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1 Motivation and main results

String theory and supersymmetric gauge theories have proved to be useful in the study of

moduli spaces of Yang-Mills instantons. One of the earliest successes was to give a simple

string theory realization [1, 2] of the Atiyah-Drinfeld-Hitchin-Manin (ADHM) construc-

tion [3] for the moduli spaces of instantons for classical gauge groups. As a result of such a

string theory construction, these moduli spaces can be identified as the Higgs branches of

supersymmetric quiver gauge theories with eight supercharges; the latter are often referred

to as the ADHM quivers. In particular, the ADHM quiver for k SU(N) instantons on C2

can be realized on the worldvolume of k Dp branes inside the worldvolume of N coincident

D(p+ 4) branes. Similarly for SO(2N), SO(2N + 1) or Sp(N) instantons on C2, the corre-

sponding ADHM quivers can be described by introducing an appropriate orientifold plane

to the aforementioned brane system. It should be emphasized that the ADHM quiver the-

ories are available only for instantons for Yang-Mills theories with classical gauge groups.

For the exceptional gauge groups of E type, it turns out that the field theory whose Higgs

branch is isomorphic to the corresponding moduli space of instantons can be realized as

a circle compactification of the worldvolume theory of M5-branes wrapping Riemann sur-

faces with appropriate punctures [4–7] (also known as 3d Sicilian theories [8]). Nevertheless

the Lagrangian descriptions of such theories are not known and generalizations of such a

construction to the cases of F4 and G2 are not available.

In three space-time dimensions, it was found that the Coulomb branch of certain

supersymmetric field theories with eight supercharges (namely, N = 4 supersymmetry)

describes the moduli space of instantons. As was pointed out by [9–11], the moduli space

of G-instantons, for G being a simply-laced group (ADE), can be realized as the Coulomb

branch of a quiver gauge theory given by a framed affine Dynkin diagram of group G,

i.e. the affine Dynkin diagram with one flavor node attached to the affine gauge node.

(For convenience, this will be denoted by the shorthand notation [Ĝ] in the following.) In

particular, for G being of A or D type, such quivers can be obtained by applying three

dimensional mirror symmetry [9, 12, 13] to the ADHM quivers associated with SU(N)

and SO(2N) instantons on C2. In these cases, Type IIB brane configurations [12, 13]

along with S-duality provide a convenient way to study quiver descriptions of such field

theories. For G of E-type, the corresponding framed affine Dynkin diagrams are precisely

the three dimensional mirror theories [8] of the aforementioned Sicilian theories. Indeed,

the generating function of the holomorphic functions on the Coulomb branch, also known

as the Coulomb branch Hilbert series, for the former has been computed [14–17] and it is

in agreement with the result obtained from the Higgs branch of the theories that describe

the same moduli space of instantons [6, 18–20].

One can now try to generalize the above results to non-simply laced groups G. To

begin with, it is well known that quiver gauge theories of types A and D can be realized as

worldvolume theories on stacks of D3 branes on an interval with various half-BPS boundary

conditions, which can be identified as objects in perturbative string theory, for example NS5

branes, D5 branes, orbifold planes, etc. However, there is no such construction available

– 2 –



J
H
E
P
0
9
(
2
0
1
7
)
0
6
7

for non-simply laced quivers.1 Therefore, in this work, we shall rely on a purely field theory

approach using supersymmetric localization and three dimensional mirror symmetry.

The affine Dynkin diagrams corresponding to non-simply laced quivers contain double

or triple arrows, whose weakly coupled Lagrangian descriptions are not known to date.

In [17], a prescription for computing the Coulomb branch Hilbert series for non-simply laced

quivers was proposed. For G being of B and C types the Coulomb branch Hilbert series

are in perfect agreement with Higgs branch Hilbert series computed for the SO(2N + 1)

and Sp(N) ADHM quivers. When G is F4 and G2, the conjecture passed a number of

non-trivial tests.

The main goal of the current paper is to use localization techniques to probe the

physics of quiver gauge theories whose global symmetry is a non-simply laced group of

type B. More specifically, we try to determine the dual of a theory whose Higgs branch is

isomorphic to the moduli space of an SO(2N + 1) instanton with instanton number k = 1,

i.e. the dual of an Sp(1) gauge theory with 2N + 1 fundamental half-hypermultiplets and

a single antisymmetric hyper. Since the number of half-hypermultipelts is odd, one has to

add half-integer Chern-Simons coupling to avoid parity anomaly.

The main tools for our analysis are N ≥ 2 supersymmetric observables in three di-

mensions — partition function on a round three-sphere [21–23] and the superconformal

index [24–27]. Supersymmetric partition functions have proved to be very effective in

studying three dimensional mirror symmetry including the examples which involve non-

Lagrangian theories on one side (e.g. circle compactifications of class S theories, see [28]

for details and recent review). In particular one can translate the action of S-duality to

the matrix integrals which are used in the expressions for partition functions [29, 30] and

derive the partition function for the mirror dual. Similar problems were addressed in [31–

33] for framed quivers of A and D-type. These techniques can be used both for verifying

the conjectured mirror dualities as well as finding new mirror dual pairs [28]. In the ref-

erences above, localization methods were used to study dualities in quiver theories with

N = 4 supersymmetry, however the same techniques can be extended to study dualities

in theories with lower supersymmetry. The current work applies these techniques to the

aforementioned Chern-Simons theory with N = 3 supersymmetry.

We start with the computation of S3 partition function of the ADHM quiver for k = 1

SO(2N+1) instantons, namely Sp(1) gauge theory with 2N+1 flavours of the fundamental

hypermultiplets and one anti-symmetric hypermultiplet, with half-integer Chern-Simons

coupling for the Sp(1) gauge group, then implement an S-duality transformation on the

partition function. The dual partition function consists of a finite sum of contributions

where each term can be formally assembled from a framed affine BN Dynkin diagram,

with certain additional data, including a prescription for the contribution of the double

lace. The dictionary is discussed in detail in section 2. The aforementioned structure of

the S3 partition function allows us to conjecture an expression for an N = 2 index for the

dual theory on S2 × S1.

1One of the realizations of the moduli space of SO(2N + 1) instantons involves non-perturbative Õp
−

plane (see [17], section 2).
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The additional data for each affine BN Dynkin diagram appearing in the dual partition

function generically depend on the CS level κ, but there always exists a single quiver which

is independent of κ — we denote this quiver as B̂
(0)
N (see section 3 for more details). We

make a curious observation regarding this quiver for k = 1 — the formal expression of

the Coulomb branch limit of the S2 × S1 partition function for this quiver, treated as an

N = 4 theory, reproduces the Hilbert series of the reduced moduli space of one SO(2N+1)

instanton on C2 [17, 18], which is also the Higgs branch of Sp(1) gauge theory with 2N + 1

flavours. This gives an alternative approach for deriving the Coulomb branch Hilbert

Series for a non-simply laced quiver gauge theory, as conjectured in [17]. The observation

is probably not very surprising given that the Higgs branch of the Sp(1) gauge theory is

classical and is completely insensitive to the CS level.

We would like to emphasize that we are not claiming to have found a mirror dual for

the anomalous κ = 0 theory. The formula for S3 partition function in (2.1), which is our

starting point, is only valid for non-anomalous theories and in the above discussion we

are considering the κ-independent part of the dual partition function of a non-anomalous

theory.

The paper is organized as follows. The remainder of this section reviews the ADHM

quiver for SO(2N + 1) instantons and the main results are stated in section 1.2. Section 2

deals with the S3 partition function for the ADHM quiver for SO(2N + 1) instantons

with Chern-Simons level 1/2 and its S-duality transformation. In section 3, we state our

conjecture for the index on S2 × S1, then in section 4 we discuss the Coulomb branch

Hilbert Series of the quiver B̂
(0)
N .

The paper has several appendices. Appendix A describes how to apply Cauchy trans-

form in order to S-dualize the partition function in question. Appendix B and appendix C

contain technical details of the main computation. Appendix D contains summary of su-

perconformal indices for Lens spaces. In appendix E we obtain the framed affine B3 quiver

by folding the framed affine D4 quiver and analyze its physics using the space of supersym-

metric vacua. Finally in appendix F we discuss the action of folding on the Hilbert series.

1.1 Double arrow and dimension counting

The new ingredient of BN -type quivers, which is not present in the A and D-type con-

structions, is the presence of the double arrow which connects the two right-most nodes

of the quiver (see figure 1). As mentioned in the introduction, this work studies a gauge

theory described by a framed affine BN quiver; therefore we need to understand what kind

of ‘matter’ does the double arrow represents. Naively one may try to interpret this ‘mat-

ter’ as a bifundamental multiplet of some sort which is charged under the gauge groups

corresponding to the nodes at its ends (N − 1 and N in figure 1). However, as we shall see

momentarily, this naive guess fails.

Let us consider Sp(k) theory with 7 fundamental half hypermultiplets, one hypermul-

tiplet in the anti-symmetric representation of Sp(k) and an SO(7) global symmetry. The

quiver of its three-dimensional mirror theory can be derived from the S-dual brane con-

struction with orientifold planes [17] and represents an framed affine B3 Dynkin diagram,
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Figure 1. The framed affine BN quiver, also denoted by [B̂N ], with ranks of the unitary groups

written black and node labels in written red.
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SO(7) Sp(k) A

Figure 2. ADHM quiver for k SO(7) instantons (right) and its dual quiver with B̂3 symmetry

(left).

2k

k

k1 k

k

SO(8) Sp(k) A

Figure 3. ADHM quiver for k SO(8) instantons (right) and its dual quiver with D̂4 symmetry

(left).

see figure 2. This quiver can be compared with the quiver for SO(8) global symmetry,

which has a mirror quiver that is simply laced (figure 3).2

Let us compute the quaternionic dimensions of the Coulomb branch of the theory on

the right and the dimension of the Higgs branch of the theory on the left and in figure 2.

Since the consistency of the theory on the right requires Chern-Simons action with half-

integer level, its Coulomb branch is lifted. However, we can still consider the classical

Coulomb branch, whose dimension is equal to k. From the anticipated duality with the

theory on the right of figure 2 we expect the dimension of the Higgs branch of the BN
theory to be equal to k. At the moment we do not know the contribution of the double

2‘Folding’ of quivers are discussed in appendix E.
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arrow to the dimension formula, so we should leave it for a moment as unknown and later

derive it from the condition that the quaternionic dimension of the branch should be k.

One has for the Higgs branch dimension, which is the total number of hypermultipelts

minus the number of vector multiplets3

dimHiggs = (k + 2k2 + 2k2 + 2αk2)− (k2 + (2k)2 + k2 + βk2) = k + (2α− β − 2)k2 , (1.1)

which imposes the constraint 2α − β − 2 = 0. For the D4 theory of figure 3 the choice

is α = β = 2, whereas for the theories in figure 2 it is impossible to make both α and

β integral. Perhaps, the most logical choice is to assign α = 3/2 , β = 1 to account for

the single U(k) group left after folding. In any case, the matter sector corresponding to

the double arrow in the dual theory with B̂3 symmetry on its Coulomb brach appears to

be non-Lagrangian. Nevertheless we shall be able to compute the partition function of

the framed affine B3 theory and successfully identify the contribution of the matter fields

corresponding to the double arrow.

1.2 Main results

• Dual of an N = 3 CS-YM theory with symplectic gauge group.

We compute the partition function of the dual to the three dimensional supersymmet-

ric Sp(k) Yang-Mills Chern-Simons theory with 2N+1 (N ∈ Z) half-hypermultiplets,

a single antisymmetric hypermultiplet (a singlet for k = 1) and Chern-Simons level

κ ∈ Z/2. Starting from the partition function of the aforementioned theory on a

round three sphere and implementing certain change of variables associated with

S-duality, we demonstrate that the data for the dual theory can be conveniently

packaged in terms of a collection of framed affine BN quivers. In particular, the

partition function for the dual of the Sp(1) theory with κ = 1/2 is

Zdual = Z
[
B̂

(0)
N

]
+ Z

[
B̂

(1)
N

]
, (1.2)

where [B̂
(0)
N ] and [B̂

(1)
N ] are both framed affine BN quivers which differ by the charge

of the double arrow under the gauge groups U(2)N−1×U(1)N and the Chern-Simons

level of the gauge group U(1)N . Explicitly, one has

Z
[
B̂

(0)
N

]
= e−iπ/4

∫
dµZDN−1 F

(1)
nsl (uN , uN−1) Zvec

bdry(uN , 0, 0),

Z
[
B̂

(1)
N

]
= −e−iπ/4

∫
dµZDN−1 F

(2)
nsl (uN , uN−1) Zvec

bdry

(
uN ,−

i

2
,−1

)
, (1.3)

where the subscript “nsl” indicates the contribution from the non-simply-laced edge

of the quiver and the subscript “bdry” indicates the contribution from the boundary

node associated with the short simple root of the BN algebra. The other notations

in the formulae are as follows:
3In other words

dimHiggs =
∑

s(I),t(J)

N
(I)
f N (J)

c −
∑
I

(NI
c )2,

where the first sum goes over all possible source s(I) and target t(J) nodes of the quiver.

– 6 –
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1. dµ is the appropriate measure of integration over the gauge group.

2. ZDN−1 is the contribution from the DN−1 quiver tail of a framed affine BN quiver

whose explicit formula are given in (2.5).

3. F
(1,2)
nsl (uN , uN−1) depending on the Coulomb branch parameters of the last two

nodes of the quiver uN , uN−1 are contributions of the double arrows for the

framed affine BN and B′N quivers respectively. The explicit formulae for these

are given in (1.4) and (1.5).

4. Zvec
bdry(uN , ηN , κ̃) (see (2.7) for the exact formula) is the contribution of the vector

multiplet associated with the node of label N , which depends on the Coulomb

branch parameter, the Fayet-Iliopoulos parameter and the Chern-Simons level

(figure 1). Section 2 contains details of this computation and related discussion.

For a generic level κ the dual theory partition function (1.2) has 2κ + 1 terms with

different Chern-Simons levels on the boundary node (see (2.12)).

• Contribution of the double arrow.

The partition function computation allows us to read off the contributions of the

double arrow connecting the (N−1)st and Nth nodes of the framed affine BN quiver

in Z[B̂
(0)
N ] and Z[B̂

(1)
N ] respectively. For k = 1 they are

F
(1)
nsl (uN , u

l
N−1) =

1

coshπ(uN − 2u1
N−1) coshπ(uN − 2u2

N−1)
, (1.4)

F
(2)
nsl (uN , u

l
N−1) =

1

coshπ(uN − u1
N−1 + u2

N−1) coshπ(uN − u2
N−1 + u1

N−1)
. (1.5)

Recall that an ordinary hypermultiplet in a 3d N = 4 theory contributes a factor of∏
ρ

1
coshπρ(u) to the integrand of an S3 partition function, where the product is over all

weights of the representation of the gauge group under which the given hypermultiplet

transforms. The contribution of the double arrow in (1.4) has a similar form and one

can therefore associate an “effective weight” to the double arrow, i.e.

ρeff
da(uN , u

i
N−1) = uN − 2uiN−1, i = 1, 2. (1.6)

Certainly the effective weight does not correspond to the weight of any representation

of the gauge group. Note the factor of 2 in the argument of cosh in (1.4) without

which F
(1)
nsl (uN , u

i
N−1) would be indistinguishable from the contribution of an ordinary

bifundamental hyper.

The above formulae also show that the double arrow in Z[B̂
(0)
N ] is charged under the

gauge group U(2)N−1 × U(1)N while the double arrow in Z[B̂
(1)
N ] is only charged

under SU(2)N−1 ×U(1)N where SU(2)N−1 is a subgroup of U(2)N−1.

• Coulomb branch Hilbert Series from the B̂
(0)
N quiver.

Using the effective weight associated with the double arrow, one can immediately

write down a formal expression for the N = 4 superconformal index for the B̂
(0)
N

– 7 –
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quiver on S2 × S1, since the contribution of matter multiplets to the index is also

written as a product of weights. We discuss formula (4.13) and its Coulomb branch

limit in section 4. We observe that the Coulomb branch limit of this index matches

exactly with the Hilbert series of the moduli space of a single BN instanton on C2.

• N = 2 index for the dual theory.

Using the effective weights associated with the double arrows in the affine BN quivers,

we conjecture an expression for the N = 2 index for the dual theory. This is described

in section 3.

1.3 Future directions

It would be very gratifying to have a physical/ string-theoretic understanding of our results,

although this looks somewhat difficult in the standard Type IIB description. We expect

that the field theory analysis of the current work should be extended to the remaining

non-simply laced quivers of CFG types, and the dictionary of the new correspondence

(see (2.10)), which generalizes mirror symmetry for gauge theories with nontrivial Chern-

Simons terms, should be established in full generality for all non-simply laced series.

2 The framed affine BN quivers from S-duality

In this section, we compute the partition function of an affine BN quiver with a single

framing, as shown in figure 1. Since there is no known Lagrangian description of such a

theory, we cannot write down its partition function directly. Our strategy will be to start

from the partition function of the mirror dual theory — the ADHM quiver with SO(2N+1)

flavor symmetry and in the presence of half-integer Chern-Simons level κ. Then we shall

perform S-duality and manipulate the resulting formula to obtain the partition function of

the framed affine BN quiver. Since the computations are rather tedious we shall present

the results for the relatively simpler case of one SO(2N+1) instanton (Sp(1) gauge theory).

Henceforth, we focus only on the case of k = 1 in figure 1.

2.1 S-dualizing the partition function

The partition function of Sp(1) gauge theory at Chern-Simons level κ with an SO(2N + 1)

flavor symmetry and one antisymmetric hyper is4

ZA =

∫
ds

2

sinh2 (2πs) · e2πiκs2∏N
a=1 coshπ(s+ma) coshπ(s−ma) coshπs

×
(

1

coshπMas

)
, (2.1)

where the Cartan parameters of Sp(1) are labelled by diag(s,−s), with a real number s

and the parameters for SO(2N + 1) are taken to be diag(ma,−ma, 0), with real numbers

ma, a = 1 . . . N . Hypermultiplets transform in the bi-fundamental representation of Sp(1)×
SO(2N + 1) as one can clearly see from the structure of the integrand. The antisymmetric

4The S3 partition function with a non-zero Chern-Simons term is not convergent. One needs to regularize

the integral by adding a small positive imaginary piece to the Chern-Simons level and setting it to zero at

the end of the computation. In the rest of the paper, we implicitly assume such a regularization.

– 8 –



J
H
E
P
0
9
(
2
0
1
7
)
0
6
7

hypermultiplet for Sp(1) of mass Mas is a singlet and the contribution of this singlet in

the partition function is given by the last term in parenthesis, indicating that it can be

factored out of the integration.

The computation is rather technical and tedious, we therefore describe it in full detail

in appendices A, B and C. Here let us merely outline the strategy and write down the

results. First we apply the Cauchy determinant identity to the integrand of (2.1), which

will reshape the expression to be better suitable for the Fourier transform. The latter,

similarly to the known examples of mirror dual quiver theories of A-type [22], manifest the

duality transformation. Then, after an appropriate change of variables, the integral can be

regarded as a partition function of the dual theory with BN symmetry.

The resulting expression for κ = 1
2

5 reads

ZB = Z
[
B̂

(0)
N

]
+ Z

[
B̂

(1)
N

]
, (2.2)

which depends on FI parameters η0 , . . . , ηN of the gauge nodes of the framed affine BN
quiver. Below we specify this dependences in full detail. The constituents of the right hand

side of (2.2) are given by the following integrals

Z[B̂
(0)
N ] = e−iπ/4

∫
dµZDN−1 F

(1)
nsl (uN , u

p
N−1)Zvec

bdry(uN , 0, 0),

Z[B̂
(1)
N ] = −e−iπ/4

∫
dµZDN−1 F

(2)
nsl (uN , u

p
N−1)Zvec

bdry

(
uN ,−

i

2
,−1

)
, (2.3)

in which the measure of integration is

dµ =
1

(2!)N−2

1∏
α=0

duαduN

N−1∏
β=2

d2uβ . (2.4)

The contribution of vector multiplets for nodes 1 through N − 2 and hypermultiplets

connecting them (the D-shaped left side of the quiver in figure 1) reads as

ZDN−1 =
Zvec

bdry(u0, η0, 0)

Zbif
bdry(u0, u2)Z fund

bdry(u0)
×
Zvec

bdry(u1, η1, 0)

Zbif
bdry(u1, u2)

×
∏N−1
β=2 Zvec(uβ , ηβ , 0)∏N−2
β=2 Zbif(uβ , uβ+1)

, (2.5)

and the novel contributions for the matter corresponding to the double arrow F
(1,2)
nsl and

the vector multiplet on the right-most node of the quiver Zvec
bdry are given below

F
(1)
nsl (uN , u

l
N−1) =

1

coshπ(uN − 2u1
N−1) coshπ(uN − 2u2

N−1)
,

F
(2)
nsl (uN , u

l
N−1) =

1

coshπ(uN − u1
N−1 + u2

N−1) coshπ(uN − u2
N−1 + u1

N−1)
,

(2.6)

where the subscript “nsl” indicates the contribution from the non-simply-laced edge of

the quiver and the subscript “bdry” indicates the contribution from the boundary node

associated with the short simple root of the BN algebra.

5A schematic form of the formula for a generic half-integer κ is given in (2.12).
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The various perturbative contributions of (2.3) and (2.5) are

Zvec
bdry(u, η, κ̃) = e2πiηueπiκ̃(u)2 ,

Zbif
bdry(u,v) =

2∏
p=1

coshπ(u− vp),

Z fund
bdry(u) = coshπu,

Zvec(u, η, κ̃) = sinh2 π(u1 − u2)
2∏
p=1

e2πiηupeπiκ̃(up)2 ,

Zbif(u,v) =
2∏

p,l=1

coshπ(up − vl).

(2.7)

The dual partition function ZB can therefore be written as a sum of two contributions

each representing a partition function for a B̂
(0)
N -type quiver theory (having gauge group

U(2)N−2 × U(1)3 and appropriate matter fields), where the contributions of the double

arrow are given by functions F
(1)
nsl (uN , u

l
N−1) and F

(2)
nsl (uN , u

l
N−1) respectively.

Note that in Z[B̂
(0)
N ] the matter corresponding to the double arrow is charged under

U(1)N × U(2)N−1, while in Z[B̂
(1)
N ] this matter is charged under U(1)N × SU(2)N−1 but

not under the U(1) subgroup of U(2)N−1.

In other words, partition function Z[B̂
(0)
N ] can be obtained by a simple deformation of

the partition function Z[D̂N+1] of the framed affine DN+1 quiver:

Z[D̂N+1] =

∫
dµZDN−1 ·

Zvec
bdry(uN , ηN )

Zbif
bdry(uN , uN−1)

. (2.8)

by the following deformation (Z2 folding)

Zbif
bdry(uN , uN−1) =

1∏2
p=1 coshπ(uN − upN−1)

→ 1

Znsl(uN , u
p
N−1;κ)

. (2.9)

where Znsl is given by (A.15). As is evident, Znsl cannot be obtained as a product over

weights of any representation of gauge group U(2)N−1 ×U(1)N .

2.2 The duality map

Three-dimensional mirror symmetry interchanges Fayet-Iliopoulos parameters and masses

of the two dual theories. Expectedly this happens for our duality as well, so the first part

of the dictionary reads

η0 = −Mas − (m1 +m2) ,

ηβ = mβ −mβ+1 , β = 1, . . . , N − 2 ,

ηN−1 = mN−1,

ηN = 0 .

(2.10)

If we neglect the Chern-Simons terms and set κ = 0, then the second term in (2.2)

vanishes and (2.10) describes the complete map of the parameters. However, due to the

– 10 –
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presence of the Chern-Simons term in the Sp(1) theory the above dictionary needs to be

completed by some extra data — the framed affine B3 theory also has its Chern-Simons

couplings according to (2.3). In particular, Z[B̂
(1)
N ] contains Chern-Simons level κN = −1.

2.3 Dual partition function for generic Chern-Simons levels

So far we have only studied the case of κ = 1/2, however, we have already derived the

expression for generic level in (A.10). In order to interpret the result in terms of the

framed affine BN quiver, we expand the relevant part of the integrand as

sinh 2πκs

sinhπs
= e−(2κ−1)πs + e−(2κ−2)πs + · · ·+ e(2κ−1)πs , (2.11)

we generate 2κ+ 1 terms for the dual partition function

ZB = Z[B̂
(0)
N ] +

2κ∑
i=1

Z[B̂
(i)
N ] , (2.12)

with the same (up to a prefactor) term Z[B̂
(0)
N ] as in (2.2) and with 2κ terms which with

different Chern-Simons levels on the N -th node. These terms vanish as we put the Chern-

Simons coupling to zero.

3 N = 2 index of the dual of Sp(1) theory with SO(2N + 1) flavor

symmetry and Chern-Simons level κ = 1/2

In this section we shall define the superconformal index of the complete anomaly-free

framed affine BN quiver theory which we have constructed as a dual theory to the Sp(1)

theory with SO(2N + 1) flavor group and the Chern-Simons term.

The Sp(1) theory in question, and its mirror dual enjoy N = 3 supersymmetry, there-

fore one should compute the 3d N = 2 index for those theories. Recall the definition of

the index on S2 × S1

I = Tr(−1)F eβHx∆+j3
∏
a

tFaa , H = {Q,Q†} = ∆−R− j3 , (3.1)

where ∆ is the energy, R is the R-charge, j3 is the third component of the angular momen-

tum rotating S2, the Fa run over the global flavor symmetry generators. One can obtain

the N = 2 index from the N = 4 index by simply setting t̃ = 1 and x = q̃1/2 (see previous

section). Alternatively, one can use formulae (2.12) or (2.14) in [27] with the difference

that we take the discrete parameters m (s in [27])–which parametrize the GNO charge of

the monopole configuration of the gauge field– to be integers as opposed half-integers.

Recall that the partition function analysis gives the following result for the dual of an

Sp(1) theory with Gf = SO(2N + 1) and Chern-Simons level κ.

Zdual = Z[B̂
(0)
N ] + Z[B̂

(1)
N ]. (3.2)

In B̂
(0)
N , the double arrow matter is charged under U(1)N × U(2)N−1 while in the B̂

(1)
N

theory the double arrow matter is charged under U(1)N × SU(2)N−1 but not under the

– 11 –
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U(1) subgroup of U(2)N−1. This suggests a formula for the N = 2 index of the dual

including the Chern-Simons coupling.

In particular, for theory with N = 3 we have

Idual(x; k) = f(x, κ̃)I
[B̂3]

(x) + g(x, κ̃)I
[B̂′3]

(x; κ̃). (3.3)

where g(x,κ̃)
f(x,κ̃) = −1 and f(x, κ̃) is some arbitrary function of its arguments in agreement

with the relative sign of the two contributions to the partition function in (1.3).

The function I
[B̂′3]

(x; m̃(−1)) is simply

I
[B̂3]

(x; m̃(−1)) =
∑
{m(α)}

∮
|z(α)i |=1

dz(0)

2πiz(0)

dz(1)

2πiz(1)

dz(3)

2πiz(3)

1

W (m(2))

∏
i=1,2

dz
(2)
i

2πiz
(2)
i

× I(m(0),m̃(−1))
fund (z(0), z̃(0))I(m(0),m(2))

bifund (z(0), z(2))I(m(1),m(2))
bifund (z(1), z(2))I(m(3),m(2))

nsl (z(3), z(2))

× I(m(0))
V (z(0))I(m(1))

V (z(1))I(m(2))
V (z(2))I(m(3))

V (z(3)). (3.4)

Similarly Ĩ(n)

[B̂′3]
(x, κ̃; m̃(−1), w, a) can be written as

Ĩ(n)

[B̂′3]
(x, k; m̃(−1), w, a) =

∑
{m(α)}

∮
|z(α)i |=1

dz(0)

2πiz(0)

dz(1)

2πiz(1)

dz(3)

2πiz(3)

1

W (m(2))

∏
i=1,2

dz
(2)
i

2πiz
(2)
i

× I(m(0),m̃(−1))
fund (z(0), z̃(0))I(m(0),m(2))

bifund (z(0), z(2))I(m(1),m(2))
bifund (z(1), z(2))I(m(2))

V (z(2))

× I(m(0))
V (z(0))I(m(1))

V (z(1))I(m(3))
V (z(3))

× Ĩ(m(3),m(2))
nsl (z(3), z(2))× ICS(z(3),m(3), κ̃)× IFI(z

(3),m(3), w, a). (3.5)

The various functions appearing in the integrand of I
[B̂3]

(x; m̃(−1)) are defined as fol-

lows:

I(m
(0),m̃(−1))

fund (x,z(0),z̃(0))=(x)
1
2 |m

(0)−m̃(−1)| (x3/2+|m
(0)−m̃(−1)|(z(0)/z̃(0))±1;x2)

(x1/2+2|m(0)−m̃(−1)|(z(0)/z̃(0))±1;x2)
, (3.6)

I(m
(α),m(2))

bifund (x,z(α),z(2))=
∏
i=1,2

(x)
1
2 |m

(α)−m(2)
i |

(x3/2+|m
(α)−m(2)

i |(z(α)/z
(2)
i )±1;x2)

(x1/2+|m
(α)−m(2)

i |(z(α)/z
(2)
i )±1;x2)

, (3.7)

I(m
(i))

V (x,z(i))=1, i=0,1,3, (3.8)

I(m
(2))

V (z(2))=
∏
i 6=j

(x)−
1
2 |m

(2)
i −m

(2)
j |(1−x|m

(2)
i −m

(2)
j |z

(2)
i /z

(2)
j ), (3.9)

I(m
(3),m(2))

nsl (z(3),z(2))=
∏
i=1,2

(x)
1
2 |m

(3)−2m(2)
i |

(x3/2+|m
(3)−2m(2)

i |(z(3)/(z
(2)
i )2)±1;x2)

(x1/2+|m
(α)−2m(2)

i |(z(3)/(z
(2)
i )2)±1;x2)

. (3.10)

Note that we do not have any Chern-Simons term in I
[B̂3]

(q̃, t̃; m̃(−1)) or any FI term

(coupling with the background U(1)J for any of the gauge groups).

The contributions of the fundamental/bifundamental matter and the different gauge

groups in Ĩ(n)

[B̂′3]
(x, κ̃; m̃(−1), w, a) are given by (3.6)–(3.9) as before while the contribution
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Figure 4. The framed affine B3 quiver, also denoted by [B̂3], with labels.

of the double arrow, the Chern-Simons and FI terms for the node with Dynkin label “3”

in the B̂′3 quiver are

Ĩ(m
(3),m(2))

nsl (z(3),z(2))=
∏
s=±1

x
1
2 |m

(3)−s(m(2)
1 −m

(2)
2 )|

(
x3/2+|m

(3)−s(m(2)
1 −m

(2)
2 )|

[
z(3)

(
z
(2)
2

z
(2)
1

)s]±1
;x2

)
(
x1/2+|m

(3)−s(m(2)
1 −m

(2)
2 )|

[
z(3)

(
z
(2)
2

z
(2)
1

)s]±1
;x2

) ,
(3.11)

ICS(z(3),m(3),κ̃)=(z(3))κ̃m
(3)

, (3.12)

IFI(z(3),m(3),w,a)=(z(3))2aw2m(3)

, (3.13)

where we recall from (2.3) that the Chern-Simons level for the right-most node in the B̂

quiver is κ̃ = −1.

4 Coulomb branch Hilbert series from the B̂
(0)
N quiver

In section 2 we have presented an explicit expression for the supersymmetric partition

function (2.2) of the non-Lagrangian theory which is given by a finite sum over a set of

framed affine BN quivers (figure 1) with some additional data. We now consider, from this

set, the quiver B̂
(0)
N for which the additional quiver data does not depend on the CS level

κ of the Sp(1) gauge theory.

The 3d partition function is of the following form:

Z[B̂
(0)
3 ] =

∫ 1∏
α=0

ds(α)ds(3)d
2s(2)

2!
×

Zvec
bdry(s(0))

Zbif
bdry(s(0), s(2))Z fund

bdry(s(0))
×

Zvec
bdry(s(1))

Zbif
bdry(s(1), s(2))

×Zvec(s(2))×Znsl(s(2), s(3))×Zvec
bdry(s(3)).

(4.1)

Note that the contribution of the matter part of the partition function can still be written

as
∏
ρ

1
coshπρ(s) — where the product goes over all weights of the representation of the

gauge group under which a given matter multiplet transforms — provided we associate an

“effective weight” with the double arrow, i.e.

ρda(s(2), s(3)) = s(3) − 2s
(2)
i , i = 1, 2. (4.2)
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This immediately suggests how the formula for the 4d index (where contribution of matter

multiplets is also written as a product of weights as above) should be modified for the

framed affine B3 quiver: we treat the double bond as a multiplet with these ‘effective

weights’ in the index formula.

4.1 Lens space index of the framed affine B̂
(0)
3 quiver

Most terms in the 3d partition function of the framed affine B3 quiver can be readily

identified as the contributions of vector and hyper multiplets — the only exception being

the contribution of the double arrow in the quiver. Writing the Lens space index of the

theory simply involves replacing the vector and hyper contributions by the appropriate

indices (given above) and replacing the function Znsl(s
(2), s(3)) by a deformed function

Insl(z
(2), z(3); r). A summary of superconformal indices on Lens spaces as partition func-

tions on S3 × S1 is presented in appendix D.

In the limit when S1 shrinks the contribution of the double arrow to the superconformal

index should reduce to the corresponding term in the S3 partition function which we have

studied above

Insl(z
(2), z(3); r)→ Znsl(s

(2), s(3)) , (4.3)

where z
(2)
i = e2πis

(2)
i . Therefore the full index should have the following form

I(p, q, t; z̃(α), m̃(α)) =
∑
{m(α)}

∮
|z(α)i |=1

dz(0)

2πiz(0)

dz(1)

2πiz(1)

dz(3)

2πiz(3)

1

W (m(2))

∏
i=1,2

dz
(2)
i

2πiz
(2)
i

(4.4)

× f(p, q, t; r)× I(m(0),m̃(−1))
fund (z(0), z̃(0))I(m(0),m(2))

bifund (z(0), z(2))I(m(1),m(2))
bifund (z(1), z(2))

× I(m(0))
V (z(0))I(m(1))

V (z(1))I(m(2))
V (z(2))× I(m(3),m(2))

nsl (z(3), z(2); r)I(m(3))
V (z(3)) ,

where W (m(2)) is the order of the Weyl group of the gauge group preserved by a given

{m(2)
i } — i.e. W (m(2)) = 2! if m

(2)
1 6= m

(2)
2 and W (m(2)) = 1 if m

(2)
1 = m

(2)
2 . At the

moment we can define the index above up to an arbitrary function f(p, q, t; r) of flavor

fugacities, which we shall be able to fix later in this section.

The individual functions appearing in the index above are given as:

I(m
(0),m̃(−1))

fund (z(0),z̃(0))=
(pq
t

) 1
2 ([[(m

(0)−m̃(−1))]]− 1
r [[(m

(0),m̃(−1))]]2)

(4.5)

×
∏
s=±1

Γ(t1/2p[[s(m
(0)−m̃(−1))]]e2πis(s

(0)−s̃(0));pq,pr)Γ(t1/2qr−[[s(m
(0)−m̃(−1))]]e2πis(s

(0)−s̃(0));pq,qr),

I(m
(α),m(2))

bifund (z(α),z(2))=
∏
i

(pq
t

) 1
2 ([[(m

(α)−m(2)
i )]]− 1

r [[(m
(α)−m(2)

i )]]2)

×
∏
s=±1

Γ(t1/2p[[s(m
(α)−m(2)

i )]]e2πis(s
(α)−s(2)i );pq,pr)Γ(t1/2qr−[[s(m

(α)−m(2)
i )]]e2πis(s

(α)−s(2)i );pq,qr),

I(m
(i))

V (z(i))=
(pr;pr)

Γ(t;pq,pr)

qr;qr

Γ(tqr;pq,qr)
(i=0,1,3),

I(m
(2))

V (z(2))=

(
(pr;pr)

Γ(t;pq,pr)

qr;qr

Γ(tqr;pq,qr)

)2∏
i 6=j

(pq
t

)− 1
2 ([[(m

(2)
i −m

(2)
j )]]− 1

r [[(m
(2)
i −m

(2)
j )]]2)
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× 1

Γ(tp[[(m
(2)
i −m

(2)
j )]]e2πi(s

(2)
i −s

(2)
j );pq,pr)

1

Γ(tqr−[[(m
(2)
i −m

(2)
j )]]e2πi(s

(2)
i −s

(2)
j );pq,pr)

× 1

Γ(p[[(m
(2)
i −m

(2)
j )]]e2πi(s

(2)
i −s

(2)
j );pq,pr)

1

Γ(qr−[[(m
(2)
i −m

(2)
j )]]e2πi(s

(2)
i −s

(2)
j );pq,pr)

,

I(m
(3),m(2))

nsl (z(3),z(2);r)=
∏
i

(pq
t

) 1
2 ([[(m

(3)−2m(2)
i )]]− 1

r [[(m
(3)−2m(2)

i )]]2)

×
∏
s=±1

Γ(t1/2p[[s(m
(3)−2m(2)

i )]]e2πis(s
(3)−2s(2)i );pq,pr)Γ(t1/2qr−[[s(m

(3)−2m(2)
i )]]e2πis(s

(3)−2s(2)i );pq,qr).

Note that the last line is the proposed form of the contribution of the double arrow in

the framed affine B3 quiver to the Lens space index. For a generic case the prescription is

simply:

I(m(β),m(γ))
nsl (z(β),z(γ))=

∏
ρ

(pq
t

) 1
2

([[ρ(m(β),m(γ))]]− 1
r

[[ρ(m(β),m(γ))]]2)

×
∏
s=±1

Γ(t1/2p[[sρ(m(β),m(γ))]]e2πisρ(s(β),s(γ));pq,pr)Γ(t1/2qr−[[sρ(m(β),m(γ))]]e2πisρ(s(β),s(γ));pq,qr);

ρ(m(β),m(γ))={m(β)
i −2m

(γ)
j |∀i,j}, ρ(s(β),s(γ))={s(β)

i −2s
(γ)
j |∀i,j}, (4.6)

for a double bond between U(Nβ) and U(Nγ) with the arrow directed from the node (γ)

to node (β).

4.2 Projection to S2 × S1 index

Consider the following redefinition of fugacities in the Lens space index:

p = q̃1/2y, q = q̃1/2y−1, t = t̃q̃1/2 (4.7)

Under the above redefinition, the index in (D.1) can be written as

I(q̃, y, t̃; zi) = TrS3/Zr

[
(−1)F (q̃)j2+R−R′

2 (t̃)R+R′y2j1e−β(E−2j2−2R+R′)
∏
i

zfii

]
. (4.8)

The S2 × S1 index can now be defined as r →∞ limit of the lens index (see [34] and [35])

IS2×S1 = lim
r→∞

I(q̃, y, t̃; zi)|y=1

= TrS2

[
(−1)F (q̃)j2+R−R′

2 (t̃)R+R′e−β(E−2j2−2R+R′)
∏
i

zfii

]
.

(4.9)

Now, since the index has non-zero contributions from only those states which satisfy E −
2j2−2R+R′ = 0, one may rewrite the 3d conformal dimension Ẽ = E−R′

2 for these states as

Ẽ = j2 +R−R′. (4.10)

In terms of Ẽ, the 3d index can be written as

IS2×S1(q̃, t̃; zi) = TrS2

[
(−1)F (x)Ẽ+R′(x̃)Ẽ−Re−β(Ẽ−j2−R+R′)

∏
i

zfii

]
,

x = q̃1/2t̃, x̃ = q̃1/2t̃−1.

(4.11)
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There are two useful limits of the 3d index that we will often use — the Coulomb branch

index IC and the Higgs branch index IH which are defined as follows:

IC = TrHC

[
(−1)F (x̃)Ẽ−Re−β(Ẽ−j2−R+R′)

∏
i

zfii

]
= lim

x→0
IS2×S1(x, x̃; zi)

IH = TrHH

[
(−1)F (x)Ẽ+R′e−β(Ẽ−j2−R+R′)

∏
i

zfii

]
= lim

x̃→0
IS2×S1(x, x̃; zi)

(4.12)

where HC is the subspace of the Hilbert space where states satisfy Ẽ +R′ = 0 and HH is

the subspace of the Hilbert space where states satisfy Ẽ −R = 0.

Now let us write down the proposed 3d index for the framed affine B3 quiver.

I(q̃, t̃; z̃(α), m̃(α)) = g(q̃, t̃)
∑
{m(α)}

∮
|z(α)i |=1

dz(0)

2πiz(0)

dz(1)

2πiz(1)

dz(3)

2πiz(3)

1

W (m(2))

∏
i=1,2

dz
(2)
i

2πiz
(2)
i

× I(m(0))
V (z(0))I(m(1))

V (z(1))I(m(0),m̃(−1))
fund (z(0), z̃(0))I(m(0),m(2))

bifund (z(0), z(2))I(m(1),m(2))
bifund (z(1), z(2))

× I(m(2))
V (z(2))I(m(3),m(2))

nsl (z(3), z(2))I(m(3))
V (z(3)), (4.13)

where g(q̃, t̃) = lim
r→∞

f(p, q, t; r) and the other ingredients of the above equation are:

I(m
(0),m̃(−1))

fund (z(0),z̃(0))=

(
q̃1/2

t̃

) 1
2 |m

(0)−m̃(−1)|
(t̃−1/2q̃3/4+|m

(0)−m̃(−1)|/2(z(0)/z̃(0))±1;q̃)

(t̃1/2q̃1/4+|m(0)−m̃(−1)|/2(z(0)/z̃(0))±1;q̃)
, (4.14)

I(m
(α),m(2))

bifund (z(α),z(2))=
∏
i=1,2

(
q̃1/2

t̃

) 1
2 |m

(α)−m(2)
i | (t̃−1/2q̃3/4+|m

(α)−m(2)
i |/2(z(α)/z

(2)
i )±1;q̃)

(t̃1/2q̃1/4+|m
(α)−m(2)

i |/2(z(α)/z
(2)
i )±1;q̃)

, (4.15)

I(m
(i))

V (z(i))=
(t̃q̃1/2;q̃)

(t̃−1q̃1/2;q̃)
(i=0,1,3), (4.16)

I(m
(2))

V (z(2))=

(
(t̃q̃1/2;q̃)

(t̃−1q̃1/2;q̃)

)2∏
i 6=j

(
q̃1/2

t̃

)− 1
2 |m

(2)
i −m

(2)
j | (t̃q̃1/2+|m

(2)
i −m

(2)
j |/2z

(2)
i /z

(2)
j ;q̃)

(t̃−1q̃1/2+|m
(2)
i −m

(2)
j |/2z

(2)
i /z

(2)
j ;q̃)

×(1−q̃
1
2 |m

(2)
i −m

(2)
j |z

(2)
i /z

(2)
j ), (4.17)

I(m
(3),m(2))

nsl (z(3),z(2))=
∏
i=1,2

(
q̃1/2

t̃

) 1
2 |m

(3)−2m(2)
i |(t̃−1/2q̃3/4+|m

(3)−2m(2)
i |/2(z(3)/(z

(2)
i )2)±1;q̃)

(t̃1/2q̃1/4+|m
(α)−2m(2)

i |/2(z(3)/(z
(2)
i )2)±1;q̃)

. (4.18)
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4.3 Coulomb branch index of B̂
(0)
3 quiver

In the limit x → 0 and x̃ is fixed, various factors in (4.14)–(4.18) reduce to the following

forms:

I(m(0),m̃(−1))
fund (z(0),z̃(0))→ x̃

1
2
|m(0)−m̃(−1)|

I(m(α),m(2))
bifund (z(α),z(2))→

∏
i=1,2

(x̃)
1
2
|m(α)−m(2)

i | , α=0,1

I(m(2))
V (z(2))→


(1−x̃)−2

∏
i 6=j(x̃)−

1
2
|m(2)

i −m
(2)
j | :m

(2)
1 6=m

(2)
2

(1−x̃)−2
∏
i 6=j

(
1− z

(2)
i

z
(2)
j

)
/

(
1−x̃ z

(2)
i

z
(2)
j

)
:m

(2)
1 =m

(2)
2

I(m(3),m(2))
nsl (z(3),z(2))→

∏
i=1,2

(x̃)
1
2
|m(3)−2m

(2)
i |

I(m(i))
V (z(i))→ 1

1−x̃
, i=0,1,3 .

(4.19)

Therefore, the Coulomb branch index can be written as

g−1(x̃,x=0)IC(x̃;m(−1))=S1+S2

=
∑

{m(α),m
(2)
1 =m

(2)
2 }

∮
|z(α)
i |=1

∏
α=0,1,3

dz(α)

2πiz(α)

∏
i=1,2

dz
(2)
i

2πiz
(2)
i

x̃
1
2 |m

(0)−m̃(−1)|
∏
α=0,1

∏
i=1,2

(x̃)
1
2 |m

(α)−m(2)
i |

×(1−x̃)−3
∏
i 6=j

(
1− z

(2)
i

z
(2)
j

)
/

(
1−x̃ z

(2)
i

z
(2)
j

) ∏
i=1,2

(x̃)
1
2 |m

(3)−2m(2)
i |

+
∑

{m(α),m
(2)
1 6=m

(2)
2 }

∮
|z(α)
i |=1

∏
α=0,1,3

dz(α)

2πiz(α)

(
1

2!

) ∏
i=1,2

dz
(2)
i

2πiz
(2)
i

x̃
1
2 |m

(0)−m̃(−1)|
∏
α=0,1

∏
i=1,2

(x̃)
1
2 |m

(α)−m(2)
i |

×(1−x̃)−3
∏
i 6=j

(x̃)−
1
2 |m

(2)
i −m

(2)
j |

∏
i=1,2

(x̃)
1
2 |m

(3)−2m(2)
i |. (4.20)

The r.h.s. is in fact equal to the Hilbert series of the moduli space of one B3 instanton on

C2. We next show that this is indeed the case.

Define x̃ = t2, then the individual indices are

I(m(0),m̃(−1))
fund → t|m

(0)−m̃(−1)| (4.21)

I(m(α),m̃(−1))
bifund →

∏
i=1,2

t|m
(α)−m̃(2)

i | , α=0,1 (4.22)

I(m(2))
V →



(1−t2)−2 t−2|m(2)
1 −m

(2)
2 | m

(2)
1 6=m

(2)
2

(1−t2)−2 t−2|m(2)
1 −m

(2)
2 |
∏
i 6=j

(
1− z

(2)
i

z
(2)
j

)
/

(
1−t2 z

(2)
i

z
(2)
j

)
=(1−t2)−2

(
1− z

(2)
i

z
(2)
j

)
/

(
1−t2 z

(2)
i

z
(2)
j

)
m

(2)
1 =m

(2)
2

(4.23)
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I(m(3),m(2))
nsl →

∏
i=1,2

t|2m
(2)
i −m

(3)| (4.24)

I(m(i))
V (z(i))→ 1

1−t2
, i=0,1,3 . (4.25)

The integrations over the gauge fugacities z(0), z(1), z(3) and z(2) when m1 6= m2 are trivial

while that over z(2) when m1 = m2 can be performed easily:

1

2!

1

(1− t2)2

(
2∏
i=1

∮
|z(2)i |=1

dz
(2)
i

2πiz
(2)
i

)∏
i 6=j

(
1−

z
(2)
i

z
(2)
j

)
/

(
1− t2

z
(2)
i

z
(2)
j

)

=
1

(1− t2)(1− t4)
. (4.26)

Let us write (as in (A.2) of [14]):

PU(2)(t;m1,m2) =

 1
(1−t2)2

m1 6= m2

1
(1−t2)(1−t4)

m1 = m2

. (4.27)

Therefore, the Coulomb branch index given in (4.20) can be written as

g−1(x̃= t2,x=0)IC(t;m̃(−1))

=
∑

m(0)∈Z

∑
m(1)∈Z

∑
m

(2)
1 ,m

(2)
2 ∈Z

∑
m(3)∈Z

1

W (m
(2)
1 ,m

(2)
2 )
×

×t|m
(0)−m̃(−1)|+

(∑2
i=1 |m(0)−m̃(2)

i |+|m
(1)−m̃(2)

i |+|2m
(2)
i −m

(3)|
)
−2|m(2)

1 −m
(2)
2 |×

× 1

(1−t2)3
PU(2)(t;m1,m2), W (m

(2)
1 ,m

(2)
2 )=

{
1 m

(2)
1 =m

(2)
2

2! m
(2)
1 6=m

(2)
2

=
∑

m(0)∈Z

∑
m(1)∈Z

∑
m

(2)
1 ≥m

(2)
2 >−∞

∑
m(3)∈Z

t
|m(0)−m̃(−1)|+

(∑2
i=1 |m(0)−m̃(2)

i |+|m
(1)−m̃(2)

i |+|2m
(2)
i −m

(3)|
)

×t−2|m(2)
1 −m

(2)
2 | 1

(1−t2)3
PU(2)(t;m1,m2) . (4.28)

Upon setting m̃(−1) = 0, the r.h.s. is precisely the Coulomb branch formula presented

in [17] that gives rise to the Hilbert series of one B3 instanton on C2:

IC(t; m̃(−1) = 0) =
1

(1− t)2
×
∞∑
p=0

dim [0, p, 0]SO(7)t
2p , (4.29)

which implies that

g(x̃, x)|x=0 = 1. (4.30)

Acknowledgments

We are much grateful to Kavli Institute for Theoretical Physics at University of California

Santa Barbara, where this project has started during program“New Methods in Nonper-

turbative Quantum Field Theory” in 2014. Also we would like to thank Simons Center for

– 18 –



J
H
E
P
0
9
(
2
0
1
7
)
0
6
7

Geometry and Physics at Stony Brook University and especially to Cumrun Vafa and Mar-
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A Cauchy identity and Fourier transform

Starting from (2.1) we wish to use the Cauchy identity

1

coshπ(s1+m)coshπ(s2+m′)
− 1

coshπ(s2+m)coshπ(s1+m′)
=

sinhπ(s1−s2)sinhπ(m−m′)∏2
p=1coshπ(sp+m)coshπ(sp+m′)

,

(A.1)

For this purpose, we first introduce a delta function into the integration, and replace

s by s1 and s2. The numerator is split to get,

ZA =

∫
d2s

2!

(
δ(s1 + s2) sinhπ(s1 − s2)e2iπκ(s1)2

coshπs1

)
1∏N−2

a=1

∏2
p=1 coshπ(sp +ma)

×

(
sinhπ(s1 − s2)∏2

p=1 coshπ(sp +mN−1) coshπ(sp +mN )

)
× 1

coshπ(s1 + s2 −Mas)

(A.2)

Next we introduce a permutation group in 2 elements S2 and denote a permutation by an

element ρ ∈ S2. The equation is now ready for applying the identity and we replace to get

=

∫
d2s

2!

(
δ(s1+s2)e2iπκ(s1)2 sinhπ(s1−s2)

coshπs1

)
1∏N−2

a=1

∏2
p=1coshπ(sp+ma)

×

∑
ρ∈S2

(−1)ρ
(sinhπ(mN−1−mN ))−1

coshπ(sρ(1)+mN )coshπ(sρ(2)+mN−1)

× 1

coshπ(s1+s2−Mas)

(A.3)

Here is a shorter way of writing the identity:

∑
ρ∈S2

(−1)ρ
1

coshπ(sρ(1)+mN )coshπ(sρ(2)+mN−1)
=

sinhπ(s(1)−s(2))sinhπ(mN−1−mN )∏2
p=1coshπ(sp+mN−1)coshπ(sp+mN )

,

(A.4)

where (−1)ρ is the sign of the permutation ρ.
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In the next step, we introduce a set of auxiliary variables spβ , β = 0, . . . , N −2, p = 1, 2

in the following way

ZA=

∫ N−2∏
β=0

d2sβ
2!

(
δ(s1

0+s2
0)e2iπκ(s10)2 sinhπ(s1

0−s2
0)

coshπs1
0

)
N−3∏
β=0

∏2
p=1δ(s

p
β−s

p
β+1)∏2

p=1coshπ(spβ+1+mβ+1)
(A.5)

×

(∑
ρ

(−1)ρ
(sinhπ(mN−1−mN ))−1

coshπ(s
ρ(1)
N−2+mN )coshπ(s

ρ(2)
N−2+mN−1)

)
× 1

coshπ(s1
N−2+s2

N−2−Mas)

S-duality is implemented by rewriting the integral in terms of Fourier transform/dual vari-

ables u0, . . . , uN−2 and τ1. Appropriately anti-symmetrizing the integrand, we obtain

ZA =

∫ N−2∏
β=0

d2sβd
2uβdτ1

(
δ(s1

0 + s2
0)e2iπκ(s10)2 sinhπ(2s1

0)

coshπs1
0

)

×
N−3∏
β=0

∑
ρβ

(−1)ρβ
2∏
p=1

e2πiupβ(spβ−s
ρβ(p)

β+1 )

coshπ(spβ+1 +mβ+1)


×

(∑
ρ

(−1)ρ
e2πiu1N−2(s

ρ(1)
N−2+mN−1)e2πiu2N−2(s

ρ(2)
N−2+mN )e2πiτ1(s

ρ(1)
N−2+s

ρ(2)
N−2−Mas)

coshπu1
N−2 coshπu2

N−2 coshπτ1 sinhπ(mN−1 −mN )

)
(A.6)

In the next step, we need to integrate over the variables {siβ} to obtain the dual

partition function after rearranging terms in the integrand in the following fashion.

ZA=

∫ N−2∏
β=0

d2sβd
2uβdτ1

(
δ(s10+s20)e2iπκ(s

1
0)

2

sinhπ(2s10)
∏
pe

2πiup0s
p
0e2πim1u

p
0

coshπs10

)

×
N−3∏
β=1

∑
ρβ−1

(−1)ρβ−1

2∏
p=1

e2πi(s
p
β+mβ)(u

p
β−u

ρ
−1
β−1

(p)

β−1 )

coshπ(spβ+mβ)

∏
p

e−2πimβ(u
p
β−u

p
β−1)

∏
p

e−2πim1u
p
0

×
∑

ρ,ρN−3

(−1)ρ+ρN−3

exp

[
(2πi(s

ρ(1)
N−2+mN−2)(u1N−2+τ1−u

ρ◦ρ−1
N−3(1)

N−3 )

]
exp

[
2πi(s

ρ(2)
N−2+mN−2)(u2N−2+τ1−u

ρ◦ρ−1
N−3(2)

N−3 )

]
∏
pcoshπupN−2coshπ(spN−2+mN−2)coshπτ1sinhπ(mN−1−mN )

×
∏
p

e2πiu
p
N−3mN−2×e2πiu

1
N−2(mN−1−mN−2)e2πiu

2
N−2(mN−mN−2)e−2πiτ1(M+2mN−2)

≡
∫
X(u0,s0)Y (u0,s1,u1,...,sN−3,uN−3)Z(uN−3,sN−2,uN−2,τ1), (A.7)

where X denotes the contribution from the first line, Y from the second and third lines,

and Z shows the last line. The X(u0, s0) contains the information about the double bond.

Performing the integrals over {s1, s2, . . . , sN−2} is straightforward and explained in ap-

pendix B. The integral over the s0-dependent piece yields the contribution of the double

bond to the dual partition function and we proceed to compute that next.

We are ready to complete the desired partition function of the new B̂N -type quiver

gauge theory. Let us rewrite the partition function after partial integrations over Y and Z
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from (A.7) and redefining the variable upN−2 → upN−2 − τ1:

ZA(m, κ) =

∫ N−2∏
β=1

d2uβ
2!

2∏
α=1

dτα

∫
d2u0

2!

d2s0

2!

∏
p

e2πiup0s
p
0e2πim1u

p
0

× δ(s1
0 + s2

0)e2iπκ(s10)2 sinhπ(2s1
0) sinhπ(u1

0 − u2
0)

coshπs1
0

∏2
p,l=1 coshπ(up0 − ul1)

×
∏N−2
β=1 sinh2 π(u1

β − u2
β)∏N−3

β=1

∏2
p,l=1 coshπ(upβ − ulβ+1)

×
N−2∏
β=1

2∏
p=1

e2πiη̃βu
p
β

× −ie2πiη1τ1e2πiη2τ2∏
p coshπ(upN−2 − τ1) coshπ(upN−2 − τ2) coshπτ1

= ZB.

(A.8)

where ZB is the dual partition function and the various FI parameters will be explicitly

given as functions of masses in the next section. In the above integrand the last two lines

correspond to the known contribution of the left (D-type) tail of the quiver, whereas the

first two give a contribution of the double arrow of the B̂N quiver theory.

Labeling the contribution of the double arrow as Znsl,
6 after integrating over s1

0, s
2
0 and

u1
0, the dual partition function can be written as

ZB :=

∫ N−2∏
β=1

d2uβ
2!

2∏
α=1

dτα

∫
du2

0Znsl(u
2
0, u

l
1;κ,m1)

×
∏N−2
β=1 sinh2 π(u1

β − u2
β)
∏N−2
β=1

∏2
p=1 e

2πiη̃βu
p
β∏N−3

β=1

∏2
p,l=1 coshπ(upβ − ulβ+1)

× e2πiη1τ1e2πiη2τ2∏
p coshπ(upN−2 − τ1) coshπ(upN−2 − τ2) coshπτ1

.

(A.9)

For simplifying the computation, we set m1 = 07 and after a rather tedious computation

detailed in the appendix C we get∫
du2

0 Znsl(u
2
0, u

l
1;κ,m1 = 0)

= −i
∫
d2u0

2!

d2s0

2!

(
δ(s1

0 + s2
0)e2iπκ(s10)2 sinhπ(2s1

0) sinhπ(u1
0 − u2

0)

coshπs1
0

∏2
p,l=1 coshπ(up0 − ul1)

)∏
p

e2πiup0s
p
0

= ie−iκπ/2
∫
du2

0dse
2iπκs2 eπs

sinhπs
sinhπ2κs

(
e2iπ(u21+u11−u20)s

coshπ(u2
0 − 2u1

1) coshπ(u2
0 − 2u2

1)

)

+ e−iκπ/2
∫
du2

0

1

coshπ(u2
0 − 2u1

1) coshπ(u2
0 − 2u2

1)
.

(A.10)

6nsl for non-simply laced.
7m1 6= 0 case does not seem to lead to an easy dual interpretation — for example, it breaks the U(2)

gauge symmetry of the node parametrized by {ul1}.
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Note that if κ = 0 then the first integral vanishes so that the second term can be identified

with the dual partition function of the anomalous Sp(k) ADHM theory. However, we are

interested in nonzero Chern-Simons level, namely κ = 1/2, which makes the theory A

anomaly free.

One can massage the first integral in the above formula into a more convenient form

by completing the integration over s and shifting the integration variable u2
0 → u2

0 +u2
1 +u1

1

ie−iκπ/2
∫
du2

0ds e
2iπκs2eπs

sinh 2πκs

sinhπs

e2iπ(u21+u11−u20)s

coshπ(u2
0 − 2u1

1) coshπ(u2
0 − 2u2

1)

κ=1/2
= ieiπ/4

∫
du2

0 e
−iπ(u20)2 eπu

2
0

coshπ(u2
0 − u1

1 + u2
1) coshπ(u2

0 − u2
1 + u1

1)
.

(A.11)

Now let us put all the pieces together to write the dual partition function (after re-

naming the integration variable u→ u0):

ZB = ZA[k;m1 = 0,m2, . . . ,mN ]

=

∫
du0

N−2∏
β=1

d2uβ
2!

2∏
α=1

dταZnsl(u0, u
l
1;κ,m1 = 0)

×
∏N−2
β=1 sinh2 π(u1

β − u2
β)∏N−3

β=1

∏2
p,l=1 coshπ(upβ − ulβ+1)

×
N−2∏
β=1

2∏
p=1

e2πiη̃βu
p
β

× e2πiη1τ1e2πiη2τ2∏
p coshπ(upN−2 − τ1) coshπ(upN−2 − τ2) coshπτ1

,

(A.12)

where the function Znsl(u0, u
l
1;κ,m1 = 0) can be computed from (A.10) and (A.11)∫

du0Znsl(u0,u
l
1;κ,m1 =0)= ieiπ/4

∫
du0

(
e−iπ(u0)2eπu0

coshπ(u0−u1
1+u2

1)coshπ(u0−u2
1+u1

1)

)

+e−iπ/4
∫
du0

(
1

coshπ(u0−2u1
1)coshπ(u0−2u2

1)

)
. (A.13)

Let us now label the Cartan of the nodes in direct correspondence of their Dynkin

labels of the B̂N quiver diagram (see figure 1)

u0 → uN , uaβ → uaN−β , τ2 → u1 , τ1 → u0 , (A.14)

where β = 1, . . . , N − 2. Then the function for Chern-Simons level κ = 1/2 Znsl becomes

Znsl(uN , u
l
N−1) = e−iπ/4

(
1

coshπ(uN − 2u1
N−1) coshπ(uN − 2u2

N−1)

)
(A.15)

+ ieiπ/4

(
e−iπ(uN )2eπuN

coshπ(uN − u1
N−1 + u2

N−1) coshπ(uN − u2
N−1 + u1

N−1)

)
=: e−iπ/4F

(1)
nsl (uN , u

l
N−1) + ieiπ/4e−iπ(uN )2eπuNF

(2)
nsl (uN , u

l
N−1),
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where the functions F
(1)
nsl (uN , u

l
N−1) and F

(2)
nsl (uN , u

l
N−1) are:

F
(1)
nsl (uN , u

l
N−1) =

1

coshπ(uN − 2u1
N−1) coshπ(uN − 2u2

N−1)
,

F
(2)
nsl (uN , u

l
N−1) =

1

coshπ(uN − u1
N−1 + u2

N−1) coshπ(uN − u2
N−1 + u1

N−1)
.

(A.16)

B Computation of Y and Z

First consider the partial integration of Y .

∫ N−3∏
β=1

d2sβY (u0, s1, u1, . . . , sN−3, uN−3) (B.1)

=
N−3∏
β=1

∑
ρβ−1

(−1)ρβ−1
∏
p

e−2πimβ(upβ−u
p
β−1)

coshπ(upβ − u
ρ−1
β−1(p)

β−1 )

∏
p

e−2πim1u
p
0

=
∏
p

e−2πim1u
p
0

N−3∏
β=1

sinhπ(u1
β−1 − u2

β−1) sinhπ(u1
β − u2

β)∏2
p,l=1 coshπ(upβ−1 − ulβ)

×
2∏
p=1

e−2πimβ(upβ−u
p
β−1)

 .

Now consider the partial integration of Z.∫
d2sN−2Z(uN−3, sN−2, uN−2, τ1)

= −i
∫
dτ2

(
sinhπ(u1

N−3 − u2
N−3) sinh2 π(u1

N−2 − u2
N−2)∏2

p,l=1 coshπ(upN−2 − ulN−3)

)

×

(
e−2πiτ1(Mas+mN+mN−1)e2πiτ2(mN−mN−1)∏

p coshπ(upN−2 − τ1) coshπ(upN−2 − τ2) coshπτ1

)

×

(∏
p

e2πiupN−3mN−2
∏
p

e2πiupN−2(mN−1−mN−2)

)
(B.2)

The new auxiliary variable τ2 which labels the Cartan of one of the boundary U(1) nodes

in the dual theory comes from the following identity which has been used to obtain the

above result.

i

sinhπη

(
e2πiηu2N−2

) (
2 sinhπ(u1

N−2 − u2
N−2)

)−1
∣∣∣
{upN−2}

=

∫
dτ2

e2πiητ2∏
i,p coshπ(τ2 − upN−2)

(B.3)

where {upN−2} denotes symmetrization w.r.t. the said variables which requires simply mul-

tiplying by some combinatorial factor since the rest of the integrand is symmetric in these

variables. Also, in the above formula η = mN −mN−1.

Now, we can read off the FI parameters as functions of various masses; note that we

identify the exponents of e2πiτ1,2 , e2πiupβ as the respective FI parameters. The full dictionary
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then reads as follows

η0 = −Mas −mN −mN−1 ,

ηβ = mN−β+1 −mN−β , β = 1, . . . , N − 2 ,

ηN−1 = m2,

ηN = 0 ,

(B.4)

with Fayet-Iliopoulos parameters of the framed affine BN quiver on the left hand sides of

the above equations and masses of SO(2N +1) chirals and mass Mas of the anti-symmetric

Sp(1) matter on the right. It is instructive to redefine the chiral masses as mN−β+1 → mβ

(therefore mN−β → mβ+1) so that the duality map reflects the structure of simple roots

associated with the BN Dynkin diagram (summarized in (2.10)):

η0 = −Mas −m1 −m2 ,

ηβ = mβ −mβ+1 , β = 1, 2, 3, . . . , N − 2 ,

ηN−1 = mN−1,

ηN = 0 .

(B.5)

C Computation of Znsl

Recall the formula for the partition function of the Sp(1) Chern-Simons theory with an

SO(2N + 1) flavor symmetry and a free hypermultiplet obtained in (A.9)

ZA=

∫ N−2∏
β=0

d2uβ
2!

2∏
α=1

dτα
d2s0

2!

(
δ(s10+s20)e2iπκ(s

1
0)

2

sinhπ(2s10)sinhπ(u10−u20)

coshπs10
∏2
p,l=1coshπ(up0−ul1)

)∏
p

e2πiu
p
0s
p
0e2πim1u

p
0

×

 ∏N−2
β=1 sinh2π(u1β−u2β)∏N−3

β=1

∏2
p,l=1coshπ(upβ−ulβ+1)

×
N−2∏
β=1

2∏
p=1

e2πiη̃βu
p
β


×

(
−ie2πiη1τ1e2πiη2τ2∏

pcoshπ(upN−2−τ1)coshπ(upN−2−τ2)coshπτ1

)
, (C.1)

which is equal to the partition function of the mirror dual theory

ZB=

∫
du

N−2∏
β=1

d2uβ
2!

2∏
α=1

dταZnsl(u,u
l
1;κ,m1)×

(∏N−2
β=1 sinh2π(u1β−u2β)

∏N−2
β=1

∏2
p=1e

2πiη̃βu
p
β∏N−3

β=1

∏2
p,l=1coshπ(upβ−ulβ+1)

)

×

(
e2πiη1τ1e2πiη2τ2∏

pcoshπ(upN−2−τ1)coshπ(upN−2−τ2)coshπτ1

)
, (C.2)
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and Znsl is given in (A.10). Now, let us manipulate the up0-dependent part of ZA, i.e. the

first line of (C.1)

∫
d2u0

2!

d2s0

2!

(
δ(s1

0 + s2
0)e2iπκ(s10)2 sinhπ(2s1

0) sinhπ(u1
0 − u2

0)

coshπs1
0

∏2
p,l=1 coshπ(up0 − ul1)

)∏
p

e2πiup0s
p
0e2πim1u

p
0

=

∫
d2u0

2!
ds

(
e2iπκs2 sinhπ2s sinhπ(u1

0 − u2
0)

coshπs
∏2
p,l=1 coshπ(up0 − ul1)

)
e2πis(u10−u20)e2πim1(u10+u20)

=

∫
d2u0

2!
ds

e2iπκs2 sinhπ(u1
0 − u2

0)

coshπs
∏2
p,l=1 coshπ(up0 − ul1)

1

2

(
e2πis(u10−u20−i) − e2πis(u10−u20+i)

)
e2πim1(u10+u20)

=

∫
d2u0

2!
ds

e2iπκs2 sinhπ(u1
0 − u2

0)

coshπs
∏2
p,l=1 coshπ(up0 − ul1)

e2πis(u10−u20−i)e2πim1(u10+u20) . (C.3)

where we used permutation u1
0 ↔ u2

0 and s→ −s in the second term above.

Integration over any of the real variables, say u1
0, can be written as an integration on

the complex plane over a contour which goes along the real axis and closes in the upper-half

plane. If one integrates the same function but over a contour shifted by unit distance in the

imaginary direction compared to the previous contour (implemented by simply replacing

u1
0 → u1

0+i in the original integrand), the two integrals will differ by the sum of the residues

that lie between 0 < Im(u1
0) < i. Explicitly one gets

∫
d2u0

2!
ds

e2iπκs2 sinhπ(u1
0−u2

0)

coshπs
∏2
p,l=1coshπ(up0−ul1)

e2πis(u10−u20−i)e2πim1(u10+u20) (C.4)

=

∫
d2u0

2!
ds

e2iπκs2 sinhπ(u1
0−u2

0+i)

coshπs
∏2
l=1coshπ(u1

0+i−ul1)coshπ(u2
0−ul1)

e2πis(u10+i−u20−i)e2πim1(u10+i+u20)

+2πi
∑
l=1,2

Resu10=ul1+i/2

∫
d2u0

2!
ds

e2iπκs2 sinhπ(u1
0−u2

0)

coshπs
∏2
p,l=1coshπ(up0−ul1)

e2πis(u10−u20−i)e2πim1(u10+u20)

=−
∫
d2u0

2!
ds

e2iπκs2 sinhπ(u1
0−u2

0)

coshπs
∏2
p,l=1coshπ(up0−ul1)

e2πis(u10−u20)e2πim1(u10+u20+i)

+2πi
∑
l=1,2

Resu10=ul1+i/2

∫
d2u0

2!
ds

e2iπκs2 sinhπ(u1
0−u2

0)

coshπs
∏2
p,l=1coshπ(up0−ul1)

e2πis(u10−u20−i)e2πim1(u10+u20).

The integrand in the first term after the last equality is antisymmetric under the simul-

taneous operations u1
0 ↔ u2

0 and s → −s and therefore vanishes. Now let us focus on the

part depending on the residues:
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2πi
∑
l=1,2

Resu1
0=u

l
1+i/2

∫
d2u0

2!
ds

e2iπκs
2

sinhπ(u1
0−u2

0)

coshπs
∏2
p,l=1coshπ(up0−ul1)

e2πis(u
1
0−u

2
0−i)e2πim1(u

1
0+u

2
0)

=−
∫
du2

0ds
e2iπκs

2

coshπs

1

sinhπ(u1
1−u2

1)

(
eiπs(−i+2u2

1−2u2
0)eπim1(2u

2
1+2u2

0+i)

coshπ(u2
0−u1

1)
− e

iπs(−i+2u1
1−2u2

0)eπim1(2u
1
1+2u2

0+i)

coshπ(u2
0−u2

1)

)

=−
∫
du2

0ds
e2iπκs

2

coshπs

eπ(s−m1)

sinhπ(u1
1−u2

1)

(
e2iπs(u

2
1+u

1
1−u

2
0)e2πim1(u

2
1−u

1
1+u

2
0)

coshπ(u2
0−2u1

1)
− e

2iπs(u1
1+u

2
1−u

2
0)e2πim1(u

1
1−u

2
1+u

2
0)

coshπ(u2
0−2u2

1)

)

=−
∫
du2

0ds
e2iπκs

2

coshπs
× e

π(s−m1)e2iπs(u
2
1+u

1
1−u

2
0)e2πim1u

2
0

sinhπ(u1
1−u2

1)

×

(
e2πim1(u

2
1−u

1
1)coshπ(u2

0−2u2
1)−e2πim1(u

1
1−u

2
1)coshπ(u2

0−2u1
1)

coshπ(u2
0−2u1

1)coshπ(u2
0−2u2

1)

)

=−
∫
du2

0ds
e2iπκs

2

coshπs
× e

π(s−m1)e2iπs(u
2
1+u

1
1−u

2
0)e2πim1u

2
0

sinhπ(u1
1−u2

1)
× 1

coshπ(u2
0−2u1

1)coshπ(u2
0−2u2

1)

×
(
cos2πm1(u1

1−u2
1)
(
(coshπ(u2

0−2u2
1)−coshπ(u2

0−2u1
1)
)

−isin2πm1(u1
1−u2

1)(coshπ(u2
0−2u2

1)+coshπ(u2
0−2u1

1))
)

m1=0
= −

∫
du2

0ds
e2iπκs

2

coshπs
×eπse2iπs(u

2
1+u

1
1−u

2
0)

(
2sinhπ(u2

0−u2
1−u1

1)

coshπ(u2
0−2u1

1)coshπ(u2
0−2u2

1)

)
=−

∫
du2

0ds
e2iπκs

2

coshπs
×eπs

(
e2iπ(u

2
1+u

1
1−u

2
0)(s+i/2)−e2iπ(u

2
1+u

1
1−u

2
0)(s−i/2)

coshπ(u2
0−2u1

1)coshπ(u2
0−2u2

1)

)
. (C.5)

A quick look at the fourth equality clearly suggests that a non-zero m1 breaks the U(2)

gauge symmetry of the node associated with the double arrow. We set it to zero from

here on.8

The integration over real variable s can be written as an integration of a complex

variable over a contour which goes along the real axis and closes in the upper-half (or

lower-half) plane. As before, consider writing the above integral in terms of another integral

with the same integrand but a contour that is shifted by a distance −1/2 in the imaginary

direction, with any pole on the contour being traversed in an anti-clockwise fashion (just

a convention — nothing in the computation below depends on this choice). Therefore, the

first term in the parentheses of the last equation may be rewritten as

−
∫
du2

0ds
e2iπκs2

coshπs
× eπs

(
e2iπ(u21+u11−u20)(s+i/2)

coshπ(u2
0 − 2u1

1) coshπ(u2
0 − 2u2

1)

)

= −
∫
du2

0dse
2iπκ(s−i/2)2 1

coshπ(s− i/2)
eπ(s−i/2)

(
e2iπ(u21+u11−u20)(s−i/2+i/2)

coshπ(u2
0 − 2u1

1) coshπ(u2
0 − 2u2

1)

)

+ iπRess=−i/2

∫
du2

0

e2iπκs2

coshπs
× eπs

(
e2iπ(u21+u11−u20)(s+i/2)

coshπ(u2
0 − 2u1

1) coshπ(u2
0 − 2u2

1)

)

= −
∫
du2

0dse
2iπκ(s−i/2)2 eπs

sinhπs

(
e2iπ(u21+u11−u20)s

coshπ(u2
0 − 2u1

1) coshπ(u2
0 − 2u2

1)

)
8m1 6= 0 case does not seem to lead to an easy dual interpretation — for example, it breaks the U(2)

gauge symmetry of the node parametrized by {ul1}.

– 26 –



J
H
E
P
0
9
(
2
0
1
7
)
0
6
7

+ iπRess=−i/2

∫
du2

0

e2iπκs2

coshπs
× eπs

(
e2iπ(u21+u11−u20)(s+i/2)

coshπ(u2
0 − 2u1

1) coshπ(u2
0 − 2u2

1)

)

= −
∫
du2

0dse
2iπκ(s−i/2)2 eπs

sinhπs

(
e2iπ(u21+u11−u20)s

coshπ(u2
0 − 2u1

1) coshπ(u2
0 − 2u2

1)

)

+ ie−iκπ/2
∫
du2

0

(
1

coshπ(u2
0 − 2u1

1) coshπ(u2
0 − 2u2

1)

)
. (C.6)

Similarly, the second term can be written as∫
du2

0ds
e2iπκs2

coshπs
× eπs

(
e2iπ(u21+u11−u20)(s−i/2)

coshπ(u2
0 − 2u1

1) coshπ(u2
0 − 2u2

1)

)

=

∫
du2

0dse
2iπκ(s+i/2)2 1

coshπ(s+ i/2)
eπ(s+i/2)

(
e2iπ(u21+u11−u20)(s+i/2−i/2)

coshπ(u2
0 − 2u1

1) coshπ(u2
0 − 2u2

1)

)

+ iπRess=i/2

∫
du2

0

e2iπκs2

coshπs
× eπs

(
e2iπ(u21+u11−u20)(s−i/2)

coshπ(u2
0 − 2u1

1) coshπ(u2
0 − 2u2

1)

)

=

∫
du2

0dse
2iπκ(s+i/2)2 eπs

sinhπs

(
e2iπ(u21+u11−u20)s

coshπ(u2
0 − 2u1

1) coshπ(u2
0 − 2u2

1)

)

+ ie−iκπ/2
∫
du2

0

(
1

coshπ(u2
0 − 2u1

1) coshπ(u2
0 − 2u2

1)

)
. (C.7)

Therefore, we find after adding (C.6) and (C.7)

1

2

∫
d2u0

2!
ds

e2iπκs2 sinhπ(u1
0 − u2

0)

coshπs
∏2
p,l=1 coshπ(up0 − ul1)

e2πis(u10−u20−i)

= −e−iκπ/2
∫
du2

0dse
2iπκs2 eπs

sinhπs
sinhπ2κs

(
e2iπ(u21+u11−u20)s

coshπ(u2
0 − 2u1

1) coshπ(u2
0 − 2u2

1)

)

+ ie−iκπ/2
∫
du2

0

(
1

coshπ(u2
0 − 2u1

1) coshπ(u2
0 − 2u2

1)

)
, (C.8)

κ=1/2
= −

∫
du2

0dse
iπ(s−i/2)2

(
e2iπ(u21+u11−u20)s

coshπ(u2
0 − 2u1

1) coshπ(u2
0 − 2u2

1)

)

+ ie−iπ/4
∫
du2

0

(
1

coshπ(u2
0 − 2u1

1) coshπ(u2
0 − 2u2

1)

)
(C.9)

s→s+i/2
= −eiπ/4

∫
du2

0e
−iπ(u21+u11−u20)2

(
e−π(u21+u11−u20)

coshπ(u2
0 − 2u1

1) coshπ(u2
0 − 2u2

1)

)

+ ie−iπ/4
∫
du2

0

(
1

coshπ(u2
0 − 2u1

1) coshπ(u2
0 − 2u2

1)

)
(C.10)

u20→u20+u21+u11= −eiπ/4
∫
du2

0e
−iπ(u20)2

(
eπu

2
0

coshπ(u2
0 − u1

1 + u2
1) coshπ(u2

0 − u2
1 + u1

1)

)

+ ie−iπ/4
∫
du2

0

(
1

coshπ(u2
0 − 2u1

1) coshπ(u2
0 − 2u2

1)

)
, (C.11)

which leads us to (A.10).
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D Generalities on partition functions and superconformal indices on

S3/Zr × S1

In this section we list the rules for deforming a partition function on S3 to the 4d index,

which can be thought of as partition function on S3×S1. The integration variables s(β)(β =

0, 1, 3), s
(β)
i lie in the Cartan subalgebra of the gauge group U(1)3×U(2) corresponding to

the framed affine B3 quiver theory (see figure 4)

In order to write the index, we define corresponding fugacities as z(β) = e2πis(β) ,

z
(2)
i = e2πis

(β)
i . Recall that the superconformal index for a 4d, N = 2 theory on lens space

L(1, r) is defined as

I(p, q, t; zi) = TrS3/Zr

[
(−1)F

(
t

pq

)R′
pj2+j1qj2−j1tRe−β(E−2j2−2R+R′)

∏
i

zfii

]
(D.1)

where the trace is taken over the Hilbert space on S3/Zr, F denotes the fermion number,

j1, j2 the Cartans of the rotation group SU(2)1 × SU(2)2 ∼ SO(4), R the U(1) generator

of SU(2)R R-symmetry and R′ the generator of U(1)R, and fi possible flavor symmetries

(some of which may be gauged).

A crucial difference between the Lens space index and the S3×S1 index is that in the

former case one can turn on non-trivial discrete holonomies along the Hopf fiber of the Lens

space for the gauge (flavor) vector fields — parametrized by integers m
(α)
i (m̃

(κ)
i ) for every

gauge (flavor) node α (κ) where 0 ≤ m
(α)
i < r. For a simply-connected group G (gauge

or flavor), the discrete holonomy V of the vector field may be represented as elements in

the Cartan of the group G: V = diag(e2πim1/r, . . . , e2πimN/r) where N = rank(G). The 4d

index therefore involves a sum over these integers {m(α)
i }.

In terms of indices of N = 2 vector multiplet and hypermultiplet, the index of a quiver

gauge theory with gauge group G =
∏
α U(Nα) and bifundamental and fundamental matter

may be written as

I
(
p,q,t;z̃(α),m̃(α)

)
= (D.2)

=
∑
m(α)

∮
|zi|=1

∏
α

1

Wα(m(α))

Nα∏
i=1

dz
(α)
i

2πiz
(α)
i

I(m
(α))

V (z(α))I(m
(α),m̃(α))

fund (z(α),z̃(α))
∏
(β,γ)

I(m
(β),m(γ))

bifund (z(β),z(γ)).

where {z̃(α), m̃(α)} denote respectively fugacities and discrete holonomies of the flavor node

α in the quiver diagram. The individual factors in the integrand may be identified as

follows:

• I(m(α))
V (z(α)) ≡ index of the vector multiplet corresponding to the α-th gauge node

in the quiver diagram and α runs over all gauge nodes in the quiver.

• I(m(β),m(γ))
bifund (z(β), z(γ)) ≡ index of a bifundamental hyper and (β, γ) runs over all lines

connecting two gauge nodes in the quiver.

• I(m(α),m̃(α))
fund (z(α), z̃(α)) ≡ index of a fundamental hyper at the gauge node α and α

runs over all gauge nodes in the quiver.
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Note that in the above formula we have cancelled the Haar measure of the integral

against a similar factor coming from contributions of the vector multiplets to the index.

Accounting for this overall factor, the explicit form for the vector multiplet index is given

in terms of elliptic gamma function Γ(z; p, q) =
∏∞
i,j≥0

1−pi+1qj+1z−1

1−piqjz and the q-Pochammer

symbol (z; q) =
∏∞
l=0(1− zql) as follows:

I(m(α))
V (z(α)) =

(
(pr; pr)

Γ(t; pq, pr)

qr; qr

Γ(tqr; pq, qr)

)Nα ∏
ρ∈Adj(α)

(pq
t

)− 1
2

([[ρ(m(α))]]− 1
r

[[ρ(m(α))]]2)

× 1

Γ(tp[[ρ(m(α))]]e2πiρ(s(α)); pq, pr)

1

Γ(tqr−[[ρ(m(α))]]e2πiρ(s(α)); pq, pr)

× 1

Γ(p[[ρ(m(α))]]e2πiρ(s(α)); pq, pr)

1

Γ(qr−[[ρ(m(α))]]e2πiρ(s(α)); pq, pr)
. (D.3)

where s
(α)
i lies in the Cartan subalgebra of the gauge group at the node α with z

(α)
i = e2πis

(α)
i

and [[x]] is defined as x = [[x]] modulo r. The product is over all roots of the Lie algebra

of the gauge group. For an Abelian gauge theory, the contribution of the vector multiplet

index is trivial.

The contributions of the bifundamental and fundamental hyper are given as

I(m(β),m(γ))
bifund (z(β),z(γ))=

∏
s=±1

∏
ρ∈Bif (β,γ)

(pq
t

) 1
4

([[sρ(m(β),m(γ))]]− 1
r

[[sρ(m(β),m(γ))]]2)
(D.4)

×
∏
s=±1

Γ(t1/2p[[sρ(m(β),m(γ))]]e2πisρ(s(β),s(γ));pq,pr)Γ(t1/2qr−[[sρ(m(β),m(γ))]]e2πisρ(s(β),s(γ));pq,qr),

I(m(α),m̃(α))
fund (z(α),z̃(α))=

∏
s=±1

∏
ρ∈Bif (α,α)

(pq
t

) 1
4

([[sρ(m(α),m̃(α))]]− 1
r

[[sρ(m(α),m̃(α))]]2)

×
∏
s=±1

Γ(t1/2p[[sρ(m(α),m̃(α))]]e2πisρ(s(α),s̃(α));pq,pr)Γ(t1/2qr−[[sρ(m(α),m̃(α))]]e2πisρ(s(α),s̃(α));pq,qr).

For generic matter in some representation R, the formula for the index is exactly the same

with ρ now being a weight of the representation R.

E Folding

Folding is a standard operation of converting ADE-type Dynkin graphs into other types

of Dynkin graphs [36]. In the context of four dimensional theories of class S folding was

discussed in [37]. Seiberg-Witten theories with Spin(2N − 1) groups were obtained from

Spin(2N) theories in [38] by a similar mechanism which is discussed later in this section.

An example of folding is depicted in figure 5

In physics context folding of Dynkin diagrams has already been discussed in the lit-

erature. In [39] the authors computed Higgs branch Hilbert series for 3d N = 4 quiver

theories, which describe moduli space of instantons of BCFG types, by exploiting the fold-

ing technique in order to obtain non-simply laced quivers from ADE type quivers, for which
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2

1 1

1 1

2

1

1

1

21 1

Figure 5. Folding D4 Dynkin diagram to B3 Dynkin diagram, and then to G2 Dynkin diagram.

the computation was known. Later in [17] it was shown how to compute Coulomb branch

Hilbert series for the moduli space of G-instantons for any simple Lie group G.

Therefore it is not known how to describe both Higgs and Coulomb branches of the

ADHM quiver theories and their mirror duals, e.g. figure 3. Therefore using the results

of [17, 39] and some other developments we can study physics of the non-simply laced quiver

gauge theories (like the left quiver in figure 3) which feature double and triple arrows.9 In

particular we should be able to understand what kind of matter fields correspond to those

multiple arrows on the diagram. Also, by using folding technique, we will be able to realized

those fields via gauging of discrete global symmetries of the original quiver theories. These

problems will be addressed in the future publications, however, in the end of this paper we

shall discuss some ideas which should be further developed.

E.1 Classical analysis

In addition we can analyze the dual theories in figure 2 by studying their parameter spaces

of supersymmetric vacua along the lines of [28]. The quiver gauge theory is studied on a

cylinder R2 × S1
R of radius R in the presence of the N = 2∗ mass deformation parameter

ε. After the mass deformation the Coulomb branch of the theory degenerates into a set of

discrete massive vacua whose position is determined by the twisted F-term relations which

now depend on the N = 2∗ mass η = eRm (see [40] for details). Below we shall analyze the

corresponding twisted F-term relations10 for D̂4 and its folded version B̂3.

It was shown in [28] that both theories in figure 3 can be obtained by gauging and

ungauging global symmetries in the mirror pair represented by two A-type quivers with

framing depicted in figure 6. After gauging a U(1) ⊂ U(2) global symmetry for the theory

on the left one obtains a D̂4-shaped quiver as shown in figure 7. Its mirror is the Sp(1)

9If we include affine and twisted affine series then quadruple arrows may also appear.
10In gauge/integrability correspondence [41] they coincide with Bethe Ansatz equations for an exactly

soluble lattice model.
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1 1 2

4

Figure 6. Mirror dual A3 and A1 quivers with framing.

2

1 1

1 1

m

s s

s s

s 2

21

(2)

(1)

(5) (5)

(4)

Figure 7. D̂4 quiver with labels.

theory with SO(8) global symmetry. For the latter we can write (see [28])

µ2

3∏
i=1

η−1σ − τi
η−1τi − σ

· ησ − η
−1/σ

ησ − η−1/σ
· η
−1σ − τ4

η−1τ4 − σ
= 1 , (E.1)

where we have singled out the contribution from the twisted hypermultiplet with mass τ4

in the last term. It is also required that τ2
1 = 1. The canonical momenta are

p2∨
τ = τ1τ2τ3τ4 , pa∨µ = µ2

2∏
i=1

η−1τa + σi
η−1σi + τa

. (E.2)

Let us focus on the last term in the above equation. We implement the following scaling

τ4 → xτ4 , η̃ → x−1η̃ , x→∞ , (E.3)

where we have substituted η with η̃. Then the last term above becomes

µ2
σ − η̃τ4

τ4 − η̃σ
→ µ2

τ4
(σ − η̃τ4) (E.4)

if in addition we scale µ2 → xµ2.
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For the A model we have

τ4τ3

p2
µ

2∏
i=1

ηµ2 − σ(5)
i

ησ
(5)
i − µ2

= 1 ,
τ4

τ3

2∏
i=1

ησ(4) − σ(5)
i

ησ
(4)
i − σ(3)

= 1 ,

τ3

τ2

2∏
I=1

ησ
(5)
i − σ(I)

ησ(I) − σ(5)
i

∏
j 6=i

η−1σ
(5)
i − ησ

(5)
j

η−1σ
(5)
j − ησ

(5)
i

·
ησ

(5)
i − µ2

ηµ2 − σ(5)
i

ησ
(5)
i − σ(4)

ησ(4) − σ(5)
i

= 1 . (E.5)

together with the momenta

p4
τ = µ2σ

(4) , p3
τ = µ2

σ
(5)
1 σ

(5)
2

σ(4)
, (E.6)

as well as p1
µ = τ2

3 as is required by gauging. Now we need to implement scaling (E.3)

together with µ2 →∞ as before using η̃ instead of η for the σ(4) node. One has from (E.5)

τ4τ3

p2
µ

2∏
i=1

η̃µ2 − σ(5)
i

−µ2
= 1 ,

τ4

τ3

2∏
i=1

η̃σ(4) − σ(5)
i

−σ(4)
= 1 ,

τ3

τ2

2∏
I=1

ησ
(5)
i − σ(I)

ησ(I) − σ(5)
i

∏
j 6=i

η−1σ
(5)
i − ησ

(5)
j

η−1σ
(5)
j − ησ

(5)
i

· −xµ2

η̃µ2 − σ(5)
i

−xσ(4)

η̃σ(4) − σ(5)
i

= 1 . (E.7)

We have implemented some additional scaling

σ(4) → xσ(4) (E.8)

Finally we gauge the remaining global U(1) by setting similar to [28]

τ4τ3

p2
µ

=
τ4

τ3
, (E.9)

so the first and the second equations of (E.7) become the same and one identifies µ2 = σ(4).

Therefore the Bethe equation for the middle node reads

τ3

τ2

2∏
I=1

ησ
(5)
i − σ(I)

ησ(I) − σ(5)
i

∏
j 6=i

η−1σ
(5)
i − ησ

(5)
j

η−1σ
(5)
j − ησ

(5)
i

·

(
σ(4)

η̃σ(4) − σ(5)
i

)2

= 1 . (E.10)

We can recognize the contribution from the double arrow in the last term which is a square

of a rational function. One can clearly see that this contribution cannot be reproduced by

integrating out any (bi)fundamental matter, thus it represents a new contribution, which

is certainly non-Lagrangian.

E.2 Chern-Simons terms for the ADHM quiver

In the example in section 1 we compared dimensions of Higgs and Coulomb branches of the

ADHM quivers with SO(8) and SO(7) global symmetry. Here we shall remind the reader

that if one integrates out a single half-hypermultiplet (e.g. to arrive to SO(7) flavor group

starting from SO(8)) the Chern-Simons term with level 1/2 gets generated.
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Let us start with the partition function of 3d N = 4 SU(2) gauge theory with SO(8)

symmetry on a squashed three-sphere [42] with squashing parameter b

ZS3
b

= −8

∫
ds sinh(2πib±s)S(ε+ 2s) ·

4∏
a=1

S
(ε

2
± (±s−ma)

)
, (E.11)

where the integration is performed along the real s line. The integrand consists of the vector

multiplet contribution followed by the product of eight half-hypers. Here 2ε = b+ b−1 and

± signs in the integrand show that the product is taken over all possible sign choices. Thus

there are sixteen S(z) functions overall in the half-hyper contribution.

In order to reduce the global symmetry to SO(7) we can gauge discrete Z2 symmetry

from the Weyl group of SO(8) by integrating out one of the eight half-hypers. There are

four terms involving m4 in (E.11). Gauging of Z2 symmetry will consist from two steps.

First we break the Z2 symmetry by introducing a new mass parameter for two of the above

four terms

S
(ε

2
± (s−m4)

)
S
(ε

2
± (−s− m̃4)

)
. (E.12)

Second, we integrate over m̃4. Recall that at large values of the argument the double sine

function has the following behavior

S(z) ∼ e
πi
2
B2,2(z) , (E.13)

where B2,2(z) = z2 + εz + b2+b−2+3
6 . The latter constant will not be important for our

analysis. Given the above asymptotic we have

S
(ε

2
± (−s− m̃4)

)
∼ e

iπ
4 (4(m̃4)2+4s2+ε2) (E.14)

A trivial Gaussian integration gives the desired SU(2) Chern-Simons term with level κ =

1/2

ZCS ∼ eiπs
2
. (E.15)

F Hilbert series

F.1 Coulomb branch Hilbert series

We can use the Coulomb branch monopole formula [17] to write the Hilbert series for the

D̂4 quiver in figure 7 and study the folding trick. On the mirror side we may use the Higgs

branch formula to understand how the global SO(8) symmetry is reduced down to SO(7).

Let us first look at the Coulomb branch of the D̂4. Scaling dimensions of monopole

operators of quiver from figure 7 read

2∆8 =
3∑
i=1

∑
j=5,6

|mi −mj | − 2|m5 −m6| . (F.1)

After the folding is done we need to identify two nodes, in this case they are nodes 3 and

4 we identify

m3 →
m3

2
m4 →

m3

2
. (F.2)
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The monopole formula then reads

2∆7 =
2∑
i=1

∑
j=5,6

|mi −mj |+
∑
j=5,6

|m3 − 2mj | − 2|m5 −m6| . (F.3)

The Coulomb branch Hilbert series for the D̂4 quiver reads [14]

H(t, z1, z2, z3, z4) =
∑

m1,...,m6

t∆8P (t,m1, . . .m6)zm1
1 zm5+m6

2 zm3
3 zm4

4 , (F.4)

where ∆8 is given by (F.1). The Hilbert series can be thought of as a sum over the root

lattice of the Lie algebra weighted by the scaling dimension of the monopole operators ∆.

The contribution with the lowest value ∆ = 1 contains the following terms

z1, z2, z3, z4, z1z2, z3z2, z4z2, z1z2z3, z1z2z4, z4z2z3, z1z2z3z4, z1z
2
2z3z4 , (F.5)

which correspond to twelve simple roots of SO(8). We can manifestly see the SO(8) triality

which interchanges z1, z2 and z3.

Let us now apply the folding trick to the D̂4 quiver, namely we apply (F.2) together

with identifying z4 with z3. Then the above nine terms at ∆ = 1 become

z1, z2, z3, z1z2, z3z2, z1z2z3, z2z
2
3 , z1z2z

2
3 , z1z

2
2z

2
3 , (F.6)

which correspond to nine simple roots of SO(7). Therefore we were able to verify the

validity of the monopole formula (F.3) by folding.

F.2 Higgs branch Hilbert series

On the mirror side we have Sp(1) gauge theory with eight half-hypers. In order to un-

derstand the transition from SO(8) global symmetry to SO(7) global symmetry one half-

hypermultiplet has to be removed which can be implemented by giving it a large mass. Let

us verify that the number of the degrees of freedom after integrating out the half-hyper

provides the correct matching with the Coulomb branch data given in (F.6). The global

symmetry for the SO(8) theory is parameterized by the 8× 8 antisymmetric matrix whose

28 nonzero components decompose as 28 = 4+12+12 in terms of Cartan subalgebra gener-

ators, positive roots, and negative roots respectively. Indeed, (F.5) contains 12 terms cor-

responding to the positive roots of D4. After integrating out the half-hypermultiplet the 21

components of the 7×7 matrix decompose as 21 = 3+9+9, again, in accordance with (F.6).

Open Access. This article is distributed under the terms of the Creative Commons
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