
r + χiaGi(χa, χr;φr, φa), (1.58)

where J
(0)
r does not contain any factors of χa. We can then construct another action:

ĨB = φaJ
(0)
r + χiaGi(χa, χr;φr, φa) + cir

∂Gj
∂χir

cja, (1.59)

which is again BRST invariant for φa = 0. Note that in the absence of any background

fields, (1.59) is equivalent to (1.55) up to the freedom (1.57) already noted, and they have

the same current Ja. But Jr will in general differ by ghost dependent terms.

To summarize, with the requirements that the action be invariant under BRST-type

symmetry (1.49) and that currents Ja be BRST exact, the unitarity condition (1.28) is

satisfied at the level of full path integral. We also saw that the BRST symmetry does not

fix the ghost action uniquely from the bosonic action, and there is freedom in choosing

ghost dependent terms in the definition of Jr.

We should also emphasize that here the BRST symmetry is a global symmetry; we do

not require either physical operators or physical states to be BRST invariant. For example,

Jr is not BRST invariant.
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1.6 Thermal ensemble and KMS conditions

Now let us take ρ0 to be the thermal density matrix at some temperature T0 = 1
β0

and

chemical potential µ0 for Q =
∫
dd−1~x J0, i.e.

ρ0 =
1

Z0
e−β0(H−µ0Q), Z0 = Tr e−β0(H−µ0Q), . (1.60)

In this case, the generating functional W of (1.7) additionally satisfies the so-called KMS

condition [58–60]. The KMS condition can be considered as a Z2 operation which relates

the generating functional W to the corresponding WT for a time-reversed process:

W [φ1(x), φ2(x)] = WT [φ2(t− iβ0, ~x), φ1(x)], (1.61)

where we have again used the simplified notation of (1.34) and x = (t, ~x) denote the

coordinates in physical spacetime. See section 2 for the precise definition of WT and

derivation of (1.61). In deriving (1.61), we also used that the stress tensor and current

operators are neutral under Q.

At quadratic order in φ’s, (1.61) gives the familiar fluctuation-dissipation theorem

(FDT) between retarded and symmetric Green functions

ImGR(k) = tanh
β0ω

2
GS(k) . (1.62)

At higher orders, WT cannot be expressed in terms of W , and the KMS condition (1.61) by

itself does not impose constraints on W . However, in essentially all physical contexts, the

Hamiltonian H is CPT invariant, for which ρ0(β0, µ0) is mapped to ρ0(β0,−µ0) and WT (µ0)

is related to W (−µ0) by CPT . While our discussion can be applied to the most general

cases, for simplicity here we will restrict to Hamiltonians invariant under PT .9 With

PT symmetry, WT is related to W as (see section 2 for a derivation, here for notational

simplicity we have set free parameter θ = 0)

WT [φ2(t− iβ0, ~x), φ1(x)] = W [φ1(−x), φ2(−t− iβ0,−~x)], (1.63)

and (1.61) can therefore be written as

W [φ1(x), φ2(x)] = W [φ1(−x), φ2(−t− iβ0,−~x)], (1.64)

and in terms of our original notation,

W [g1(x), A1(x); g2(x), A2(x)] = W [g1(−x), A1(−x); g2(−t− iβ0,−~x), A2(−t− iβ0,−~x)] .

(1.65)

In the form of (1.65), the KMS condition is now a Z2 symmetry of W .

Now let us consider what symmetry to impose on the total action (1.39) so as to

ensure the KMS condition (1.65). For this purpose, first note that the bosonic action

I[χr, χa;φr, φa] can be split as

I[χr, χa;φr, φa] = Is[φr, φa] + Isd[χr, χa;φr, φa] + Id[χr, χa], (1.66)

9Here we treat different spacetime dimensions uniformly. By P we simply invert all spatial directions.

So for odd spacetime dimensions what we call PT is in fact T .
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where Is[φr, φa] is obtained by setting all the dynamical fields to zero, Id[χr, χa] is obtained

by setting all the background fields to zero,10 and Isd is the collection of remaining cross

terms of χ’s and φ’s.

Id[χr, χa] is the dynamical action for hydrodynamical modes χ in the absence of

sources, while Isd describes the coupling of dynamical modes to sources from which our

off-shell hydrodynamical stress tensors and currents (1.16)–(1.17) are extracted. Given

that χ’s are gapless, path integrals of Id + Isd generate nonlocal contributions to W , i.e.

contributions which become singular in the zero momentum/frequency limit.

The source action Is[φr, φa] gives local terms in the generating functional W . After

differentiation, they give contributions to correlation functions of the stress tensor and cur-

rent which are analytic in momentum and frequency, i.e. contact terms in coordinate space.

In contrast to contact terms in vacuum correlation functions which are often discarded,

these contact terms are due to medium effects from finite temperature/chemical potential

and contain important physical information. For example, viscosities and conductivity can

be extracted from them.

A remarkable fact of the structure of (1.10)–(1.11) is that once the couplings of the

source action Is are specified, those of the dynamical action Id and the cross term action

Isd are fully determined. In other words, once the local terms in W are fixed, the nonlocal

parts are also fully determined.

Our proposal to ensure (1.65) consists of two parts. The first part concerns the bosonic

action I:

8(a). We require that the contact term action Is satisfies the KMS conditions (1.64), i.e.

Is should satisfy the following Z2 symmetry:

Is[φ1(x), φ2(x)] = −Is[φ1(−x), φ2(−t− iβ0,−~x)], (1.67)

or in terms of our original variables,11

Is[g1, A1; g2, A2] = −Is[g1(−x), A1(−x); g2(−t− iβ0,−~x), A2(−t− iβ0,−~x)] .

(1.68)

The motivations behind this proposal are: (i) nonlocal and local part of correlation func-

tions should satisfy KMS conditions separately; (ii) Since the couplings of Id + Isd are

determined from those of Is, (1.67) imposes strong constraints on the couplings of the dy-

namical action as well as the expressions of hydrodynamical stress tensors and currents,

which may lead to (1.65) for full correlation functions. At tree level, where the ghost ac-

tion can be ignored, it can be shown in the vector theory (1.5) that (1.67) ensures (1.65).

The proof requires introducing more specifics than the broad level at which we have been

discussing so far, and will be left to appendix C. While we strongly suspect that the proof

in appendix C can be generalized to a full charged fluid, the presence of τ fields make the

story more tricky and a full proof will not be given here.

10For spacetime metrics, zero external fields correspond to setting gµν = ηµν .
11Note that in order to obtain the contact term action Is[g1, A1; g2, A2] from I[h1, B1;h2, B2; τ ], we also

need to specify a background value for τ , which will be discussed in detail in section 5.5.
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From now on, we will refer to (1.68) as the local KMS conditions. We will show in sec-

tion 3 that the local KMS conditions (1.68) not only reproduce all the standard constraints

on the hydrodynamical equations of motion (including the entropy condition constraints

and those from linear Onsager relations), but also impose a new set of constraints which

may be considered as nonlinear generalizations of Onsager relations.

To conclude let us remark that for general non-equilibrium situations β0 in (1.67)–

(1.68) should be considered as the inverse temperature at spatial infinity, i.e. all dynamical

modes including τ are assumed to fall off sufficiently rapidly approaching spatial infinities.

The importance of understanding macroscopic manifestations of the KMS condition

has been emphasized in [22, 32, 33]. There a different approach based on a U(1)T symmetry

was proposed.

1.7 KMS conditions and supersymmetry

We now consider how to ensure the KMS conditions (1.65) beyond the tree level, for which

the situation becomes less clear. Currently we have a concrete proposal only for the classical

statistical limit of (1.41).

Our understanding is mostly developed from the example of the hydrodynamics of a

single vector current (1.5), which we summarize here using the notation of (1.32)–(1.34).

Details are given in section 4. We believe the discussion below should apply, with small

changes, to full charged fluids (1.10) in the small amplitude expansion. But the expressions

become quite long and tedious, which we will leave for future investigation. Note that in

both (1.5) and the small amplitude expansion of (1.10), the physical and fluid spacetimes

coincide, so we will not make this distinction below.

Consider the small amplitude expansion of external sources and dynamical modes, i.e.

IB = I2 + I3 + · · · , (1.69)

where Im contains altogether m factors of sources and dynamical fields (but can be kept

to all derivative orders). We find that at quadratic order I2, the ghost action is uniquely

determined from the requirement of BRST invariance for φa = 0, and there is no freedom

in Jr. After imposing the local KMS conditions (1.68), with all external sources turned

off, in addition to (1.49), the full action has an emergent fermonic symmetry, which can be

written in a form

δ̄χr = caε̄, δ̄cr = (χa + Λχr)ε̄, δ̄χa = −Λcaε̄, (1.70)

where

Λ = 2 tanh
iβ0∂t

2
. (1.71)

The appearance of Λ has its origin in the FDT relation (1.62).

It can be readily checked that δ of (1.49) and δ̄ satisfy the following supersymmetric

algebra

δ2 = 0, δ̄2 = 0, [δ, δ̄] = ε̄εΛ . (1.72)
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In addition, the currents Jr,a, being linear in the dynamical fields, satisfy the following

relations under δ and δ̄:

δJr = εξr, δ̄Jr = ξaε̄, δξa = εJa, δ̄ξr = (Ja + ΛJr)ε̄, δ̄Ja = −Λξaε̄, (1.73)

where ξa,r are some fermonic operators which may be interpreted as fermionic partners of

Ja,r. In other words, the current operators, (Ja, Jr, ξa, ξr), transform in the same represen-

tation under (1.72) as the fundamental multiplet (χa, χr, ca, cr).

At cubic order I3, there are a few new elements. Firstly, BRST invariance no longer

fixes the ghost action or the ghost part of Jr. Secondly, the algebra (1.70) cannot remain

a symmetry at nonlinear orders as there is a fundamental obstruction in applying the

algebra (1.72) to a nonlinear action. By definition, acting on a product of fields, both δ

and δ̄ are derivations, i.e. they satisfy the Leibniz rule, and so does their commutator. But

on the right hand side of (1.72), Λ does not satisfy the Leibniz rule. The contradiction

does not cause a problem at quadratic level as∫
dt (Λ1 + Λ2)L2 = 0, (1.74)

where Λ1 (Λ2) denotes that Λ is acting on the first (second) field of L2. But this is no

longer true at nonlinear orders.

Both of the above issues can be addressed in the classical statistical limit ~→ 0, which

we will explain in more detail in next subsection. For now it is enough to note that in this

limit, the path integrals (1.10) survive due to statistical fluctuations.

In the ~→ 0 limit (restoring ~),

Λ = 2 tanh
iβ~∂0

2
→ iβ~∂0, ~→ 0, (1.75)

and equations (1.72) become the standard supersymmetric algebra,

δ2 = 0, δ̄2 = 0, [δ, δ̄] = ε̄εiβ0∂t (1.76)

after a rescaling of ε̄, and thus (1.76) could persist to all nonlinear orders. Indeed, we find

that at cubic order in the ~ → 0 limit, the local KMS conditions gives a bosonic action

which is supersymmetrizable, and in addition invariance under (1.76) uniquely fixes the

ghost action. Furthermore, we find that requiring that the currents Jr,a satisfy the ~→ 0

limit of (1.73),12 i.e.

δJr = εξr, δ̄Jr = ξaε̄, δξa = εJa, δ̄ξr = (Ja + iβ0∂tJr)ε̄, δ̄Ja = −iβ0∂tξaε̄ (1.77)

uniquely fixes Jr. It is thus tempting to conjecture that in the ~→ 0 limit, combined with

local KMS conditions, supersymmetry will be able to uniquely determine the ghost action

and Jr to all nonlinear orders, and ensure the KMS conditions to all loops.

One can immediately conclude from (1.77) that supersymmetry ensures one of the

KMS conditions to be satisfied at the level of full path integral. From the fourth equation

12We should also scale (Ja, ξa)→ ~(Ja, ξa) and Jr, ξr → Jr, ξr.
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of (1.77), we find that J̃A ≡ Ja + iβ0∂tJr = Q̄ξr where Q̄ is the operator which generates

transformation δ̄. Given that the action is invariant under Q̄, then from manipulations

exactly parallel to (1.53) (with Q replaced by Q̄) we conclude that correlation functions

involving only J̃A all vanish. As discussed around (B.17)–(B.21) in appendix B this is

precisely one of the KMS conditions. In fact for two-point functions, it is the full KMS

condition. Thus for two-point functions, supersymmetry (1.77) ensures KMS conditions at

full path integral level. Perhaps not surprisingly, as we will see explicitly in section 4.2,

it is exactly the local version of this particular KMS condition (i.e. this KMS condition

applied to Is) that leads to the invariance of the action under δ̄ and the supermultiplet

structure (1.77). It is still an open question at the moment for n-point functions with n ≥ 3

whether local KMS and SUSY are enough to ensure other KMS conditions and how.

To summarize, in the classical statistical limit we can now state the second part of the

symmetries which need to imposed to ensure the KMS conditions (1.64):

8(b). The full action should be invariant under (1.76), which fixes the ghost action, and

the supersymmetric transformations of Jr,a should satisfy (1.77), which fixes Jr.

We believe these are the full set of symmetries which need to be imposed for a full classical

statistical path integral.

For finite ~, the story is more tantalizing and potentially more exciting, as some the-

oretical structure beyond the standard supersymmetry algebra should be in operation.

The algebra (1.72) is reminiscent of higher spin symmetries and also possibly suggests a

quantum group version of supersymmetry.13

We have also only been looking at the situation where the fluid spacetime coincides

with the physical spacetime. For (1.10) at full nonlinear level, supersymmetry (or whatever

replaces it for finite ~) should be formulated in the fluid spacetime. When combined with

time diffeomorprhism (1.23), it should lead to a supergravity theory. We will leave this for

future investigation.

We note that the emergence of supersymmetry in the classical statistical limit is in some

sense anticipated from that for pure dissipative Langevin equation (see e.g. [19, 20], and

also [21] for a review). But even at the level of hydrodynamics for a single current (1.5), the

interplay between local KMS conditions and supersymmetry already goes far beyond the

scope of a Langevin equation whose corresponding action is quadratic and the distribution

of noise is independent of dynamical variables. Here we have a full interacting theory

between noises and dynamical variables.

At a philosophical level, the interplay between local KMS conditions and supersym-

metry may be understood as follows. The thermal ensemble (1.60) is thermodynamically

stable, i.e. any perturbations result in a higher free energy. Furthermore, KMS conditions

have been known to be equivalent to the stability conditions. It appears reasonable that

such thermodynamical stability conditions are reflected as supersymmetry in the closed

time path formalism.

13We would like to thank Guido Festuccia and Tom Banks for these interesting ideas.
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While this paper was being finalized, reference [22] (see also [47, 48]) appeared, which

conjectures similar supersymmetric algebra for the hydrodynamical action based on the

analogue with stochastic Langevin systems.

1.8 Various limits and expansion schemes

In this subsection we discuss various limits and expansion schemes of (1.41) which we copy

here for convenience with ~ reinstated

eW [φr,φa] =

∫
DχrDχaDcaDcr e

i
~ IB [ca,cr,χr,χa;φr,φa] . (1.78)

In a usual quantum field theory ~ controls the loop expansion. Here, however, the effec-

tive loop expansion constant ~eff is in general not ~, as the action I describes dynamics

of macroscopic non-equilibrium configurations, which have both statistical and quantum

fluctuations. In particular, statistical fluctuations should persist even in the ~ → 0 limit,

i.e. ~eff has a finite ~ → 0 limit and the path integral in (1.78) survives. To emphasize

the statistical aspect of it, from now on we will refer to the ~ → 0 limit as the classical

statistical limit.

More explicitly, we define the ~→ 0 limit in (1.78) as

(ca, χa, φa)→ ~(ca, χa, φa), cr, χr, φr → cr, χr, φr, ~→ 0, (1.79)

and the coefficients of the action IB should be scaled in a way that the whole action has a

well-defined limit. As an example, suppose IB contains the following terms:

IB = · · ·+ G

6
χ3
a +

i

2
Hχ2

aχr +
K

2
χaχ

2
r ,−ifcaχacr + · · · (1.80)

then G,H,K, f should scale in the ~→ 0 limit as

G→ 1

~2
G, H → 1

~
H, K → K, f → 1

~
f . (1.81)

As will be seen in section 2.5, the above scalings are indeed those dictated by the small ~
limit of various correlation functions. Below we will also use (1.78) to refer to its classical

statistical limit. We also emphasize that while the “ghost” fields cr,a are introduced to

satisfy the unitary condition (1.28) which is a quantum condition, they survive in the

classical limit. Thus to describe (classical) thermal fluctuations consistently we still need

anti-commuting fields!

When ~eff is small, the path integral (1.78) can be evaluated using the saddle point

approximation, with

W [φr, φa] =
1

~eff
Wtree +W1 + ~effW2 + · · · , (1.82)

where the leading contribution is the tree-level term (1.38) discussed earlier. Note that the

ghost action can be ignored at tree-level. The most convenient choice of the effective loop

expansion parameter ~eff will in general depend on the specific system under consideration.
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On general grounds, we expect it to be proportional to the energy or entropy density of a

macroscopic system. In particular,

~eff ∝
1

N
(1.83)

where N is the number of degrees of freedom. From now on we will refer to Wtree as the

thermodynamical limit of W .

As usual in effective field theories, IB can contain an infinite number of terms, and for

explicit calculations one needs to decide an expansion scheme to truncate it. In our current

context, due to the doubled degrees of freedom and sources, there is also a new element.

In this paper, the following expansions or their combinations will often be considered:

a. Derivative expansion. As usual the UV cutoff scale for the derivative expansion is the

mean free path `mfp, whose explicit form of course depends on specific systems. For

example, for a strongly interacting theory at a finite temperature T = 1
β , we expect

`mfp ∼ ~β. We always take the external sources to be slowly varying in spacetime,

and vanishing at both spatial and temporal infinities.

b. Small amplitude expansion. One takes the external sources to be small and considers

small perturbations of dynamical variables χr,a around equilibrium values.

c. a-field expansion. We expand the action IB in terms of the number of a-fields, i.e.

IB = I
(1)
B + I

(2)
B + · · · (1.84)

where I
(m)
B contains altogether m factors of φa, χa and ca. The expansion starts

with m = 1 due to (1.37). From (1.29), I
(m)
B is pure imaginary for even m and

real for odd m. The a-field expansion is motivated from the structure of generating

functional W [φr, φa]. As will be discussed in section 2.2, the expansion of W in φa
gives rise to fluctuation functions of increasing orders. So if one is only interested in

the fluctuation functions up to certain orders, one could truncate the expansion (1.84)

to the appropriate order. In section 3.3 we also show χa can be interpreted as noises.

Thus a-field expansion essentially corresponds to expansion in terms of noises. For

this reason, we will also refer to it as noise expansion.

1.9 Plan for the rest of the paper

In the next section, we review aspects of generating functionals in the CTP formalism,

which will play an important role in our discussions. Of particular importance is the

discussion of the KMS conditions at full nonlinear level as well as the constraints which

the KMS conditions impose on response functions.

In section 3, we explain how the standard formulation of hydrodynamics arises in our

formulation, and aspects of our theory going beyond it. We first discuss how to recover

the standard hydrodynamical equations of motion and then constraints on the equations

of motion following from our symmetry principles. In particular, in addition to recovering

all the currently known constraints, we will find a set of new constraints to which we refer
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as generalized Onsager conditions. We also discuss how to obtain the standard formulation

of fluctuating hydrodynamics.

In the rest of the paper, we apply the formalism outlined in this introduction to

two examples. In section 4, we consider the hydrodynamics associated with a conserved

current (1.3)–(1.5). We discuss emergent supersymmetry in detail at quadratic and cubic

level in the small amplitude expansion. We work to all orders in derivatives. We give

an explicit example in which the generalized Onsager conditions give new constraints at

second derivative order at cubic level (details in appendix D). We also derive a minimal

truncation of our theory which provides a path integral formulation for a variation of

stochastic Kardar-Parisi-Zhang equation.

In section 5, we apply the formalism to full dissipative charged fluids. We write the

action in a double expansion of derivatives and a-fields. We prove that it reproduces

the standard formulation of hydrodynamics as its equations of motion. We also use our

formalism to derive the two-point functions of a neutral fluid, and provide a path integral

formulation of the relativistic stochastic Navier-Stokes equations. Finally we show that a

conserved entropy current arises at the ideal fluid level from an accidental symmetry.

We conclude in section 6 with future directions. We have also included a number of

technical appendices. In particular, in appendix B we discuss constraints from the KMS

condition at general orders and prove a generalized Onsager relation. In appendix C, we

show how the local KMS condition leads to the KMS condition for full correlation functions

at tree-level for the vector model. In appendix D we give an explicit example in the vector

theory which shows that local KMS counterpart of the nonlinear Onsager relation gives

new nontrivial constraints at second order in derivatives. In appendix F we prove that at

O(a) level in the a-field expansion, the stress tensor and current can be solely expressed in

terms of standard hydrodynamical variables.

2 Generating functional for closed time path integrals

Here we review aspects of the closed time path integral (CTP), or Schwinger-Keldysh for-

malism (see e.g. [61–64]), which will be used in this paper. At the end, we derive constraints

on nonlinear response functions from KMS conditions, which will play an important role

later in constraining hydrodynamics. This discussion is new.

2.1 Closed time path integrals

The evolution of a system with an initial state ρ0 at some ti → −∞ can be written as

ρ(t) = U(t, ti)ρ0U
†(t, ti), (2.1)

where the evolution operator U(t, ti) can be expressed as a path integral from ti to t. It

then follows that ρ(tf ) with tf → ∞ is described by a path integral with two segments,

one going forward in time from −∞ to +∞ and one going backward in time from +∞ to

−∞ (see figure 2a),〈
x′′|ρ(tf )|x′

〉
=

∫
dx′′0dx

′
0

∫ x1(tf )=x′′

x1(ti)=x′′0

Dx1

∫ x2(tf )=x′

x2(ti)=x′0

Dx2 e
iS[x1]−iS[x2]

〈
x′′0|ρ0|x′0

〉
. (2.2)
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Figure 2. (a) Evolution of a general initial density matrix ρ0. (b) Closed time path contour from

taking the trace. Inserted operators should be path ordered as indicated by the arrows.

For notational simplicity, we have written the above equation for the quantum mechanics

of a single degree of freedom x(t).

Setting x′′ = x′ = x and integrating over x, we then find that

Tr (ρ0P · · ·) ≡ 〈P · · ·〉 =

∫
dx

∫
x1(+∞)=x2(+∞)=x

Dx1Dx2 e
iS[x1]−iS[x2] · · ·

〈
x′′0|ρ0|x′0

〉
,

(2.3)

where the path integrations on the right hand side are over arbitrary x1,2(t) with the only

constraint x1(+∞) = x2(+∞) = x (see figure 2b). In (2.3) · · · denotes possible operator

insertions, and P on the left hand side indicates that the inserted operators are path

ordered: operators inserted on the first (i.e. upper) segment are time-ordered, while those

on the second (i.e. lower) segment are anti-time-ordered, and the operators on the second

segment always lie to the left of those on the first segment.

It is often convenient to consider the generating functional

Z[φ1i, φ2i] ≡ eW [φ1i,φ2i] = Tr

[
ρ0P exp

(
i

∫
dt (O1i(t)φ1i(t)−O2i(t)φ2i(t))

)]
, (2.4)

where i labels different operators, and the subscripts 1, 2 inOi denote whether the operators

are inserted on the first or second segment of the contour (note O1i and O2i are the same

operator), and φ1i, φ2i are independent sources for the operator Oi along each segment.

The − sign before terms with subscript 2 arises from reversed time integration. Taking

functional derivatives of W gives path ordered connected correlation functions, for example

1

i4
δ4W

δφ1(t1)δφ2(t2)δφ1(t3)δφ2(t4)

∣∣∣∣
φ1=φ2=0

= 〈PO1(t1)O2(t2)O1(t3)O2(t4)〉

=
〈
T̃ (O(t2)O(t4))T (O(t1)O(t3))

〉
, (2.5)

where we have suppressed i, j indices. In the second line, T and T̃ denote time and anti-time

ordering respectively. In this notation, equation (2.4) can thus be written as

eW [φ1i,φ2i] = Tr
[
ρ0

(
T̃ e−i

∫
dtO2i(t)φ2i(t)

)(
Tei

∫
dtO1i(t)φ1i(t)

)]
. (2.6)

We will take all operators Oi under consideration to be Hermitian and bosonic. φ1i, φ2i

are real. Taking the complex conjugate of (2.6), we then find that

W ∗[φ1i, φ2i] = W [φ2i, φ1i] . (2.7)
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Equation (2.4) can also be written as

eW [φ1i,φ2i] = Tr
[
U(+∞,−∞;φ1i)ρ0U

†(+∞,−∞;φ2i)
]
, (2.8)

where U1 is the evolution operator for the system obtained from the original system under

the deformation
∫
dtφ1iOi, and similarly for U2. From (2.8), we have

W [φi, φi] = 0, φ1i = φ2i = φi . (2.9)

It is convenient to introduce the so-called r − a variables with

φri =
1

2
(φ1i + φ2i), φai = φ1i − φ2i, Oai = O1i −O2i, Ori =

1

2
(O1i +O2i), (2.10)

for which (2.4) becomes

eW [φai,φri] = Tr

[
ρ0P exp

(
i

∫
dt (φai(t)Ori(t) + φri(t)Oai(t))

)]
. (2.11)

From (2.11), one obtains a set of correlation functions (in the absence of sources) with

specific orderings (suppressing i, j indices for notational simplicity):

Gα1···αn(t1, · · · tn) ≡ 1

inr
δnW

δφᾱ1(t1) · · · δφᾱn(tn)

∣∣∣∣
φa=φr=0

= ina〈POα1(t1) · · · Oαn(tn)〉 ,

(2.12)

where α1, · · · , αn ∈ (a, r) and ᾱ = r, a for α = a, r. nr,a are the number of r and a-index

in {α1, · · · , αn} respectively (na + nr = n). The r − a representation (2.10)–(2.12) is

convenient as (2.12) is directly related to (nonlinear) response and fluctuation functions,

which we will review momentarily.

Equations (2.7)–(2.9) can also be written as

W [φai = 0, φri] = 0, (2.13)

and

W ∗[φai, φri] = W [−φai, φri] . (2.14)

Equation (2.13) implies that

Ga···a = 0 . (2.15)

2.2 Nonlinear response functions

In this subsection, for notational simplicity we will suppress i, j indices on O and φ’s. To

understand the physical meaning of correlation functions introduced in (2.12), let us first

expand W in terms of φa’s:

W [φa, φr] = i

∫
dt1Dr(t1)φa(t1) +

i2

2!

∫
dt1dt2Drr(t1, t2)φa(t1)φa(t2) + · · · , (2.16)

where

Dr···r(t1, · · · , tn) =
1

in
δnW

δφa(t1) · · · δφa(tn)

∣∣∣∣
φa=0

= 〈POr(t1) · · · Or(tn)〉φr . (2.17)
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For φa = 0, we have φ1 = φ2 = φr ≡ φ. Writing the last expression of (2.17) explicitly in

terms of orderings of O’s, we find that

Dr(t) = 〈O(t)〉φ , Drr(t1, t2) =
1

2
〈{O(t1),O(t2)}〉φ , · · · (2.18)

and Dr···r(t1, · · · , tn) is the fully symmetric n-point fluctuation functions of O, in the

presence of external source φ. They are referred to as non-equilibrium fluctuation func-

tions [65, 66] (see also [63]).

One can further expand these non-equilibrium fluctuations functions in the external

source φ(t), for example,

Dr(t1) = 〈O〉φ = Gr(t1) +

∫
dt2Gra(t1, t2)φ(t2)

+
1

2!

∫
dt2dt3Graa(t1, t2, t3)φ(t2)φ(t3) + · · · (2.19)

Drr(t1, t2) =
1

2
〈{O(t1),O(t2)}〉φ = Grr(t1, t2)

+

∫
dt3Grra(t1, t2, t3)φ(t3) + · · · (2.20)

where Gα1···αn were introduced in (2.12). From (2.19), it follows that Gr is the one-point

function in the absence of source, and Gra, Graa, · · · are respectively linear, quadratic and

high order response functions of O to the external source. Similarly, Grr is the symmetric

two-point function in the absence of source, and Grra, Grraa, · · · are response functions

for the second order fluctuations. Indeed, writing the last expression of (2.12) explicitly

in terms of orderings of O’s, one finds that Gra···a are the fully retarded n-point Green

functions of [67], while Gr···r is the symmetric n-point fluctuation function [65, 66]. Other

Gα1···αn involve some combinations of symmetrizations and antisymmetrizations.

Note that, by definition, for hermitian operators, all of these functions are real in

coordinate space. At the level of two-point functions, one has

Gra(t1, t2) = GR(t1, t2), Gar(t1, t2) = GA(t1, t2), Grr(t1, t2) = GS(t1, t2), (2.21)

where GR, GA and GS are retarded, advanced and symmetric Green functions respectively.

Explicit forms of various three-point functions are given in appendix A.

2.3 Time reversed process and discrete symmetries

Let us now consider constraints on the connected generating functional W when ρ0 invari-

ant under certain discrete symmetries. We will now restore spatial coordinates using the

notation x = (t, ~x), and take spacetime dimension to be d.

Suppose that ρ0 is invariant under parity P or charge conjugation C, i.e.

Pρ0P† = ρ0, or Cρ0C† = ρ0. (2.22)

Then, from (2.6)

W [φ1i, φ2i] = W [φP1i, φ
P
2i], φPi (x) ≡ ηPi φi(Px), (2.23)

W [φ1i, φ2i] = W [ηCi φ1i, η
C
i φ2i], (2.24)
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where we have taken

POi(x)P† = ηPi Oi(Px), COi(x)C† = ηCi Oi(x) . (2.25)

For even spacetime dimensions, Px changes the signs of all spatial directions, while for odd

dimensions, it changes the sign of a single spatial direction.

For time reversal, consider a process with ρ0 the state at t = +∞ with the same

external perturbations:

eWT [φ1i,φ2i] = Tr
[
U †2(+∞,−∞;φ2i)ρ0U1(+∞,−∞;φ1i)

]
= Tr

[
ρ0

(
Tei

∫
dtO1i(t)φ1i(t)

)(
T̃ e−i

∫
dtO2i(t)φ2i(t)

)]
. (2.26)

It should be stressed that WT is a definition and we have not assumed time reversal

symmetry. At quadratic order in φ’s, we can write W as

W = i

∫
ddx1d

dx2

(
i

2
Gij(x1 − x2)φai(x1)φaj(x2) +Kij(x1 − x2)φai(x1)φrj(x2)

)
,

(2.27)

with symmetric, retarded and advanced Green functions given respectively by

GSij(x) = Gij(x) = Gji(−x), GRij(x) = Kij(x), GAij(x) = K̄ij(x) ≡ Kji(−x) . (2.28)

From (2.26), WT can be written as

WT = i

∫
ddx1d

dx2

(
i

2
Gij(x1 − x2)φai(x1)φaj(x2) + K̄ij(x1 − x2)φai(x1)φrj(x2)

)
,

(2.29)

but for higher point functions, WT can no longer be directly obtained from W .

Now let us suppose that ρ0 is invariant under time-reversal symmetry, i.e.

T ρ0T † = ρ0, T O(x)T † = ηTi O(T x), T x ≡ (−t, ~x), (2.30)

then from (2.6) and (2.26) we find (for real φi’s)

W [φ1i, φ2i] = WT [φT1i, φ
T
2i], φTi (x) ≡ ηTi φi(T x) . (2.31)

For ρ0 invariant under some products of C,P, T , the results can be readily obtained

from (2.23)–(2.24) and (2.31). For example, suppose that ρ0 is invariant under PT , i.e.

Θρ0Θ† = ρ0, Θ = PT , (2.32)

then

W [φ1i, φ2i] = WT [φPT1i , φ
PT
2i ], φPTi (x) ≡ ηPTi φi(−x), ηPTi ≡ ηPi ηTi . (2.33)

From (2.27) and (2.29), for a system with PT symmetry, (2.33) implies that

Gij(x) = ηPTi ηPTj Gij(−x), Kij(x) = ηPTi ηPTj Kji(x) . (2.34)

For higher point functions, (2.33) does not impose any direct constraints on W itself, only

relating W to WT .
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2.4 Thermal equilibrium and the KMS condition

Let us now specialize to a thermal density matrix

ρ0 =
1

Z0
e−β0(H−µ0Q), Z0 = Tr e−β0(H−µ0Q) . (2.35)

We will restrict to our discussion to Hermitian operators Oi which commute with charge

Q. This is satisfied by the stress tensor Tµν and the current Jµ associated with Q which

are the main interests of this paper. Then W satisfies the following KMS condition [58–60]:

eW [φ1i,φ2i] =
1

Z0
Tr
[
e−(β0−θ)Ĥ

(
T̃ e−i

∫
O2iφ2i

)
e(β0−θ)Ĥe−β0ĤeθĤ

(
Tei

∫
O1iφ1i

)
e−θĤ

]
= eWT [φ1i(t+iθ),φ2i(t−i(β0−θ))], (2.36)

for arbitrary θ ∈ [0, β0] where Ĥ = H − µ0Q and we have used that

e−aĤ
(
T̃ ei

∫
O(t)φ(t)

)
eaĤ = T̃ ei

∫
O(t)φ(t−ia) (2.37)

and (2.26). Similarly we have

WT [φ1i, φ2i] = W [φ1i(t− iθ), φ2i(t+ i(β0 − θ))] . (2.38)

At quadratic order in φi’s, from (2.27)–(2.29), equation (2.36) gives the standard

fluctuation-dissipation theorem (FDT) for two-point functions:

Gij(k) =
1

2
coth

β0ω

2
∆ij(k), i∆ij ≡ Kij − K̄ij . (2.39)

For higher point functions, WT cannot be expressed in terms of W , and the KMS

condition (2.36) by itself does not impose constraints on W beyond quadratic order. For a

PT invariant Hamiltonian H, ρ0 is invariant under PT . Using (2.33), we can then further

write (2.36) as

W [φ1i, φ2i] = WT [ηPTφ1i(−x), ηPTφ2i(−x)]

= W [ηPTφ1(−t+ iθ,−~x), ηPTφ2(−t− i(β0 − θ),−~x)] . (2.40)

For the stress tensor and conserved currents, which are our main interests of the paper,

ηPTi = 1 for all components. Below we will take ηPTi = 1.

For two point functions, with PT symmetry in addition to (2.39) we also have (2.34),

which in momentum space becomes

Gij(k) = Gij(−k) = G∗ij(k) = Gji(k), Kij(k) = Kji(k), (2.41)

the second of which are Onsager relations. Recall that by definition, Gij is real in coordinate

space and is Hermitian in momentum space.

At cubic level in φ’s, let us write W as

W = i

[
1

3!
Gijkφaiφajφak +

i

2
Hijkφaiφajφrk +

1

2
Kijkφaiφrjφrk

]
, (2.42)
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where we have used a simplified notation, e.g. the first term should be understood in

momentum space as

Gijkφaiφajφak =

∫
dk2dk3Gijk(k1, k2, k3)φai(k1)φaj(k2)φak(k3), k1+k2+k3 = 0, (2.43)

and similarly with others. Note that (suppressing ijk indices)

G = −Grrr, H = Grra, K = Graa . (2.44)

By definition, the Gijk(k1, k2, k3) are fully symmetric under simultaneous permutations of

i, j, k and the corresponding momenta, and

Hijk(k1, k2, k3) = Hjik(k2, k1, k3), Kijk(k1, k2, k3) = Kikj(k1, k3, k2) . (2.45)

To write the KMS condition for three-point functions, it is convenient to introduce the

following notation (suppressing all i, j indices):

H3 ≡ Grra, H2 ≡ Grar, H1 ≡ Garr, K1 ≡ Graa, K2 ≡ Gara, K3 ≡ Gaar . (2.46)

Then (2.40) applied to three-point level can be written in momentum space as [63]

H1 =
i

2
(N3 +N2)K∗1 −

i

2
(N2K3 +N3K2), (2.47)

H2 =
i

2
(N3 +N1)K∗2 −

i

2
(N1K3 +N3K1), (2.48)

H3 =
i

2
(N1 +N2)K∗3 −

i

2
(N1K2 +N2K1), (2.49)

G =
1

4
((K∗1 +K∗2 +K∗3 ) + 2N2N3ReK1 + 2N1N3ReK2 + 2N1N2ReK3) , (2.50)

where we have introduced

Na = coth

(
βωa

2

)
, a = 1, 2, 3 . (2.51)

Expressions of (2.40) in terms of correlation functions at general orders are reviewed

in appendix B.

2.5 The classical statistical limit

Let us now consider the classical limit of the generating functional (2.11) for a density

matrix ρ0 which has a classical statistical mechanics description.

With ~ restored, each term in (2.16) and (2.19)–(2.20) should have a factor ~−n with

n equal to the number of φr,a factors. As defined, the symmetric Green functions (2.17)

should all have a well defined ~→ 0 limit, and after taking the limit, they describe classical

statistical fluctuations. Gr···ra···a with na a-indices should have the limiting behavior

Gr···ra···a → ~naG(cl)
r···ra···a, ~→ 0, (2.52)
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as it has na commutators. G
(cl)
r···ra···a is defined exactly as Gr···ra···a, but with all commutators

replaced by Poisson brackets. From now on, to simplify notation, we will suppress the

subscript “cl” and use the same notation to denote the quantum and classical correlation

functions. Thus, for W [φa, φr] to have a well-defined limit, the sources φa, φr should scale as

φa → ~φa, φr → φ, ~→ 0 . (2.53)

Let us now look at the ~ → 0 limit of the KMS conditions (2.40). With ~ restored,

β0 in all expressions should be replaced by β0~. At the level of two-point functions, equa-

tion (2.39) then becomes

Gij =
1

β0ω
Im∆ij . (2.54)

At cubic level, given G ∼ O(~0), H ∼ O(~),K ∼ O(~2), equations (2.47) and (2.50) become

H1 = − i

βω2ω3
(ω1K

∗
1 + ω2K2 + ω3K3) , (2.55)

G =
2

β2ω1ω2ω3
(ω1ReK1 + ω2ReK2 + ω3ReK3) , (2.56)

and H2, H3 can be obtained from (2.55) by permutations.

2.6 Constraints on response functions from KMS conditions

The KMS conditions (2.40) not only relate various nonlinear response and fluctuation

functions, they also imply conditions on correlation functions themselves. For example, at

two point function level, (2.39), regularity of Gij in the limit ω → 0 requires that

Im∆ij → 0, ω → 0 . (2.57)

Similarly, in (2.47)–(2.50), regularity of H1,2,3 and G when taking some combinations of

ω1,2,3 to zero also imposes constraints on K1,2,3 in various zero frequency limits. The

complete set of conditions are given in equations (B.22)–(B.24) of appendix B.

Of particular interest to us are consistency conditions involving only response functions

Gra···a, which will play an important role in our discussion of hydrodynamics. For general

n-point response functions, let us denote

K1 = Gra···a, K2 = Gara···a, · · · Kn = Ga···ar . (2.58)

We can show that when taking any n− 2 frequencies to zero, e.g.

K1 = K∗2 , ω3, ω4, · · · , ωn → 0 . (2.59)

From equation (2.59) and permutations of it, it then follows that

K1 = K2 = · · · = Kn ≡ K, ImK = 0, all ωi → 0 . (2.60)

Except for two-point functions, equations (2.59)–(2.60) for general n appear to be new.

We prove (2.59) in appendix B.3. Equations (2.60) have simple physical interpretations:
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the first equation says that in the stationary limit, there is no retardation effect, while the

second equation says that there is no dissipation.

For two-point functions, denoting K ≡ K1, then K2 = K†, equation (2.59) reduces to

Kij(ω,~k) = Kji(ω,~k), (2.61)

i.e. the familiar Onsager relations. From now on we will refer to (2.59) as generalized

Onsager relations.

It appears to us (2.59) and (2.60) are the only relations involving response functions

alone. If one leaves more than two frequencies nonzero, then the KMS relations will nec-

essary involve functions with more than one r-indices, as in n = 3 relations (2.47)–(2.50).

Equations (2.59)–(2.60) can be written in a compact way in terms of one-point func-

tion (2.19) in the presence of sources. For this purpose, it is convenient to define

Gi1i2(x1, x2;φi(~x)] =
δ〈Oi1(x1)〉φ
δφi2(x2)

∣∣∣∣
S

= Ki1i2(x1, x2) +

∫
ddx3Ki1i2i3(x1, x2, x3)φi3(~x3) (2.62)

+
1

2

∫
ddx3d

dx4Ki1i2i3i4(x1, x2, x3, x4)φi3(~x3)φi4(~x4) + · · · ,

where again K ≡ K1, and the subscript S in the first line denotes the procedure that after

taking the differentiation one should set all sources to be time-independent. The notation

G(· · · ] highlights that it is a function of x1, x2, but a functional of φi(~x). In the second

line, φ(~x) indicates that the sources only have spatial dependence. Then (2.59) can be

written as

Gij(x, y;φi(~x)] = Gji(−y,−x;φi(−~x)], (2.63)

or in momentum space

Gij(k1, k2;φi(~k)] = Gji(−k2,−k1;φi(−~k)] = G∗ji(k2, k1;φi(−~k)] . (2.64)

Now look at the first equation of (2.60), which implies that in the stationary limit

there exists some functional W̃ [φi(~x)] defined on the spatial part of the full spacetime,

from which

〈Oi(ω = 0, ~x)〉φ =
δW̃ [φ(~x)]

δφi(~x)
. (2.65)

The above equation implies that for stationary sources to first order in φa, the generating

functional (2.16) can be written in a “factorized” form:

W [φr, φa] = i

∫
dd−1~x 〈Oi(ω = 0, ~x)〉φ φai(~x) + · · · = iW̃ [φ1]− iW̃ [φ2] + · · · . (2.66)

The second equation of (2.60) is the statement that Ki1···in(~k1, · · ·~kn) are real in mo-

mentum space. By definition, K’s are real in coordinate space. That they are also real in

momentum space implies that

Ki1···in(~k1, · · ·~kn) = Ki1···in(−~k1, · · · ,−~kn) = real (2.67)

which in turn implies that

W̃ [φ(~x)] = W̃ [φ(−~x)] . (2.68)
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3 Relations with standard formulations

In this section we first explain how the standard hydrodynamical equations of motion arise

in our framework. Then we consider constraints on hydrodynamical equations of motion

following from our symmetry principles outlined in the introduction. In particular, the

prescription [13, 14] that in a stationary background the stress tensor and current should

be obtainable from a stationary partition function will arise as a subset of our conditions.

We will find a set of new constraints to which we refer as generalized Onsager conditions.

Finally we discuss how to recover the standard formulation of fluctuating hydrody-

namics and aspects of our theory going beyond it.

3.1 Recovering hydrodynamical equations of motion

Let us first explain how the standard hydrodynamical equations of motion arise in our for-

mulation. To illustrate the basic idea, we again use the same simplified notation of (1.34).

Since we are interested in the equations of motion (i.e. in the thermodynamical limit of

section 1.8), it is enough to consider the bosonic theory, with all ghost dependence ignored.

Recall from section 1.3 that the equations of motion for the dynamical variables χa,r
correspond to the conservation of Ja,r, which we can schematically write as14

∂Jr = 0, ∂Ja = 0 . (3.1)

Let us now expand the bosonic action I in terms of the number of a-fields, as discussed

around (1.84),

I = I(1) + I(2) + · · · , (3.2)

where I(m) contains altogether m factors of φa and χa. From (1.33), the current operators

Ja,r can be similarly expanded as

Jr = J (0)
r + J (1)

r + · · · , Ja = J (1)
a + J (2)

a + · · · , (3.3)

where m in the superscript (m) again denotes the number of a-fields in each expression.

Note that Ja starts with m = 1, i.e. Ja|φa=0,χa=0 = 0, and J
(0)
r only depends on the lowest

order action I(1).

With (3.3), the equations of motion (3.1) also have the expansion

∂Jr = ∂J (0)
r + ∂J (1)

r + · · · = 0, (3.4)

∂Ja = ∂J (1)
a + ∂J (2)

a + · · · = 0 . (3.5)

To make connection with the standard hydrodynamical equations, let us now take the

background fields of the two segments of CTP to be the same, i.e.

φ1 = φ2 = φr = φ, φa = 0, (3.6)

14Equations of motion for τr,a do not have this structure. They can be solved algebraically and do not

affect the argument below.
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or in terms of our original fields,

g1µν = g2µν = gµν , A1µ = A2µ = Aµ . (3.7)

With φa = 0, as already discussed after (1.38), the equations of motion give that

χ(cl)
a = 0 → χ1 = χ2 = χr ≡ χ . (3.8)

In terms of our original dynamical variables, one then has

Xµ
1 = Xµ

2 = Xµ, ϕ1 = ϕ2 = ϕ . (3.9)

With φa = χa = 0, Ja vanishes identically and all terms in Jr except for J (0) vanish.

Thus,

J1 = J2 = Jr = J (0)
r , (3.10)

and the remaining equations of motion are

∂J (0)
r = 0 . (3.11)

In terms of original variables, equation (3.10) corresponds to

T̂µν1 = T̂µν2 = (T̂µνr )(0) ≡ T̂µνhydro, Ĵ1 = Ĵ2 = (Ĵµr )(0) ≡ Ĵµhydro (3.12)

and (3.11) to

∇µĴµhydro = 0, ∇ν T̂ νµhydro − F
µ
ν Ĵ

ν
hydro = 0 . (3.13)

Furthermore, one can show from the symmetry requirements (1.22)–(1.24), as the zeroth

order terms in the a-field expansion of currents, T̂µνhydro and Ĵµhydro can be expressed solely

in terms of the velocity field (1.13), local chemical potential (1.14) and local temperature

field (1.15) (which we will prove explicitly in section 5.3 and appendix F). Equations (3.13)

then reproduce the standard hydrodynamical equations.

To summarize, the standard hydrodynamical equations of motion correspond to the

zeroth order approximation in the a-field expansion in the thermodynamical limit.

3.2 Constraints on hydrodynamics

For ρ0 given by the thermal ensemble (1.60), we also need to impose the local KMS con-

ditions on the source action Is (1.68). As far as the hydrodynamical equations of mo-

tion (3.13) are concerned, we only need to look at constraints on I
(1)
s , which encode the

contact contributions to all of the response functions.

In the standard formulation of hydrodynamics one needs to impose constraints from the

local second law of thermodynamics, existence of stationary equilibrium, and the Onsager

relations. In our formulation, these constraints are fully taken care of by the local KMS

conditions (1.68). At an abstract level, this is a consequence of the facts that: (i) the local

KMS conditions ensure that the full KMS conditions are satisfied in the thermodynamical

limit; (ii) the full KMS conditions are known to imply the local second law (see e.g. [70])

as well as existence of stationary equilibrium; (iii) time reversal symmetry is encoded in
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our formulation of local KMS conditions. In fact, from the discussion of section 2.6, local

KMS conditions include not only the Onsager relations for linear responses, but also give

full nonlinear generalizations.

More explicitly, restricted to I
(1)
s , the local KMS conditions give the following three

types of constraints:

(a) Relations between coefficients in I
(1)
s and higher order terms in a-expansion. For ex-

ample, at first derivative order, (2.39) relates transport coefficients such as shear, bulk

viscosities and conductivity in I
(1)
s to coefficients in I

(2)
s (FDT relations). From (1.29)

I(2), terms in the action are pure imaginary and their coefficients should satisfy certain

non-negativity conditions in order for the path integral to be well defined. Altogether,

this implies the non-negativity of various transport coefficients. As we shall see in

section 5.8, while this works out easily for the shear viscosity, for conductivity and

bulk viscosity it is highly nontrivial. At first derivative order, the non-negativity of

shear, bulk viscosities and conductivity are all one gets. These are also the inequal-

ity constraints from the non-negative divergence of the entropy current. In fact it

has been argued recently [15, 16] these are the only inequality constraints from the

entropy current to all orders in derivatives. It is conceivable, in our context at higher

derivative orders the well-definedness of the integration measure combined with FDT

relations may give additional inequality relations, thus predicting new relations going

beyond those from the entropy current.

(b) When all sources in I
(1)
s are taken to be time-independent, I

(1)
s should satisfy (2.60).

From (2.66), this means that for stationary sources we can write I
(1)
s in a factor-

ized form

I(1)
s [g1, A1; g2, A2] = W̃ [g1, A1]− W̃ [g2, A2] (3.14)

where W̃ [g,A] is a local functional of stationary metric gµν(~x) and gauge field Aµ(~x)

on the spatial manifold. Note that for stationary backgrounds, the dynamical modes

will not be excited and thus I
(1)
s is the full contribution to the leading generating

functional W
(1)
tree in the a-field expansion in the thermodynamical limit. We thus have

derived the prescription [13, 14] that in a stationary background the stress tensor

and current should be derivable from a partition function. In [15, 16] it has also

been shown that this requirement is equivalent to equality-type constraints from the

entropy current. Now this coincidence becomes completely natural.

(c) For time dependent sources, we have an additional set of constraints following from

the generalized Onsager relations (2.63) on I
(1)
s coefficients. In the next section (and

appendix D), we will see that they lead to new constraints in the hydrodynamics of

a single current starting at second order in derivative expansion. For a full charged

fluid including the stress tensor, these new constraints will also start operating at the

second derivative order, but we will not work them out explicitly in this paper.
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3.3 Recovering stochastic hydrodynamics

Now we show how to recover the standard formulation of fluctuating hydrodynamics [10,

11]. For this purpose, consider the first two terms in the a-field expansion (3.2):

I = I(1) + I(2) . (3.15)

From our discussion of section 3.1 we can write I(1) as

I(1) = χa∂J
(0)
r , (3.16)

which gives the equations of motion (3.11) when varied with respect to χa. I(2) can be

schematically written as

I(2) =
i

2
χaG(∂, χr)χa , (3.17)

where G is a local differential operator depending on χr. Now, expanding G(∂, χr) in

powers of χr,

G(∂, χr) = G0(∂) +O(χr) , (3.18)

where now G0 is a local differential operator with no dependence on dynamical variables.

Keeping only the G0 term in I(2), we can write the action schematically as

I = χa∂J
(0)
r +

i

2
χaG0χa . (3.19)

Note that we are not doing any χr expansion in I(1).

Now consider a Legendre transformation of the second term of (3.19), i.e. introducing

ξ = −∂Iaa
∂χa

to rewrite Iaa = i
2χaG0χa as

Iaa = −χaξ + Ĩaa[ξ], with Ĩaa =
i

2
ξ

1

G0
ξ. (3.20)

I can then be written as

I =
i

2
ξ

1

G0
ξ + χa

(
∂J (0)

r − ξ
)
. (3.21)

The path integral then becomes

eW =

∫
DξDχrDχa e

iI =

∫
DξDχr δ

(
∂J (0)

r − ξ
)
e−

1
2

∫
ddx ξG−1

0 ξ, (3.22)

i.e. χa is now a Lagrange multiplier, whose integration gives the stochastic diffusion

equation

∂J (0)
r = ξ , (3.23)

where ξ is a stochastic force with local Gaussian distribution:

〈ξ〉 = 0, 〈ξ(x)ξ(0)〉 = G0δ
(d)(x) . (3.24)

Equations (3.23)–(3.24) recover the standard formulation of fluctuating hydrodynamics [10,

11].15 We see that χa is the conjugate variable for the noises, and thus the expansion in

a-fields may be considered as an expansion in noises.

15Of course, at this stage our discussion is rather schematic. Explicit expressions can be found in sec-

tion 4.3 and section 5.9.
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The above discussion makes clear the aspects of our formulation that go beyond the

traditional formulation of fluctuating hydrodynamics: (i) In addition to the G0 term, the

full I(2) also includes interactions between dynamical variables and the noises. (ii) I(n)

with n ≥ 3 includes interactions among noises and higher order interactions among noises

and dynamical variables. (iii) Beyond (3.21), dynamical variables can fluctuate on their

own and are not constrained by fluctuations of noises as in (3.23). Furthermore, once we

include interactions between χr and χa in I(2), it is no longer convenient to perform the

Legendre transform (3.20) from χa to ξ which will result in a non-local and non-polynomial

action. It is more sensible to simply work with χa.

From the renormalization group perspective, the effective theory we are writing down

is defined at a cutoff scale Λ, below which hydrodynamics is defined.16 If one is interested

in physics at some energy scale E � Λ, then one should further integrate out hydrody-

namical degrees of freedom with energies ω ∈ (E,Λ). It may happen for certain situations

that the neglected interactions in (3.21) are all irrelevant. In such a case, the standard

stochastic formulation (3.23)–(3.24) is already adequate for obtaining the leading physics

at energies E � Λ.

3.4 Correlation functions

We conclude the discussion of this section by making some comments on correlation

functions.

Let us use (J
(0)
r )cl to denote the expression obtained by evaluating J

(0)
r on the solution

to the equations of motion. Then expanding (J
(0)
r )cl in φr from (2.19), one obtains the

full set of nonlinear response functions Gra, Graa, · · · in the thermodynamical limit. This

constitutes the standard hydrodynamical approach to response functions [60] (see also [12]

for a recent review).

In the thermodynamical limit, we can go beyond the standard formulation by turning

on φa 6= 0. Then both equations (3.4)–(3.5) are nontrivial. Solving these equations to

obtain (J
(n)
a )cl, (J

(n)
r )cl and expanding them in φa and φr, we can now obtain the full set

of nonlinear fluctuation and response functions of section 2.2 in thermodynamical limit.

Note that beyond the leading order term J
(0)
r , J

(n)
a,r with n ≥ 1 cannot be expressed solely

in terms of velocity-type variables uµ(σ), µ(σ), T (σ). Instead, the more fundamental fluid

field variables, Xµ
s and ϕs, must be used.

Beyond the thermodynamical limit, we also need to include loop corrections from

statistical or quantum fluctuations. Recall the expansion in ~eff discussed in section 1.8,

which we copy here for convenience:

W [φr, φa] =
1

~eff
Wtree +W1 + ~effW2 + · · · . (3.25)

Corrections from W1,W2, · · · will give rise to phenomena such as long time tails, as well

as running transport coefficients with scales, and so on (see e.g. [12, 68, 69] for recent

discussions). Such fluctuation effects may be particularly important near classical and

quantum phase transitions and in non-equilibrium situations.

16For example, for a strongly coupled theory, Λ is of order temperature.
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4 A baby example: stochastic diffusion

As a baby example of the general formalism introduced earlier, we consider the hydrody-

namical action associated with a conserved current discussed in (1.3)–(1.5), which we copy

here for convenience

eW [A1µ,A2µ] = Tr
(
ρ0e

i
∫
ddxA1µJ

µ
1 −i

∫
ddxA2µJ

µ
2

)
=

∫
Dϕ1Dϕ2 e

iI[B1µ,B2µ], (4.1)

with

B1µ ≡ A1µ + ∂µϕ1, B2µ ≡ A2µ + ∂µϕ2 . (4.2)

This theory applies to situations where Jµ either decouples from the stress tensor (as for

example for a particle-hole symmetric neutral fluid) or the coupling of Jµ to the stress tensor

is small enough to be neglectable. In the stress tensor sector one takes the equilibrium

solution Xµ
1 = Xµ

2 = xaδµa , τ = 0 with the metric backgrounds g1µν = g2µν = ηµν . Thus

in this case the fluid and physical spacetimes coincide. We will take ρ0 to be the thermal

ensemble (1.60).

It is convenient to introduce the r − a variables,

Baµ = B1µ −B2µ = Aaµ + ∂µϕa, Brµ =
1

2
(B1µ +B2µ) = Arµ + ∂µϕr . (4.3)

The local action I[Br, Ba] should satisfy symmetry conditions 1-8 outlined in the intro-

duction. In particular, in this case equations (1.22)–(1.23) simply reduce to rotational

symmetries in spatial directions. From (1.24), it should also be invariant under

Bri → Bri − ∂iλ(xi) . (4.4)

Writing

I =

∫
ddxL, (4.5)

we will expand L in powers of Br,a.

4.1 Quadratic order

4.1.1 The quadratic action

At quadratic order in Br,a, the most general bosonic L consistent with rotational symme-

tries, (1.29) and (1.37) can be written as

L =
i

2
aB2

a0 +
i

2
bB2

ai +
i

2
c(∂iBai)

2 + ifBa0(∂iBai) + gBa0Br0 + hBa0∂i∂0Bri

+u∂iBaiBr0 + vBai∂0Bri +
w

2
FaijFrij , (4.6)

where the coefficients a, b, c, · · · should be understood as real scalar (under spatial rotations)

local differential operators constructed out of ∂t and ∂i, and act on the second factor of a

term. For example

aB2
a0 ≡ Ba0a(∂t, ∂i)Ba0 = Ba0(−kµ)a(k)Ba0(kµ), kµ = (−ω,~k), (4.7)
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where in the second equality we have also written the expression in momentum space. All

of the coefficients can be expanded in the number of derivatives, for example, in momentum

space (q = |~k|),

a(k) = a00 + a20ω
2 + a02q

2 + · · · , b(k) = b00 + b20ω
2 + b02q

2 + · · · ,
g(k) = g00 + ig10ω + g20ω

2 + g02q
2 + · · · , (4.8)

and so on. Note that there is no term with odd powers of ω in the expansions of a, b, c

as these correspond to total derivatives. Thus a, b, c are real in momentum space. Other

coefficients can have odd powers in ω and are complex in momentum space with, e.g.

g(−k) = g∗(k), h(−k) = h∗(k), · · · . (4.9)

In coordinate space g∗ is the operator obtained from g by integration by parts i.e.

g∗(∂t, ∂i) = g(−∂t,−∂i). In the last term of (4.6), Fij = ∂iAj − ∂jAi and is indepen-

dent of ϕs.

Due to (1.29), the aa terms in (4.6) are pure imaginary, and thus are real in the

exponent of the path integral (4.1). This implies that the coefficients of the leading terms

in the derivative expansion must be non-negative, for example,

a00 ≥ 0, b00 ≥ 0 . (4.10)

Equation (4.6) applies to general dimensions and is parity invariant. For a specific

dimension, say d = 3, one can write down additional parity-breaking terms using fully

antisymmetric ε-symbol.

We still need to impose the local KMS condition (1.68), which at quadratic level

amounts to imposing (2.39) on the source action obtained by setting dynamical fields ϕr,a
to zero in (4.6). The source action is the same as (4.6) with Brµ and Baµ replaced by Arµ
and Aaµ. From (4.6) we can read

G00 = a, Gij = bδij + cqiqj = b̃δij − cq2P Tij , G0i = iqif, Gi0 = −iqif∗, (4.11)

K00 = g, K0i = qiωh, Ki0 = −iqiu, Kij = − iωvδij + wq2P Tij , (4.12)

K̄00 = g∗, K̄0i = iqiu
∗ K̄i0 = qiωh

∗, K̄ij = iωv∗δij + w∗q2P Tij . (4.13)

where we have introduced

b̃ = b+ cq2, P Tij = δij −
qiqj
q2

. (4.14)

Applying (2.39) we then have

a = − i

2
coth

βω

2
(g − g∗), (4.15)

b̃ = − ω

2
coth

βω

2
(v + v∗), c =

i

2
coth

βω

2
(w − w∗), (4.16)

f = − 1

2
coth

βω

2
(ωh− iu∗). (4.17)
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In particular, in (4.17), since the left hand side is regular as ω → 0, we need u to contain

at least one power of ω, i.e.

u00 = u02 = u04 = · · · = 0, (4.18)

where various coefficients in the expansion of u are defined as in (4.8). Further imposing

PT symmetry on the source action, i.e. requiring G and K to be symmetric (Onsager

relations), we have additional constraints:

f = −f∗, ωh = −iu . (4.19)

The second equation above automatically implies (4.18), and one can check that equa-

tions (2.60) are also automatically satisfied. Equation (4.17) can now be written as

f =
i

2
coth

βω

2
(u+ u∗) = −ω

2
coth

βω

2
(h− h∗) . (4.20)

4.1.2 Off-shell currents and constitutive relations

From (4.6), we find the corresponding off-shell currents

Ĵ0
a = g∗Ba0 + u∗∂iBai, Ĵ ia = h∗∂i∂0Ba0 − v∗∂0Bai + w∗∂jFaij , (4.21)

Ĵ0
r = iaBa0 + if∂iBai + gBr0 + h∂i∂0Bri, (4.22)

Ĵ ir = ibBai − ic∂i∂jBja − if∗∂iBa0 − u∂iBr0 + v∂0Bri + w∂jFrij . (4.23)

The equations of motion for ϕr and ϕa correspond to the conservation of Ĵµa and Ĵµr
respectively. To leading order in the a-field expansion, i.e. setting all the a-fields to zero

(and dropping r-subscripts), we have

Ĵ0 = P0µ− h∂iEi, , Ĵ i = − Pz∂iµ− vEi + w∂jFij , (4.24)

P0 ≡ g + h∂2
i , Pz ≡ u− v, Ei = −∂0Ai + ∂iA0, (4.25)

where from (1.14) µ = B0 = A0 + ∂0ϕ is the chemical potential. That at leading order in

the a-field expansion Ĵµ can be expressed solely in terms of µ to all derivative orders is

a consequence of fluid gauge symmetry (1.24). In fact, one can immediately see that this

works at full nonlinear level, as the fluid gauge symmetry means that Bri can only appear

either with a time derivative ∂0Bri = −Ei + ∂iµ or through Frij = ∂iBrj − ∂jBri. It is

also clear from (4.21)–(4.23) that at higher orders in the a-field expansion, Ĵµr,a cannot be

expressed in terms of µr,a alone, and the more fundamental ϕa has to be used.

It can also be readily checked from conservation of (4.24) that equation (4.18) is

equivalent to the existence of a stationary equilibrium for a stationary background field Aµ.

Finally, let us expand (4.24) in derivatives, at the leading order

Ĵ0 = χµ+ · · · , Ĵ i = σ(Ei − ∂iµ) + · · · , (4.26)

from which we can identify

χ = g00, σ = −v00, (4.27)
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as charge susceptibility and conductivity respectively. From (4.16), v00 is related to b00 as

b00 = − 2

β
v00 . (4.28)

From (4.10), we thus conclude that

σ ≥ 0 . (4.29)

4.1.3 BRST invariance and supersymmetry

Let us now set Aaµ = 0 in (4.6) and introduce ghost partners ca,r for φa,r. Here the BRST

transformation (1.49) becomes

δϕr = εcr, δca = εϕa . (4.30)

From the discussion of (1.54)–(1.55) we can readily write down the corresponding BRST

invariant Lagrangian density LB as

LB = g∂0ϕaBr0 + h∂0ϕa∂i∂0Bri + u∂2
i ϕaBr0 + v∂iϕa∂0Bri − caK∂0cr +

i

2
ϕaGϕa, (4.31)

where (with P0, Pz introduced in (4.25))

K = −P0∂0 + Pz∂
2
i , G = −a∂2

0 − b̃∂2
i − 2f∂0∂

2
i . (4.32)

Note that the ghost action is uniquely determined and the currents Ĵµa,r are not modified.

Further setting Arµ = 0 in (4.31), we obtain the Lagrangian density for dynamical

fields in the absence of external fields:

Ltot = ϕaK∂0ϕr − caK∂0cr +
i

2
ϕaGϕa . (4.33)

One can now verify that if the local KMS conditions (4.15)–(4.17) are satisfied, in addition

to (4.30), (4.33) is also invariant under the following fermonic transformation (ε̄ is a constant

Grassman number):

δ̄ϕr = caε̄, δ̄cr = (ϕa + Λϕr)ε̄, δ̄ϕa = −Λcaε̄, (4.34)

where

Λ = 2 tanh
iβ∂0

2
. (4.35)

In other words, for (4.33) to be invariant under (4.34), G and K should satisfy

(K +K∗)∂0 =
i

2
Λ(G+G∗) (4.36)

which follow from (4.15)–(4.17).

It can readily be checked that δ and δ̄ satisfy the following “supersymmetric” (SUSY)

algebra:

δ2 = 0, δ̄2 = 0, [δ, δ̄] = ε̄εΛ . (4.37)

This is not the usual SUSY algebra, as Λ involves an infinite number of derivatives.
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With all background fields set to zero, the currents have the form

Ĵ0
a = (g∗∂0 + u∗∂2

i )ϕa, Ĵ ia = (h∗∂i∂
2
0 − v∗∂0∂i)ϕa, (4.38)

Ĵ0
r = (ia∂0 + if∂2

i )ϕa + P0∂0ϕr, Ĵ ir = (ib̃∂i − if∗∂i∂0)ϕa − Pz∂i∂0ϕr, (4.39)

which can be readily checked to satisfy the same transformations as ϕr,a, cr,a, i.e.

δJµr = εξµr , δ̄Jµr = ξµa ε̄, δξµa = εJµa , δ̄ξµr = (Jµa + ΛJµr )ε̄, δ̄Jµa = −Λξµa ε̄, (4.40)

with ξµr,a given by

ξ0
r = P0∂0cr, ξir = − Pz∂i∂0cr,

ξ0
a = (P0∂0 − i(a∂0 + f∂2

i )Λ)ca, ξia = − (Pz∂0 + i(b̃− f∗∂0)Λ)∂ica . (4.41)

Again, the local KMS conditions (4.15)–(4.17) are crucial.

4.1.4 The full generating functional

For the quadratic action (4.6), the path integrals (4.1) can be evaluated exactly by solving

the equations of motion for ϕr,a. The ghost part does not contribute at quadratic order as

it gives an overall constant (which cancels the determinant from the bosonic part). We can

directly verify that the FDT (2.39) for the full correlation functions are satisfied given the

local KMS conditions (4.15)–(4.17), although this is a special case of the general argument

given in appendix C. We now restore the background fields Arµ, Aaµ.

To evaluate (4.1), it is convenient to work in momentum space. Taking kµ ≡
(k0, kz, kα) = (−ω, q,~0), one can readily see that ϕr,a only couples to A‖ ≡ (A0, Az), and

Brα = Arα, Baα = Aaα. We can then directly read from (4.6) the generating functional

for Arα, Aaα as

W [Arα, Aaα] = i

∫
ddk

(2π)d

[
i

2
bA2

aα + vAaα∂0Arα + wFazαFrzα

]
. (4.42)

By comparing with (2.21), we find that the corresponding components of the retarded and

symmetric correlation functions in momentum space are

GSαα = b(ω, q2), GRαα = −iωv(ω, q2) + q2w(ω, q2) . (4.43)

The FDT relation (2.39) requires that

b = −1

2
coth

βω

2

(
ω(v + v∗) + iq2(w − w∗)

)
, (4.44)

which is satisfied as result of (4.16).

Integrating out ϕr,a leads to a nonlocal generating functional for A
‖
r , A

‖
a,

W [A‖r , A
‖
a] = i

∫
ddk

(2π)d

[
E∗aΠLEr +

i

2
E∗aG

LEa

]
, (4.45)
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where

Ea(ω, q) ≡ qAa0(ω, q) + ωAaz(ω, q), Er ≡ qAr0 + ωArz, Ea,r(−ω,−q) = −E∗a,r(ω, q),
(4.46)

and

ΠL =
gD̂ − u
−iω + D̂q2

, GL =
aq2DD∗ − q2(fD + f∗D∗) + b̃

(−iω + D̂q2)(iω + D̂∗q2)
, D̂ ≡ Pz

P0
. (4.47)

As desired, there is no rr-type term in (4.45). That A‖ appears only through the combina-

tions in Ea,r is a consequence of the gauge invariance of W . The nonlocality is reflected in

the presence of a diffusion pole in ΠL and GL. D̂ can be considered as a diffusion function,

which has also been discussed recently in [71] as well it holographic calculation.

From (2.21), we can read various components of the symmetric and retarded Green

functions

G00
R = q2ΠL, G0z

R = ωqΠL, GzzR = ω2ΠL, G00
S = q2GL, G0z

S = ωqGL, GzzS = ω2GL,

(4.48)

and the FDT relation (2.39) requires that

GL = coth
βω

2
ImΠL . (4.49)

One can readily check from (4.47) that given (4.15)–(4.17), (4.49) is indeed satisfied.

Keeping the lowest order terms in (4.47) in derivative expansion of various quantities

we find

ΠL =
σ

−iω + q2D
, GL =

2Tσ

ω2 +D2q4
, (4.50)

where we have used (4.27)–(4.28), and D, which is the leading term of D̂, is given by

D = −v00

g00
=
σ

χ
. (4.51)

We see that the form of the diffusion constant D is consistent with the Einstein relations.

Note that χ should be non-negative for a stable equilibrium state. Given (4.29), we then

find that D is non-negative for a stable equilibrium state, and the pole of retarded Green

functions (4.48) indeed lies in the lower half ω-plane.

Note that the full generating functional given in (4.42) and (4.45) automatically sat-

isfies time-reversal invariance (i.e. Onsager relations) without imposing conditions (4.19).

This is an accident due to the simplicity of the system under consideration. This is no

longer the case when including parity breaking terms or the stress tensor.

4.2 Cubic order

4.2.1 The cubic action

Let us now consider the bosonic action I of (4.1) at cubic order. We can write the corre-

sponding Lagrangian as

L3b =
1

3!
GµνρBaµBaνBaρ +

i

2
HµνρBaµBaνBrρ +

1

2
KµνρBaµBrνBrρ, (4.52)
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where G,H,K are real local differential operators acting on various fields. For example,

the first term can be understood in momentum space as

GµνρBaµBaνBaρ =

∫
dk1dk2dk3 δ(k1 + k2 + k3)Gµνρ(k1, k2, k3)Baµ(k1)Baν(k2)Baρ(k3),

(4.53)

where Gµνρ(k1, k2, k3) can be expressed as a power series of k1,2,3. By definition,

Gµνρ(k1, k2, k3) is fully symmetric under simultaneous exchanges of subscripts µ, ν, ρ and

k1,2,3. Similarly,

Hµνρ(k1, k2, k3) = Hνµρ(k2, k1, k3), Kµνρ(k1, k2, k3) = Kµρν(k1, k3, k2) . (4.54)

G,H,K should be such that L3 is rotationally invariant and satisfies (1.24). It is possible to

write (4.52) more explicitly as in (4.6) to make these properties manifest, but the expression

becomes quite long and we will not do it here.

Imposing local KMS conditions amounts to requiring that G,H,K satisfy (2.47)–

(2.50). H in (4.52) corresponds to H3, K corresponds to K1, and the other are obtained

by permutations. For example,

(H1)µνρ(k1, k2, k3) ≡ Hρνµ(k3, k2, k1), (K2)µνρ(k1, k2, k3) ≡ Kνµρ(k2, k1, k3) (4.55)

and similarly with the others.

As an illustration of implications of the local KMS conditions on (4.52), we consider

a truncation of it in appendix D. In particular, we see that the generalized Onsager re-

lations (2.63) lead to nontrivial relations on the transport coefficients at second order in

derivative expansions at nonlinear level.

Setting the external fields to zero, we find the action for dynamical modes:

iL3b =
G
6
ϕ3
a +

i

2
Hϕ2

aϕr +
K
2
ϕaϕ

2
r , (4.56)

where (note the i factor on left hand side of (4.56))

G(k1, k2, k3) = Gµνρkµkνkρ, (4.57)

and similarly with H and K. It is clear that G inherits the symmetry properties of G and

is fully symmetric under exchanges of k1,2,3. Similarly H is symmetric under exchange of

k1, k2 and K symmetric under exchange of k2, k3. Furthermore, it can be readily checked

that G,H,K satisfy (2.47)–(2.50) as a result of G,H,K satisfying these relations. Again

H and K in (4.56) should be understood as H3 and K1 respectively, and

H(k3, k2, k1) ≡ H1(k1, k2, k3), H(k1, k3, k2) ≡ H2(k1, k2, k3), (4.58)

K(k3, k2, k1) ≡ K3(k1, k2, k3), K(k2, k1, k3) ≡ K2(k1, k2, k3) . (4.59)

Also note that due to (1.24)

Hα ∝ ωα, Kα ∝
ω1ω2ω3

ωα
, α = 1, 2, 3 . (4.60)
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4.2.2 BRST invariance and supersymmetry

Setting Aaµ to zero, and applying (1.54)–(1.55) to (4.52) we can obtain an BRST invariant

action by adding to (4.52) the following fermionic action

L3f = − i
4
Hµνρ(∂µca∂νϕa + ∂µϕa∂νca)∂ρcr − fcaϕacr −Kµνρ∂µcaBrν∂ρcr . (4.61)

As noted in (1.56), the BRST invariant action is not unique (beginning at cubic order).

In (4.63), this non-uniqueness is parameterized by the term with coefficient f(k1, k2, k3)

which has the symmetry properties

f(k1, k2, k3) = −f(k2, k1, k3) . (4.62)

The full BRST invariant action in the absence of sources of can then be written as

iLB =
G
6
ϕ3
a +

i

2
Hϕ2

aϕr +
K
2
ϕaϕ

2
r −

i

2
Hcaϕacr − ifcaϕacr −Kcaϕrcr . (4.63)

Following our earlier notations, below we will denote f as f3, and similarly introduce

f1(k1, k2, k3) ≡ f(k3, k2, k1), f2(k1, k2, k3) ≡ f(k3, k1, k2) . (4.64)

As already mentioned in section 1.7, the fermionic transformation (4.34) cannot re-

main a symmetry at nonlinear orders due to higher derivative nature of Λ. For example,

were (4.34) a symmetry of our cubic Lagrangian, then from (4.37), Λ would also be a

symmetry. However, this is not the case, as

Λ1 + Λ2 + Λ3 6= 0 for ω1 + ω2 + ω3 = 0, (4.65)

where Λi ≡ 2 tanh β0ωi
2 , i = 1, 2, 3. There is a basic contradiction in (4.37): while the left

hand side is a derivation by definition, the right hand side is not.

We will now show that in the ~ → 0 limit (i.e. the classical statistical limit discussed

in section 2.5 and section 1.8), in which

Λ = iβ0∂t, [δ, δ̄] = iε̄εβ0∂t, (4.66)

the local KMS conditions satisfied by G,H,K ensure that (4.63) is supersymmetric. In

particular, supersymmetry fixes uniquely the undetermined local operator f in (4.63) in

terms of other quantities.

As discussed in section 2.5 and section 1.8, in the ~ → 0 limit, various quantities

in (4.63) should scale as

G → G, H → ~H, K → ~2K, f → ~f, (ca, ϕa)→ ~(ca, ϕa), cr, ϕr → cr, ϕr,

(4.67)

and the local KMS conditions in this limit are given by (2.55)–(2.56), which we copy here

for convenience:

H3 = − i

βω1ω2
(ω1K1 + ω2K2 + ω3K∗3) , (4.68)

G =
2

β2ω1ω2ω3
(ω1ReK1 + ω2ReK2 + ω3ReK3) . (4.69)
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Under (4.34), we find

iδ̄L3 = C1ϕ
2
acaε̄+ C2ϕacaϕr ε̄+ C3caϕ

2
r ε̄+ C4c

2
acr ε̄, (4.70)

with

C1 = − G
2

Λ3 +
i

2
H3 −

i

4
(H1 +H2)− i

2
(f1 + f2), (4.71)

C2 = − iH3Λ2 +K1 −K2 −
i

2
H3Λ3 + if3Λ3, (4.72)

C3 = − 1

2
K1(Λ1 + Λ2 + Λ3), (4.73)

C4 =
i

4
H3(Λ1 − Λ2)− i

2
f3(Λ1 + Λ2) +

1

2
(K1 −K2) . (4.74)

In the ~ → 0 limit, C3 and the symmetric part of C2 are automatically zero, while the

antisymmetric part of C2 is equivalent to C4. Setting C4 = 0, we can solve for f :

f3 =
1

βω3

(
i(K1 −K2)− 1

2
βH3(ω1 − ω2)

)
. (4.75)

Note that f3 is regular as ω3 → 0 due to (4.60). Thus, f3 is a well-defined local differential

operator. Plugging (4.75) into (4.71) we find that

C1 =
1

βω1ω2

[
− G

2
β2ω1ω2ω3 (4.76)

+
iβ

2
(ω1ω2H3 + ω1ω3H2 + ω2ω3H1)− 1

2
(ω1K1 + ω2K2 + ω3K3)

]
.

Now one can readily check from (4.68)–(4.69) that C1 = 0.

4.2.3 Multiplet of currents

Now let us look at the Ĵµr,a in the absence of background fields. From (4.52) and (4.61),

we find

Jµa =
i

2
(H1)µνρ∂νϕa∂ρϕa + (K2)µνρ(∂νϕa∂ρϕr − ∂νca∂ρcr), (4.77)

while expanding (4.52) to first order in Aaµ, we find

Jµr =
1

2
Gµνρ∂νϕa∂ρϕa + iHµνρ∂νϕa∂ρϕr +

1

2
Kµνρ∂νϕr∂ρϕr . (4.78)

From the discussion around (1.59), there is freedom to add ghost terms to (4.78) of the

form Rµνρ∂νca∂ρcr, with Rµνρ a local differential operator. We thus now have

Jµr =
1

2
Gµνρ∂νϕa∂ρϕa + iHµνρ∂νϕa∂ρϕr +

1

2
Kµνρ∂νϕr∂ρϕr +Rµνρ∂νca∂ρcr . (4.79)

We now show that requiring that Jµa and Jµr satisfy the ~ → 0 limit of the transforma-

tions (4.40), i.e.

δJµr = εξµr , δ̄Jµr = ξµa ε̄, δξµa = εJµa , δ̄ξµr = (Jµa + iβ∂0J
µ
r )ε̄, δ̄Jµa = −iβ∂0ξ

µ
a ε̄

(4.80)
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uniquely fixes R. Note that the first two equations of (4.80) should be viewed as the

definition for ξµr,a, while the last two equations follow from (4.66) once the thrid equation

is satisfied. So we only need to check the third equation of (4.80).

From (4.79), we have

ξµr = iHµνρ∂νϕa∂ρcr +Kµνρ∂νϕr∂ρcr +Rµνρ∂νϕa∂ρcr, (4.81)

ξµa = (−βω2G+ iH2 +R)µνρ∂νca∂ρϕa + (−iω2βH3 +K1 + βω3R)µνρ∂νca∂ρϕr, (4.82)

where in the second equation for notational simplicities we have used a mixed coordinate

and momentum representation. Now imposing the third equation of (4.80), we find

i

2
H1 =

1

2
βω1G+

i

2
(H2 +H3) +Rs, (4.83)

K2 = − iω2βH3 +K1 + βω3R, (4.84)

where

Rµνρs =
1

2
(Rµνρ +Rµρν) . (4.85)

One can now verify that equation (4.83) is equivalent to the symmetric part (in terms of the

last two indices) of (4.84), if (4.76) vanishes. Thus we have a consistent set of equations.

R can now be solved as

R =
1

βω3
(K2 −K1 + iω2βH3) , (4.86)

Note that R is local as due to (1.24), H3,K1,K2 should all be proportional to ω3.

To summarize, both the invariance of the action (4.61) under the supersymmetric

transformation (4.34) and the existence of supermultiplet structure (4.80) can be attributed

to the vanishing of equation (4.76). Now one can readily check that the combination

of (4.68) and (4.69) which gives (4.76) precisely coincides with (B.17) for n = 3. Thus

we conclude that in the current context, it is the local part of (B.17) (i.e. this KMS

condition applied to Is) that is responsible for the emergence of supersymmetry. As we

already discussed in the paragraph after (1.77), supersymmetry in turn ensures that (B.17)

is satisfied for full correlation functions at all loop orders.

4.3 A minimal model for stochastic diffusion

Let us now combine the quadratic and cubic actions and truncate them to the lowest

nontrivial order in derivative expansions. From (2.55)–(2.56), the local KMS conditions

imply that coefficients of O(a) terms with n derivatives are related to those of O(a2) terms

with n−1 derivatives, and those of O(a3) terms with n−2 derivatives. Thus at lowest order

in the derivative expansion, we will keep the first derivative in O(a) terms, zero derivatives

in O(a2) terms, and drop O(a3) terms.

4.3.1 Linear stochastic diffusion

In (4.6), keeping zero derivative terms in O(a2) terms and first derivative terms in O(a)

terms, we find

L2 = iσTB2
ai + χBa0Br0 − σBai∂0Bri + ca(χ∂0 − σ∂2

i )∂0cr, (4.87)
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where we have used (4.27)–(4.28). In (4.87), we have dropped a zeroth derivative O(a2)

term a00B
2
a0 and a first derivative O(a) term g10∂0Ba0Br0. The g10 term is subleading

compared to the term with coefficient χ. The a00 term is dropped since it is related to g10

by the local KMS conditions:

a00 =
2

β
g10 . (4.88)

In counting the relevance of terms we always drop terms which are related by local KMS

conditions together. At this order, the off-shell currents are

Ĵ0
r = χ∂0ϕr, Ĵ ir = 2iσT∂iϕa − σ∂0∂iϕr, (4.89)

Ĵ0
a = χ∂0ϕa, Ĵ ia = σ∂i∂0ϕa . (4.90)

Turning off the external fields, we get (4.33), with

K = χ(−∂0 +D∂2
i ), G = −2σT∂2

i . (4.91)

Now following the procedure outlined in (3.20)–(3.23) we obtain the stochastic diffusion

equation (
−∂0 +D∂2

i

)
n = ξ, n ≡ ∂0ϕr, (4.92)

where the noise force ξ is the Legendre conjugate of ϕa and has a local Gaussian distribution

given by

〈ξ〉 = 0, 〈ξ(x)ξ(0)〉 = −2Tσ∂2
i δ

(d)(x) . (4.93)

4.3.2 Action for a variation of stochastic Kardar-Parisi-Zhang equation

At cubic level, in (4.52) we keep first derivative terms in K, zero derivative terms in H, and

drop all G terms. Then, after imposing local KMS conditions (see appendix D), we find

L3b = iσ1TB
2
aiBr0 +

χ1

2
Ba0B

2
r0 − σ1BaiBr0∂0Bri (4.94)

where we have dropped ∂0Ba0B
2
r0 and B2

a0Br0. The former is subleading compared to

Ba0B
2
r0 while the latter is related to the former by local KMS conditions. Now setting the

background fields to zero, and combining (4.94) with the cubic fermionic action (4.61) and

the quadratic action (4.87), we obtain the full action

L = iTσ(∂iϕa)
2 + χ∂0ϕa∂0ϕr − σ∂iϕa∂0∂iϕr + ca(χ∂0 − σ∂2

i )∂0cr

+ iTσ1∂iϕa∂i(ϕa + iβ∂0ϕr)∂0ϕr

− iTσ1(∂ica∂iϕa∂0cr + (∂0ca∂iϕa − ∂ica∂0ϕa)∂icr)− σ1∂
2
i ca∂0ϕr∂0cr

+
χ1

2
∂0ϕa∂0ϕr∂0ϕr − χ1∂0ca∂0ϕr∂0cr, (4.95)

where we have used (4.75), which gives

f = −Tσ1(ω1k2 − ω2k1) · k3 . (4.96)
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The off-shell currents are

Ĵ0
a = χ∂0ϕa + iTσ1(∂iϕa)

2 + χ1(∂0ϕa∂0ϕr − ∂0ca∂0cr)− σ1(∂iϕa∂0∂iϕr − ∂ica∂0∂icr)

Ĵ ia = σ∂i∂0ϕa + σ1∂0(∂iϕa∂0ϕr − ∂ica∂0cr),

(4.97)

and

Ĵ0
r = χ∂0ϕr +

χ1

2
(∂0ϕr)

2 + iTσ1∂ica∂icr,

Ĵ ir = 2iσT∂iϕa − σ∂0∂iϕr + 2iTσ1∂iϕa∂0ϕr − σ1∂0ϕr∂0∂iϕr

− iTσ1(∂0ca∂icr + ∂ica∂0cr), (4.98)

where we have used (4.86). The Lagrangian (4.95) is invariant under (4.30) and (4.34),

with Λ given by (4.66). The currents satisfy (4.80).

For (4.95), as in the quadratic case, one can again consider the Legendre transform

Laa = −ϕaξ + L̃aa[ξ, ϕr]. The equation of motion then obtained from varying ϕa has

the form

(∂0 −D∂2
i )n+

1

2

(
λ1∂0 − λ∂2

i

)
n2 = ξ, (4.99)

with λ1 = χ1

χ2 and λ = σ1
χ2 . Note that with nonlinear terms such as (∂iϕa)

2∂0ϕr, L̃aa now

contains interactions between ϕr and ξ. In fact, L̃aa is neither local nor polynomial, thus

it no longer makes sense to replace ϕa by ξ via a Legendre transform. It could still happen

that nonlinear terms such as (∂iϕa)
2∂0ϕr turn out to be irrelevant when going further into

the IR, in which case the very low energy physics would still be governed by (4.99), with

ξ a local Gaussian noise.

Equation (4.99) is reminiscent of the Kardar-Parisi-Zhang (KPZ) equation [72]. They

have similar nonlinear structure, but nonlinear terms are different, as the underlying sym-

metries used in deriving these equations are different. It is nevertheless tempting to ask

whether they could be in the same universality class. We will leave understanding the

renormalization group flow of (4.95) for future work.

Finally we should emphasize that in our framework, the forms of the action (4.95) and

the equation (4.99) are completely determined by symmetries, with no other freedom.

5 Effective field theory for general charged fluids

In this section, we proceed to write down the bosonic part of the hydrodynamical action

for a charged fluid.

5.1 Preparations

5.1.1 Organization of variables

We first introduce a convenient set of variables which will make imposing (1.22)–(1.23)

and (1.24) convenient. Below, if not written explicitly, it should always be understood that

the CTP indices s = 1, 2 are suppressed. In particular, any equation without explicit CTP
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indices should be understood as a relation between variables pertaining to one segment of

the CTP contour, and altogether there are two copies of the equations.

Given the identification of the velocity field (1.13) and the form of the symme-

tries (1.22)–(1.23), it is convenient to decompose the matrix ∂aX
µ in (1.11) as

∂Xµ

∂σ0
≡ buµ, uµuµ = −1, uµ = gµνu

ν ,
∂Xµ

∂σi
≡ −vibuµ + λi

µ, uµλi
µ = 0, (5.1)

and conversely,

b =
√
−∂0Xµgµν∂0Xν , uµ =

1

b
∂0X

µ, vi =
1

b2
gµν∂0X

µ∂iX
ν , λi

µ = ∂iX
µ + ∂0X

µvi .

(5.2)

hab in (1.11) can then be written as

habdσ
adσb = −b2

(
dσ0 − vidσi

)2
+ aijdσ

idσj , (5.3)

where

aij ≡ λiµλjνgµν , (5.4)

and we will denote its inverse as aij . The inverse transformation can be written as

∂σi

∂Xµ
= λiµ ≡ gµνaijλjν ,

∂σ0

∂Xµ
= −1

b
uµ + viλ

i
µ . (5.5)

It can be readily checked that

λiµλj
µ = δij , λiµλi

ν = ∆µν ≡ gµν + uµuν . (5.6)

The various quantities b, uµ, vi, λi
µ are not arbitrary. Following their definitions from ∂Xµ

∂σa

and ∂σa

∂Xµ , they satisfy various integrability conditions, which are given in appendix E.1.

Similar to (5.3) we can decompose Ba as

Badσ
a = µb(dσ0 − vidσi) + bidσ

i . (5.7)

with

µ = uµAµ +D0ϕ, bi = λi
µAµ +Diϕ, (5.8)

where the local chemical potential µ was introduced before in (1.14) and we have also

introduced “covariant” derivatives:

D0 ≡
1

b
∂0, Di ≡ ∂i + vi∂0 . (5.9)

Also note that

Λ =

∣∣∣∣det
∂X

∂σ

∣∣∣∣ =

√
ab√
−g

. (5.10)

Under spatial diffeomorphisms (1.22), b, µ transform as scalars, bi, vi as vectors and

aij as a symmetric tensor. Under time diffeomorphisms (1.23), aij , µ, bi transform as

scalars while

b′(σ0, σi) = ∂0fb(f(σ), σi), v′i(σ
0, σi) =

1

∂0f

(
vi(f(σ0, σi), σi)− ∂if

)
. (5.11)

ϕ, τ transform as scalars under both diffeomorphisms.
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Now for r − a variables, we introduce µr,a, vai, vri, bai, bri as usual (see (2.10)), while

for b, aij it is convenient to introduce instead the following definitions

Er =
1

2
(b1 + b2) , Ea = log

(
b−1
2 b1

)
, (5.12)

arij =
1

2
(a1ij + a2ij), χa =

1

2
log det(a−1

2 a1), Ξ = log
(
â−1

2 â1

)
, (5.13)

where â1,2 denotes the unit determinant part of a1,2 and thus Ξ is traceless. Under (1.22),

ar transforms as tensor, Er,a, χa, µa, µr, τ as scalars, vai, vri, bai, bri as vectors, while Ξ

transform as

Ξ′(σ0, σ′i) = Q−1Ξ(σ0, σi(σ′))Q, Qij =
∂σi

∂σ′j
. (5.14)

Under (1.23), ar, χa,Ξ, Ea, τ, µa, µr, bai, bri transform as a scalar while

E′r(σ
0, σi) = ∂0fEr(f(σ0, σi), σi), v′ai(σ

0, σi) =
1

∂0f
vai(f(σ0, σi), σi), (5.15)

v′ri(σ
0, σi) =

1

∂0f

(
vri(f(σ0, σi), σi)− ∂if

)
, (5.16)

which motivates us to further introduce

Vai = Ervai, Vri = Ervri . (5.17)

Now Vai transforms as a scalar while Vri as

V ′ri(σ
0, σi) = Vri(f(σ0, σi), σi)− ∂ifEr . (5.18)

Finally under (1.24), bai is invariant while bri transforms as

bri → b′ri = bri − ∂iλ(σi) . (5.19)

5.1.2 Covariant derivatives

Consider φ and φi, which are a scalar and vector respectively under spatial diffeomor-

phisms (1.22), and are scalars under time diffeomorphisms (1.23). We would like to con-

struct a covariant spatial derivative Di = ∂i + · · · such that:

1. Diφ and Diφj are tensors with respect to (1.22).

2. It is compatible with arij , i.e.

Diarjk = 0 . (5.20)

3. Diφ and Diφj remain scalars under (1.23).

The action of Di on higher rank and upper index tensors can be obtained using the Leibniz

rule. Here and below, unless otherwise noted, all the indices are raised and lowered by ar.

It can be readily verified the following definitions satisfy the above conditions

Diφ = ∂iφ+ vri∂0φ ≡ diφ, (5.21)

Diφj = diφj − Γ̃kijφk, (5.22)
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where di ≡ ∂i + vri∂0 and

Γ̃ijk ≡
1

2
ailr (djarkl + dkarjl − dlarjk) = Γijk +

1

2
ailr (vrj∂0arkl + vrk∂0arjl − vrl∂0arjk)

(5.23)

with Γijk the Christoffel symbol corresponding to ar.

For the time derivative, one can check for a scalar φ under (1.23),

D0φ ≡
1

Er
∂0φ (5.24)

is a scalar.

One should be careful to note that the D0, Di introduced here are different from those

in (5.9). E, vi in (5.9) should be understood to have subscripts s = 1, 2 and there are two

copies of them. The D0, Di introduced here in a sense correspond to the r-version of the

derivatives there.

Er and Vri do not transform as a scalar under (1.23). We can construct a combined

object

DiEr ≡
1

Er
(∂iEr + ∂0Vri) (5.25)

which transforms under (1.23) as a scalar and under (1.22) as a vector.

While bri is not gauge invariant (5.19), at first derivative order the gauge invariant

forms are

Bij = Dibrj −Djbri, D0bri =
1

Er
∂0bri, (5.26)

which are scalars under (1.23) and are tensors under (1.22).

Finally, we note the identity

Diφ
i + φiDiEr =

1
√
arEr

(
∂i(
√
arErφ

i) + ∂0(
√
arφ

iVri)
)
, (5.27)

which allows us to do integration by part under the integrals:∫
ddσ
√
arErDiφ

i = −
∫
ddσ
√
arEr φ

iDiEr . (5.28)

5.1.3 Torsion and curvature

Now consider the commutator of Di acting on a scalar:

[Di, Dj ]φ ≡ tijD0φ, tij = Er(divrj − djvri), (5.29)

where we used Γ̃k[ij] = 0. Clearly the torsion tij has good transformation properties under

both time and spatial diffeomorphisms as the left hand side of (5.29) does. Similarly, we

can introduce the “Riemann tensor” R̃klij by

[Di, Dj ]φk = R̃ijk
lφl + tijD0φk (5.30)

with

R̃ijk
l = djΓ̃

l
ik − diΓ̃ljk + Γ̃mkiΓ̃

l
jm − Γ̃mkjΓ̃

l
im . (5.31)
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One can check that we still have

R̃ijk
l + R̃kij

l + R̃jki
l = 0, (5.32)

but due to the extra term on the right hand side of (5.30),

R̃ijkl + R̃ijlk = −tijD0arkl. (5.33)

As a result, there are two “Ricci tensors”:

R̃1
ik = R̃ijk

j , R̃2
ik = R̃ij

j
k, (5.34)

neither of which is symmetric. It is convenient to consider

Wik = R̃1
ik + R̃2

ik = −tijajlr D0arkl, Sik =
1

2

(
R̃1
ik − R̃2

ik

)
, (5.35)

where the second equality of the first equation follows from (5.33). Also note that

R̃1
[ij] =

1

2
[di, dj ] log

√
ar =

1

2
tijD0 log

√
ar . (5.36)

Finally one can check that there is no new invariant from [D0, Di].

5.2 The bosonic action

5.2.1 General structure

We are now ready to write down the bosonic part of the hydrodynamical action,

I[h1, B1;h2, B2; τ ] = I[Φr,Φa] (5.37)

with

Φr = {ar, Er, τ, µr, vri, bri}, Φa = {Ea, χa,Ξ, µa, Vai, bai}, (5.38)

which is invariant under (1.22)–(1.23) and (1.24), and satisfies conditions (1.29) and (1.37).

Constraints from the local KMS condition (1.68) will be discussed later in section 5.5. Note

that there is no separate dependence on ϕ in I other than that contained in µ and bi.

From (1.29),

I∗[Φr,Φa] = −I[Φr,−Φa], (5.39)

and equation (1.37) implies that

I[Φr,Φa = 0] = 0 . (5.40)

From (5.40), we cannot use any negative power of Ξ. In particular, while we start with

two spatial metrics a1 and a2, only ar can serve as a metric to raise and lower indices in

constructing the action. We can write the action as∫
ddσ
√
arEr L[Φr,Φa], (5.41)

– 50 –



J
H
E
P
0
9
(
2
0
1
7
)
0
9
5

where L is a function of Φ’s and their derivatives, and should be a scalar

under (1.22)–(1.23).

We will write L as a double expansion in terms of the number of a-type fields in (5.38),

and the number of derivatives.17 More explicitly,

L = L(1) + L(2) + · · · , (5.42)

where L(m) contains m factors of Φa’s. From (5.39), L(m) is pure imaginary for even m

and real for odd m. Each L(m) can then be further expanded in the number of derivatives.

Let us first consider terms with only a single factor of Φa. By using the covariant

derivatives of section 5.1.2, we find to first order in derivatives the most general Lagrangian

density can be written as

L(1) = −f1Ea + f2χa + f3νa −
η

2
ΞijD0arij − λ1V

i
aDiEr − λ2c

i
aD̂0bri + λ12V

i
aD̂0bri

+λ21c
i
aDiEr + λ5DiτV

i
a + λ6DiµrV

i
a + λ7Diτc

i
a + λ8Diµrc

i
a + · · · , (5.43)

where Ξij ≡ Ξika
kj
r is symmetric and traceless, and for later convenience18 we introduce

νa = µa + Eaµr, µ̂ = µrβ(σ), cai = bai − µrVai, D̂0bri ≡ D0bri − µrDiEr (5.44)

where the local inverse temperature β(σ) was introduced in (1.15).

In (5.43), η and λ’s are all real functions of µr and τ . f1,2,3 can be further expanded

in derivatives as

f1 = ε0 + f11D0τ + f12D0

(
log
√

det ar

)
+ f13β

−1(σ)D0µ̂+ higher derivatives, (5.45)

f2 = p0 + f21D0τ − f22D0

(
log
√

det ar

)
+ f23β

−1(σ)D0µ̂+ higher derivatives, (5.46)

f3 = n0 + f31D0τ + f32D0

(
log
√

det ar

)
− f33β

−1(σ)D0µ̂+ higher derivatives, (5.47)

with all coefficients f11, f12, · · · real functions of µr and τ . Note that arij was introduced

in (5.13). Various signs are chosen for later convenience.

At O(a2), to zeroth order in derivatives, we have

−iL(2)
0 = s11E

2
a + s22χ

2
a + s33ν

2
a + 2s12Eaχa + 2s13Eaνa

+2s23χaνa + r tr Ξ2 + r11V
i
aVai + 2r12V

i
a cai + r22c

i
acai, (5.48)

where again all coefficients are real and are functions of µr, τ .

It is straightforward to write down terms at higher order in the a-field expansion or

with more derivatives, but the number of terms increases quickly. For the rest of this

section, we will focus on analyzing (5.43)–(5.48).

17Due to nonlinear relations in (5.12)–(5.13), this a-field expansion is slightly different from that outlined

in section 1.8 and section 3.1, but qualitatively the same.
18With these choices the coefficients of various terms of the stress tensor and current, e.g. those

in (5.62), (5.64), (5.65), simplify.
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As usual, one has the freedom of making field redefinitions

χ→ χ+ δχ =⇒ I → I +

∫
ddσ

δI

δχ
δχ, (5.49)

where χ collectively denotes all dynamical variables and δχ involves derivatives of χ. Equiv-

alently, we could set to zero all terms in the action which are proportional to the equations

of motion at lower derivative order.

5.3 Stress tensor and current operators

We now consider the stress tensor and current operators following from the action writ-

ten above.

5.3.1 General discussion

The stress tensor and current operators are defined in (1.16) by varying the action with

respect to gsµν(x), Asµ(x). Since both the action I and gsµν(x), Asµ(x) are invariant un-

der (1.22)–(1.23) and (1.24), by definition T̂µνs and Ĵµs are also invariant. As emphasized

below (1.16), x denotes the spacetime location at which T̂µνs , Ĵµs (s = 1, 2) are evaluated

and should be distinguished from either σ or X. Given the dependence of the action on gs
and As is of the form

I =

∫
ddσ L̃[gsµν(X(σ)), Asµ(X(σ))], L̃ =

√
arErL, (5.50)

the stress tensor has the structure

1

2

√
−gsTµνs (x) =

∫
ddσ δ(d)(x−Xs(σ))

δL̃
δgsµν(Xs(σ))

, (5.51)

and similarly for the current. Note that since Xµ
s (σ) are dynamical variables, in the full

“quantum” theory defined by the path integral (1.10), the delta function δ(d)(x −Xs(σ))

on the right hand side of (5.51) is a quantum operator and should be understood as

δ(d)(x−Xs(σ)) =

∫
ddk

(2π)d
eik·(x−Xs(σ)) . (5.52)

At the level of equations of motion, one can solve the delta function to find σs(x) =

X−1
s (x) and evaluate the integrals of (5.51). For example, the stress tensor for the first

segment can be written as

√
−g1|Λ1|T̂µν1 (x) =

(
µ

(
δI

δµa
+

1

2

δI

δµr

)
− δI

δEa
− b

2

δI

δEr

)
uµuν +

δI

δχa
∆µν

+
δI

δarij
λi
µλj

ν + 2
δI

δΞij

(
λi(µλj

ν) − ∆µν

d− 1
δji + · · ·

)
+2

(
µ

(
δI

δbai
+

1

2

δI

δbri

)
+

1

b

(
δI

δvai
+

1

2

δI

δvri

))
u(µλi

ν), (5.53)

where Λ was introduced in (5.10) and we have suppressed the subscript 1 (all variables

without an explicit subscript should be understood as with index 1). In obtaining (5.53),
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we have used expressions in appendix E.2, and it should be understood that the right hand

side is evaluated at σ1(x) = X−1
1 (x). Similarly, from variation of A1µ we find that

√
−g1|Λ1|Ĵµ1 =

(
δI

δµa
+

1

2

δI

δµr

)
uµ +

(
δI

δbai
+

1

2

δI

δbri

)
λi
µ . (5.54)

T̂µν2 and Ĵµ2 can be obtained from (5.53)–(5.54) by switching the signs of the terms involving

derivatives with respect to the a-fields.

We can expand (5.53)–(5.54) in the number of a-fields. At zeroth order, as we discuss

below and in more detail in appendix F, as a consequence of symmetries (1.22)–(1.23)

and (1.24), the stress tensor and current can be expressed solely in terms of velocity-type

variables uµ, µ̂, τ and their derivatives to all derivative orders.

Going beyond zeroth order in the a-field expansion, other dependence on Xµ
1,2 will be

involved. For example, at O(a), the following quantities (which are invariant under (1.22)–

(1.23) and (1.24)):

λ µ
1i λ

ν
2ja

ij
r , aijr vaibrλ

µ
rj , aijr λ

µ
ri baj , (5.55)

will contribute to the stress tensor. These quantities cannot be written in terms of the

velocity or chemical potential.

5.3.2 Lowest order in a-field expansion

Let us now look at the stress tensor and current at leading order in the a-field expansion,

where we can take

g1 = g2 = g, A1 = A2 = A, Xµ
1 = Xµ

2 = Xµ, ϕ1 = ϕ2 = ϕ,

µ1 = µ2 = µ, σa1(x) = σa2(x) ≡ σa(x) = X−1(x), Xµ(σa(x)) = xµ, (5.56)

and then

T̂µν1 = T̂µν2 = (T̂µνr )(0) ≡ T̂µνhydro, Ĵ1 = Ĵ2 = (Ĵµr )(0) ≡ Ĵµhydro . (5.57)

Setting all the a-fields to zero in (5.53)–(5.54) and dropping the r-indices, we find that

they can be written as

T̂µνhydro = εuµuν + p∆µν + 2u(µqν) + Σµν , Ĵµhydro = nuµ + jµ, (5.58)

where

ε = µ
δL
δµa
− δL
δEa

, p =
δL
δχa

, Σµν = 2λi(µλj
ν) δL
δΞij

, (5.59)

qµ = λi
µ

(
µ
δL
δbai

+
1

E

δL
δvai

)
, n =

δL
δµa

, jµ = λi
µ δL
δbai

. (5.60)

It should be understood in (5.59)–(5.60) that after taking the derivative, one should set

all the a-fields to zero. In appendix F, we show that all quantities of (5.59)–(5.60) can be

expressed in terms of standard hydrodynamical variables.
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Applying (5.59)–(5.60) to (5.43), we find to first derivative order

ε = ε0 + hε, p = p0 + hp, Σµν = −ησµν , n = n0 + hn, (5.61)

with

hε = f11∂τ + f12θ + f13e
−τ∂µ̂, hp = f21∂τ − f22θ + f23e

−τ∂µ̂,

hn = f31∂τ + f32θ − f33e
−τ∂µ̂ (5.62)

∂ ≡ uµ∇µ, θ ≡ ∇µuµ,

σµν ≡ ∆µλ∆νρ

(
∇λuρ +∇ρuλ −

2

d− 1
gλρ∇αuα

)
, (5.63)

and

jµ = λ21∂u
µ − λ2

(
∆µν∂νµ+ uλF

λµ
)

+ λ7∆µν∂ντ + λ8∆µν∂νµ (5.64)

qµ = −λ1∂u
µ + λ12

(
∆µν∂νµ+ uλF

λµ
)

+ λ5∆µν∂ντ + λ6∆µν∂νµ . (5.65)

As advertised in section 3.1, equations (5.58) and (5.61) are precisely the standard

constitutive relations for T̂µν and Ĵµ to first derivative order in a general frame (before one

imposes entropy current constraints). In particular, ε0, p0, n0 are the local energy, pressure

and charge densities in the ideal fluid limit, with hε, hp, hn their respective first order

derivative corrections. η is the shear viscosity. We should emphasize that (5.61)–(5.65) are

not yet the final form of the stress tensor and current, as we have not imposed the local

KMS conditions in (5.43). In particular, at this stage, the energy density ε0, pressure p0,

and charge density n0 are completely independent. There are no relations among them.

In the next subsection, we will discuss how thermodynamical relations emerge, along with

other constraints on (5.43).

5.4 Formulation in the physical spacetime

The formulation of section 5.2 is convenient for writing down an action invariant under

various fluid space diffeomorphisms. The resulting action is defined in the fluid space-

time. Here we discuss how to rewrite the action in the physical spacetime, which is more

convenient for many questions.

For this purpose, consider

Xa = X1(σ)−X2(σ), X1(σ) = X(σ) +
1

2
Xa(σ), X2(σ) = X(σ)− 1

2
Xa(σ) . (5.66)

We now invert Xµ(σa) to obtain σa(Xµ), and treat σa(X) as dynamical variables.

Other dynamical variables Xµ
a (σ), ϕr,a(σ), τ(σ) are now all considered as functions of Xµ

through σa(X). Since Xµ are now simply the coordinates for the physical spacetime,

there is no need to distinguish them from xµ. Thus the dynamical variables are now

σa(x), Xµ
a (x), ϕr,a(x), τ(x). Below we will drop all r-subscripts.

Now let us consider the actions (5.43) and (5.48) expressed in these variables. For

simplicity, we will put all background fields to zero (except that corresponding to the

chemical potential at infinity), i.e.

g1µν = g2µν = ηµν , A1µ = A2µ = µ0δ
0
µ . (5.67)
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So below all contractions between µ, ν, · · · indices are through ηµν . Using σa(x) we can

define a velocity field as in (5.1):

uµ =
1

b

∂xµ

∂σ0
, b2 = −ηµν

∂xµ

∂σ0

∂xν

∂σ0
, (5.68)

which can also be written as

uµ =
1√
−j2

jµ, j2 ≡ jµjµ, jµ = εµµ1···µd−1
∂σ1

∂xµ1
· · · ∂σ

d−1

∂xµd−1
. (5.69)

Note that in the form of (5.69), σ0 is not needed to define uµ. Various quantities defined

earlier can be straightforwardly converted into the new variables. For example, to first

order in Xa, ϕa, we have

uµ1 = uµ +
1

2
∆µν∂Xaν , νa = ∂ϕa, µ = u0A0 + ∂ϕ . (5.70)

Expanded in Xµ
a , ϕa, the action can be written as

I = Ĩ(1) + Ĩ(2) + Ĩ(3) + · · · . (5.71)

Note that since the Φa defined in section 5.2 depend nonlinearly on dynamical variables, the

expansion (5.71) does not coincide with (5.42). For example, L(1) in (5.42) also contributes

to Ĩ(3), Ĩ(5), · · · . But note Ĩ(1) is determined solely from L(1) and Ĩ(2) solely from L(2). We

then find from (5.43)

Ĩ(1) =

∫
ddx

[
T̂µνhydro∂µXaν + Ĵµhydro∂µϕa

]
. (5.72)

This form of (5.72) is of course expected since, as we discussed in section 1.3, the equations

of motion for Xµ
a and ϕa simply correspond to the conservation of the stress tensor and

current respectively. For this reason, we expect (5.72) to apply to all derivative orders.

Equation (5.72) was considered recently in [46] from exponentiating the hydrodynamical

equations of motion.

At O(a2), from (5.48) we find

Ĩ
(2)
0 =i

∫
ddx

[
rηµρηνσ(2∂<µXaν>)(2∂<ρXaσ>) + r11∆µρ(2uν∂(µXaν))(2u

σ∂(ρXaσ))

+ r22∆µν∂µϕa∂νϕa + 2r12∆µρ(2uν∂(µXaν))∂ρϕa

+ s11(uµ∂Xaµ)2 + s22(∆µν∂µXaν)2 + s33(∂ϕa)
2

− 2s12∆µν∂µXaνu
ρ∂Xaρ + 2s23(∂ϕa)∆

µν∂µXaν − 2s13u
µ∂Xaµ(∂ϕa)

]
.

(5.73)

In the above equations, the angular brackets denote the symmetric transverse traceless

part of a tensor, i.e. for an arbitrary two-index tensor Cµν

C<µν> ≡ ∆µρ∆νλ

(
C(ρλ) − 1

d− 1
∆ρλ∆αβC

αβ

)
. (5.74)
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We also follow the standard convention of using square brackets and parentheses to denote

antisymmetrization and symmetrization respectively, i.e.

C(µν) =
1

2
(Cµν + Cνµ), C[µν] =

1

2
(Cµν − Cνµ) . (5.75)

Note that in both (5.72) and (5.73), σ0 has dropped out, which is a consequence of the

time diffeomorphism (1.23). In fact, we expect σ0 to completely decouple to all orders.

For a neutral fluid, we find that

I
(2)
0 =

∫
ddx

[
rηµρηνσ(2∂<µXaν>)(2∂<ρXaσ>) + r11∆µρ(2uν∂(µXaν))(2u

σ∂(ρXaσ))

+ s11(uρ∂Xaρ)
2 + s22(∆µν∂µXaν)2 − 2s12(∆µν∂µXaν)(uρ∂Xaρ)

]
.

(5.76)

Equation (5.73) contains three quadratic forms: one each for the tensor, vector, and

scalar sectors. Since Ĩ(2) is pure imaginary, for the path integral to be well defined the

three quadratic forms should be separately non-negative, which implies that

r ≥ 0, (5.77)

r11, r12, r22 should be such that

r11x
2 + 2r12xy + r22y

2 ≥ 0 (5.78)

for any real x, y, and s11, s22, s12, s23, s13, s33 should be such that

s11x
2 + s22y

2 + s33z
2 − 2s12xy + 2s23yz − 2s13xz ≥ 0 (5.79)

for any real x, y, z.

For a neutral fluid, we then have

r ≥ 0, r11 ≥ 0, s11x
2 + s22y

2 − 2s12xy ≥ 0 . (5.80)

5.5 The source action

We now discuss how to impose the local KMS conditions on the actions (5.41).

For this purpose, we first need to obtain the corresponding action for sources only.

Recall that from the prescription of section 1.6 we should first set all dynamical fields to

zero. Here we have a complication regarding what should be the appropriate “background”

values for τ . We propose the following prescription:

1. Set

Xµ
1,2 = σaδµa , ϕ1,2 = 0, (5.81)

and then

hsab(σ) = gsµν(x)δµa δ
ν
b , Bsa(σ) = Asµ(x)δµa . (5.82)

Now σa = δaµx
µ spans the physical spacetime and we will simply use xµ. By definition,

the resulting action obtained, I[gs, As, τ ], is only invariant under (i) time diffeomor-

phisms, (ii) spatial diffeomorphisms, (iii) time-independent gauge transformations,

of the physical spacetime.
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2. Recall that

e−τ =
Tprop

T0
, (5.83)

where Tprop denotes the local proper temperature in the fluid space. In the absence

of dynamics, it is natural to identify

Tprop =
T0√
−g00

, (5.84)

which then motivates us to set for τ the following background value

τ =
1

2
log(−gr00) . (5.85)

The resulting action Is[g1, A2; g2, A2] is then the one on which we will impose the local

KMS conditions (1.68).

5.6 Constraints on constitutive relations from local KMS conditions

As outlined in section 3.2, the local KMS conditions include relations between coefficients

of L(1)
s and those of L(2)

s , which will give rise to the non-negativity of various transport

coefficients, as well as consistency conditions (2.59)–(2.60), which concern only L(1)
s and

give rise to constraints on constitutive relations. In this subsection, we focus on L(1)
s and

consider the latter type of constraints.

Imposing (5.81) and (5.85) amounts to setting in (5.58)

τ = log b =
1

2
log(−g00), µ =

A0

b
, uµ =

1

b
(1,~0), b =

√
−g00 . (5.86)

Let us now discuss (2.60) and (2.59) in turn.

5.6.1 Spatial partition function condition

Following the discussion (2.65)–(2.66), equation (2.60) says that T̂µνhydro and Ĵµhydro in a

stationary background should be obtainable from a partition function defined on the spatial

manifold. This is precisely the prescription recently analyzed in detail in [13, 14].

At zeroth order in derivatives, we have

T̂µνhydro = (ε0 + p0)uµuν + p0g
µν , Ĵµhydro = n0u

µ, (5.87)

where ε0 = ε0(log b, A0/b), and similarly with p0 and n0. For them to be obtainable from

a single functional, we need to impose the integrability conditions

δ(
√
−gT̂µνhydro)

δgλρ
=
δ(
√
−gT̂ λρhydro)

δgµν
,

1

2

δ(
√
−gT̂µνhydro)

δAλ
=
δ(
√
−gĴλhydro)

δgµν
, · · · (5.88)

which lead to the thermodynamical relations

ε0 + p0 − µn0 = −∂p0

∂τ
, n0 =

∂p0

∂µ
, (5.89)
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and the functional from which they can be derived is simply
∫
dd−1~x

√
−g p0(log b, A0/b)

as one would have anticipated. It is also convenient to introduce

ŝ0 = ε0 + p0 − µn0 (5.90)

which at the ideal fluid level corresponds to the local entropy density time local

temperature.

At first order in derivatives, with time-independent sources we find that19

hε = hp = hn = q0 = j0 = σµν = 0,

ji = (λ21 + µλ2 + λ7)
∂ib

b
+ λ8∂i

(
A0

b

)
,

qi = (λ5 − λ1 − µλ12)
∂ib

b
+ (λ6 + µλ8)∂i

(
A0

b

)
, (5.91)

but with rotational symmetry, there cannot be any first order derivative term in a partition

function in general dimensions20 and thus we need

λ5 = λ1 + µλ12, λ7 = −λ21 − µλ2, λ6 = λ8 = 0 (5.92)

which gives (recall µ̂ was introduced in (5.44))

jµ = λ21(∂uµ −∆µν∂ντ)− λ2(e−τ∆µν∂ν µ̂+ uλF
λµ), (5.93)

qµ = −λ1(∂uµ −∆µν∂ντ) + λ12(e−τ∆µν∂ν µ̂+ uλF
λµ) . (5.94)

To consider the implications of (5.92) for the constitutive relations for the stress tensor

and current, let us consider the frame-independent vector

`µ ≡ jµ −
n

ε+ p
qµ . (5.95)

Before imposing (5.92), upon using the thermodynamical relations (5.89)and the zero-

derivative order equations of motion, `µ has the form21

`µ = c1Fµνu
ν + c2∆µ

ν∂ντ + c3∆µ
ν∂ν µ̂, (5.96)

where c1, c2, c3 are independent functions of τ, µ. With (5.92), we find that

`µ = σ
(
Fµνu

ν − e−τ∆µ
ν∂ν µ̂

)
, (5.97)

with conductivity σ given by

σ = λ2 + (λ12 + λ21)
n0

ε0 + p0
+ λ1

(
n0

ε0 + p0

)2

. (5.98)

19Note that ∂ui = ∂i log b.
20With some specific dimensions, one may be able to construct first derivative terms using the ε tensor.

We will consider such terms elsewhere.
21Note from zeroth order equations of motion and thermodynamic relations (5.89) we have ∂uµ −

∆µν∂ντ = − n0
ε0+p0

(
uλF

λµ + e−τ∆µν∂ν µ̂
)
.
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Comparing with (5.96), we see that the thermal conductivity is determined from con-

ductivity in the usual way and the c2 term vanishes. In the conventional formulation, both

of these relations follow from entropy current constraints.

The bulk viscosity ζ can be obtained by examining the other frame-independent

quantity

hp −
∂p0
∂τ

∂n0
∂µ −

∂p0
∂µ

∂n0
∂τ

∂ε0
∂τ

∂n0
∂µ −

∂n0
∂τ

∂ε0
∂µ

hε −
∂p0
∂µ

∂ε0
∂τ −

∂p0
∂τ

∂ε0
∂µ

∂ε0
∂τ

∂n0
∂µ −

∂n0
∂τ

∂ε0
∂µ

hn = −ζθ, (5.99)

where one needs to use the zeroth derivative order equations of motion to obtain the right

hand side.

One can also check that the reality condition in (2.59) does not appear to impose any

additional constraints at these orders.

5.6.2 Generalized Onsager relations

Let us now consider the implications of the generalized Onsager relations (2.59) and (2.63).

The nonlinear source action for (5.43) can be written as

I
(1)
1 =

∫ √
ab

[(
f11

1

b
∂0b + f13

1

b
∂0A0 + f12∂0 log

√
a

)
ga00

2b3

+

(
f21

1

b
∂0b+ f23

1

b
∂0A0 − f22∂0 log

√
a

)
1

2b
aaija

ij

+

(
f31

1

b
∂0b− f33

1

b
∂0A0 + f32∂0 log

√
a

)
Aa0

b2

− η

2b

(
aaik −

aalja
lj

d− 1
aik

)
akmain∂0amn + λ12vaia

ij∂0(Ai + viA0)

− λ2b
−1(Aai +Aa0vi)a

ij∂0(Ai + viA0)

− λ1bvaia
ij∂0vj + λ21(Aai +Aa0vi)a

ij∂0vj

]
,

(5.100)

where we have used the decomposition (5.3) and

ga00 = g100 − g200, aaij = a1ij − a2ij , vai = v1i − v2i . (5.101)

Applying (2.63) to (5.100), we then find that,

λ12 = λ21, −f13 = f31, f23 = f32, −f12 = f21 . (5.102)

Note that all the relations above can be obtained from the Onsager relations at

linearized level. So to first derivative order, nonlinear generalizations do not yield

new relations.

5.7 Non-equilibrium fluctuation-dissipation relations

Now let us consider the relations between coefficients of I(1) and I(2) which follow from

the local KMS conditions. We find the source action by following the procedure outlined
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in section 5.5, which gives

−iI(2)
0 =

∫ √
ab

[
s11

(ga00

2b2

)2
+ s22

(
aaija

ij

2

)2

+ s33
A2
a0

b2
− 2s12

ga00

2b2
aaija

ij

2

− 2s13
ga00

2b2
Aa0

b
+ 2s23

aaija
ij

2

Aa0

b
+ r tr

(
aijaajk −

1

d− 1
aklaaklδ

i
j

)2

+ r11b
2(vai)

2 + 2r12ba
ijvai (Aaj + vjAa0) + r22 (Aai + viAa0)2

]
.

(5.103)

Imposing (1.68), we find the following relations:

r =
η

2
T (σ), r11 = λ1T (σ), r12 = −λ12 + λ21

2
T (σ) = −λ12T (σ), r22 = λ2T (σ) ,

(5.104)

and

s11 = f11T (σ), s12 = f12T (σ), s13 = f13T (σ), (5.105)

s22 = f22T (σ), s23 = −f32 + f23

2
T (σ) = −f23T (σ), s33 = f33T (σ) . (5.106)

We stress that all relations above are for arbitrary τ(σa) and µ(σa) (i.e. arbitrary lo-

cal temperature and local chemical potential) and thus are valid for far-from-equilibrium

situations.

5.8 Non-negativity of transport coefficients

We now show that the conductivity σ, shear viscosity η, and bulk viscosity ζ are non-

negative. The shear viscosity η is non-negative following from the first equation of (5.104)

and (5.77).

With (5.102) and (5.104) the conductivity (5.98) becomes

σ = β(σ)

(
r22 − 2r12

n0

ε0 + p0
+ r11

(
n0

ε0 + p0

)2
)
. (5.107)

whose non-negativity of σ then follows from (5.78).

From (5.99), using zeroth order equations of motion and thermodynamical rela-

tions (5.89) we find after some manipulations the bulk viscosity ζ can be written as

ζ =
1

M2
2

(f11M
2
1 + f22M

2
2 + f33M

2
3 − 2f23M2M3 − 2f12M1M2 − 2f13M3M1), (5.108)

with

M1 = −(ε0+p0)∂µn0+n0∂µε0, M2 =
∂n0

∂τ

∂ε0
∂µ
− ∂ε0
∂τ

∂n0

∂µ
, M3 = ŝ0∂µε0+n0∂τ ε0 . (5.109)

Now using (5.105)–(5.106), we find (5.108) can be written as

ζ =
β(x)

M2
2

(s11M
2
1 + s22M

2
2 + s33M

2
3 + 2s23M2M3 − 2s12M1M2 − 2s13M2M3), (5.110)

which is non-negative from (5.79).
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For a neutral fluid, the corresponding expression is

ζ =
1

(∂τ ε0)2

[
f22(∂τ ε0)2 − 2f12(ε0 + p0)∂τ ε0 + f11(ε0 + p0)2

]
(5.111)

=
β(x)

(∂τ ε0)2

[
s22(∂τ ε0)2 + s11(ε0 + p0)2 − 2s12(ε0 + p0)∂τ ε0

]
, (5.112)

which is again non-negative from (5.80).

5.9 Full action to O(a2) in physical spacetime

Let us now collect (5.72) and (5.73), and all the relations on the coefficients found in

section 5.6 and section 5.7. We have up to order O(a2)

I = Ĩ(1) + Ĩ(2) + · · · (5.113)

where

Ĩ(1) =

∫
ddx

[
T̂µνhydro∂µXaν + Ĵµhydro∂µϕa

]
, (5.114)

and to first derivative order

T̂µνhydro = (ε0+hε)u
µuν+(p0+hp)∆

µν+2u(µqν)−ησµν , Ĵµhydro = (n0+hn)uµ+jµ, (5.115)

with (using (5.92) and (5.102))

hp = − f22θ − f12∂τ + f23e
−τ∂µ̂, (5.116)

hn = f23θ − f13∂τ − f33e
−τ∂µ̂, (5.117)

hε = f12θ + f11∂τ + f13e
−τ∂µ̂, (5.118)

jµ = λ12(∂uµ −∆µν∂ντ)− λ2(e−τ∆µν∂ν µ̂+ uλF
λµ) (5.119)

qµ = − λ1(∂uµ −∆µν∂ντ) + λ12(e−τ∆µν∂ν µ̂+ uλF
λµ) . (5.120)

At order O(a2) we have at zeroth order in derivatives,

Ĩ
(2)
0 =2i

∫
ddxT (x)

[
η(∂<µXaν>)(∂<ρXaσ>)ηµρηνσ

+
λ1

2
∆µρ(2uν∂(µXaν))(2u

σ∂(ρXaσ))

+
λ2

2
∆µν∂µϕa∂νϕa − λ12∆µρ(2uν∂(µXaν))∂ρϕa

+
f11

2
(uµ∂Xaµ)2 +

f22

2
(∆µν∂µXaν)2 +

f33

2
(∂ϕa)

2

− f12∆µν∂µXaνu
ρ∂Xaρ − f23(∂ϕa)∆

µν∂µXaν − f13u
µ∂Xaµ(∂ϕa)

]
(5.121)

where we have used the non-equilibrium fluctuation-dissipation relations (5.104)–(5.106).

Notice that in (5.121), other than Xµ
a , ϕa, the dynamical variables appear through

standard hydrodynamical variables uµ, µ and τ . Also recall that uµ, µ are derived variables

constructed from σa(x), ϕ(x) as discussed in section 5.4. Below we will refer to uµ, µ and

τ as hydro variables, and Xµ
a , ϕa as noises.
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5.10 Stochastic hydrodynamics

Approximating all the hydro variables by their background values, we obtain a Gaussian

action for the noises Xµ
a and ϕa. As in section 4.3, introducing the Legendre conjugates tµν

and jµ for ∂(µXaν) and ∂µϕa respectively, the equations of motion for Xµ
a and ϕa become

∂µ

(
Tµνhydro + tµν

)
= 0, ∂µ (Jµ + jµ) = 0, (5.122)

where tµν and jµ can be interpreted as the noise contribution to the full stress tensor and

current respectively, and satisfy Gaussian distributions. More explicitly, around equilib-

rium values, i.e. τ = ϕ = 0 and uµ = (1,~0), we find the path integrals for tµν and jµ have

the form∫
DtµνDjµ exp

−β0

4

 1

2η
t2
<ij> +

2∑
a,b=1

Λ−1
ab vaivbi +

3∑
a,b=1

F−1
ab φaφb

 (5.123)

where

Λ =

(
λ1 λ12

λ12 λ2

)
, v1i = t0i, v2i = ji, (5.124)

F =

 f11 −f12 f13

−f12 f22 f23

f13 f23 f33

 , φ1 = t00, φ2 =
1

d− 1

∑
i

tii, φ3 = j0 . (5.125)

All coefficients in (5.123) should be understood as equilibrium values.

Beyond the quadratic approximation, as in the vector case again, there appears to

be no benefit to introducing the Legendre conjugate for Xµ
a and ϕa. The action (5.113)

provides an interacting effective field theory among hydro variables and noises.

5.11 Entropy current

Now consider the O(a) action (5.114) in the ideal fluid limit, i.e.

Ĩ
(1)
0 =

∫
ddx [Tµν0 ∂µXaν + Jµ0 ∂µϕa] ≡

∫
ddx L̃(1)

0 , (5.126)

with

Tµν0 = ε0u
µuν + p0∆µν , Jµ0 = n0u

µ, (5.127)

which are respectively T̂µνhydro and Ĵµhydro at zeroth order in the derivative expansion.

The ideal fluid action (5.126) has an “accidental” symmetry: it is invariant under

δXaµ = λeτuµ, δϕa = λµ̂ (5.128)

for some constant infinitesimal parameter λ, as

δL̃(1)
0 = λTµν0 ∂µ(eτuν) + λJµ0 ∂µµ̂ = λ∂µ(p0e

τuµ) (5.129)
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is a total derivative. To see this, note that

(ε0u
µuν + p0∆µν)∂µ (eτuν) + Jµ0 ∂µµ̂ = −ε0uµ∂µeτ + p0e

τ∂µu
µ + Jµ0 ∂µµ̂ (5.130)

and (5.129) follows, since from (5.89) we have

dp0 = −(ε0 + p0)dτ + n0e
−τdµ̂ → d(p0e

τ )uµ = −ε0uµdeτ + Jµ0 dµ̂ . (5.131)

The conserved Noether current Sµ corresponding to (5.128) can be written as

Sµ = p0e
τuµ − Tµν0 eτuµ − Jµ0 µ̂, (5.132)

which is precisely the standard covariant form of the entropy current [73]. The entropy

current has previously appeared as a Noether current in [32, 33, 57]. In fact this connection

was central to developing the framework proposed in [32, 33].

It can now be readily checked that (5.128) is no longer a symmetry either beyond the

leading order in the derivative expansion in Ĩ(1) or of Ĩ
(2)
0 . We have also not been able to find

a generalization of (5.128) under which the action is invariant beyond Ĩ
(1)
0 . That (5.128) is

present only for Ĩ
(1)
0 is consistent with the physical expectation that a conserved entropy

current is an accident at the ideal fluid level. With noises or dissipations, we do not expect

a conserved entropy current.

It is natural to ask what happens to the entropy current beyond the ideal fluid level

at O(a). The local KMS condition will ensure that it has a non-negative divergence from

the following reasoning. As discussed in section 3.2, the partition function prescription

of [13, 14] arises as a subset of the local KMS condition at O(a). It has been shown by [15,

16] that constraints from the partition function prescription are equivalent to equality-

type requirements from the non-negative divergence of the entropy current to all orders in

derivatives. As seen in section 5.8 the inequality constraints from non-negative divergence

of the entropy current follow in our context from the well-definedness of the integration

measure. We have examined this to first derivative order. In [15, 16] it has been argued

these first order inequalities are the only inequality constraints coming from the entropy

current to all derivative orders. Thus at O(a), the entropy current (suitably corrected at

each derivative order) will have a non-negative divergence to all orders in derivatives. At

O(a2) level, where noises are included, we do not expect the divergence of the entropy

current should be non-negative as noises are random fluctuations.

5.12 Two-point functions

Now let us consider (5.43) and (5.48) in the small amplitude expansion in the sources and

dynamical fields. More explicitly, we write

Xµ
s (σ) = δµaσ

a + πµ(σ) + · · · , gsµν(x) = ηµν + γsµν(x), (5.133)

and expand (5.43) and (5.48) to quadratic order in γµν , Aµ and πµ, ϕ, τ with dynamical

and source fields considered to be of the same order. It is then straightforward, but a bit

tedious, to integrate out the dynamical fields to obtain the generating functional for all
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retarded and symmetric two-point functions among components of the stress tensor and

current in the hydrodynamical regime.

One can readily verify that with thermodynamical relations (5.89), the Onsager rela-

tions (5.102), and the local FDT relations (5.104)–(5.106), the full quadratic Green func-

tions satisfy the FDT relations (2.39) and (2.41).

The explicit quadratic action and the final expressions are a bit long. Here we will

first outline the general structure and then present the final expression of the generating

functional for a neutral fluid.

We will take the spatial momentum ~k of external fields to be along the z direction,

i.e. kz = q and kα = 0 with α denoting all the transverse spatial directions. Then the

background metric and gauge fields can be separated into three sectors

tensor : γ̂αβ = γαβ −
1

d− 2
γδαβ , (5.134)

vector : aα = γ0α, bα = γzα, Aα, (5.135)

scalar : γ00, γ0z, γzz, γ =
∑
α

γαα, A0, Az, (5.136)

where we have again suppressed 1, 2 subscripts. Again, below, r, a will be used to denote

the symmetric and antisymmetric combinations of these variables.

After integrating out the dynamical modes, the final generating functional should be

diffeomorphism and gauge invariant, i.e. invariant under

δγµν = − 2∂(µξν) − ξλ∂λγµν − 2γλ(µ∂ν)ξ
λ + · · · ,

δAµ = − ∂µσ − ∂µξλAλ − ξλ∂λAµ + · · · , (5.137)

for arbitrary infinitesimal fields ξµ and σ. Then to quadratic order in external fields, the

final generating functional can be written as

W = W1 + W̃2 +W2, (5.138)

where W1 is linear in the external fields, i.e. giving one-point functions

W1 =
i

2
ε0γa00 +

i

2
p0(γazz + γa) + in0Aa0, (5.139)

with ε0, p0, n0 all constants. Clearly W1 is invariant under the linear part of (5.137).

Its variations under the quadratic part of (5.137) are canceled by the variations of the

quadratic piece W̃2 under the linear part of (5.137). The other quadratic piece, W2, is

invariant under the linear part of (5.137) by itself, and thus must be expressed in terms of

the following (linear) gauge invariant combinations:

γ̂αβ , Zα = qaα + ωbα, Aα, Z = q2γ00 + 2ωqγ0z + ω2γzz, γ, Ez = ωAz + qA0,

(5.140)

where we have again suppressed r, a indices.
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Let us now give the explicit expressions for W̃2 and W2 for a neutral fluid. For the

tensor sector, we have W̃ tensor
2 = 0 and

W tensor
2 = − i

2
p0γ̂aαβ γ̂rαβ −

ηT0

2
γ̂2
aαβ −

i

2
ηγ̂aαβ∂0γ̂rαβ , (5.141)

where we have used the first equation of (5.104).

For the vector sector, we have

W̃ vector
2 = −iε0aaαarα − ip0baαbrα, (5.142)

and

W vector
2 = i

η

−iω + q2D
ZaαZrα −

ηT0

ω2 + q4D2
Z2
aα, (5.143)

where we have kept only the leading term in the numerators in the small ω and q expansion,

and the momentum diffusion constant D takes its expected value:

D =
η

ε0 + p0
. (5.144)

For the scalar sector, we have

W̃ scalar
2 =

iε0
4

[
γa00γr00 −

1

ω2
(qγa00 + 2ωγa0z)(qγr00 + 2ωγr0z)

]
− ip0

4

[
γazzγrzz − (γazz − γa00)γr − γa(γrzz − γr00)

− 1

q2
(ωγazz + 2qγa0z)(ωγrzz + 2qγr0z)

]
, (5.145)

and

W scalar
2 =iK1γaγr + iK2ZaZr + iK3(γaZr + Zaγr)−

1

2
G1γ

2
a −

1

2
G2Z

2
a −G3Zaγa, (5.146)

where

K1 =
−(d− 2)(ε0 + p0)c2

sω
2 + (d− 4)p0(ω2 − c2

sq
2)

4(d− 2)R
,

G1 =
ζω4 + 2η

(d−1)(d−2)(ω2 − (d− 1)c2
sq

2)2

2β0R∗R
,

K2 = −p0ω
2 + ε0c

2
sq

2

4q2ω2R
, K3 = −(ε0 + p0)c2

s

4R
,

G2 =
ζ + 2(d−2)

d−1 η

2β0R∗R
, G3 =

ζω2 − 2η
d−1(ω2 − (d− 1)c2

sq
2)

2β0R∗R
, (5.147)

and

R = ω2 − c2
sq

2 + i
1

ε0 + p0

(
2(d− 2)

d− 1
η + ζ

)
ωq2 +O(ω4, ω2q2, q4) . (5.148)

In the above expressions,

c2
s =

∂τp0

∂τ ε0
(5.149)

is the sound velocity. Clearly the expressions exhibit the expected sound pole and atten-

uation constant. One can also check that the apparent singularity at ω = 0 and q = 0

in (5.145) and (5.146) cancel.
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6 Discussion

We conclude this paper by mentioning some future directions.

Firstly, it would be interesting to explore the physical implications of the new con-

straints for hydrodynamical equations of motion from the generalized Onsager relations

proposed in this paper. We already saw that these relations lead to nontrivial new con-

straints for the vector theory starting at the second derivative order for cubic terms. For

a full charged fluid, these relations will also lead to new constraints at second derivative

order. It would be of clear interest to work them out explicitly and to understand their

physical implications. We also hinted in section 3.2 that local KMS condition may give

rise to new inequality constraints at higher derivative orders. It would also be interesting

to explore it further.

Secondly, the discussion of the bosonic action can be generalized in many different

respects, to more than one conserved currents or non-Abelian global symmetries, parity

and time reversal violations, inclusion of a magnetic field, anomalies, non-relativistic sys-

tems, superfluids, as well as anisotropic and inhomogeneous systems. Also important is

to generalize it to situations with additional gapless modes, such as systems near a phase

transition or with a Fermi surface.

Thirdly, it is clearly of importance to use our formalism to study effects of hydrody-

namical fluctuations in various physical contexts,22 in particular to non-equilibrium situ-

ations. Furthermore, it would be very interesting to understand physical implications of

“ghost” fields.

Finally, the relation between supersymmetry and the KMS conditions should be un-

derstood better. Even for the theory of a single vector current, our understanding of the

role of supersymmetry at both the classical statistical and quantum level can be much

improved. At the classical statistical level, do the local KMS conditions combined with

supersymmetry ensure all the KMS conditions at all loop levels? While it is tempting to

conjecture the answer is the affirmative we do not yet have a full proof. At the quantum

level, how should the ~ deformed “supersymmetric” algebra

[δ, δ̄] = ε̄ε 2 tanh
iβ0∂t

2
(6.1)

be generalized to nonlinear level? Another important problem is to write down the fermonic

part of the full charged fluid action. This is straightforward to do in a small amplitude

expansion at quadratic, cubic, or higher orders, as in the theory of a single vector current,

but the number of terms greatly proliferate and the analysis gets tedious. It is certainly

more desirable to write down a full nonlinear fermonic action. This appears to require a

supergravity theory at the classical statistical level due to the time diffeomorphism in the

fluid spacetime, and a “quantum deformed” supergravity theory at the quantum level.
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A Explicit forms of various response and fluctuation functions

At two point level, we have

Gra(t1, t2) = GR(t1, t2) ≡ iθ(t12)〈[O(t1),O(t2)]〉, (A.1)

Gar(t1, t2) = Gra(t2, t1) = GA(t1, t2) ≡ −iθ(t21)〈[O(t1),O(t2)]〉, (A.2)

Grr(t1, t2) = GS(t1, t2) ≡ 1

2
〈{O(t1),O(t2)}〉, (A.3)

where t12 = t1− t2, and [· · · ] and {· · · } denote commutators and anticommutators respec-

tively. From (2.12), at three point level,

Graa(1, 2, 3) = − θ(t12)θ(t23)〈[[O(1),O(2)] ,O(3)]〉 (A.4)

− θ(t13)θ(t32)〈[[O(1),O(3)] ,O(2)]〉, (A.5)

Grra(1, 2, 3) =
i

2
θ(t13)θ(t23)〈[{O(2),O(1)} ,O(3)]〉 (A.6)

+
i

2
θ(t13)θ(t32)〈{[O(1),O(3)] ,O(2)}〉 (A.7)

+
i

2
θ(t31)θ(t23)〈{[O(2),O(3)] ,O(1)}〉, (A.8)

Grrr(1, 2, 3) =
1

4
θ(t21)θ(t31)〈{O(1), {O(2),O(3)}}〉 (A.9)

+
1

4
θ(t12)θ(t32)〈{O(2), {O(3),O(1)}}〉 (A.10)

+
1

4
θ(t13)θ(t23)〈{O(3), {O(1),O(2)}}〉 . (A.11)

Other orderings can be obtained by switching the arguments of O’s, e.g.

Grar(1, 2, 3) = Grra(1, 3, 2) . (A.12)

B Fluctuation-dissipation theorem at general orders

In this appendix, we first review and slightly extend the formulation of KMS conditions at

general orders developed in [63], and then use the formalism to prove the relation (2.59).

B.1 Properties of various Green functions

We can expand W and WT defined respectively in (2.6) and (2.26) as

W =

∞∑
n=1

(−1)n2in

n!
Ga1i1 a2i2 ···aninφa1i1 · · ·φanin , (B.1)

WT =
∞∑
n=1

(−1)n2in

n!
G̃ā1i1 ā2i2 ···āninφa1i1 · · ·φanin , (B.2)
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where ik label different operators, ai = 1, 2, and n1,2 are the number of 1 and 2 indices

respectively. In the above equations, integrations over the positions of φ’s should be un-

derstood. Below, we will use a simplified notation to denote Ga1i1 a2i2 ···anin as GαI , with

GᾱI denoting the corresponding Greens function obtained from GαI by switching 1↔2. By

definition, in coordinate space

G∗αI(x) = GᾱI(x), G̃∗αI(x) = G̃ᾱI(x) (B.3)

and in momentum space

G∗αI(k) = GᾱI(−k), G̃∗αI(k) = G̃ᾱI(−k) (B.4)

where we use x and k to collectively denote x1, x2 · · · and k1, k2, · · · respectively.

It is also convenient to introduce

G
(e)
αI =

1

2
(GαI +GᾱI), G

(o)
αI =

1

2i
(GαI −GᾱI), (B.5)

and similarly for G̃. From (B.3), G
(e)
αI and G

(o)
αI are real in coordinate space, and in mo-

mentum space satisfy

G
(e)∗
αI (k) = G

(e)
αI (−k), G

(o)∗
αI (k) = G

(o)
αI (−k) . (B.6)

Note that G
(e)
αI (G

(o)
αI ) is symmetric (antisymmetric) under 1↔2 and thus contains an even

(odd) number of a-operators, i.e.

G
(o)
αI =

∑
na odd

Gα1···αn , G
(e)
αI =

∑
na even

Gα1···αn , (B.7)

where αi = a, r and na is the number of a indices. Since

0 = Ga···a =
∑
α

(−1)n2GαI =
∑
α

(−1)n2

{
G

(e)
αI n even,

iG
(o)
αI n odd,

(B.8)

we conclude from (2.15) that

0 =
∑
α

(−1)n2

{
G

(e)
αI n even,

G
(o)
αI n odd.

(B.9)

There is a parallel relation for G̃.

Note that the response functions can be expressed as

Gra···a =



(−1)
n−1
2

2

∑
ai

(−1)n2

(
G

(e)
1a1···an−1

+G
(e)
2a1···an−1

)
= (−1)

n−1
2

∑
ai

(−1)n2G
(e)
1a1···an−1

n odd,

(−1)
n
2

2

∑
ai

(−1)n2

(
G

(o)
1a1···an−1

+G
(o)
2a1···an−1

)
= (−1)

n
2

∑
ai

(−1)n2G
(o)
1a1···an−1

n even,

(B.10)

where ai = 1, 2 and n2 counts the number of 2-index among a1, · · · an−1.
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B.2 KMS conditions in terms of correlation functions

From the expansion (B.1)–(B.2), the KMS conditions (2.36) can be written in momentum

space as23

GαI(k) = e−βΩ2G̃ᾱI(k), GᾱI = eβΩ2G̃αI , (B.11)

where Ω2 denote the sum of all frequencies of 2-operators as indicated by index α. (B.11)

can further be written in terms of (B.5) as

G
(e)
αI + G̃

(e)
αI = −i coth

βΩ2

2

(
G

(o)
αI + G̃

(o)
αI

)
, G

(e)
αI − G̃

(e)
αI = −i tanh

βΩ2

2

(
G

(o)
αI − G̃

(o)
αI

)
.

(B.12)

Note that the above equations relate correlation functions containing an even number of

a-operators to those containing an odd number of a-operators, and thus can be considered

generalized fluctuation-dissipation theorems.

Now consider the case that the system is PT invariant. From (2.33), we then have

G̃αI(x) = ηIG
∗
αI(−x) = ηIGᾱI(−x), ηI =

∏
k

ηPTik , (B.13)

where we have used (B.3). In momentum space, we then have

G̃αI(k) = ηIG
∗
αI(k) = ηIGᾱI(−k) . (B.14)

With ηPTi = 1, then equation (B.11) becomes

GαI(k) = e−βΩ2GαI(−k) (B.15)

and (B.12) becomes

ReG
(e)
αI = coth

βΩ2

2
ImG

(o)
αI , ImG

(e)
αI = − tanh

βΩ2

2
ReG

(o)
αI . (B.16)

Now let us discuss some immediate implications of (B.15)–(B.16).

1. All correlation functions of OAi(x) ≡ O1i(t, ~x)−O2i(t− iβ, ~x) among themselves are

zero, i.e.

GA···A(x) ≡ 〈OAi1(x1) · · · OAin(xn)〉 = 0 . (B.17)

To see this note that GA···A can be written in momentum space as

GA···A(k) =
∑
α

(−1)n2eβΩ2GαI(k) =
∑
α

(−1)n2GαI(−k) = Ga···a(−k) = 0 (B.18)

where in the second equality we have used (B.15) and in the third equality used (B.8).

Note that in momentum space

OA(ω) =
(

1− e−βω
)
Or +

1

2

(
1 + e−βω

)
Oa =

1

2

(
1 + e−βω

)
ÕA(ω) (B.19)

23Here we use the momenta of φ’s to denote G. For example
∫
dx1dx1G(x1, x2)φ(x1)φ(x2) =∫

dk1dk1G(k1, k2)φ(k1)φ(k2). Thus, G(k1, k2) is the Fourier transform of G(x1, x2) using an opposite con-

vention.
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with

ÕA(x) = Oa + 2 tanh
iβ0∂t

2
Or . (B.20)

Thus correlation functions of ÕA with themselves are also all zero. In the ~→ 0 limit

discussed in section 1.7 and section 1.8,

ÕA(x) = Oa(x) + iβ0∂tOr(x) . (B.21)

Note that for two-point functions (B.17) is the full condition, but this is not the case

for n ≥ 3.

2. Ω2 = 0 automatically for α = 2, · · · 2. In order for (B.16) to be nonsingular, we need

ImG
(o)
2···2I = 0, ImG

(e)
2···2I = 0 . (B.22)

3. Taking Ω2 → 0, we conclude that

ImG
(o)
αI (Ω2 = 0) = 0, ImG

(e)
αI (Ω2 = 0) = 0 . (B.23)

4. Consider the ωi → 0 limit for all i. For all α, then,

ImG
(o)
αI (ωi → 0) = 0, ImG

(e)
αI (ωi → 0) = 0 . (B.24)

B.3 Implications for response functions

Denoting

K1 = Gra···a, K2 = Gara···a, · · · Kn = Ga···ar, (B.25)

we now show that when taking any n− 2 frequencies to zero, e.g.

K1 = K∗2 , ω3, ω4, · · · , ωn → 0 . (B.26)

For definiteness, let us take n even. From (B.10), we then find that

K1 = (−1)
n
2

∑
ai

(−1)n2

(
G

(o)
11a1···an−2

−G(o)
12a1···an−2

)
, (B.27)

K2 = (−1)
n
2

∑
ai

(−1)n2

(
G

(o)
11a1···an−2

+G
(o)
12a1···an−2

)
, (B.28)

and

K1 +K2 = 2(−1)
n
2

∑
ai

(−1)n2G
(o)
11a1···an−2

, (B.29)

K1 −K2 = −2(−1)
n
2

∑
ai

(−1)n2G
(o)
12a1···an−2

. (B.30)

For ω3, · · · , ωn = 0, using (B.22)–(B.23), we have

ImG
(o)
11a1···an−2

= 0, ImG
(e)
11a1···an−2

= 0, (B.31)
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which when applied to (B.29) leads to

Im(K1 +K2) = 0 . (B.32)

Taking the real part of (B.30), and using (B.16), we then find that

Re(K1 −K2) = 2 coth
βω2

2
(−1)

n
2

∑
ai

(−1)n2ImG
(e)
12a1···an−2

. (B.33)

Now, from (B.9), we find that∑
ai

(−1)n2

[
G

(e)
11a1···an−2

−G(e)
12a1···an−2

]
= 0, (B.34)

which when used in (B.33) (recall (B.31)) leads to

Re(K1 −K2) = 0 . (B.35)

From (B.32) and (B.35), we then find (B.26).

From (B.26), and permutations of it, it then follows that

K1 = K2 = · · · = Kn ≡ K, ImK = 0, all ωi → 0 . (B.36)

C KMS conditions for tree-level generating functional

In this appendix, we show that in the vector theory (1.5) local KMS conditions lead to

KMS conditions for the full generating functional at tree-level. Recall that

Wtree[φr, φa] ≡ iIon−shell[φr, φa] = iI[χcl
a , χ

cl
r ;φr, φa], (C.1)

where χcl[φr, φa] is the solution to the equations of motion. Below we will use χ and φ to

collectively denote the dynamical and background fields.

For this purpose, we first note a general result regarding an on-shell action: suppose

an action has a symmetry

I[χ;φ] = I[χ̃; φ̃], (C.2)

where variables with a tilde are related to the original variables by some transformation.

Then

Ion−shell[φ] = Ion−shell[φ̃] . (C.3)

To see this, note that equation (C.2) implies

χ̃cl[φ] = χcl[φ̃] , (C.4)

and thus

Ion−shell[φ] = I[χcl[φ];φ] = I[χ̃cl[φ]; φ̃] = I[χcl[φ̃]; φ̃] = Ion−shell[φ̃] . (C.5)

Now, for the theory (1.5) of a single vector current, the local KMS conditions are

Is[A1, A2] = −Is[Ã1, Ã2], Ã1µ = A1µ(−x), Ã2µ = A2µ(−t− iβ0,−~x) . (C.6)
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Given that Bµ = Aµ + ∂µϕ, the above equation implies that

I[B1, B2] = I[B̃1, B̃2], (C.7)

and thus

I[ϕ1, ϕ2;A1, A2] = I[ϕ̃1, ϕ̃2; Ã1, Ã2], (C.8)

where tildes again act as in (C.6) and now I is the full bosonic action. From (C.3), we

then conclude that the local KMS conditions lead to KMS conditions for the tree-level

generating functional.

D Derivative expansion for vector theory at cubic order

As an illustration of imposing the local KMS conditions at linear level, let us consider (4.52)

up to second order in derivatives in K, first order in derivatives in H and zeroth order in

derivatives in G. The most general Lagrangian, then, which is rotationally invariant and

satisfies (4.4) can be written as

Laaa =
a

3!
B3
a0 +

b

2
Ba0B

2
ai, (D.1)

Laar = i

[
ā

2
B2
a0Br0 +

d̄

2
B2
aiBr0 +Ba0(c̄1∂iBaiBr0 + c̄2Bai∂iBr0) + f̄Ba0Bai∂0Bri

]
, (D.2)

Larr =
ã

2
Ba0B

2
r0 +

b̃

2
∂iBaiB

2
r0 + c̃iBa0Br0∂0Bri + ẽBaiBr0∂0Bri + f̃iBajBr0Frij

+
g̃

2
Ba0(∂0Bri)

2 +
h̃

2
Ba0FrijFrij + k̃Bai∂0BrjFrij , (D.3)

where a, b, c1, c2, f̄ , g̃, h̃, k̃ are constants and

ā = ā0 − iω3ā1, d̄ = d̄0 − iω3d̄1, b̃ = b̃0 − iω1b̃1, c̃i = i(c̃2k2i + c̃3k3i),

ẽ = ẽ0 − iẽ2ω2 − iẽ3ω3, f̃i = i(f̃2k2i + f̃3k3i),

ã = ã0 − iã1ω1 + ã2(k2
2 + k2

3) + ã3k2 · k3 + ã4(ω2
2 + ω2

3) + ã5ω2ω3 . (D.4)

Let us first look at the static conditions (2.60) which imply that

ã2 = ã3, f̃2 = f̃3 = −2h̃, b̃0 = 0 . (D.5)

With time-dependent sources, equation (2.59) further requires that

c̃3 = b̃1, c̃2 = 0 . (D.6)

Imposing the full FDT we find in addition that (in the ~→ 0 limit)

ā0 = 2
ã1

β
, ā1 = − 3

ã4 − ã5

β
, d̄0 = − 2

ẽ0

β
, d̄1 = − 2ẽ2 − ẽ3 + g̃

β
,

f̄ = − 2ẽ2 − ẽ3 + g̃

β
, c̄1 = c̄2 = 0, a = −6

ã4 − ã5

β2
, b = − 2

2ẽ2 − ẽ3 + g̃

β2
.

(D.7)
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E Useful formulas

E.1 Integrability conditions

From (5.1), we have the integrability conditions

(−bviuν + λi
ν)∂ν(buµ) = buν∂ν(−bviuµ + λi

µ), (E.1)

(−bviuν + λi
ν)∂ν(−bvjuµ + λj

µ) = (−bvjuν + λj
ν)∂ν(−bviuµ + λi

µ). (E.2)

From (E.1) we get

∂vi = − 1

b2
λi
µ∂µb+

1

b
λi
µ∂uµ, (E.3)

∂λi
µ = λi

ν∇νuµ + uµλi
ν∂uν , (E.4)

where we have defined

∂ ≡ uµ∇µ . (E.5)

From (5.5), we get

∂νλ
i
µ − ∂µλiν = 0 (E.6)

∂µ

(uν
b
− viλiν

)
= ∂ν

(uµ
b
− viλiµ

)
. (E.7)

E.2 Variations with respect to background metric and gauge field

Here we list the variation of various quantities with respect to the external metric and

gauge field. For a single segment under variation of g1µν , we have (with the subscript 1

and δg1µν suppressed)

δb = − b
2
uµuν , δuρ = −δb

b
uρ =

1

2
uµuνuρ, δvi =

1

b
u(µλi

ν), δλi
ρ = uρu(µλi

ν) . (E.8)

Including both segments under variations of g1µν(X) we have

δEr = − b

4
uµuν , δ

√
ar =

1

4

√
ara

ij
r λi

µλj
ν ,

δarij =
1

2
λi
µλj

ν δEa = − 1

2
uµuν ,

δvri =
1

2
δvai =

1

2b
u(µλi

ν), δχa =
1

2
aijλi

µλj
ν =

1

2
∆µν ,

δµr =
1

2
δµa =

1

4
µuµuν , δbri =

1

2
δbai =

1

2
µu(µλi

ν), (E.9)

where we have again suppressed δg1µν and the index 1 (all variables without an explicit

subscript r or a should be understood as having index 1). The variation of Ξ will be treated

separately below. Also note that under variation of δA1µ, we find (again suppressing the

subscript 1)

δµr =
1

2
δµa =

1

2
uµ, δbri =

1

2
δbai =

1

2
λi
µ . (E.10)
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Now let us consider the variation of Ξ under δg1µν , which is tricky due to the logarithm.

As discussed in the main text, both the action and the stress tensor are organized as

expansions of a-variables, it is thus enough for us to work out the variation as an expansion

of Ξ. For this purpose, let us first introduce

δ1 ≡ â−1
1 δâ1 = aik1 λ1k

µλν1j −
∆µν

1

d− 1
δji . (E.11)

Then expanding both sides of

â−1
2 δâ1 = eΞδ1 = δeΞ (E.12)

in Ξ, we find that

δΞ = δ1 +
1

2
[Ξ, δ1] +O(Ξ2) . (E.13)

Similarly, under a variation of g2 we find that

δΞ = −δ2 +
1

2
[Ξ, δ2] +O(Ξ2) . (E.14)

F Structure of stress tensor and current at order O(a0)

In this appendix, we prove that at leading order in a expansion, the stress tensor and

current can be expressed in terms of velocity-type variables uµ, µ, τ to all derivative orders.

The stress tensor at O(a0) can be obtained by varying the action with respect to g1µν

and setting the a-type fields to zero. At this order, there is only one set of background fields

and dynamical variables (see (5.56)). The r-subscripts can thus be dropped. From (5.53),

we then find

T̂µν(x) =

(
µ
δL
δµa
− δL
δEa

)
uµuν +

δL
δχa

∆µν

+ 2
δL
δΞij

(
λi(µλj

ν) − ∆µν

d− 1
δji

)
+ 2

(
µ
δL
δbai

+
1

E

δL
δvai

)
u(µλi

ν), (F.1)

where we have used (5.10). Similarly, the current can be written as

Ĵµ =
δL
δµa

uµ +
δL
δbai

λi
µ . (F.2)

We will now show that for the most general L invariant under (1.22)–(1.23) and (1.24),

only velocity-type variables uµ, τ, µ and their derivatives will occur in (F.1)–(F.2).

For this purpose, let us consider a general tensor under spatial diffeomorphisms (1.22),

invariant under (1.23) and (1.24), which are constructed out of r-variables. Below we will

refer to such a quantity as a spatial tensor. From our discussion of covariant derivatives in

section (5.1.2), a spatial tensor of any rank can be constructed by acting with D0, Di on

the following basic objects:

τ, µ, DiE, D0bi, aij , Bij , R̃ijk
l, tij . (F.3)

– 74 –



J
H
E
P
0
9
(
2
0
1
7
)
0
9
5

Recall that, acting on a vector ϕj ,

Diϕj = diϕj − Γ̃kijϕk, (F.4)

with di ≡ ∂i + vri∂0 and

Γ̃ijk ≡
1

2
ail (djakl + dkajl − dlajk) = −λkµλjν∇µλiν , (F.5)

where we have used the integrability condition (E.6) in obtaining the last expression. Sim-

ilarly, with the help of various integrability conditions (E.3)–(E.6), we find

DiE = λi
µ∂uµ, (F.6)

D0bi = λi
µ (∇µµ+ µ∂uµ − uνFµν) (F.7)

Bij = λi
µλj

ν (Fµν + µ(∇µuν −∇νuµ)) (F.8)

tij = 2λµi λ
ν
jωνµ, ωµν = −∆µα∆νβ∇[αuβ] (F.9)

R̃ l
ijk = λi

µλj
νλk

ρλlβ

[
R β
µνρ + 2∇[µu

β∇ν]uρ − 2∇[µuν]∇ρuβ
]
. (F.10)

From (F.6)–(F.10), all quantities in (F.3) are either scalars such as τ, µ, or tensors of the

following form:

ϕi = λi
µϕµ, ϕij = λi

µλj
νϕµν , (F.11)

with ϕµ, ϕµν expressed in terms of velocity-type variables only (for aij the corresponding

ϕµν is ∆µν). Now one can show that acting with D0 and Di on tensors of the form (F.11),

one again obtains a tensor of the form

λµ1i1 · · ·λ
µn
in
ϕµ1···µn , (F.12)

with ϕµ1···µn expressed in terms of velocity-type and background variables only. Since D0

and Di satisfy the Leibniz rule, it is enough to demonstrate their actions on a scalar ϕ and

a vector ϕi. It can be readily found then that

D0ϕ = ∂ϕ, Diϕ = λi
µ∇µϕ D0ϕi = λi

µ(∂ϕµ + ϕν∇µuν + ϕνu
ν∂uµ), (F.13)

and

Diϕj = λi
µλj

ν∇µ(∆ν
ρϕρ) . (F.14)

To derive (F.14), it is convenient to use the identity

Diλj
µ ≡ λiν∇νλµj − Γ̃kijλk

µ = λi
αλj

β∇α∆β
µ, (F.15)

which follows from (F.5). With all tensors of the form (F.12), any scalar constructed out

of them will then be in terms of velocity-type modes only, and any vector or two-tensors

will also be of the form (F.11). Plugging these forms into (F.1)–(F.2), we then find that

the stress tensor and current will have the form

T̂µν = εuµuν + p∆µν + tµν + u(µqν) Ĵµ = nuµ + ∆µνjν , (F.16)
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where

ε = µ
δL
δµa
− δL
δEa

, p =
δL
δχa

, tµν = 2λi(µλj
ν) δL
δΞij

, (F.17)

qµ = 2λi
µ

(
µ
δL
δbai

+
1

E

δL
δvai

)
, n =

δL
δµa

, jµ = λi
µ δL
δbai

(F.18)

are all expressed in terms of velocity-type variables.

We believe the converse statement is likely also true, i.e. any combinations of velocity-

type variables can be obtained from variation of I at order O(a0). This amounts to showing

that any tensors defined in Xµ-space built out of uµ, τ, µ and their covariant derivatives

can be expressed in terms of D0, Di acting on quantities in (F.3). We will leave this for

the future.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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[44] L.V. Delacrétaz, A. Nicolis, R. Penco and R.A. Rosen, Wess-Zumino terms for relativistic

fluids, superfluids, solids and supersolids, Phys. Rev. Lett. 114 (2015) 091601

[arXiv:1403.6509] [INSPIRE].

[45] M. Harder, P. Kovtun and A. Ritz, On thermal fluctuations and the generating functional in

relativistic hydrodynamics, JHEP 07 (2015) 025 [arXiv:1502.03076] [INSPIRE].

[46] P. Kovtun, G.D. Moore and P. Romatschke, Towards an effective action for relativistic

dissipative hydrodynamics, JHEP 07 (2014) 123 [arXiv:1405.3967] [INSPIRE].

[47] M. Rangamani, Brownian branes, emergent symmetries, and hydrodynamics, plenary talk at

Strings 2015, June 22–26, Bengaluru, India (2015).

[48] R. Loganayagam, A topological gauge theory for the entropy current, parallel session talk at

Strings 2015, June 22–26, Bengaluru, India (2015).

[49] M. Geracie and D.T. Son, Effective field theory for fluids: Hall viscosity from a

Wess-Zumino-Witten term, JHEP 11 (2014) 004 [arXiv:1402.1146] [INSPIRE].

[50] C.R. Galley, D. Tsang and L.C. Stein, The principle of stationary nonconservative action for

classical mechanics and field theories, arXiv:1412.3082 [INSPIRE].

[51] T. Burch and G. Torrieri, Indications of a non-trivial vacuum in the effective theory of

perfect fluids, Phys. Rev. D 92 (2015) 016009 [arXiv:1502.05421] [INSPIRE].

[52] K. Kuchar, Geometry of hyperspace. 1., J. Math. Phys. 17 (1976) 777 [INSPIRE].

[53] K. Kuchar, Kinematics of tensor fields in hyperspace. 2., J. Math. Phys. 17 (1976) 792

[INSPIRE].

[54] K. Kuchar, Dynamics of tensor fields in hyperspace. 3., J. Math. Phys. 17 (1976) 801

[INSPIRE].

[55] D. Nickel and D.T. Son, Deconstructing holographic liquids, New J. Phys. 13 (2011) 075010

[arXiv:1009.3094] [INSPIRE].

– 78 –

https://doi.org/10.1103/PhysRevD.89.045002
https://arxiv.org/abs/1307.0517
https://inspirehep.net/search?p=find+EPRINT+arXiv:1307.0517
https://doi.org/10.1103/PhysRevD.88.105001
https://arxiv.org/abs/1211.6461
https://inspirehep.net/search?p=find+EPRINT+arXiv:1211.6461
https://doi.org/10.1103/PhysRevD.89.045016
https://arxiv.org/abs/1107.0732
https://inspirehep.net/search?p=find+EPRINT+arXiv:1107.0732
https://doi.org/10.1088/1126-6708/2006/03/025
https://arxiv.org/abs/hep-th/0512260
https://inspirehep.net/search?p=find+EPRINT+hep-th/0512260
https://doi.org/10.1103/PhysRevD.85.085029
https://arxiv.org/abs/1107.0731
https://inspirehep.net/search?p=find+EPRINT+arXiv:1107.0731
https://doi.org/10.1007/JHEP04(2011)102
https://arxiv.org/abs/1011.6396
https://inspirehep.net/search?p=find+EPRINT+arXiv:1011.6396
https://arxiv.org/abs/1103.2137
https://inspirehep.net/search?p=find+EPRINT+arXiv:1103.2137
https://arxiv.org/abs/1108.2513
https://inspirehep.net/search?p=find+EPRINT+arXiv:1108.2513
https://doi.org/10.1103/PhysRevLett.114.091601
https://arxiv.org/abs/1403.6509
https://inspirehep.net/search?p=find+EPRINT+arXiv:1403.6509
https://doi.org/10.1007/JHEP07(2015)025
https://arxiv.org/abs/1502.03076
https://inspirehep.net/search?p=find+EPRINT+arXiv:1502.03076
https://doi.org/10.1007/JHEP07(2014)123
https://arxiv.org/abs/1405.3967
https://inspirehep.net/search?p=find+EPRINT+arXiv:1405.3967
https://doi.org/10.1007/JHEP11(2014)004
https://arxiv.org/abs/1402.1146
https://inspirehep.net/search?p=find+EPRINT+arXiv:1402.1146
https://arxiv.org/abs/1412.3082
https://inspirehep.net/search?p=find+EPRINT+arXiv:1412.3082
https://doi.org/10.1103/PhysRevD.92.016009
https://arxiv.org/abs/1502.05421
https://inspirehep.net/search?p=find+EPRINT+arXiv:1502.05421
https://doi.org/10.1063/1.522976
https://inspirehep.net/search?p=find+J+%22J.Math.Phys.,17,777%22
https://doi.org/10.1063/1.522977
https://inspirehep.net/search?p=find+J+%22J.Math.Phys.,17,792%22
https://doi.org/10.1063/1.522978
https://inspirehep.net/search?p=find+J+%22J.Math.Phys.,17,801%22
https://doi.org/10.1088/1367-2630/13/7/075010
https://arxiv.org/abs/1009.3094
https://inspirehep.net/search?p=find+EPRINT+arXiv:1009.3094


J
H
E
P
0
9
(
2
0
1
7
)
0
9
5

[56] M. Crossley, P. Glorioso, H. Liu and Y. Wang, Off-shell hydrodynamics from holography,

JHEP 02 (2016) 124 [arXiv:1504.07611] [INSPIRE].

[57] J. de Boer, M.P. Heller and N. Pinzani-Fokeeva, Effective actions for relativistic fluids from

holography, JHEP 08 (2015) 086 [arXiv:1504.07616] [INSPIRE].

[58] R. Kubo, Statistical mechanical theory of irreversible processes I, J. Math. Soc. Japan 12

(1957) 570.

[59] P.C. Martin and J.S. Schwinger, Theory of many particle systems. 1., Phys. Rev. 115 (1959)

1342 [INSPIRE].

[60] L.P. Kadanoff and P.C. Martin, Hydrodynamic equations and correlation functions, Ann.

Phys. 24 (1963) 419.

[61] K.-c. Chou, Z.-b. Su, B.-l. Hao and L. Yu, Equilibrium and nonequilibrium formalisms made

unified, Phys. Rept. 118 (1985) 1 [INSPIRE].

[62] A.J. Niemi and G.W. Semenoff, Finite temperature quantum field theory in Minkowski space,

Annals Phys. 152 (1984) 105 [INSPIRE].

[63] E. Wang and U.W. Heinz, A generalized fluctuation dissipation theorem for nonlinear

response functions, Phys. Rev. D 66 (2002) 025008 [hep-th/9809016] [INSPIRE].

[64] E.A. Calzetta and B.L. Hu, Nonequilibrium quantum field theory, Cambridge University

Press, Cambrudge U.K. (2008).

[65] W. Bernard and H.B. Callen, Irreversible thermodynamics of nonlinear processes and noise

in driven systems, Rev. Mod. Phys. 31 (1959) 1017 [INSPIRE].

[66] R.L. Peterson, Formal theory of nonlinear response, Rev. Mod. Phys. 39 (1967) 69 [INSPIRE].

[67] H. Lehmann, K. Symanzik and W. Zimmermann, On the formulation of quantized field

theories. II, Nuovo Cim. 6 (1957) 319 [INSPIRE].

[68] P. Kovtun, G.D. Moore and P. Romatschke, The stickiness of sound: An absolute lower limit

on viscosity and the breakdown of second order relativistic hydrodynamics, Phys. Rev. D 84

(2011) 025006 [arXiv:1104.1586] [INSPIRE].

[69] P. Kovtun, Fluctuation bounds on charge and heat diffusion, J. Phys. A 48 (2015) 265002

[arXiv:1407.0690] [INSPIRE].

[70] G. Sewell, Quantum mechanics and its emergent macrophysics, Princeton University Press,

Princeton U.S.A. (2002).

[71] Y. Bu, M. Lublinsky and A. Sharon, U(1) current from the AdS/CFT: diffusion, conductivity

and causality, JHEP 04 (2016) 136 [arXiv:1511.08789] [INSPIRE].

[72] M. Kardar, G. Parisi and Y.-C. Zhang, Dynamic scaling of growing interfaces, Phys. Rev.

Lett. 56 (1986) 889 [INSPIRE].

[73] W. Israel and J.M. Stewart, Transient relativistic thermodynamics and kinetic theory, Annals

Phys. 118 (1979) 341 [INSPIRE].

[74] B. Gripaios and D. Sutherland, Quantum field theory of fluids, Phys. Rev. Lett. 114 (2015)

071601 [arXiv:1406.4422] [INSPIRE].

– 79 –

https://doi.org/10.1007/JHEP02(2016)124
https://arxiv.org/abs/1504.07611
https://inspirehep.net/search?p=find+EPRINT+arXiv:1504.07611
https://doi.org/10.1007/JHEP08(2015)086
https://arxiv.org/abs/1504.07616
https://inspirehep.net/search?p=find+EPRINT+arXiv:1504.07616
https://doi.org/10.1103/PhysRev.115.1342
https://doi.org/10.1103/PhysRev.115.1342
https://inspirehep.net/search?p=find+J+%22Phys.Rev.,115,1342%22
https://doi.org/10.1016/0370-1573(85)90136-X
https://inspirehep.net/search?p=find+J+%22Phys.Rept.,118,1%22
https://doi.org/10.1016/0003-4916(84)90082-4
https://inspirehep.net/search?p=find+J+%22AnnalsPhys.,152,105%22
https://doi.org/10.1103/PhysRevD.66.025008
https://arxiv.org/abs/hep-th/9809016
https://inspirehep.net/search?p=find+EPRINT+hep-th/9809016
https://doi.org/10.1103/RevModPhys.31.1017
https://inspirehep.net/search?p=find+J+%22Rev.Mod.Phys.,31,1017%22
https://doi.org/10.1103/RevModPhys.39.69
https://inspirehep.net/search?p=find+J+%22Rev.Mod.Phys.,39,69%22
https://doi.org/10.1007/BF02832508
https://inspirehep.net/search?p=find+J+%22NuovoCim.,6,319%22
https://doi.org/10.1103/PhysRevD.84.025006
https://doi.org/10.1103/PhysRevD.84.025006
https://arxiv.org/abs/1104.1586
https://inspirehep.net/search?p=find+EPRINT+arXiv:1104.1586
https://doi.org/10.1088/1751-8113/48/26/265002
https://arxiv.org/abs/1407.0690
https://inspirehep.net/search?p=find+EPRINT+arXiv:1407.0690
https://doi.org/10.1007/JHEP04(2016)136
https://arxiv.org/abs/1511.08789
https://inspirehep.net/search?p=find+EPRINT+arXiv:1511.08789
https://doi.org/10.1103/PhysRevLett.56.889
https://doi.org/10.1103/PhysRevLett.56.889
https://inspirehep.net/search?p=find+J+%22Phys.Rev.Lett.,56,889%22
https://doi.org/10.1016/0003-4916(79)90130-1
https://doi.org/10.1016/0003-4916(79)90130-1
https://inspirehep.net/search?p=find+J+%22AnnalsPhys.,118,341%22
https://doi.org/10.1103/PhysRevLett.114.071601
https://doi.org/10.1103/PhysRevLett.114.071601
https://arxiv.org/abs/1406.4422
https://inspirehep.net/search?p=find+EPRINT+arXiv:1406.4422

	Introduction
	Motivations
	Dynamical degrees of freedom
	Equations of motion
	Symmetry principles
	Ghost fields and BRST symmetry
	Thermal ensemble and KMS conditions
	KMS conditions and supersymmetry
	Various limits and expansion schemes
	Plan for the rest of the paper

	Generating functional for closed time path integrals
	Closed time path integrals
	Nonlinear response functions
	Time reversed process and discrete symmetries
	Thermal equilibrium and the KMS condition
	The classical statistical limit
	Constraints on response functions from KMS conditions

	Relations with standard formulations
	Recovering hydrodynamical equations of motion
	Constraints on hydrodynamics
	Recovering stochastic hydrodynamics
	Correlation functions

	A baby example: stochastic diffusion
	Quadratic order
	The quadratic action
	Off-shell currents and constitutive relations
	BRST invariance and supersymmetry
	The full generating functional

	Cubic order
	The cubic action
	BRST invariance and supersymmetry
	Multiplet of currents

	A minimal model for stochastic diffusion
	Linear stochastic diffusion
	Action for a variation of stochastic Kardar-Parisi-Zhang equation


	Effective field theory for general charged fluids
	Preparations
	Organization of variables
	Covariant derivatives
	Torsion and curvature

	The bosonic action
	General structure

	Stress tensor and current operators
	General discussion
	Lowest order in a-field expansion

	Formulation in the physical spacetime
	The source action
	Constraints on constitutive relations from local KMS conditions
	Spatial partition function condition
	Generalized Onsager relations

	Non-equilibrium fluctuation-dissipation relations
	Non-negativity of transport coefficients
	Full action to O(a**2) in physical spacetime
	Stochastic hydrodynamics
	Entropy current
	Two-point functions

	Discussion
	Explicit forms of various response and fluctuation functions
	Fluctuation-dissipation theorem at general orders
	Properties of various Green functions
	KMS conditions in terms of correlation functions
	Implications for response functions

	KMS conditions for tree-level generating functional
	Derivative expansion for vector theory at cubic order
	Useful formulas
	Integrability conditions
	Variations with respect to background metric and gauge field

	Structure of stress tensor and current at order O(a**0)

