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1 Introduction

Low energy effective field theories of scalar fields are part and parcel of cosmological model

building. They are a near essential ingredient in inflationary theories, and form the basis

of most theories of, or alternatives to, dark energy. In many proposed models, the scalar

is an assumed low energy field in an otherwise unknown high energy (UV) completion. In

the absence of explicit UV guidance, effective field theories can be constructed according
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to the standard principle that every operator consistent with the underlying symmetries

and field content is included in the Lagrangian. The form of the scalar low-energy effective

field theory (LEEFT) is then significantly controlled by the assumed symmetry, be it exact

or approximate. A special class of such LEEFT are the Galileon models [1] where the

assumed global symmetry for the scalar field π is the spacetime dependent transformation

π → π+c+vµx
µ. Theories of this type were discovered in the context of massive theories of

gravity, originally in the Dvali-Gabadadze-Porrati model [2], where π describes the degree

of freedom associated with the helicity zero mode of the massive graviton [3].

In order for a gapped (i.e. massive) scalar theory to admit a standard Wilsonian UV

completion, the 2-to-2 scattering amplitude must satisfy a number of so-called positivity

bounds [4, 5]. These are derived based on the cherished assumptions that the scatter-

ing amplitude is Lorentz invariant, unitary, polynomially bounded in momenta, crossing

symmetric and is analytic in the complex energy plane modulo certain poles and branch

cuts. Of these conditions, the latter two are tied to locality and causality. Polynomial

boundedness, the statement that the scattering amplitudes do not grow faster than a given

polynomial (or slightly more generally a linear exponential) of complex momenta is nec-

essary so that Fourier transforms are well defined to ensure that the amplitudes can be

given meaning in real space. This is tied to locality of real space correlation functions.

Analyticity is motivated by causality, and in the special cases where it can be derived rig-

orously, analyticity follows from the properties of the real space retarded Green’s functions

which are used to determine the S-matrix amplitude. Although no rigorous proof of full

analyticity of the S-matrix has ever been given, it is straightforward to show that to any

order in perturbation theory the scattering amplitude remains analytic, and it is generally

argued that the singularities (position of poles and branch cuts) on the physical sheet in

the full S-matrix are the same as those seen in perturbation theory [6].

The lowest order forward limit positivity bounds were previously used to argue that the

massless Galileon [7] had no standard UV completion, because the coefficient of s2 (s being

the square of the center of mass energy) in the (pole subtracted) scattering amplitude which

must necessarily be positive definite, was found to be zero [4]. This unusual behaviour is

a consequence of the special soft scattering properties of Galileons, which are in turn tied

to the Galileon symmetry π → π + c + vµx
µ [8, 9]. This argument, however, relies on a

subtle procedure which introduces a mass as an IR regulator and sends m→ 0 at the end

of the calculation.

The standard positivity bounds are only well-defined in the presence of a mass gap. The

reason is two-fold: on the one hand a massless theory can violate the Froissart bound [10, 11]

which affects the number of subtractions necessary. If for example three subtractions were

needed, due to the cross section growing faster than σ ∼ s (something which is technically

possible for a massless theory) then it is impossible to place a bound on the sign of the

coefficient of the s2 term. Secondly, the mass gap is necessary to have an analytic region

for the scattering amplitude which connects the upper and lower half complex s planes. In

the massless limit, the amplitude at t = 0 is ill-defined due to a pole and branch point.1

1In practice the latter point is less of a concern: the pole can always be subtracted and the branch point

at t = 0 only arises at the loop level and so does not affect bounds on the tree amplitude of the LEEFT.
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Fortunately these problems are easily dealt with by considering a massive Galileon

theory. In its original realization, the Galileon arose as the helicity-zero mode of a massive

spin-2 resonance, and thus was neither strictly massless nor massive. It is only in a specific

decoupling limit that it becomes massless. On the other hand, a massive Galileon sector

is more naturally embedded in interacting spin-2 theories such as Ghost-free2 massive

gravity [12, 15, 16], (see [17, 18] for a recent review of massive gravity)—the ‘Galileon’

scalar mode in this massive gravity theory is massive away from the decoupling limit and

corresponds to the helicity-0 component of the massive graviton (see section 3.1 for a

discussion of this point). Despite näıvely breaking the Galileon symmetry, a mass term

leaves intact the Galileon non-renormalization theorem [19]. Furthermore, no additional

operators violating the Galileon symmetry are generated at any order in loops by the

presence of a mass term. It is therefore very natural to consider a massive Galileon theory,

and we will show here that such a theory can indeed satisfy the positive bounds required for

an analytic Lorentz invariant UV completion, providing its higher order derivative terms

have suitably chosen coefficients.

Our results are consistent with the recent findings that forward limit positivity bounds

are satisfied for various IR extensions of the Galileon (massive gravity [20], and pseudo-

linear massive gravity / Proca theory [21]). While one might conclude from this that

the non-scalar modes in Ghost-free massive gravity play an important role in satisfying the

positivity requirements, based on the massive Galileon result we see that these requirements

are already satisfied for the massive scalar sector alone. In fact, as we are able to apply

our positivity bounds away from the forward limit [5], our requirements on the massive

Galileon are stronger than equivalent bounds in the literature.

Starting with the hypothetical existence of a local, analytic Wilsonian UV completion

to a Lorentz invariant massive scalar LEEFT, we have derived previously a series of pos-

itivity bounds that the (pole subtracted) 2 → 2 scattering amplitude and its derivatives

with respect to the Mandelstam variables should satisfy, see ref. [5]. These represent an

infinite number of requirements that place constraints on all the coefficients of the scatter-

ing amplitude when Taylor expanded in terms of the Mandelstam variables. This Taylor

expansion is always well defined given the analyticity of the pole subtracted amplitude in

the Mandelstam triangle 0 ≤ s, t, u < 4m2. These bounds are valid at and away from the

forward scattering limit and as we shall see later, the more stringent bounds are often away

from the forward limit. These bounds apply to any scalar EFT with a mass gap, which

includes the massive Galileon on flat spacetime. The infinite number of bounds derived

in [5] places constraints on the EFT coefficients, not only the leading Galileon operators,

but also on all higher derivative operators that enter the massive Galileon LEEFT.

2We point out that following the spirit of standard Wilsonian effective field theories, the notion of

ghost-freeness is only meaningful till the scale of perturbative unitarity breaking. In the context of massive

gravity, this scale is at most Λ3 = (MPlm
2)1/3 (where m is the graviton mass and MPl is the Planck scale).

When considering massive gravity beyond the context of standard Wilsonian effective field theories, one

may ask the question on whether the theory remains ghost-free beyond the scale Λ3. This was first proven

in refs. [12–14] and then in a vast subsequent literature using different formalisms.
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We begin by quickly reviewing the infinite number of scalar positivity bounds in

section 2 before focusing on the massive Galileon Wilsonian action in section 3 which

reviews a key similarity between the massive and massless Galileon, namely that they

share a non-renormalization theorem which guarantees that only Galileon invariant local

terms are generated in the 1PI effective action. We then apply the positivity bounds to the

leading Galileon operators in section 4 and infer a bound on the coefficients that relates

the cubic and the quartic Galileon operators. We then turn to the leading higher order

derivative operators in section 5, and derive their respective bounds. We prove that no

local, analytic and Lorentz invariant Wilsonian UV completion could ever lead to the low-

est order Galileon operators without also involving some higher derivative operators in the

LEEFT, besides those being generically generated by quantum corrections. To illustrate

our results we provide in section 6 a simple yet explicit example of a Lorentz invariant and

renormalizable UV theory that leads to a special massive Galileon LEEFT in the sense

that the LEEFT preserves the Galileon symmetry (up to the mass term) and enjoys the

Galileon non-renormalization theorem. We conclude in section 7.

We also supplement our results with four appendices: we generalize our results beyond

the Galileon LEEFT to include the leading bounds for any massive and Lorentz invariant

scalar LEEFT (without any assumption of symmetry) in appendix A. In appendix B we

prove that the positivity bounds are strictly positive definite (and can never be positive

semi-definite in an interacting theory). In appendix C we provide an alternative (but

equivalent) formulation for the coefficients and functions that enter the positivity bounds.

In appendix D we provide the explicit diagonalization used in the UV example provided

in section 6.

2 Review of the scalar positivity bounds

In [5], using the unitary and analytic properties of the scalar scattering amplitude, we

have derived an infinite number of positivity bounds for the derivatives of pole subtracted

amplitudes. In the following, we will review the main ingredients of the proof and results.

The following discussion is not specific to Galileons, but we shall apply it to the massive

Galileon LEEFT in sections 4, 5 and 6 and to a general massive scalar field LEEFT in

appendix A.

2.1 Pole subtracted dispersion relation

In what follows we shall be interested in the 2→ 2 scattering amplitude A(s, t), for a single

scalar species of mass m which can be expanded into partial waves as

A(s, t) = 16π

√
s

s− 4m2

∞∑
`=0

(2`+ 1)P` (cos θ) a`(s), (2.1)

where s, t, u are the usual Mandelstam variables and θ is the scattering angle in the cen-

ter of mass frame, cos θ = 1 + 2t
s−4m2 . Making use of the partial wave unitarity bound

Im a` ≥ |a`|2 ≥ 0 and the properties of the Legendre polynomial P`, one can infer that in

– 4 –
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the physical region s ≥ 4m2

∂n

∂tn
ImA(s, t = 0) ≥ 0, for n ≥ 0 . (2.2)

In appendix B we prove that taken together with the assumption of analyticity this is in

fact a strict positivity
∂n

∂tn
ImA(s, t = 0) > 0, for n ≥ 0 . (2.3)

By some weak assumptions on the analyticity on the Mandelstam complex plane, it has

been shown [22, 23] that A(s, t) is analytic in the twice cut s plane for fixed t and in the

disk |t| < 4m2 for fixed s (excluding the obvious poles of s and t).3 This leads to

∂n

∂tn
ImA(s, t) > 0, for n ≥ 0 and for all 0 ≤ t < 4m2 , s ≥ 4m2 . (2.4)

On the other hand, making use of the Froissart-Martin bound [24–26], one can arrive at

the twice subtracted dispersion relation

A(s, t) = a(t) +
λ

m2 − s
+

∫ ∞
4m2

dµ

π

(s+ t
2 − 2m2)2

(µ+ t
2 − 2m2)2

ImA(µ, t)

(µ− s)
+ (s→ u) , (2.5)

where a(t) is some unknown function and for scalar field theories λ is independent of s and

t. In what follows we shall be working in terms of the variable v rather than the center of

mass energy s,

v = s+
t

2
− 2m2 , (2.6)

and denote by B(v, t) the pole subtracted dispersion relation

B(v, t) = A(s, t)− λ

m2 − s
− λ

m2 − t
− λ

m2 − u
. (2.7)

In terms of b(t) = a(t)− λ/(m2 − t), we have

B(v, t) = b(t) +

∫ ∞
4m2

2dµ

π

v2

(µ+ t/2− 2m2)

ImA(µ, t)

(µ+ t/2− 2m2)2 − v2
. (2.8)

The derivatives of B(v, t) are designated by B(N,M),

B(N,M)(t) =
1

M !
∂Nv ∂

M
t B(v, t)

∣∣
v=0

, (2.9)

and are consequently being evaluated at s = 2m2 − t/2. Provided 0 ≤ t < 4m2, then

0 ≤ s ≤ 2m2, which lies in the Mandelstam triangle 0 ≤ s, t, u < 4m2 in which the

pole subtracted amplitudes are known to be analytic, and hence all the derivatives are

well defined.

3The Mandelstam proposal would assume a much bigger analytic region.
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2.2 Positivity bounds

Combining the previous expressions together with the bound (2.4) that follows from uni-

tarity and analyticity, we have shown in [5] that the following quantity must necessarily be

positive definite if the theory is to have an analytic and Lorentz invariant UV completion,

Y (2N,M)(t) > 0 for N ≥ 1 , M ≥ 0 , 0 ≤ t < 4m2 , (2.10)

where Y (2N,M)(t) is defined by the following recurrence relation

Y (2N,0)(t) = B(2N,0)(t) , (2.11)

Y (2N,M)(t) =

M/2∑
r=0

crB
(2(N+r),M−2r)+

1

M2

(M−1)/2∑
even k=0

(2(N+k)+1)βkY
(2(N+k),M−2k−1), (2.12)

where M2 = Min(µ + t/2 − 2m2) = 2m2 + t/2, and the coefficients cr and βk defined

recursively by

ck = −
k−1∑
r=0

22(r−k)cr
(2(k−r))!

,with c0 = 1 , and βk = (−1)k
k∑
r=0

22(r−k)−1

(2(k−r)+1)!
cr ≥ 0 . (2.13)

Alternative but fully equivalent expressions for these coefficients are also given in

appendix C. In what follows we shall see how to apply those bounds to the massive Galileon

LEEFT.

2.3 Tree vs loop bounds

The bounds Y (2N,M)(t) > 0 derived in [5] are true for the full all-loop scattering amplitude.

We can however, apply them directly to the tree level LEEFT. If we compute a scattering

amplitude to tree level in the low energy effective theory, then there will be no imaginary

parts in the region 4m2 ≤ µ < Λ2
th where Λth is the threshold to produce new heavy states,

i.e. the mass of the lightest state that lies outside of the low energy effective field theory.

This allows us to apply the bounds Y
(2N,M)

tree (t,Λth) > 0 to the tree amplitude in which we

take M2 = Min(µ + t/2 − 2m2) = Λ2
th − 2m2 + t/2 ≈ Λ2

th. In the application of the tree

level bounds, we must however be careful in how to interpret the bounds on the higher

derivative terms. To see the problem let us first consider the forward scattering limit. If

in a given theory the tree level scattering amplitude takes the form

Atree(s, 0) ∼ c1
s2

Λ4
+ c2

s4

Λ8
+ . . . , (2.14)

while it is clear that the forward scattering limit bounds impose c1 > 0, we cannot further

declare c2 > 0 without further specifying how we separate trees and loops (the renormaliza-

tion prescription), since on computing a one-loop diagram, we will obtain renormalization

prescription sensitive local terms that will contribute at the same order 1/Λ8. The prob-

lem arises if there is a single scale in the problem, i.e. Λ, at which the theory is strongly

coupled, then it is no longer possible to separate the tree and loop contributions that arise

at the same order in a power expansion in s/Λ2 since the loop expansion itself breaks down

at s ∼ Λ2.

– 6 –
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Weak coupling. As noted in [4], this problem is resolved if it is assumed that the UV

theory is weakly coupled, in which case there exists an additional small parameter g for

which the tree scattering amplitude takes the form

Atree(s, 0) ∼ g
(
c̃1
s2

Λ4
+ c̃2

s4

Λ8
+ . . .

)
, (2.15)

then the one-loop contribution will be of order g2 and so if g � 1 we can safely put the

bound on all higher derivatives of Atree. So if we assume a weakly coupled UV comple-

tion, we can consistently impose Y
(2N,M)

tree (t,Λth) > 0 for all N and M . Interestingly, the

explicit example we give for a UV completion of a massive Galileon in section 6 falls into

this category.

Massive Galileon. In the case of the massive Galileon however we can do better. The

tree amplitude for a massive Galileon takes the form

Atree(s, θ) ∼
(
d1(θ)

m2s2

Λ6
+ d2(θ)

s3

Λ6
+ d3(θ)

s4

Λ8
. . .

)
, (2.16)

and the loop contributions4 begin at

Aone−loop(s, θ) ∼
3∑

n=0

d̃n(θ)m2ns6−2n

Λ12
+ . . . . (2.17)

Given the assumption m� Λ, the loop corrections to the tree level coefficients computed

up to and including 1/Λ10 corrections are negligible relative to the existing tree level

contribution. This holds even though the coefficient of s2 is already m2/Λ2 suppressed. As

a result we may take seriously all of our tree level bounds Y
(2N,M)

tree (t,Λth) > 0 that will be

computed in sections 4 and 5 applied up to and including order 1/Λ10, i.e. the finite number

of them that receive only contributions from the tree level scattering amplitude expanded

to this order. This already allows us to put non-trivial bounds on the higher derivative

coefficients without needing to assume that the UV completion is weakly coupled, and is

precisely what we shall do in what follows.

Including loops. We can also go beyond this as follows. Given the same assumption of

the hierarchy m� Λ, then to a given order in 1/Λ2 there are only a finite number of loops

that contribute significantly. Specifically, if we compute the scattering amplitude to order

1/Λ2K , then we need only compute loops to order Nloop = Floor[K/3]. We can then impose

those loop level bounds Y (2N,M)(t) > 0 (withM2 = Min(µ+ t/2−2m2) = 2m2 + t/2), that

include only contributions from the scattering amplitude coefficients up to order 1/Λ2K .

These can be strengthened by using the knowledge of the light loops to that order, to

compute their contribution to B(N,M)(t) in the region in which they can be computed

perturbatively. This is achieved as follows: assuming that perturbation theory can be

4Here it is understood that all light loops are computed in dimensional regularization. Since all cutoff de-

pendence can be absorbed into a redefintion of the tree level higher derivative operators, it is only necessary

to track the running contributions. We take the point of view that the LEEFT Lagrangian is so defined.

– 7 –
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trusted up to a scale εΛ � m where ε � 1, then we may define (see [5] for the origin of

this combination)

B
(2N,M)
εΛ (t) = B(2N,M)(t)−

M∑
k=0

2(−1)k

πk!2k
(2N+k)!

(M−k)!

∫ ε2Λ2

4m2

dµ
∂2N+k
t ImA(µ, t)

(µ+t/2−2m2)M−k+1
. (2.18)

We can then compute Y
(2N,M)
εΛ (t) out of B

(2N,M)
εΛ (t) via the recurrence relations defined

in (2.12) where we now take M2 = ε2Λ2 + t/2 − 2m2 ≈ ε2Λ2. Following the arguments

of [5] we may then show that

Y
(2N,M)
εΛ (t) > 0 . (2.19)

It is understood that if the amplitude is computed to order 1/Λ2K , then only those bounds

Y
(2N,M)
εΛ (t) > 0 that include only contributions from derivatives that arise up to this order

are taken seriously.

The previous arguments ensure that for any LEEFT, we may apply the positivity

bounds to any desired order in the EFT expansion, provided at least we include the light

loops to the desired order. The strongest form of the bound will then be obtained by

subtracting off the known contribution from the light loops to define Y
(2N,M)
εΛ (t). In the

case of an assumed weakly coupled UV completion, which our explicit example in section 6

falls into, we can impose all orders in N,M of tree level bounds. In the special case of

a massive Galileon, it is sufficient to work at tree level up to and including order 1/Λ10

which is what we do in the following.

3 Massive Galileon and non-renormalization theorem

3.1 Massive helicity-0 mode

The Galileon is a scalar field that appears in several models of gravity that depart from

General Relativity in the infrared. First encountered within the decoupling limit of the

Dvali-Gabadadadze-Porrati model of soft massive gravity [1–3], the Galileon scalar field

was then introduced in [7] as an effective description of the helicity-0 mode that appears

in any Lorentz-invariant theory of modified gravity in the infrared. In particular when

exploring the ghost-free theory of a hard mass graviton of mass m, it was shown that in

the decoupling limit m → 0 and MPl → ∞, the helicity-0 mode of the graviton behaves

precisely as a Galileon scalar field [12, 15, 16]. Since this decoupling limit uses m→ 0, the

Galileon scalar field appears to be massless in that limit, however beyond the decoupling

limit the helicity-0 mode of the graviton is massive and so is the Galileon scalar field.

To explicitly see how the Galileon acquires a mass beyond the decoupling limit in mod-

els of massive gravity, one can start with the linearized Fierz-Pauli action (corresponding

to the linearized massive gravity action about flat spacetime),

Llin = −1

4
hµν Êαβµν hαβ −

1

8
m2(h2

µν − h2) , (3.1)

where Ê is the Lichnerowicz operator and hµν the metric perturbation about flat spacetime

gµν = ηµν + hµν/MPl. The mass term explicitly breaks diffeomorphism invariance, which

– 8 –
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can be restored by introducing four Stückelberg fields χa, hµν → hµν + ∂(µχν)

Llin = −1

4
hµν Êαβµν hαβ −

1

8
m2((hµν + ∂(µχν))

2 − (h+ 2∂αχ
α)2) , (3.2)

so that the Fierz-Pauli action is now manifestly invariant under linearized diffeomorphism,

hµν → hµν + ∂(µξν), χµ → χµ − 1/2ξµ.

To properly identify the physical degrees of freedom, it is convenient to further split

the Stückelberg fields into their transverse Aa and longitudinal parts π,

χa =
1

m
Aa +

1

m2
∂aπ , (3.3)

where the reason behind this normalization will become clear in what follows. Moreover,

to diagonalize the kinetic term for hµν and π, we further perform the diagonalization

hµν = h̃µν + πηµν . (3.4)

In terms of these variables, the Fierz-Pauli action is then

Llin = −1

4
h̃µν Êαβµν h̃αβ −

1

8
m2(h̃2

µν − h̃2)

− 1

8
F 2
µν −

1

4
m
(
h̃µν − h̃ηµν

)
∂(µAν) + 3mπ∂αA

α +
3

4
m2πh̃

− 3

4
(∂π)2 +

3

2
m2π2 , (3.5)

where we can now identify h̃µν as the helicity-2 mode of the massive graviton, Aa as

the helicity-1 mode and π as the helicity-0 mode. At the non-linear level, π acquires

further derivative interactions that are precisely of the Galileon form (after appropriate

diagonalization) as was shown in [12, 15, 16]. It is focusing on the purely scalar part of this

action (i.e. the third line of (3.5)) and its non-linear extension that has led to the study of

Galileons as effective descriptions for the helicity-0 mode of modified gravity theories [7].

Note that prior to taking any decoupling limit m→ 0, the field π does have a mass given

by m. (Notice that the mass matrix for h̃µν and π has positive eigenvalues, so the mode

π has a positive mass squared). It is therefore within this spirit that we shall consider the

effective field theory for massive Galileons in what follows.

3.2 Massive Galileon effective field theory

In what follows we start by considering the Lagrangian for a massive extension to the

Galileon [7] which, in four flat spacetime dimensions, takes the form

LmGal[π] = LGalileon[π]− 1

2
m2π2 (3.6)

=
5∑

n=2

gn

n!Λ3(n−2)
πΠµ1

[µ1
· · ·Πµn−1

µn−1] −
1

2
m2π2 (3.7)

= −1

2
(∂π)2 − 1

2
m2π2 +

g3

3!Λ3
π
[
[Π]2 − [Π2]

]
+

g4

4!Λ6
π
[
[Π3]− 3[Π][Π2] + 2[Π3]

]
+ . . . ,
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where we have used the notation Πµν = ∂µ∂νπ, square brackets represent the trace of

a tensor, and antisymmetrization is defined without 1/n!, e.g. A[µν] = Aµν − Aνµ. It is

convenient to use the standard canonical normalization for the scalar field g2 = 1/2. The

dimensionless coefficient g3 (or g4) could be absorbed in the definition of Λ but we keep

it separate for later convenience. LGalileon[π] contains the distinguished Galileon operators

whose equations of motion are second order in derivatives.

Since the bounds derived in section 2 only deal with the 2 → 2 scattering amplitude,

and since we will mainly focus on tree-level for π, we do not need consider higher than

quartic interactions.

3.3 Wilsonian action

When viewed as an effective field theory, the Galileon must be supplemented by an infinite

number of higher derivative operators which also respect the Galileon symmetry. As a

result, the full Wilsonian action for this massive Galileon LEEFT SW [π] is then,

SW [π] =

∫
d4x

(
LmGal[π] + Lh.d.(∂

2π, ∂3π, ∂4π, . . . )
)
, (3.8)

where Lh.d. is a scalar function constructed from all the possible tensor combinations of

two or more derivatives acting on the field. The precise form of Lh.d. depends strongly on

the renormalization scheme employed to compute loops since these operators are expected

to receive order unity renormalizations.5

Stated differently, the massive Galileon may be defined as any effective field theory for

which the action transforms under the transformation π → π + c+ vµx
µ as

δc,vSW = −
∫

d4xm2π (c+ vµx
µ) . (3.9)

The massive Galileon has several important properties that put it on the same footing as

its massless counterpart:6

1. Quantum corrections preserve the Galileon symmetry (provided that the Galileon

couples to all other fields through Galileon invariant interactions),

2. Quantum corrections do not renormalize the coefficients of the leading Galileon oper-

ators in LmGal, i.e. they neither renormalize the coefficients gn, nor the mass scale m.

To demonstrate this, it is simplest to consider the expression for the one-particle irreducible

effective action Γ[π], (see ref. [19]),

exp

[
i

~
Γ[π]

]
=

∫
Dπ′ exp

[
i

~
SW [π′]− i

~
δΓ[π]

δπ
(π′ − π)

]
. (3.10)

5We may for instance define SW in the Euclidean as the effective action in which trees and loops of

the heavy fields for all momenta, and low energy field π for momenta above the scale Λth, are integrated

out, so that the cutoff for the remaining light loop integrals is Λth. However, a more practical definition

is to define SW as the Wilsonian action for which the remaining π loops can be computed in dimensional

regularization. There is no loss in generality in this approach since the terms discarded in dimensional

regularization are precisely the local operators already included in Lh.d..
6For a recent discussion on non-renormalization theorems of this type see [27].
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The 1PI effective action can be split into its classical and quantum parts,

Γ[π] = SW [π] + ~Γq[π], (3.11)

and performing a similar split in the integration measure of the path integral π′ = π+
√
~χ

we then have

exp iΓq[π] =

∫
Dχ exp

[
iF [π, χ]− i

√
~
δΓq[π]

δπ
χ

]
, (3.12)

where

F [π, χ] =

∞∑
n=2

~(n−2)/2 1

n!

δnSW [π]

δπn
χn . (3.13)

As is well known the path integral may be evaluated to determine Γq[π] as an expansion

in powers of ~. The key observation is that although the addition of a mass term to SW
breaks the Galilean symmetry of SW , it nevertheless leaves invariant δn

δπnSW [π] for n ≥ 2.

This is manifest since

δ2

δπ(x)δπ(y)
SW [π] =

δ2

δπ(x)δπ(y)
(SGalileon[π] + Sh.d.[π])−m2δ4(x− y) , (3.14)

and for all higher functional derivatives the mass term does not enter, e.g.

δ3

δπ(x)δπ(y)δπ(z)
SW [π] =

δ3

δπ(x)δπ(y)δπ(z)
(SGalileon[π] + Sh.d.[π]) . (3.15)

We may thus conclude that F [π] and hence Γq[π] is manifestly Galileon invariant

F [π] = F [π + c+ vµx
µ]→ Γq[π] = Γq[π + c+ vµx

µ] . (3.16)

This argument is easily generalized to include the Galileon interacting with other fields,

provided that the interactions to the other fields are themselves manifestly invariant under

the Galileon symmetry.

The second part of the non-renormalization theorem states that the Galileon oper-

ators SGalileon and the mass term are not renormalized [1, 3]. This follows simply from

the observation that δ2

δπ(x)δπ(y)SW [π] and all higher derivatives depend on π only in the

combination of functions of Πµν and its derivatives. For instance, for the leading massive

Galileon operators

δ2

δπ(x)δπ(y)
SmGal[π] =

[
�−m2 +

5∑
n=3

gn

(n− 2)!Λ3(n−2)
Πµ1

[µ1
· · ·Πµn−3

µn−3
∂µn−2∂µn−2]

]
δ4(x−y),

(3.17)

are explicitly only dependent on π through powers of the invariant combination Πµν . Sim-

ilarly since Sh.d. itself only depends on functions of Πµν and its derivatives then the same

clearly holds for all functional derivatives with respect to π. This implies that the local

counter terms generated in Γq[π] will contain only local functions of Πµν and its deriva-

tives. However, SmGal[π] contains a dependence on π through fewer than two derivatives.

Thus no local counterterm generated in Γq[π] can renormalize SmGal[π], although they

will renormalize Sh.d.[π] which is precisely why the latter terms are included. Once again,

the addition of a mass term does not affect this property since the mass only arises as a

constant, π independent term in δ2

δπ(x)δπ(y)SW [π].
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Mass parameter and pole of the propagator. A clear product of these results is

that ‘mass’ of the Galileon defined as the non-derivative coefficient of π2 term in Γ[π], i.e.

m2 = −
[∫

d4xeik.xδ2Γ/δπ(x)δπ(0)

]
π=0,k=0

,

will also receive no quantum corrections. However the physical mass, defined as the pole of

the propagator will receive finite quantum corrections from higher derivative terms. These

occur because loops can generate terms in Γq[π] of the Galileon invariant form π�1+nπ/Λ2n

(with n ≥ 1) which will shift the physical pole mphys away from m,

m2
phys = m2

(
1 +

∞∑
n=1

dn
m2n

Λ2n

)
. (3.18)

A small Galileon mass is technically natural as long as m � Λ, which is a manifestation

of the t’Hooft naturalness argument.

In practice however, when computing the scattering matrix, it is always possible to

ignore higher derivative contributions in SW to the quadratic action

∆SW =

∫
d4x

∞∑
n=1

fn
π�1+nπ

Λ2n
, (3.19)

the reason being that all such terms can be removed by a field redefinition of the form

π → π +
∞∑
n=0

f ′n
�n

Λ2n
π , (3.20)

that has the virtue of preserving the Galileon symmetry. The field redefinition will have

the affect of adjusting the coefficients in the Galileon invariant interactions and we can

take the point of view that this has already been done from the outset.

4 Massive Galileon leading positivity bounds

4.1 Constraints on the massive Galileon

Now let us apply the positivity bound to the tree level 2 → 2 scattering amplitude of

the massive Galileon. Excluding the higher derivative operators, the 2 → 2 scattering

amplitude for the massive Galileon (3.7) in the centre of mass frame is given by

A(s, t) = As +At +Au +A4 , (4.1)

with

AX =
g2

3X
2
(
X − 4m2

)2
16Λ6 (m2 −X)

, and A4 = g4
stu

4Λ6
. (4.2)

The pole subtracted amplitude is then

B(s, t) = a00 + a10x+ a01y, (4.3)
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which depends on {s, t, u} via the crossing symmetric combinations,

x = − (s̄t̄+ t̄ū+ ūs̄) , y = −s̄t̄ū (4.4)

where the bar denotes s̄ = s− 4m2/3, t̄ = t− 4m2/3, ū = u− 4m2/3. The coefficients are

a00 =
m6

Λ6

[
16g4

27
− 295g2

3

144

]
, a10 =

m2

Λ6

[
−g4

3
+

3g2
3

8

]
, a01 =

1

Λ6

[
−g4

4
+

3g2
3

16

]
. (4.5)

Significantly, for order unity g3 and g4, we see that a10 ∼ m2

Λ2 a01. This is related to the fact

that the massless Galileon has enhanced soft behaviour due to the Galileon symmetry [8, 9],

and so in the limit m→ 0 we need a10 to vanish.

Note that these leading Galileon interactions (3.7) have given a scattering amplitude

truncated at sixth order in energy, and so from the results of [4, 5] we have two independent

positivity bounds,

Y (2,0) : a10 + a01t̄ > 0 (4.6)

Y (2,1) : a01 +
3

2Λ2
th

(a10 + a01t̄) > 0 , (4.7)

where as mentioned earlier, Λth is the threshold scale at which new physics must neces-

sarily enter to restore analyticity and unitarity (since we are dealing with the tree-level

amplitude). For the massive Galileon LEEFT to make sense at all, Λ2
th should lie above

the scale 4m2 and ideally around or above the scale Λ2. Interestingly the strongest form

of these bounds arise not in the forward scattering limit t→ 0, but rather in the opposite

limit t→ 4m2. This illustrates the power of extending the constraints beyond the forward

scattering limit.

We can distinguish between 3 different scenarios, depending on the ratio g4/g
2
3,

1. If g4/g
2
3 ≤ 3/4, then both bounds (4.6), (4.7) are satisfied for any value of 0≤ t<4m2,

and without any restriction neither on Λth, nor on the mass (this implies that the

Galileon mass can be taken to be arbitrarily small, without violation of these bounds).

2. For 3/4 < g4/g
2
3 ≤ 7/8, analyticity imposes the following upper bound on Λth,

Λ2
th < 6m2

7
8 −

g4
g23

g4
g23
− 3

4

. (4.8)

3. For g4/g
2
3 > 7/8, the Galileon model can enjoy no local, analytic and Lorentz invariant

UV completion.

Even though the ratio g4/g
2
3 can in theory be larger than 3/4, in practise, since the LEEFT

only makes sense if Λ2
th � m2, the ratio g4/g

2
3 can never get much larger than 3/4. The

allowed region of parameter space is shown in figure 1. We emphasise that there is no

condition imposed on g5, which does not contribute to the 2→ 2 tree-level amplitude.

Note that we have only considered here the leading contributions to the bounds from

Y (2,0) and Y (2,1) in (4.6) and (4.7). Had we included for instance the operator [Π2]2/Λ8, it

– 13 –
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Figure 1. Summary of constraints imposed on coefficients of cubic (g3) and quartic (g4) Galileon

operators to respect known bounds imposed by (1). the existence of a hypothetical local, analytic

UV completion, (2). a cutoff which is above the Galileon mass, and (3). the existence of a static

and spherically symmetric Vainshtein mechanism. The boundary between no analytic Wilsonian

UV completion and a potential UV completion with an unacceptably low cutoff is at g4 = 7/8g23 .

For g4 < 3/4g23 there is to date no known obstruction for the potential existence of an analytic UV

completion.

would, (as we shall see in the next section), affect both bounds imposed by Y (2,0) and Y (2,1)

by contributions which are m2/Λ2 suppressed compared with the contributions arising from

the Galileon operators considered so far (governed by the coefficients g3 and g4). This means

that if the Galileon operators are present g3, g4 6= 0, the higher derivative operators lead

to subdominant contributions and can generically be neglected. However if g3 = g4 = 0,

the higher derivative operators that will be considered in the next section then turn into

the leading ones and the positivity requirements set by Y (2,0) and Y (2,1) can still be in

principle satisfied so long as the coefficients of the higher derivative operators satisfy some

given properties. In fact, this is exactly the case of the LEEFT of our UV complete example

in section 6.

4.2 Strong coupling scale

It is interesting to relate the above discussion to the scale for which perturbative unitarity

breaks down for 2 → 2 scattering. This occurs when any of the partial waves violate the

optical theorem, |a`(s)| < 1. In this case, the largest multipole moment is at ` = 0,

32π

√
s

s− 4m2
a0(s) =

∫ 1

−1
d cos θ P0(cos θ)A(s, t) (4.9)

= (3g2
3 − 4g4)

s3

24Λ6
−
(
g2

3 − 2g4

) 2s2m2

3Λ6
+O

(
sm4

Λ6

)
, (4.10)

focusing again on tree-level contributions since our aim here is to compare with the bounds

obtained previously from tree-level 2→ 2 scattering. Then generically the strong coupling

scale implied by this process is

Λstrong coupling =
Λ

|g4 − 3g2
3/4|1/6

, (4.11)
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unless we artificially tune (g4 − 3g2
3/4) to be small (i.e. of order m2/Λ2 or smaller). This

combination of parameters has a natural explanation. In the absence of a mass term, we

can use the Galileon duality transformation [28, 29] to remove the cubic interaction and put

it in the quartic interaction (and quintic one, which is irrelevant to this discussion). The

combination g′4 = g4−3g2
3/4 is precisely the new coefficient of the quartic Galileon operator

after this transformation has been performed. Thus tuning g4 − 3g2
3/4 = g′4 to be small is

in effect artificially making the strong coupling scale (related to tree-level 2 → 2 scattering)

large by switching off interactions. Given this it is more natural to define Λ (which has so

far remained a free parameter) as the strong coupling scale in the m → 0 limit, which at

the level of the 2→ 2 scattering amplitude amounts to setting |g4 − 3g2
3/4| = 1. With this

convention we see that the bound on Λth in the region 3/4 < g4/g
2
3 ≤ 7/8 is

Λ2
th <

1

2
m2g2

3 (4.12)

and with the usual reasonable assumption that g3 is of order unity we would find at best

Λth ∼ m, which renders the LEEFT inconsistent. This is an example of where, as pointed

out in [5], it is possible that analyticity acts as a stronger constraint on the cutoff of an

effective field theory than perturbative unitarity alone.

Taking into account these points, the bounds from analyticity at this order effectively

imply that

g4/g
2
3 ≤ 3/4 , i.e. g′4 = g4 − 3g2

3/4 < 0 . (4.13)

4.3 Analyticity vs Vainshtein mechanism

At this stage it is interesting to compare how these bounds overlap with the requirement

that the Galileon exhibits a Vainshtein mechanism [7]. Although not central to their use

as effective field theories, for the majority of phenomenological applications it is necessary

that Galileons are in the Vainshtein screened region which suppresses their contributions

to fifth forces, evading otherwise strong solar system constraints on gravity.

For instance, for a spherically symmetric source, such as a star, the Vainshtein mech-

anism requires that we can find a real regular solution to the static spherically symmetric

Galileon equations. When working with the leading Galileon operators LGalilon, since

the quintic Galileon vanishes in 3d, i.e. vanishes in any static configuration, then the

quintic Galileon (or the coefficient g5) does not enter this argument. From [7], see eqs.

(57)–(60), we see that the Vainshtein only works in that static and spherically symmetric

configuration if

g3 > −
√
g4 , g4 ≥ 0 . (4.14)

In the special case where g3 = 0, the positivity bound eq. (4.8) requires that

g4 = g′4 < 0 , (4.15)

which then excludes any possibility that a low energy effective field theory could have a uni-

tary and analytic UV completion, with an active phenomenological Vainshtein mechanism.

More generally the combined requirements imply

g4 > 0 , g3 >

√
4g4

3
> 0 . (4.16)
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5 Positivity bounds on higher derivative terms

Having shown that the massive Galileon is consistent with the leading order positivity

constraints, we may look to higher order bounds Y (2N,M) > 0. Based on the tree level

computation done so far involving the operators in LmGal, we have that B(2N,M) = 0 for all

2N+M ≥ 4, which automatically violates the higher order positivity bounds. Whilst loops

from the light fields will generate a non-zero contribution to these B(2N,M), the tree level

bounds are putting constraints on the unknown heavy physics which UV completes the

Galileon. This heavy physics which has been integrated out gives rise to higher derivative

operators in the EFT, previously denoted as Lh.d. in (3.8), and will contribute to the tree

level amplitudes and to B(2N,M). Consequently analyticity and unitarity of the unknown

UV physics will impose constraints on the coefficients of these higher derivative operators.

For instance, to account for the leading order contributions to the 2 → 2 scattering

amplitudes from this heavy physics (i.e., O(1/Λ8)), we must include the following cubic

and quartic higher derivative interactions

Lh.d. =
1

Λ5

(
c1[Π3] + c2[Π2][Π] + c3[Π]3

)
+

1

Λ8

(
d1[Π4] + d2[Π3][Π] + d3[Π2][Π]2 + d4[Π2]2 + d5[Π]4)

)
. (5.1)

Each of these terms will give rise to contributions to the 2 → 2 scattering that scale as

1/Λ8. This is clear for the quartic interactions, and for the cubic it arises for diagrams

for which one vertex is a 1/Λ3 interaction (from the cubic Galileon) and the second is a

1/Λ5 interaction. Hence on dimensional grounds alone, these tree level interactions will

give a contribution to scattering amplitude of the form s4/Λ8 which will show up as a finite

contribution to the higher order Y (2N,M), 2N+M = 4 bounds. Although at the level of the

Lagrangian we seem to have 8 undetermined coefficients at this order in derivatives, they are

actually related by various field redefinition redundancies and total derivatives (for instance

the [Π]3 is actually equivalent to 3[Π][Π2]− 2[Π3], and a similar relation holds for [Π]4).

Explicitly, the pole subtracted scattering amplitude is

B(s, t) = a00 + a10x+ a01y + a20x
2 , (5.2)

where x and y are expressed in terms of the Mandelstam variables in (4.4), x=−(s̄t̄+t̄ū+ūs̄)

and y = −s̄t̄ū. The coefficients in the expression of B(s, t) are

a10 =
m2

Λ6

[
−g4

3
+

3g2
3

8

]
+
m4

Λ8

[
2d2 + 4d3 +

8

3
d4 −

g3

12
(57c1 + 14c2 − 72c3)

]
, (5.3)

a01 =
1

Λ6

[
−g4

4
+

3g2
3

16

]
+
m2

Λ8

[
−2d1 − 3d2 + 4d4 −

g3

8
(3c1 + 2c2)

]
, (5.4)

a20 =
1

Λ8

[
d1

2
+ d4 +

g3

4
(3c1 + 2c2)

]
. (5.5)

– 16 –



J
H
E
P
0
9
(
2
0
1
7
)
0
7
2

These are bounded by,

Y (2,0) : a10 + a01t̄+
3

2
a20t̄

2 > 0 , (5.6)

Y (2,1) : a01 + 3a20t̄+
3

2Λ2
th

[
a10 + a01t̄+

3

2
a20t̄

2

]
> 0 , (5.7)

Y (4,0) : a20 > 0 . (5.8)

These are the only independent bounds at this order. The higher order bounds with

2N +M > 4 cannot be computed without a knowledge of the amplitude beyond O(1/Λ8).

The first 2 bounds are the same as the bounds of eq. (4.6) and (4.7), but now include small

corrections of O(1/Λ8) from higher order derivative terms. The bound of Y (4,0) yields

d1

2
+ d4 +

g3

4
(3c1 + 2c2) > 0 . (5.9)

This bound is of course easily satisfied as we have (superficially) 4 new parameters that enter

unsuppressed. In practice not all of these parameters are independent because of the ability

to do field redefinitions, however the combination d1
2 + d4 + g3

4 (3c1 + 2c2) is automatically

invariant under field redefinitions. Crucially it is not possible to set d1 = d4 = c1 = c2 = 0.

Thus the existence of a local UV completion requires that the LEEFT has non-zero

higher derivative operators. From an EFT point of view this is not too surprising since

these operators will inevitably be generated from loops of the heavy fields. The new input

is that already at tree level it is necessary to include these operators, i.e. it is not possible

to tune the theory so that all these higher derivative terms vanish at some scale. They

necessarily arise from integrating out the heavy fields that UV complete the theory. Once

again, if light loops are computed in dimensional regularization, then they will make only

(m/Λ)4 suppressed contributions to the coefficients at this order.

This trend will continue if we look at higher order contributions to the amplitude, as

more indices will come in and thus more possible operators at each order. For example, up

to O(1/Λ10) contribution, we need to include operators that schematically are of the form

Lh.d. ⊃
1

Λ7
∂2Π3 +

1

Λ10
∂2Π4 , (5.10)

At each new order we will obtain new bounds, but the increase in the number of new

coefficients will adequately compensate this. As we have already discussed in section 2.3,

once we reach the order 1/Λ12 then in the absence of a weak coupling parameter the one-

loop of the light field contribute at the same order. The higher loops remain suppressed

as long as m� Λ. It is then necessary to either apply the exact version of the bounds, or

follow the method discussed in section 2.3 and impose the bounds Y
(2N,M)
εΛ (t) > 0.

6 UV completion: a simple example

6.1 Manifestly Galileon invariant formulation

In this section, we consider a simple UV completion of a massive Galileon, obtained via

the introduction of a single heavy field H of mass MH . After integrating out the heavy
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field, we obtain manifestly Galileon invariant interactions for the light Galileon field π.

Remembering that a massive Galileon can be defined as a theory for which under the

Galileon transformation π → π + vµx
µ the Lagrangian transforms as δL = −m2πvµx

µ

up to total derivatives, then it is straightforward to see that the following renormalizable

theory respects this symmetry:

SUV[π,H] =

∫
d4x

(
−1

2
(∂π)2− 1

2
(∂H)2−αH�π− 1

2
m2π2− 1

2
M2
HH

2− λ
4!
H4

)
. (6.1)

Here we require |α| < 1 to avoid a ghost instability and MH � m to set an appropriate

EFT hierarchy that allows us to integrate out the heavy field. The Wilsonian effective

action for the massive Galileon is defined via the path integral

eiSW [π] =

∫
DH eiSUV[π,H] , (6.2)

and will take the form of an expansion in loops of the heavy field

SW =

∞∑
n=0

S
(n)
W , (6.3)

where n counts the number of heavy loops (i.e. of loops of the heavy field H).

Explicitly integrating out the heavy field H to determine S
(0)
W corresponds to solving

the classical equation of motion for H to give Htree, and then substituting back in the

Lagrangian. This leads to

S
(0)
W =

∫
d4x

[
− 1

2
(∂π)2 − 1

2
m2π2 +

α2

2M2
H

π�2π +
α2

2M4
H

π�3π +
α2

2M6
H

π�4π

+
α2

2M8
H

π�5π − λα4

4!

(�π)4

M8
H

+O
(

1

M10
H

)]
. (6.4)

As mentioned above, the higher derivative quadratic terms can be removed by a field

redefinition at the price of redefining the coefficients of the interactions. To this order

however the resulting interactions are relatively uninteresting since for example the operator

(�π)4, although Galileon invariant, can be field redefined into m8π4 + . . . , and so at tree

level in the heavy fields there are no truly higher derivative interactions.

The situation is different if we include loops from the heavy fields. For instance, at

one-loop the action picks up a contribution

S
(1)
W =

∫
d4xL(1)

W = −1

2
Tr ln[�−M2

H − λH2
tree(x)] . (6.5)

Expanding this we will, for example, obtain terms of the form

L(1)
W ⊃

λ2

M2n
H

H2
tree�

nH2
tree , (6.6)

and since Htree depends on π, Htree ∼ −α�π/M2
H+. . . then this corresponds to interactions

L(1)
W ⊃

α4λ2

M8+2n
H

(�π)2�n[(�π)2] . (6.7)
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Once again, these interactions are manifestly Galileon invariant, as required by the non-

renormalization theorem, and can be field redefined into

L(1)
W ⊃

α4λ2m8

M8+2n
H

π2�nπ2 + . . . , (6.8)

corresponding to genuinely non-trivial higher derivative interactions. These show up in the

scattering amplitude as s dependent contributions

A(s, θ) ⊃ κn(θ)
α4λ2m8

M8+2n
H

sn , (6.9)

which we will see explicitly in the exact form of the scattering amplitude given below.

6.2 Diagonalized formulation

In practice, to calculate the scattering amplitude in the UV theory, it is easier to work

with an action in which both the kinetic term and mass terms are diagonalized:

SUV =

∫
d4x

(
−1

2
(∂π̃)2 − 1

2
(∂H̃)2 − 1

2
m̃2π̃2 − 1

2
M̃2H̃2 − λ̃

4!
(H̃ + βπ̃)4

)
. (6.10)

The explicit form of the diagonalization transformations is given in appendix D. The salient

point is that for MH � m, m̃ ∼ m, M̃2 ∼ M2
H/(1 − α), π̃ = π − αH, H̃ ∼

√
1− α2H,

β ∼ −α
√

1− α2m2/M2
H . In this form the Galileon symmetry is realized in the sense

π̃ → π̃ + vµx
µ , (6.11)

H̃ → H̃ − βvµxµ , (6.12)

L → L−
(
m̃2π − βM̃2H̃

)
vµx

µ . (6.13)

Even though the heavy field shifts in this representation, since the shift is linear, the

non-renormalization theorem remains unaffected.

We are interested in calculating the 2 → 2 scattering amplitude between the light

fields π̃π̃ → π̃π̃. According to eq. (D.11), the π and π̃ fields are slightly different, but as a

result of the equivalence theorem and the LSZ formalism the S-matrix for the two sets of

asymptotic states evaluated on-shell are the same. Up to one loop in the heavy field, we

only have the diagrams given in figure 2 for the 2 → 2 scattering of π̃. The amplitude is

given by

A = A4 +As +At +Au , (6.14)

where

A4 = −λ̃β4 , (6.15)

AX = − λ̃
2β4

32π2

∫ 1

0
dx ln

M̃2 −Xx(1− x)

µ2
, (6.16)

computed using dimensional regularization (λ̃ → µ4−dλ̃) in the MS subtraction scheme.

(Note that here As, At, Au and A4 represent the amplitude of different diagrams as com-

pared to those of eq. (4.1).)
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π̃

π̃

π̃

π̃

H̃

H̃

π̃

π̃

π̃

π̃

H̃ H̃

π̃

π̃

π̃

π̃

H̃ H̃

π̃

π̃

π̃

π̃

Figure 2. π̃π̃ → π̃π̃ diagrams up to 1-loop in the heavy field. We emphasize that from the LEEFT

picture these are all tree-level diagrams of the light field. The amplitude associated with these

diagrams will be denoted respectively as A4, As, At and Au.

The closed form of the integral AX depends on the value of X. To make use of our

positivity bounds, we can focus on the range 0 ≤ X < 4m̃2 � 4M̃2, within which we have

AX = − λ̃
2β4

32π2

ln
M̃2

µ2
− 2 + 2

√
4M̃2 −X

X
arccsc

(
2M̃√
X

) . (6.17)

Due to the absence of cubic interactions, the amplitude A does not have poles at the mass

m̃2, so we have

B = A4 +As +At +Au . (6.18)

Note that as argued in [5], only the light field loops contribute to the imaginary part of

the amplitude ImA(µ, t) when µ lies in the range 4m̃2 to M̃2. So for our positivity bounds,

we may choose M2 ∼ M̃2. In this explicit example it happens that there are also no tree

level contribution from the heavy field H and so the real threshold for new physics is 4M̃2.

So, explicitly, we can choose M2 = (8M̃2− 4m̃2 + t)/2 in calculating Y 2N,M (t). Up to the

leading t dependence, the first few positivity bounds are

Y 2,0(t) =
λ̃2β4

32π2

1

M̃4

[
1

15
+

(
4m̃2 − t

)
70M̃2

+O
(
m̃4

M̃4

)]
> 0 , (6.19)

Y 2,1(t) =
λ̃2β4

32π2

1

M̃6

[
3

280
+

5
(
4m̃2 − t

)
1344M̃2

+O
(
m̃4

M̃4

)]
> 0 , (6.20)

Y 4,0(t) =
λ̃2β4

32π2

1

M̃8

[
2

105
+

2
(
4m̃2 − t

)
231M̃2

+O
(
m̃4

M̃4

)]
> 0 , (6.21)

Y 4,1(t) =
λ̃2β4

32π2

1

M̃10

[
1

308
+

61
(
4m̃2 − t

)
32032M̃2

+O
(
m̃4

M̃4

)]
> 0 , (6.22)

Y 4,2(t) =
λ̃2β4

32π2

1

M̃12

[
5

2464
+

185
(
4m̃2 − t

)
128128M̃2

+O
(
m̃4

M̃4

)]
> 0 , (6.23)

Y 6,0(t) =
λ̃2β4

32π2

1

M̃12

[
20

1001
+

2
(
4m̃2 − t

)
143M̃2

+O
(
m̃4

M̃4

)]
> 0 , (6.24)

...
...
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which are manifestly positive definite for 0 ≤ t < 4m2, as required. Higher orders are

just proportional to powers of (4m2 − t) which are negligible given the assumed hierarchy

M̃ � m̃. In this example, we see this to be a weakly coupled UV completion of the massive

Galileon, along the lines discussed in section 2.3 with the small parameter

g ∼ β4 � 1 . (6.25)

For example at one-loop in the light field, we will have a term with two Atree = −λ̃β4

vertices coming in at order λ̃2β8 which is suppressed by β4 relative to the heavy loop.

6.3 Massless limit

Having given an explicit UV completion of a massive Galileon, it is interesting to explore

how this is consistent with known properties of the massless limit. In this concrete example,

the cutoff of the low energy effective theory is the mass of the heavy particle M̃ ≈MH . In

a standard massless Galileon theory in which all the coefficients are of order Λ, the leading

term in the scattering amplitude is of the form

A ∼ (s3 + t3 + u3)

Λ6
, (6.26)

whereas by contrast in this UV completion the analogous coefficient at this order is

A ∼ λ2 m
8

M8
H

α4

M6
H

(s3 + t3 + u3) . (6.27)

Identifying the two we see that Λ ∼MH(MH/m)4/3λ−1/3α−2/3 and so in the limit m→ 0,

Λ→∞. In other words, the massless limit of our massive Galileon UV completion, is not a

massless Galileon but simply a free theory. This is transparent from the action (6.1) where

in the limit m → 0 we may redefine π = π̂ − αH to give an interacting heavy field and a

decoupled free scalar π̂:

lim
m→0

SUV[π,H] =

∫
d4x

(
−1

2
(∂π̂)2 − 1

2
(1− α2)(∂H)2 − 1

2
M2
HH

2 − λ

4!
H4

)
. (6.28)

Stating this differently, in the limit m→ 0, keeping Λ fixed, the cutoff of the Galileon EFT

MH � Λ tends to zero. In this way we are not in conflict with the statement of [4] that

the massless Galileon does not have an analytic UV completion.

6.4 Weak coupling UV completions

It is possible to argue quite generally that if the massive Galileon has an analytic UV

completion, and if it is not strongly coupled, then it becomes a free theory in the limit

m→ 0 [30], as in the above example. Let us assume that the threshold for new physics is

some heavy mass MH , and introduce a weak coupling parameter g so that the tree level

massive Galileon scattering amplitude takes the form

Atree(s, θ) ∼ g
(
d1(θ)

m2s2

M6
H

+ d2(θ)
s3

M6
H

+ d3(θ)
s4

M8
H

+ . . .

)
. (6.29)
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Here d2(θ) are the usual Galileon interactions that already arise in the m = 0 limit, d1(θ)

are the corrections that arise when a mass is included and d3(θ)+ . . . come from the higher

derivative operators that we have seen must necessarily be included. Loop corrections will

kick in at

Aone−loop(s, θ) ∼ g2 s6

M12
H

d̃0(θ) + . . . , (6.30)

and the regime of validity of perturbation theory is expected to be
√
s�MH/g

1/6. If the

theory is weakly coupled g � 1 then we can trust the perturbative expansion all the way

up to MH .

Focussing on the leading forward limit bound B(2,0)(0) > 0 we have

∂2
sB(s = 2m2, t = 0) =

∫ ∞
4m2

4dµ

π

ImA(µ, 0)

(µ− 2m2)3
> 0 . (6.31)

Separating out the light and heavy parts of the integrals and using the positivity of the

integrand for all µ ≥ 4m2 as a result of the optical theorem we also have

∂2
sB(s = 2m2, t = 0) >

∫ M2
H

4m2

4dµ

π

ImA(µ, 0)

(µ− 2m2)3
. (6.32)

Using the scattering amplitude to one loop order, then evaluating the left and right hand

sides for m�MH this approximates to

gm2

M6
H

& g2 M
8
H

M12
H

⇒ g .
m2

M2
H

. (6.33)

We thus conclude that since m � MH , any such UV completion will be weakly coupled

g � 1 and that in the massless limit m→ 0, the theory becomes free g → 0 [30].

Defining the usual Galileon scale Λ by comparing the coefficients of s3 in the tree

amplitude then we have

Λ6 = M6
H/g &

M8
H

m2
, ⇒ MH . (m2Λ6)1/8 . (6.34)

The tree level LEEFT Lagrangian for such a weakly coupled UV completion will take

the form

LW [π] = −1

2
(∂π)2− 1

2
m2π2 +

g3

3!Λ3
π
[
[Π]2−[Π2]

]
+

g4

4!Λ6
π
[
[Π3]− 3[Π][Π2] + 2[Π3] + . . .

]
+

Λ6

M2
H

L̃h.d.

(
∂2π

Λ3
,
∂3π

MHΛ3
,
∂4π

M2
HΛ3

, . . .

)
, (6.35)

where gn are order unity coefficients and L̃h.d. is a dimensionless scalar function of all

contractions of its arguments with order unity coefficients. Now we see in order to be in a

region where the leading Galileon operators dominate the classical solution, the gradients of

the classical field configurations need to satisfy ∂ �MH . Nevertheless, from this argument

the weakly coupled UV completion is not in conflict with the possibility of a Vainshtein

mechanism, provided the bounds derived in section 4.3 are satisfied and the gradients are

under control.
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7 Discussion

Since its first appearance within the context of (soft) massive gravity theories, the consis-

tency of Galileon LEEFTs has remained a matter of much debate over the past decade [4].

While a mass would technically break the Galileon symmetry it does so in a way that

preserves the non-renormalization theorem and all the essential features of the Galileon.

Moreover in most of its known realizations, i.e. within the context of massive gravity theo-

ries, the Galileon appears as the helicity-0 mode of the graviton in a particular decoupling

limit and is massive away from that decoupling limit. It is therefore natural to include the

mass as part of the Galileon LEEFT.

In parallel, assuming the existence of any local, Lorentz-invariant and analytic Wilso-

nian UV completion imposes an infinite number of positivity bounds on the 2 → 2 scat-

tering amplitude and its derivatives of any scalar LEEFT with a mass gap, [4, 5] and are

hence directly applicable to the massive Galileon LEEFT. Using all the tree-level positivity

bounds known so far (both those previously derived in the literature as well as the new ones

very recently derived in [5]), we have shown the existence of an entire region of parameter

space which shows no obstruction (at tree-level) to the potential existence of a standard

Wilsonian UV completion. A direct consequence of the positivity bounds derived in [5] is

that higher derivative operators (that also respect the Galileon symmetry) are necessarily

required to be present if the LEEFT is to have a standard Wilsonian UV completion.

Further requiring the existence of an active Vainshtein mechanism for static and spher-

ically symmetric configuration does reduce this region but not entirely. However we empha-

size that the analysis performed in this work has nothing to say about the validity of the

Vainshtein regime where the field is strongly coupled (see [31] for a discussion on this point).

The absence of direct obstructions to the potential existence of a standard Wilsonian

UV completion from 2 → 2 tree-level considerations alone, are by no means to be taken

as an indication that such a UV completion will definitively exist. In the context of the

leading Galileon operators (that do not get renormalized), finding such a UV completion

would certainly be a success in itself, which is of course well-beyond the scope of this work.

However for a particular massive Galileon LEEFT we were able to provide an explicit

example of UV completion, which illustrates the fact that a Wilsonian UV completion is

indeed possible and even explicitly constructible in some of these massive Galileon LEEFT.

In the context of the specific UV complete example we have found, we can manifestly

see that in the massless limit, the Galileon LEEFT either becomes a trivial free theory or its

cutoff vanishes. This realization is fully consistent with the results found in [4] arguing for

the absence of standard Wilsonian UV completion for the massless Galileon. For that case,

alternatives to the usual Wilsonian picture seem to remain as the only possibility [32–38].
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A General massive scalar LEEFT

The operators which provide leading order contributions (up to O
(
Λ−6

)
) to the four

point function in the most general massive scalar LEEFT (deprived of any particular

symmetry) are,

L[φ] = −1

2
(∂φ)2 − 1

2
m2φ2 +mc30φ

3 +
c32

Λ
φ(∂φ)2 +

g3

3!Λ3
φ∂[µ1∂

µ1φ ∂µ2]∂
µ2φ (A.1)

+ c40 φ
4 +

c42

Λ2
φ2(∂φ)2 +

c44

Λ4
(∂φ)4 +

g4

4!Λ6
φ∂[µ1∂

µ1φ ∂µ2∂
µ2φ ∂µ3]∂

µ3φ ,

up to total derivatives, where X[µν] = Xµν −Xνµ. In principle, one might also have added

the following additional interactions: φ(�φ)2, (�φ)3, �φ(∂µ∂νφ)2, φ�φ�2φ, φ(∂φ)2�φ,

φ2(�φ)2, ∂µφ∂νφ∂µ∂νφ�φ, φ(�φ)(∂µ∂νφ)2, φ(�φ)3, φ2�φ�2φ, (∂φ)2(�φ)2, however as

the leading order equations of motion relate �φ to m2φ, we are guaranteed to have a field

redefinition which replaces these operators by the ones already included7 in (A.1). In this

formulation (cnm, gn) represent 7 undetermined EFT coefficients, and Λ is an arbitrary

scale introduced to make them dimensionless.

We note in passing that this is the same theory that one would obtain by expanding

the generalized Galileon [39],

L[φ] =

d∑
n=0

An
(
φ, (∂φ)2

)
∂µ1∂[µ1φ . . . ∂

µn∂µn]φ (A.2)

to this order, where An are independent analytic functions of φ and (∂φ)2. However this

is largely a coincidence, there is no reason for (A.1) to agree with the generalized Galileon

at higher orders (without some degree of fine tuning).

The most general 2-to-2 scattering amplitude for a single scalar field, up to O
(
Λ−6

)
,

is then given from (A.1) as,

A(s, t) = As +At +Au +A4 (A.3)

AX =
1

m2 −X

[
6mc30 − c32

X + 2m2

Λ
− g3

4

X(X − 4m2)

Λ3

]2

, (A.4)

A4 = 24c40 − 8
m2

Λ2
c42 + 2c44

s2 + t2 + u2 − 4m4

Λ4
+
g4

4

stu

Λ6
. (A.5)

(Note that here As, At, Au and Au are different from those in the previous sections.) This

gives rise to the pole subtracted amplitude

B(s, t) = a00 + a10x+ a01y, (A.6)

with

a00 = 24c40 +
36m

Λ
c30c32 −

m2

Λ2

(
19c2

32 + 8c42

)
+O

(
m3

Λ3

)
, (A.7)

a10 =
1

Λ4
[4c44 − c32g3] +

m2

Λ6

[
−g4

3
+

3g2
3

8

]
, (A.8)

a01 =
1

Λ6

[
−g4

4
+

3g2
3

16

]
. (A.9)

7In principle the same is also true of c32φ(∂φ)2 ∝ c32φ2�φ and c42φ
2(∂φ)2 ∝ c42φ3�φ.
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Note that a10 is no longer m2/Λ2 suppressed, which means that for this case the t depen-

dence of the positivity bounds can be viewed as a small effect, as for 0 ≤ t < 4m2 this

dependence is suppressed by m2/Λ2. Truncating the amplitude to O(Λ−6), the Y (2,0)(t̄ = 0)

and Y (2,1)(t̄ = 0) bounds are respectively

4c44 − c32g3 > 0 (A.10)

Λ2

Λ2
th

>
g4 − 3

4g
2
3

6(4c44 − c32g3)
(A.11)

Including a nonzero c44 or c32 makes it much easier to satisfy the positivity bounds for a

wide range of (g3, g4). This is not surprising, the source of tension between Galileon theories

and positivity has always been that Galileon symmetry seemed to prevent operators from

contributing to B(2,0), and so discarding the Galileon symmetry naturally eases this tension.

Although these bounds are far fewer in number than the coefficients in the effective

Lagrangian, this is a reflection of the fact that many of these operators are redundant to

this order since they may be removed by further field redefinition. For example,

φ→ φ+
d20

Λ
φ2 +

d30

Λ2
φ3 +

d22

Λ3
(∂φ)2 +

d32

Λ4
φ(∂φ)2 +

2d2
22

Λ6
∂µφ∂

µ∂νφ∂νφ+ . . . (A.12)

where we will work to order φ4 only. Performing this field redefinition on (A.1) we find

that, at this order, it transforms into itself with modified coefficients,

c′30 = c30 − d20
m

Λ
(A.13)

c′32 = c32 − 2d20 − d22
m2

Λ2
(A.14)

g′3 = g3 − 4d22 (A.15)

c′40 = c40 +
3m

Λ
c30 d20 −

m2

2Λ2

(
2d30 + d2

20

)
(A.16)

c′42 = c42 − 3d30 − 2d2
20 + 5c32 d20 +

3m

Λ
c30 d22 −

m2

Λ2
(d32 + d20d22) (A.17)

c
′
44 = c44 + 2d20d22 − c32d22 −

1

2
g3d20 +

m2

2Λ2
d2

22 (A.18)

g′4 = g4 + 12d2
22 − 6g3 d22 (A.19)

again up to total derivatives and �φ operates which can be removed by a further redef-

inition. This transformation preserves S matrix elements, and indeed we find that the

amplitude (A.3) is invariant. A special case of transformations of this form is the Galileon

duality [28] which has the additional property that it forms a group, two duality transfor-

mations taken consecutively are equivalent to a single duality transformation. The ability

to perform field redefinitions represents a degeneracy in our EFT parameters, seemingly

different (cnm, gn) are describing identical theories. This degeneracy can be removed by

fixing a choice of the four coefficients dnm in (A.12). For example, one can use d20 and

d22 to set c32 = c44 = 0, and then d30 or d32 to set c42 = 0. This leaves us with the

massive Galileon (3.7), plus a π3 and π4 vertex, which do not contribute to the large s
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behaviour of the amplitude, and hence do not affect the unitarity of a UV completion.

Indeed, with this choice of dmn, we find that the positivity bounds reduce to those found

in the main text (4.8).

Therefore for any scalar field theory on flat space, regardless of whether or not it has

Galileon symmetry, the leading order positivity bounds on the four point function can be

written as the bounds (4.8) after an appropriate field redefinition.

B Proof that ∂n
t ImA(s, 0) > 0 in the physical region

In this appendix we prove that while the optical theorem implies a semi-definite bound on

the imaginary part of the coefficients to the partial wave expansion of the 2 → 2 scattering

amplitude, we necessarily have a definitive positive bound on the imaginary part of the

amplitude and its derivatives, rather than a semi-definite bound.

First, it is straightforward to show from the partial wave expansion that ∂nt ImA(s, 0) ≥
0, for s ≥ 4m2. This just follows from the fact that

∂nt ImA(s, 0) = 16π

√
s

s− 4m2

2n

(s− 4m2)n

∞∑
`=n

(2`+ 1)Pn` (1)Im(a`(s)) , (B.1)

together with Pn` (1) = ∂nt P`(1 + t)|t=0 ≥ 0, and Im(a`(s)) ≥ 0 for s in the physical region

s ≥ 4m2. Furthermore it is clear for n = 0 that since at least one of the Im(a`(s)) must be

nonzero we are not dealing with a trivial free theory that ImA(s, 0) > 0.

A priori, from considerations of unitary alone, it is not possible however to exclude the

possibility that there could exist some n∗ for which ∂n∗t ImA(s, 0) = 0. This can only be

achieved by imposing Im(a`(s)) = 0 for ` ≥ n∗, which in turn implies ∂nt ImA(s, 0) = 0 for

n ≥ n∗. This means that the scattering amplitude only contains a finite number of partial

waves, something which seems physically improbable but is not excluded by unitarity alone.

Fortunately this possibility can be ruled out based on the assumption of analyticity.

Since the partial waves satisfy Im(al(s)) ≥ |al|2, then we infer that we would require

al(s) = 0 for l ≥ n∗ which in turn implies ∂nt A(s, 0) = 0 for all n ≥ n∗. Let us assume that

this were the case, and then consider the twice subtracted dispersion relation

A(s, t) = a(t) +
λ

m2 − s
+

λ

−3m2 + t+ s

+ s2

∫ ∞
4m2

dµ

π

ImA(µ, t)

µ2(µ− s)
+ (4m2 − t− s)2

∫ ∞
4m2

dµ

π

ImA(µ, t)

µ2(µ− 4m2 + t+ s)
. (B.2)

Differentiating twice, we get

∂2
sA(s, t) =

2λ

(m2 − s)3
+

2λ

(−3m2 + t+ s)3

+ 2

∫ ∞
4m2

dµ

π

ImA(µ, t)

(µ− s)3
+ 2

∫ ∞
4m2

dµ

π

ImA(µ, t)

(µ− 4m2 + t+ s)3
, (B.3)
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then assuming that ∂n∗t ImA(s, 0) = 0 we have

∂n∗t ∂2
sA(s, t) =

(2 + n∗)!

2!

2(−1)n∗λ

(−3m2 + t+ s)3+n∗

+ 2

n∗−1∑
m=0

∫ ∞
4m2

dµ

π

(−1)n∗−m∂mt ImA(µ, t)

(µ− 4m2 + t+ s)3+n∗−m
n∗!(2 + n∗ −m)!

2!m!(n∗ −m)!
+ . . . , (B.4)

where . . . denotes terms which vanish at t = 0 and whose t derivatives vanish at t = 0. If

we act on this with the operator ∂t − ∂s, this acts on terms in the denominators to give

zero, and so we infer that

(−1)n∗ (∂t − ∂s)n∗−1 ∂n∗t ∂2
sA(s, t) = 2

∫ ∞
4m2

dµ

π

∂n∗−1
t ImA(µ, t)

(µ− 4m2 + t+ s)3+n∗

(2 + n∗)!

2!(n∗)!
+ . . . ,

(B.5)

where by assumption n∗ is the lowest value of n for which ∂nt Im(A(s, 0)) = 0 so that there

is some range of µ ≥ 4m2 for which ∂n∗−1
t ImA(µ, 0) > 0. Finally, evaluating this expression

at t = 0 we infer a contradiction:

0 > 0 . (B.6)

This then invalidates our initial assumption, implying that there is at least some range of

s for which

∂nt ImA(s, 0) > 0 , s ≥ 4m2 , ∀ n ≥ 0 . (B.7)

Thus locality (analyticity) requires that an interacting theory has interactions for arbitrar-

ily large partial waves.

C Equivalent expressions for the positivity bound

In [5], we have proven that the combinations Y (2N,M)(t) defined as follows

Y (2N,0)(t) = B(2N,0)(t) , (C.1)

Y (2N,M)(t) =

M/2∑
r=0

crB
(2(N+r),M−2r) +

1

M2

(M−1)/2∑
even k=0

(2(N + k) + 1)βkY
(2(N+k),M−2k−1),

(C.2)

satisfy a positivity bound Y (2N,M)(t) > 0 that follows from analytic and unitary consider-

ations. The coefficients cr and βk can be given recursively by

ck = −
k−1∑
r=0

22(r−k)cr
(2(k − r))!

,with c0 = 1 , and βk = (−1)k
k∑
r=0

22(r−k)−1

(2(k − r) + 1)!
cr ≥ 0 .

(C.3)

These coefficients can also be expressed in terms of the Euler numbers E2k and Bernoulli

numbers Bk,

ck =
E2k

(2k)!22k
, βk = (−1)k

(22k+3 − 2)B2k+2

(2k + 2)!
. (C.4)
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Alternatively, we may also notice that these coefficients are simply the coefficients of the

Taylor expansion of sech and tan:

sech(x/2) =
∞∑
k=0

ckx
2k and tan(x/2) =

∞∑
k=0

βkx
2k+1. (C.5)

This allows the recursive definition of Y (2N,M) to be solved solely in terms of B̃(v, t),

Y (2N,M)(t) =
1

M !
∂2N
v ∂Mt′

[
D̂2N

(
t′ − t, (t′ − t)∂v

)
B̃(v, t′)

] ∣∣∣
v=0,t′=t

, (C.6)

As a function, the function D can be defined as follows,

D2N (t, x) = sech
(x

2

) 1

1− t
M2 [(2N + 1)F (x) + xF ′(x) + xF (x)∂x]

1 (C.7)

with F (x) = [tanh(x/2) + tan(x/2)]/(2x), but as an operator, D̂2N is to be understood as

the Taylor series expansion in t of the previous function,

D̂2N (t, t∂v) = 1 + t
(2N + 1)

2M2
+ t2

(
(2N + 1)2

4M4
− 1

8
∂2
v

)
+ t3

(
(2N + 1)3

8M6
− 2N + 1

16M2
∂2
v

)
+ t4

(
(2N + 1)4

16M8
− (2N + 1)2

32M4
∂2
v +

5

384
∂4
v

)
+ . . . . (C.8)

From these relations, one can read off the Y (2N,M) bounds. In terms of the original Man-

delstam variable, we have

Y (2N,M)(t) =
1

M !
∂2N
s

(
∂t′ −

1

2
∂s

)M [
D2N

(
t′ − t, (t′ − t)∂s

)
B(s, t′)

] ∣∣∣
s=(4m2−t)/2,t′=t

> 0.

(C.9)

D Diagonalization

The explicit form of field redefinitions that diagonalizes the kinetic and mass terms for our

simple example UV completion SUV introduced in section 6 are

π̃ =
M2

2
√

2αM2
HM1

[
(M2

1 +M2 −m2)π − 2αM2
HH

]
, (D.1)

= (π − αH) +
α
(
α2 − 1

)
Hm2

M2
H

+HO
(
m4

M4
H

)
, (D.2)

H̃ =
M3

2
√

2αM2
HM1

[
(M2

1 −M2
H +m2)π + 2αM2

HH
]
, (D.3)

=
√

1− α2H − α
√

1− α2m2(αH − π)

M2
H

+HO
(
m4

M4
H

)
, (D.4)
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where

M4
1 = 4α2m2M2

H +
(
M2
H −m2

)2
, (D.5)

M2
2 = M2

1 +m2 +
(
2α2 − 1

)
M2
H , (D.6)

M2
3 = M2

1 −m2 −
(
2α2 − 1

)
M2
H , (D.7)

β =
M3

(
M2
H −m2 −M2

1

)
M2

(
M2
H −m2 +M2

1

) = −α
√

1− α2m2

M2
H

+O(m4). (D.8)

The natural mass and coupling constants in the redefined Lagrangian are

m̃2 =
2m2M2

H

m2 +M2
H +M2

1

= m2

(
1 +O

(
m2

M2
H

))
, (D.9)

M̃2 =
2m2M2

H

m2 +M2
H −M2

1

=
M2
H

1− α2
+

α2m2

1− α2
+O

(
m4

M2
H

)
, (D.10)

λ̃ = λ

(
M2

1 +M2
H −m2

√
2M1M3

)4

. (D.11)
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