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1 Introduction

Two dimensional conformal field theory (CFT) [1] is relevant in statistical physics while

studying second order phase transitions, and it is also an important building block in String

theory [2]. An important example of CFT is Liouville field theory (LFT) [3] which is a

bosonic field theory with exponential interaction. This theory is endowed with the spin two

conserved currents that are the holomorphic and anti-holomorphic components of the stress

energy tensor. The Fourier components of these currents obey the Virasoro algebra. There
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are more general CFTs which in addition to the spin two currents include also conserved

currents with higher spins [4]. The corresponding symmetry algebra is called W algebra.

Important examples of theories that enjoy W symmetry are Toda field theories. These

theories generalize LFT to the case of several interacting scalar fields.

As a first step on the way of constructing a full fledged quantum theory it is instruc-

tive to investigate its quasi classical limit. In both Liouville and Toda theories one can

distinguish three types of quasi classical limits. These are mini-superspace, heavy and light

limits. All three are the large central charge limits. They differ from each other by the

behavior of primary fields under consideration. The primary fields are given by the vertex

operators Vα = eiαφ. In the light limit we choose α = ηb and send b to zero. Thus we take

the large central charge limit keeping the conformal dimension finite.

The AGT correspondence [5] connects 2d conformal blocks in LFT to the Nekrasov

Partition Function [6–8] of the four-dimensional N = 2 supersymmetric gauge theories.

The AGT correspondence is a powerful tool not only for deriving correlation functions in

2d CFTs but also for studying gauge theories by applying CFT methods. The Nekrasov

partition function can be represented as a sum over Young diagrams [6, 8, 9] which ac-

cording to the AGT correspondence can be used to compute conformal blocks in 2d LFT.

In [10] the U(N) Nekrasov partition function in the light asymptotic limit was considered.

It was proved that in this limit for a specific choice of fields in the Nekrasov partition

function contribute only Young diagrams whose number of rows does not exceed (N − 1).

This simplification makes it possible to write an explicit formula for the partition function

in this limit. After applying AGT duality a large class of WN light conformal blocks for

arbitrary N ’s has been obtained.

N = 1 super Liouville field theory (SLFT) [11] is an important example of N = 1

super conformal field theory (SCFT) [12–15]. In [16, 17] an AGT like correspondence

between the N = 1 SLFT and the U(2) super-symmetric gauge theories living on the

space R4/Z2 is given.

Besides the spin two conserved currents (energy-momentum tensor) SLFT includes also

spin 3/2 currents (the super-currents). These currents generate super conformal symmetry

which in 2d is described by the Neveu-Schwarz-Ramond algebra [12, 14, 15]. If upon

encircling a field by the super-current an extra multiplier −1 is produced, one refers to this

field as a Ramond field. Those fields which are local with respect to the super current are

called Neveu-Schwarz fields.

In this paper different N = 1 SLFT blocks in the light limit are derived by using the

above mentioned duality between super Yang-Mills theory and 2d SCFT. We obtained

that in the case of SLFT the analysis of the light limit is more subtle and complicated

compare to the bosonic Lioville theory. In particular we found that in the light limit to

the conformal blocks contribute not only one row diagrams. For instance the instanton

partition functions that correspond to the conformal blocks with four Ramond fields also

get contribution from the diagrams, like those in figures (3(b)) and (3(c)) below.

The paper is organized as follows. In section 2 the expression for the instanton partition

functions of N = 2 SYM on R4/Z2 [19, 20] is reviewed. In section 3 we bring known facts

for N = 1 SLFT and its light asymptotic limit that will be useful for us. In subsection 4.1
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the map between N = 1 super Liouville conformal blocks and N = 2 SYM on R4/Z2 is

given. In subsection 4.2 the rules for the light asymptotic limit are written. In section 5 we

present new results on various partition function in the light limit. In section 6 by using

these partition functions we give the corresponding conformal blocks in the light limit.

In appendix B some technical points on the instanton partition function of SU(2) gauge

theories on R4/Z2 are reviewed. In appendix C we proved that in the light limit to the

instanton partition function contribute only the Young diagrams depicted at figure 3 and,

in appendix D computations of these partition functions in the light limit are given.

2 The partition functions of N = 2 SYM on R4/Z2

Let us consider N = 2 SYM theory with a U(2) gauge group on the space R4/Z2. The

instanton part of the partition function for this theory can be represented as (see [19, 20])

Z
(q1,q2)
(u1,u2),(v1,v2)(~a

(0),~a(1),~a(2)|q) =
∑
{~Y ~q}

F
(q1,q2)

~Y (u1,u2),(v1,v2)

(
~a(0),~a(1),~a(2)

)
q
|~Y |
2 . (2.1)

The sum goes over the pairs of Young diagrams ~Y ~q = (Y q1
1 , Y q2

2 ) colored in chess like order.

To each diagram one ascribes a Z2 charge qi, i = 1, 2 which indicates the color of the corner

and takes values 0 or 1 (white or black correspondingly). |~Y | is the total number of boxes

in Y1 and Y2, and q is the instanton counting parameter. Let us clarify our conventions

on gauge theory parameters a
(0,1,2)
i , i = 1, 2. The parameters a

(1)
i are expectation values

of the scalar field in vector multiplet. Without loss of generality we will assume that the

“center of mass” of these expectation values is zero

ā(1) =
1

2

(
a

(1)
1 + a

(1)
2

)
= 0 , (2.2)

since a nonzero center of mass can be absorbed by shifting hypermultiplet masses. Fur-

thermore a
(0)
i (a

(2)
i ) are the masses of fundamental (anti-fundamental) hypers.

The expansion coefficient of the instanton partition function (2.1) is given by

F
(q1,q2)

~Y (u1,u2),(v1,v2)

(
~a(0),~a(1),~a(2)

)
=

2∏
i=1

2∏
j=1

Zbf (ui, a
(0)
i ,∅ | qj , a(1)

j , Yj)Zbf (qi, a
(1)
i , Yi | vj , a(2)

j ,∅)

Zbf (qi, a
(1)
i , Yi | qj , a(1)

j , Yj)
, (2.3)

where

Zbf (x, a, λ | y, b, µ) = (2.4)∏
s∈λ∗

(
a− b− ε1Lµ(s) + ε2(1 +Aλ(s))

) ∏
s∈µ∗

(
a− b+ ε1(1 + Lλ(s))− ε2Aµ(s)

)
.

Here ε1 and ε2 are the Ω-background parameters. We will use the notation ε = ε1 + ε2.

Aλ(s) (Lλ(s)) is the arm-length (leg-length) of the square s towards the Young diagram λ,

defined as oriented vertical (horizontal) distance of the square s to outer boundary of the
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s1

s3

s2

Figure 1. Arm and leg length with respect to the Young diagram whose borders are outlined by

dark black: A(s1) = −2, L(s1) = −2, A(s2) = 2, L(s2) = 3, A(s3) = −3, L(s3) = −4.

Young tableau λ (see figure 1). λ∗, µ∗ are subsets of boxes λ and µ respectively such that,

a box of λ (µ) belongs to λ∗ (µ∗) if and only if the replacement

ε1, ε2 → 1; a→ x; b→ y (i = 1, 2) (2.5)

in the first (second) multiplier of (2.4) results in 0 (mod 2) (remind that ui and vi (i = 1, 2)

take values 0 or 1). For more details see appendix B.

According to the duality between N = 2 SYM on R4/Z2 and N = 1 SLFT these

partition functions are directly related to four point conformal blocks in N = 1 SLFT.

Before describing this relation let us briefly recall few facts about N = 1 SLFT itself.

3 Known facts on N = 1 SLFT and its light asymptotic limit

Super-Liouville field theory is a supersymmetric generalization of the bosonic Liouville the-

ory, which is known to be the theory of matter induced gravity in two dimensions. Similarly

SLFT describes 2d supergravity, induced by supersymmetric matter. Super-Liouville field

theory on a two-dimensional surface with metric gab is given by the Lagrangian density

L =
1

2π
gab∂aϕ∂bϕ+

1

2π
(ψ∂̄ψ + ψ̄∂ψ̄) + 2iµb2ψ̄ψebϕ + 2πµ2b2e2bϕ . (3.1)

There are two kinds of fields in 2d N = 1 SLFT called Neveu-Schwarz and Ramond fields to

be specified below. The symmetries of the theory are generated by the energy-momentum

tensor and the superconformal currents

T = −1

2
(∂ϕ∂ϕ−Q∂2ϕ+ ψ∂ψ) , (3.2)

G = i(ψ∂ϕ−Q∂ψ) . (3.3)

Commutation relation of the Neveu-Schwarz-Ramond algebra are

[Lm, Ln] = (m− n)Lm+n +
c

12
m(m2 − 1)δm+n , (3.4)

[Lm, Gk] =
m− 2k

2
Gm+k , (3.5)

{Gk, Gl} = 2Ll+k +
c

3

(
k2 − 1

4

)
δk+l , (3.6)
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with the central charge

cL =
3

2
+ 3Q2 , where Q = b+ b−1 . (3.7)

Here Lm and Gk are the Laurent series coefficients of the currents T and G respectively.

For the Ramond algebra k and l take integer and for the Neveu-Schwarz algebra half-

integer values.

It is known that in the Neveu-Schwarz sector at the light asymptotic limit the symmetry

algebra reduces to the finite subalgebra generated by L0 , L±1 , G±1/2 only. Notice that for

this subalgebra the central extension terms in (3.4) and (3.6) disappear. For the mentioned

values of m and l (3.4)–(3.6) is obviously closed. For the Ramond sector its light asymptotic

limit is more subtle and needs to be clarified yet.

NS primary fields Φα(z, z̄) in this theory, Φα(z, z̄) = eαϕ(z,z̄), have conformal

dimensions

∆NS
α =

1

2
α(Q− α) . (3.8)

Introduce also the field that is the highest component of the NS superfield build from Φα

Φα̃(z, z̄) = G−1/2Ḡ−1/2Φα(z, z̄) , (3.9)

with dimension

∆̃NS
α = ∆NS

α + 1/2 , (3.10)

and as well as the Ramond primary fields defined as

R±α (z, z̄) = σ±(z, z̄)eαϕ(z,z̄) (3.11)

where σ± is the spin field with dimension 1/16. Thus the dimension of a Ramond operator is

∆R
α =

1

16
+

1

2
α(Q− α) . (3.12)

4 N = 1 super Liouville conformal blocks and their relation to the N = 2

SYM on R4/Z2

Let us schematically denote by 〈Ψ1(∞)Ψ2(1)Ψ3(q)Ψ4(0)〉∆Ψ conformal block of Ψi, i =

1 . . . 4, fields with intermediary field Ψ of conformal weight ∆Ψ.

Four point blocks where all four fields are bosonic primaries Φi with conformal weights

∆αi are connected with the Zinst partition function in the following way (see [17])

♦Z
(0,0)
(0,0),(0,0) = q∆NS

1 +∆NS
2 −∆NS

(1− q)U 〈Φ4(∞)Φ3(1)Φ1(q)Φ2(0)〉∆NS (4.1)

and for ∆̃ = ∆ + 1
2

�Z
(1,1)
(0,0),(0,0) =

q∆NS
1 +∆NS

2 −∆̃NS

2
(1− q)U 〈Φ4(∞)Φ3(1)Φ1(q)Φ2(0)〉∆̃NS . (4.2)
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The index ♦ shows that the number of black and white boxes (the number of boxes in

both diagrams together) are equal and the index � show the number differ by one. In the

expressions (4.1) and (4.2) U is given by

U = α2 (Q− α3) . (4.3)

We will see that in the light asymptotic limit U is just one. So in this limit the corresponding

partiton function gives the four point conformal block for bosonic fields.

Let us look at the 〈RΦΦR〉 type conformal block. According to [16] this conformal

blocks are connected to the instanton partition function in the following way

♦Z
(0,1)
(0,0),(0,0) = q∆R

3 +∆NS
4 −∆R

(1− q)(U− 3
8

+∆1−∆2−∆3+∆4)〈R+
2 (∞)Φ1(1)Φ4(q)R+

3 (0)〉∆R .(4.4)

Now let us look at the 〈RRRR〉 conformal blocks [16]. For the partition functions with

equal numbers of black and white cells

♦Z
(0,0)
(1,0),(1,0)(q) = (1− q)U

(
Gsl(2)(q)H−(q) + G̃sl(2)(q)H̃−(q)

)
, (4.5)

♦Z
(0,0)
(0,1),(0,1)(q) = (1− q)U

(
Gsl(2)(q)H+(q) + G̃sl(2)(q)H̃+(q)

)
, (4.6)

♦Z
(0,0)
(1,0),(0,1)(q) = (1− q)U

(
Gsl(2)(q)F−(q) + G̃sl(2)(q)F̃−(−q)

)
, (4.7)

♦Z
(0,0)
(0,1),(1,0)(q) = (1− q)U

(
Gsl(2)(q)F+(q) + G̃sl(2)(q)F̃+(−q)

)
. (4.8)

For the partition functions whose numbers of black and white boxes differ by one

�Z
(1,1)
(1,0),(1,0)(q) = (1− q)U

(
G̃sl(2)(q)H+(q) +Gsl(2)(q)H̃+(q)

)
, (4.9)

�Z
(1,1)
(0,1),(0,1)(q) = (1− q)U

(
G̃sl(2)(q)H−(q) +Gsl(2)(q)H̃−(q)

)
, (4.10)

�Z
(1,1)
(1,0),(0,1)(q) = (1− q)U

(
G̃sl(2)(q)F+(q) +Gsl(2)(q)F̃+(−q)

)
, (4.11)

�Z
(1,1)
(0,1),(1,0)(q) = (1− q)U

(
G̃sl(2)(q)F−(q) +Gsl(2)(q)F̃−(−q)

)
. (4.12)

Here H±, F±, H̃± and F̃± are related to the conformal blocks containing four Ramond

fields, for their definition see appendix A. G(q) and G̃(q) are certain conformal blocks of

the ˆsu(2)2 WZW model, which are given by

G(q) = (1− q)−
3
8

√
1

2

(
1 +

√
1− q

)
, (4.13)

G̃(q) = (1− q)−
3
8

√
1

2

(
1−

√
1− q

)
. (4.14)

Below is given the map that connects the gauge parameters of the instanton partition

functions for N = 2 SYM on R4/Z2 to the primary fields in the N = 1 SLFT confor-

mal blocks.

– 6 –
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SU(2)

a
(1)
1,2

a
(0)
1,2 a

(2)
1,2

⇐⇒

±α

±α2

±α1

±α3

±α4

∞

1 q

0

Figure 2. On the left: the quiver diagram for the conformal SU(2) gauge theory. On the right:

the diagram of the conformal block for the dual N = 1 SLFT .

4.1 The map relating partition functions to conformal blocks

First of all, the instanton counting parameter q gets identified with the cross ratio of inser-

tion points, as already anticipated in formulas (4.5)–(4.12), for CFT block. The Liouville

parameter b is related to the Ω-background parameters via

b =

√
ε1
ε2
. (4.15)

The map between the gauge parameters (2.1) and conformal block parameters can be es-

tablished from the following rules (see figure 2). First define the rescaled gauge parameters

A
(0)
i =

a
(0)
i√
ε1ε2

; A
(1)
i =

a
(1)
i√
ε1ε2

; A
(2)
i =

a
(2)
i√
ε1ε2

, (4.16)

where i = 1, 2.

Then

• The differences between the “centers of masses” of the successive rescaled gauge

parameters (4.16) give the charges of the “vertical” entries of the conformal block:

Ā(1) − Ā(0) = α2 ; Ā(2) − Ā(1) = α3 . (4.17)

• The rescaled gauge parameters with the subtracted centers of masses give the mo-

menta of the “horizontal” entries of the conformal block:

A
(0)
i − Ā

(0) = (−)i+1

(
α1 −

Q

2

)
; (4.18)

A
(1)
i − Ā

(1) = (−)i+1

(
α− Q

2

)
;

A
(2)
i − Ā

(2) = (−)i+1

(
α4 −

Q

2

)
.

Using (2.2) and (4.16)–(4.18) we obtain the relation between the gauge and conformal

– 7 –



J
H
E
P
0
9
(
2
0
1
7
)
0
6
2

(a)

,

(b)

,

(c)

Figure 3. The possible nonempty Young diagrams.

parameters:

a
(0)
i√
ε1ε2

= (−)i+1

(
α1 −

Q

2

)
− α2 ;

a
(1)
i√
ε1ε2

= (−)i+1

(
α− Q

2

)
; (4.19)

a
(2)
i√
ε1ε2

= (−)i+1

(
α4 −

Q

2

)
+ α3 .

4.2 Light asymptotic limit of the gauge parameters

In this paper we are interested in so called “light” asymptotic limit i.e. the central charge

is sent to infinity (i.e. b → 0) while keeping the dimensions finite. It follows from (3.8)

and (3.12) that to reach this limit one can simply put

α = bη; αl = bηl; where l = 1; 2; 4, (4.20)

by keeping all the parameters η finite. If we exchange α with Q−α the conformal dimension

remains the same (see (3.8) and (3.12)), so for α3 we can take as its light asymptotic limit

Q− α3 = bη3 (4.21)

By taking the limit in this way we get rid of the U(1) factor defined in (4.3). Us-

ing (4.20), (4.21) we can rewrite the AGT map (4.19) as

a
(0)
i = (−)i+1

(
ε1η1 −

ε

2

)
− ε1η2 (4.22)

a
(1)
i = (−)i+1

(
ε1η −

ε

2

)
; (4.23)

a
(2)
i = (−)i+1

(
ε1η4 −

ε

2

)
+ ε− ε1η3 . (4.24)

5 Partition function in the light asymptotic limit

We have shown in appendix C that for the light asymptotic limit only a restricted set of

Young diagrams contributes to the instanton partition function. This set varies depending

on the charges and the differences of black and white cells of the related Young diagrams.

Below are given all pairs of Y1 and Y2 for which the coefficient of the instanton expan-

sion (2.1) is non zero in the light limit. In order to compute these coefficients for a given

pair of diagrams Y1 and Y2 one makes use of (2.3), (2.4), (4.22)–(4.24) and then goes to

the light limit ε1 → 0. The results are given below (detailed calculation for some of the

coefficients can be found in appendix D).

– 8 –
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5.1 Partition functions corresponding to conformal blocks with four Neveu-

Schwarz fields

The expansion coefficient ♦F
(0,0)
(0,0),(0,0) does not vanish in the light asymptotic limit if Y2 is

a empty Young diagram and Y1 (see figure 3(a)) has only one row with 2k boxes, where k

can be zero or any positive integer. It is equal to

♦
LF

(0,0)
(0,0),(0,0) =

(
1
2 (η − η4 + η3)

)
k

(
1
2 (η − η1 + η2)

)
k

k! (η)k
. (5.1)

For more details see appendix D. Inserting (5.1) in (2.1), we derive

♦
LZ

(0,0)
(0,0),(0,0)(q) = 2F1 (A,B; η; q) . (5.2)

Here A and B are

A =
1

2
(η − η1 + η2) and B =

1

2
(η − η4 + η3) , (5.3)

and 2F1(a, b; c;x) is the hypergeometric function. It has the series expansion

2F1(a, b; c;x) =
∞∑
k=0

(a)k(b)k
k!(c)k

xk , where (u)k = u(u+ 1) . . . (u+ k − 1) . (5.4)

In the case of �F
(1,1)
(0,0),(0,0) for some set of pairs Y1, Y2 one gets large coefficients of order

1
ε1

. Thus one should take into account these pairs and neglect those pairs whose contri-

butions are of order O(1) or bigger. An analyses quite similar to the one presented in the

appendix C, shows that Y2 should be an empty and Y1 must have a single row with 2k+ 1

boxes (see figure 3(a)).Their contribution is

�
LF

(1,1)
(0,0),(0,0) =

1

ε1ε2

(
1
2 (η − η4 + η3 + 1)

)
k

(
1
2 (η − η1 + η2 + 1)

)
k

2 k! (η)k+1

. (5.5)

After inserting it in (2.1), we will get

�
LZ

(1,1)
(0,0),(0,0)(q) =

1

ε1ε2

√
q

2η
2F1

(
A+

1

2
, B +

1

2
; η + 1; q

)
. (5.6)

5.2 Partition function corresponding to the conformal block with two Neveu-

Schwarz and two Ramond fields

The coefficients of ♦Z
(1,0)
(0,0),(0,0) do not vanish in the light limit if Y2 is empty and Y1 (see

figure 3(a)) is a diagram with only one row with 2k boxes. Their contributions are

♦
LF

(1,0)
(0,0),(0,0) =

(
1
2 (η − η4 + η3 + 1)

)
k

(
1
2 (η − η1 + η2 + 1)

)
k

k!
(
η + 1

2

)
k

. (5.7)

The corresponding partition function is

♦
LZ

(1,0)
(0,0),(0,0)(q) = 2F1

(
A+

1

2
, B +

1

2
; η +

1

2
; q

)
. (5.8)

The case of ♦Z
(0,1)
(0,0),(0,0) is more subtle. Its coefficient do not vanish if Y1 (see figure 3(a))

is a one row diagram with 2k boxes and Y2 (see figure 3(b)) is a one column diagram with

2m boxes. Here one should consider the cases m = 0 ans m 6= 0 separately:
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• when m = 0

♦
LF

(0,1)
(0,0),(0,0) =

(
1
2

(
η − η(4) + η(3)

))
k

(
1
2

(
η − η(1) + η(2)

))
k

k!
(
η + 1

2

)
k

; (5.9)

• when m 6= 0

♦
LF

(0,1)
(0,0),(0,0) =

1

2m+ 1

(
1
2

(
η − η(4) + η(3)

))
k

(
1
2

(
η − η(1) + η(2)

))
k

k!
(
η − 1

2

)
k

. (5.10)

The corresponding instanton partition function is

♦
LZ

(0,1)
(0,0),(0,0)(q) = 2F1

(
A,B; η +

1

2
; q

)
+

tanh−1
(√
q
)

√
q

2F1

(
A,B; η − 1

2
; q

)
. (5.11)

5.3 Partition functions corresponding to conformal blokes with four Ramond

fields

♦F
(0,0)
(0,1),(0,1) differs from zero in the light asymptotic limit if Y2 (see figure 3(b)) is a single

column diagram with 2m boxes, and Y1 (see figure 3(a)) a single row diagram with 2k

boxes, where m and k can be zero or any positive integer. Their contribution is

♦
LF

(0,0)
(0,1),(0,1) =

(
(1/2)m
m!

)2
(

1
2 (η − η4 + η3)

)
k

(
1
2 (η − η1 + η2)

)
k

k! (η)k
. (5.12)

Its instanton partition function is

♦
LZ

(0,0)
(0,1),(0,1)(q) =

2

π
K(q) 2F1 (A,B; η; q) . (5.13)

K(x) and E(x) are complete elliptic integrals of the first and second kind correspondingly.

They can be expressed in terms of the Gauss hypergeometric function, as

K(x) =
π

2
2F1

(
1

2
,

1

2
; 1;x

)
and E(x) =

π

2
2F1

(
1

2
,−1

2
; 1;x

)
(5.14)

In the case of ♦F
(0,0)
(1,0),(1,0) for pairs of Young diagrams Y2, Y1, with Y2 empty and Y1 (see

figure 3(c)) possessing one column with 2m boxes and other 2k columns with only one box,

one gets large coefficients of order 1
ε1

in the light limit. In total Y1 consists of 2m + 2k

boxes. These pairs give the main contribution. These terms are

♦
LF

(0,0)
(1,0),(1,0) =

ε2
ε1

(
1
2

)
m

(
−1

2

)
m

(m− 1)!m!

(
1
2 (η − η4 + η3 + 1)

)
k

(
1
2 (η − η1 + η2 + 1)

)
k

k!η (η + 1)k
. (5.15)

Its partition function is given by

♦
LZ

(0,0)
(1,0),(1,0)(q) =

ε2
ε1

(E(q)−K(q))

πη
2F1

(
A+

1

2
, B +

1

2
; η + 1; q

)
. (5.16)
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♦
LF

(0,0)
(0,1),(1,0) differs from zero if Y2 is empty and Y1 is a one row diagram (see figure 3(a))

with 2k boxes. Their contribution is

♦
LF

(0,0)
(0,1),(1,0) =

(
1
2 (η − η4 + η3 + 1)

)
k

(
1
2 (η − η1 + η2)

)
k

k! (η)k
. (5.17)

Its instanton partition function is given by

♦
LZ

(0,0)
(0,1),(1,0)(q) = 2F1

(
A,B +

1

2
; η; q

)
. (5.18)

♦
LF

(0,0)
(1,0),(0,1) is not zero if Y2 is empty and Y1 (see figure 3(a)) is a one row diagram with

2k boxes. Their contribution is

♦
LF

(0,0)
(1,0),(0,1) =

(
1
2 (η − η1 + η2 + 1)

)
k

(
1
2 (η − η4 + η3)

)
k

k! (η)k
. (5.19)

Its partition function is given by

♦
LZ

(0,0)
(1,0),(0,1)(q) = 2F1

(
A+

1

2
, B; η; q

)
. (5.20)

In the case of �F
(1,1)
(0,1),(0,1) for some set of pairs Y1, Y2 one gets large coefficients of order 1

ε1
in

the light limit. These coefficients will give the main contribution in the partition function.

These terms are obtained when Y2 is empty and Y1 (see figure 3(c)) has one column with

2m + 1 boxes and 2k columns with only one box, the total number of boxes is equal to

2m+ 2k + 1. They are given by

�
LF

(1,1)
(0,1),(0,1) =

ε2
ε1

((
1
2

)
m

m!

)2 (1
2 (η − η4 + η3 + 1)

)
k

(
1
2 (η − η1 + η2 + 1)

)
k

−2ηk! (η + 1)k
. (5.21)

For its partition function, we receive

�
LZ

(1,1)
(0,1),(0,1)(q) = −ε2

ε1

√
q

πη
K(q) 2F1

(
A+

1

2
, B +

1

2
; η + 1; q

)
. (5.22)

�
LF

(1,1)
(1,0),(1,0) differs from zero if Y2 is a one column diagram (see figure 3(b)) with 2m+1

boxes and Y1 is a one row diagram (see figure 3(a)) with 2k boxes. Their contribution is

�
LF

(1,1)
(1,0),(1,0) =

1

(2 + 2m)(1 + 2m)

((
3
2

)
m

m!

)2 (1
2 (η − η4 + η3)

)
k

(
1
2 (η − η1 + η2)

)
k

k! (η)k
. (5.23)

For the corresponding instanton partition function, we will get

�
LZ

(1,1)
(1,0),(1,0)(q) = −2(E(q)−K(q))

π
√
q

2F1 (A,B; η; q) . (5.24)
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Both �
LF

(1,1)
(1,0),(0,1) and �

LF
(1,1)
(0,1),(1,0) do not vanish if Y2 is empty and Y1 (see figure 3(a))

is a one row diagram with 2k + 1 boxes. Their contributions are

�
LF

(1,1)
(0,1),(1,0) =

(
1
2 (η − η1 + η2 + 1)

)
k

(
1
2 (η − η4 + η3)

)
k+1

k! (η)k
, (5.25)

�
LF

(1,1)
(1,0),(0,1) =

(
1
2 (η − η1 + η2)

)
k+1

(
1
2 (η − η4 + η3 + 1)

)
k

k! (η)k
. (5.26)

Their partition functions are

�
LZ

(1,1)
(0,1),(1,0)(q) =

B

η

√
q 2F1

(
A+

1

2
, B + 1; η + 1; q

)
. (5.27)

�
LZ

(1,1)
(1,0),(0,1)(q) =

A

η

√
q 2F1

(
A+ 1, B +

1

2
; η + 1; q

)
. (5.28)

6 Conformal blocks for N = 1 SLFT in the light asymptotic limit

Applying (5.2) and (5.6) to (4.1) and (4.2) we will get the conformal blocks with all four

fields being NS in the light limit:

〈Φ4(∞)Φ3(1)Φ1(q)Φ2(0)〉L∆NS = q
1
2

(η−η(2)−η(1))
2F1 (A,B; η; q) , (6.1)

〈Φ4(∞)Φ3(1)Φ1(q)Φ2(0)〉L
∆̃NS =

q
1
2

(1+η−η(2)−η(1))

η
2F1

(
A+

1

2
, B +

1

2
; η + 1; q

)
. (6.2)

These results are in agreement with [21].

By applying (5.11) for (4.4) we get the conformal blocks with two R fields and two

NS fields

〈R+
2 (∞)Φ1(1)Φ4(q)R+

3 (0)〉L∆R = q
1
2

(η−η(3)−η(4))(1− q)−
1
2

(η(1)−η(2)−η(3)+η(4)−1) (6.3)

×

(
2F1

(
A,B; η +

1

2
; q

)
+

tanh−1
(√
q
)

√
q

2F1

(
A,B; η − 1

2
; q

))
,

where the intermediate field is a Ramond field.

As it was already mentioned the conformal blocks with four R fields are expressed in

terms of H±, H̃±, F±, F̃±. Their connection to the instanton partition is given in (4.5)–

(4.12). Applying (5.13)–(5.28), we can derive them (see appendix (E.1)–(E.8)). Their
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expressions get slightly simplified when one takes q = sin2(t) with t ∈
(
0 , π2

)
.

HL
−(sin2(t)) = ε2

ε1

cos( t
2)(E(sin2(t))−cos(t)K(sin2(t))) 2F1(A+ 1

2
,B+ 1

2
;η+1;sin2(t))

πη 4
√

cos(t)
, (6.4)

H̃L
−(sin2(t)) = − ε2

ε1

sin(t)(cos(t)K(sin2(t))+E(sin2(t))) 2F1(A+ 1
2
,B+ 1

2
;η+1;sin2(t))

√
2πη 4
√

cos(t)
√

cos(t)+1
, (6.5)

HL
+(sin2(t)) =

sec( t
2)(cos(t)K(sin2(t))+E(sin2(t))) 2F1(A,B;η;sin2(t))

π 4
√

cos(t)
, (6.6)

H̃L
+(sin2(t)) =

csc( t
2)(cos(t)K(sin2(t))−E(sin2(t))) 2F1(A,B;η;sin2(t))

π 4
√

cos(t)
, (6.7)

FL+(sin2(t)) =
sec( t

2)(η(cos(t)+1) 2F1(A,B+ 1
2

;η;sin2(t))−A sin2(t) 2F1(A+1,B+ 1
2

;η+1;sin2(t)))
2η 4
√

cos(t)
, (6.8)

FL−(sin2(t)) =
sec( t

2)(η(cos(t)+1) 2F1(A+ 1
2
,B;η;sin2(t))−B sin2(t) 2F1(A+ 1

2
,B+1;η+1;sin2(t)))

2η 4
√

cos(t)
, (6.9)

F̃L+(− sin2(t)) =
sin(t)(A(cos(t)+1) 2F1(A+1,B+ 1

2
;η+1;sin2(t))−η 2F1(A,B+ 1

2
;η;sin2(t)))

√
2η 4
√

cos(t)
√

cos(t)+1
, (6.10)

F̃L−(− sin2(t)) =
sin(t)(B(cos(t)+1) 2F1(A+ 1

2
,B+1;η+1;sin2(t))−η 2F1(A+ 1

2
,B;η;sin2(t)))

√
2η 4
√

cos(t)
√

cos(t)+1
. (6.11)

Summary. With the help of the AGT like correspondence between SU(2) N = 2 super-

symmetric gauge theories living on R4/Z2 space and two dimensional N = 1 SLFT pro-

posed in [16, 17], analytic expressions are found for the various four point super-conformal

blocks in the light asymptotic limit. Namely we have found light blocks when:

• all four insertions are NS fields see (6.1), (6.2);

• two of the insertions are NS and the other two are Ramond fields see (6.3);

• all four are Ramond fields see (6.4)–(6.11).

The first result of the list above is not new, it has been found in [21] via a direct, CFT

approach. The remaining cases, to my knowledge, are analyzed for the first time and could

be helpful for better understanding of the subtleties of the light limit in Ramond sector.
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A Super Liouville conformal blocks of four R-fields

Here, following [16] we define the functions H±, F±, H̃± and F̃±, which are used in the

main text. The OPEs for two Ramond fields can be written as

R±1 (z)R±2 (0) = z∆−∆1−∆2

∞∑
N=0

zN |N ;±±〉 , (A.1)

R±1 (z)R∓2 (0) = z∆−∆1−∆2

∞∑
N=0

zN |N ;±∓〉 . (A.2)
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In the NS sector at level zero there is only one state, namely the NS primary state of

dimension ∆. Thus |N ;±±〉 states are proportional to this NS state

|0;±±〉 = γ±|0〉 . (A.3)

By definition

|N ;±〉 =

|N ; ++〉 ± |N ;−−〉 if N ∈ Z

|N ; +−〉 ∓ i|N ;−+〉 if N ∈ Z + 1/2
. (A.4)

In this notations

|0;±〉 = Γ±|0〉 where Γ± = (γ+ ± γ−) . (A.5)

H±, F±, H̃± and F̃± are related to the conformal blocks with four Ramond fields in the

following way (below q is the cross ratio of insertion points)

F± =
1

Γ±Γ±

∑
N=0,1,...

qN 〈N ;±|N ;±〉 ; H± =
1

Γ±Γ∓

∑
N=0,1,...

qN 〈N ;±|N ;∓〉 , (A.6)

F̃± =
(−i)

Γ±Γ±

∑
N= 1

2
, 3
2
,...

qN 〈N ;±|N ;±〉 ; H̃± =
1

Γ±Γ∓

∑
N= 1

2
, 3
2
,...

qN 〈N ;±|N ;∓〉 , (A.7)

where conformal blocks are divided by Γ± so that if one takes the normalization 〈0|0〉 = 1,

then the expansion of F± starts as 1 + F±1q + . . . . For more details and explanation the

reader should consult [16].

B Restriction rules

Let us look at (2.4). To see whether a box of λ(µ) is in λ∗(µ∗) or not we replace

ε1, ε2 → 1; a
(0)
i → ui; a

(1)
i → qi; a

(2)
i → vi (i = 1, 2) (B.1)

and evaluate a factor corresponding to a box of λ (µ). If the result is equal to 0 (mod 2)

then the chosen box belongs to λ∗(µ∗) otherwise not. Let as apply this constraint for each

of the bifundamentals appearing in (2.3):

• For Zbf (ui, a
(0)
i ,∅ | qj , a(1)

j , Yj), a box s ∈ Yj is also in Y ∗j iff

ui + qj + 1 + L∅(s) +AYj (s) = 0 (mod 2) . (B.2)

• For Zbf (qi, a
(1)
i , Yi | vj , a(2)

j ,∅) a box s ∈ Yi is also in Y ∗i iff

qi + vj + 1 + L∅(s) +AYi(s) = 0 (mod 2) . (B.3)

• For Zbf (qi, a
(1)
i , Yi | qj , a(1)

j , Yj):

a box s ∈ Yi is also in Y ∗i iff

qi + qj + 1 + LYj (s) +AYi(s) = 0 (mod 2) , (B.4)

a box s ∈ Yj is also in Y ∗j iff

qj + qi + 1 + LYi(s) +AYj (s) = 0 (mod 2) , (B.5)

where i, j = 1, 2.
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C Proof of the restrictions on the Young diagrams for ♦
LZ

(0,0)
(0,0),(0,0) and

♦
LZ

(0,0)
(0,1),(0,1)

Here we prove, as we mentioned in section 5, that in the light asymptotic limit contribute

only diagrams depicted in figure 3. We will give all details for the cases of ♦
LZ

(0,0)
(0,0),(0,0)

and ♦
LZ

(0,0)
(0,1),(0,1). The proofs for the other cases are quite similar. Let us compute the

factors in (2.3).

Inserting (4.22) and (4.23) in (2.4), we obtain for the first factor of the numerator

in (2.3):

Zbf (ui, a
(0)
i ,∅ | qj , a(1)

j , Yj) = (C.1)∏
s∈Y ∗j

(
ε1

(
(−)i+1

(
η1 −

1

2

)
− η2 + (−)j

(
η − 1

2

)
+ L∅(s) + 1

)

+ε2

(
−AYj (s) +

(−)j+1 − (−)i+1

2

))
.

In the same way the second factor of the numerator in (2.3) is given by

Zbf (qi, a
(1)
i , Yi | vj , a(2)

j ,∅) = (C.2)∏
s∈Y ∗i

(
ε1

(
(−)i+1

(
η − 1

2

)
+ (−)j

(
η4 −

1

2

)
+ η3 − L∅(s)− 1

)

+ε2

(
AYi(s) +

(−)j+1 − (−)i+1

2

))
.

and for the denominator of (2.3) we will get

Zbf (qi, a
(1)
i , Yi | qj , a(1)

j , Yj) = (C.3)∏
s∈Y ∗i

(
ε1

((
(−)i+1 − (−)j+1

)(
η − 1

2

)
− LYj (s)

)

+ε2

(
AYi(s) +

(−)j+1 − (−)i+1

2
+ 1

))
∏
s∈Y ∗j

(
ε1

((
(−)i+1 − (−)j+1

)(
η − 1

2

)
+ 1 + LYi(s)

)

+ε2

(
−AYj (s) +

(−)j+1 − (−)i+1

2

))
.

The instanton expansion coefficients (2.3) are proportional to εN1 . We will show that N > 0

for all pairs of Young diagram, except those depicted in figure 3. This means that all other

diagrams do not contribute in (2.1) in the light limit (ε1 → 0).

Note that in (C.1) for some boxes from Y ∗j the coefficient in front of ε2 vanishes.

Denote the number of such boxes by n1. Similarly the numbers of boxes of this kind
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−1 −2 −3

−4 −5

−6

−1 −2 −3

−4 −5

Figure 4. The left diagram shows that there are Yi,1 boxes such that AYi
= 0 (painted gray). The

numbers are the leg-length of this boxes towards the empty diagram. The right diagram shows that

there are Yi,2 boxes with AYi
= 1 (painted grey) and again the numbers are the leg-length of these

boxes towards the empty diagram.

Y1,1 = 2m Y1,1 = 2m+ 1 Y1,2 = 2k Y1,2 = 2k + 1 Y2,1 = 2l Y2,1 = 2l + 1

u1 + q1 = even n1,1 = m n1,1 = m+ 1 u2 + q1 = even n1,2 = k n1,2 = k u2 + q2 = even n1,3 = l n1,3 = l + 1

u1 + q1 = odd n1,1 = m n1,1 = m u2 + q1 = odd n1,2 = k n1,2 = k + 1 u2 + q2 = odd n1,3 = l n1,3 = l

v1 + q1 = even n2,1 = m n2,1 = m+ 1 v2 + q1 = even n2,2 = k n2,2 = k v2 + q2 = even n2,3 = l n2,3 = l + 1

v1 + q1 = odd n2,1 = m n2,1 = m v2 + q1 = odd n2,2 = k n2,2 = k + 1 v2 + q2 = odd n2,3 = l n2,3 = l

Table 1. Depending on qi, ui and vi, n1 and n2 take different values. One can get them form this

table by n1 = n1,1 + n1,2 + n1,3 and n2 = n2,1 + n2,2 + n2,3.

in (C.2) and (C.3) are denoted by n2 and n3 respectively. It is obvious that

N = n1 + n2 − n3. (C.4)

First we explain how to compute the number n1. As we mentioned already, (C.1) is

proportional to ε1 whenever the term proportional to ε2 vanishes. This occurs when

AYj (s) =
1

2

(
(−)j+1 − (−)i+1

)
, s ∈ Yj . (C.5)

Note that the chosen box s belongs to the same diagram towards which its arm-length is

evaluated, hence the arm-length must always be positive or zero. From (C.5) we can see

that the only possible values for i and j that give positive or zero arm-lengths in (2.3) are:

j = 1; i = 1; AY1(s) = 0; (s ∈ Y1) , (C.6)

j = 1; i = 2; AY1(s) = 1; (s ∈ Y1) , (C.7)

j = 2; i = 2; AY2(s) = 0; (s ∈ Y2) . (C.8)

(C.6) implies that only the boxes that have zero arm-length contribute to n1. It is obvious

from the left diagram of figure 4 that there are exactly Y1,1 boxes in Y1 for which the

arm-length vanishes (here and below we denote by Yi,k the number of boxes in the k’th row

of diagram Yi). But not all these boxes obey the restriction (B.2), which can be written as

u1 + q1 + 1 + L∅(s) = 0 (mod 2), AY1(s) = 0 (s ∈ Y1) . (C.9)

From the first picture of figure 4 one can see that L∅(s) = −1,−2, . . . ,−Y1,1. Using

this we obtain the number of boxes in Y1,1 which are in Y ∗1 , denoted by n1,1. The results

are presented in table 1. Correspondingly, the number of boxes satisfying (C.7) with unit

arm-lengths in Y1 is equal to Y1,2, and finally, the number of the boxes obeying (C.8) with

zero arm-lengths in Y2 is equal to Y2,1. But not all of Y1,2 and Y2,1 boxes are in Y ∗1 and Y ∗2
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respectively. We should impose also the constraint (B.2). With the same steps one can get

the number of boxes in Y ∗1 and Y ∗2 denoted by n1,2 and n1,3 correspondingly. The results

again are summarized in table 1. Obviously

n1 = n1,1 + n1,2 + n1,3 . (C.10)

Now let us compute n2. From (C.2) we see that the term proportional to ε2 vanishes if

AYi(s) =
1

2

(
(−)i+1 − (−)j+1

)
; s ∈ Yi , (C.11)

where again the arm-length is towards its own diagram. This means that it is always

positive or zero. Therefore

i = 1; j = 1; AY1(s) = 0; (s ∈ Y1) ; (C.12)

i = 1; j = 2; AY1(s) = 1; (s ∈ Y1) ; (C.13)

i = 2; j = 2; AY2(s) = 0; (s ∈ Y2) . (C.14)

Again in the Y1 diagram there are Y1,1 and Y1,2 boxes with zero and unit arm-length and

Y2,1 boxes in Y2 with zero arm-length (see figure 4). All the boxes that contribute to n2

must obey (B.3). The results is displayed in table 1.

Let us calculate n3. In (C.3) the therm proportional to ε2 vanishes if

AYi(s) =
1

2

(
(−)i+1 − (−)j+1

)
− 1 ; (s ∈ Yi) , (C.15)

AYj (s) =
1

2

(
(−)j+1 − (−)i+1

)
; (s ∈ Yj) , (C.16)

Again both arm-lengths should be positive. This implies

i = 1; j = 2; AY1(s) = 0; (s ∈ Y1), (C.17)

j = 1; i = 1; AY1(s) = 0; (s ∈ Y1), (C.18)

j = 1; i = 2; AY1(s) = 1; (s ∈ Y1), (C.19)

j = 2; i = 2; AY2(s) = 0; (s ∈ Y2), (C.20)

Let us apply the constraint (B.4) and (B.5) for the boxes defined above. The result is

s ∈ Y1 with AY1(s) = 0 is also in Y ∗1 if q2 + q1 + 1 + LY2(s) = 0 (mod 2) ; (C.21)

s ∈ Y1 with AY1(s) = 0 is also in Y ∗1 if 1 + LY1(s) = 0 (mod 2) ; (C.22)

s ∈ Y1 with AY1(s) = 1 is also in Y ∗1 if q2 + q1 + LY2(s) = 0 (mod 2) ; (C.23)

s ∈ Y2 with AY2(s) = 0 is also in Y ∗2 if 1 + LY2(s) = 0 (mod 2) , (C.24)

Let us denote by n3,j j = 1, 2, 3, 4 the number of boxes that obey (C.21)–(C.24) corre-

spondingly. Obviously

n3 = n3,1 + n3,2 + n3,3 + n3,4 . (C.25)
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It is not difficult to see from (C.21)–(C.24) that n3,j obey the constraints

For both Y1,1 = 2m or Y1,1 = 2m+ 1 , n3,2 ≤ m ; (C.26)

For both Y2,1 = 2l or Y2,1 = 2l + 1 , n3,4 ≤ l ; (C.27)

n3,1 + n3,2 ≤ Y1,1 . (C.28)

The first two constraints are a consequence of (C.22) and (C.24) respectively. The third

constraint can be seen from (C.21) and (C.22).

The case ♦F
(0,0)
(0,0),(0,0). From the above analysis it is obvious that N depends on the parity

(odd or even) of the numbers Y1,1, Y1,2 and Y2,1. We will consider each case separately.

1. If Y1,1 = 2m, Y1,2 = 2k, Y2,1 = 2l. Using table 1 for n1 and n2 and (C.27), (C.28) for

n3 we will get

n1 + n2 = 2m+ 2k + 2l, and n3 ≤ 2m+ 2k + l . (C.29)

Substituting this into (C.4) we obtain N ≥ l. In the light asymptotic limit ε1 → 0

the contribution of a pair of diagrams for which N > 0 is negligible compared to the

case with N = 0. Thus we are interested in pairs of diagrams for which l = 0. This

means that Y2,1 = 0. Recalling that Y2,1 is the number of boxes in the first row of

Y2, we obtain that Y2 is an empty Young diagram.

Using (C.23) we can express n3,3 in terms of Y1,2 and get n3 ≤ 2m+ k thus, N ≥ k

and k = 0, Y1,2 = 0, hence Y2 is a one row diagram with 2m boxes.

2. Y1,1 = 2m, Y1,2 = 2k, Y2,1 = 2l + 1

n1 + n2 = 2m+ 2k + 2l + 2 and n3 ≤ 2m+ 2k + l (C.30)

so that N ≥ l + 2 and thus N > 0. The contribution of these pairs in the instanton

partition function (2.1) is negligible compared to the first case where we had pairs of

diagrams with N = 0.

3. If Y1,1 = 2m, Y1,2 = 2k + 1, Y2,1 = 2l + 1 then

n1 + n2 = 2m+ 2k + 2l + 2 and n3 ≤ 2m+ 2k + 1 + l (C.31)

so, N > 0 and in this case there is no contribution.

4. Y1,1 = 2m, Y1,2 = 2k + 1, Y2,1 = 2l then

n1 + n2 = 2m+ 2l + 2k and n3 ≤ 2m+ 2k + 1 + l (C.32)

so we have two possibilities l = 0, 1 that may give a non positive N .

(a) When l = 0 Y2 is empty, then by using (C.23)

n1 + n2 = 2m+ 2k and n3 ≤ 2m+ k . (C.33)
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It seems that for k = 0, which is Y1,2 = 1, one may have a contribution in

the partition function. For this case we are able to calculate n3 precisely us-

ing (C.21)–(C.24). The result is n3 = 2m − 1. This means that in fact N = 1,

thus we get no contribution.

(b) When l = 1, a careful examination shows that N > 0, therefore no contribu-

tion too.

5. Y1,1 = 2m+ 1, Y1,2 = 2k, Y2,1 = 2l then

n1 + n2 = 2m+ 2 + 2k + 2l and n3 ≤ 2m+ 1 + 2k + l (C.34)

so N > 0, no contribution.

6. If Y1,1 = 2m+ 1, Y1,2 = 2k, Y2,1 = 2l + 1 then

n1 + n2 = 2m+ 2 + 2k + 2l + 2 and n3 ≤ 2m+ 1 + 2k + l (C.35)

so N > 0, no contribution.

7. If Y1,1 = 2m+ 1, Y1,2 = 2k + 1, Y2,1 = 2l then

n1 + n2 = 2m+ 2 + 2k + 2l and n3 ≤ 2m+ 1 + 2k + 1 + l (C.36)

Thus the only possibility is l = 0. This means that Y2,1 = 0 so Y2 is an empty Young

diagram.

Using (C.23) we can see that n3 ≤ 2m + 1 + k which means that N > 0, thus no

contribution.

8. If Y1,1 = 2m+ 1, Y1,2 = 2k + 1, Y2,1 = 2l + 1 then

n1 + n2 = 2m+ 2 + 2k + 2l + 2 and n3 ≤ 2m+ 1 + 2k + 1 + l (C.37)

so N > 0, no contribution.

We conclude that Y2 is empty and Y1 is a one row diagram with even number of boxes.

The case ♦F
(0,0)
(0,1),(0,1).

1. If Y1,1 = 2m, Y1,2 = 2k, Y2,1 = 2l. Using table 1 for n1 and n2 and (C.27), (C.28) for

n3 we will get

n1 + n2 = 2m+ 2l + 2k, and n3 ≤ 2m+ 2k + l , (C.38)

l = 0 and Y2 is an empty diagram. By using (C.23) we can express n3,3 in terms of

Y1,2, thus we get n3 ≤ 2m + k , hence k = 0, Y1,2 = 0 so, Y1 is a one row diagram

with 2m boxes.
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2. Y1,1 = 2m, Y1,2 = 2k, Y2,1 = 2l + 1

n1 + n2 = 2m+ 2k + 2l and n3 ≤ 2m+ 2k + l , (C.39)

thus, l = 0, Y2,1 may be possible. Using (C.23) we get that n3 ≤ 2m+k, hence k = 0.

One can check that when Y1 has one row with even number of boxes and Y2 one

column with even number of boxes then N = 0. So this kind of pairs do contribute.

3. If Y1,1 = 2m, Y1,2 = 2k + 1, Y2,1 = 2l + 1 then

n1 + n2 = 2m+ 2k + 2 + 2l and n3 ≤ 2m+ 2k + 1 + l , (C.40)

N > 0, no contribution.

4. Y1,1 = 2m, Y1,2 = 2k + 1, Y2,1 = 2l then

n1 + n2 = 2m+ 2k + 2 + 2l and n3 ≤ 2m+ 2k + 1 + l , (C.41)

thus, no contribution.

5. Y1,1 = 2m+ 1, Y1,2 = 2k, Y2,1 = 2l, then

n1 + n2 = 2m+ 2 + 2k + 2l and n3 ≤ 2m+ 1 + 2k + l (C.42)

so, no contribution.

6. If Y1,1 = 2m+ 1, Y1,2 = 2k, Y2,1 = 2l + 1 then

n1 + n2 = 2m+ 2 + 2k + 2l and n3 ≤ 2m+ 1 + 2k + l (C.43)

so N > 0, no contribution.

7. If Y1,1 = 2m+ 1, Y1,2 = 2k + 1, Y2,1 = 2l then

n1 + n2 = 2m+ 2 + 2k + 2 + 2l and n3 ≤ 2m+ 1 + 2k + 1 + l (C.44)

N > 0, thus no contribution.

8. If Y1,1 = 2m+ 1, Y1,2 = 2k + 1, Y2,1 = 2l + 1 then

n1 + n2 = 2m+ 2 + 2k + 2 + 2l and n3 ≤ 2m+ 1 + 2k + 1 + l (C.45)

so N > 0, no contribution.

We have shown that in the light asymptotic limit to the instanton partition function con-

tribute only Young diagrams considered in cases 1 and 2. Combining these two cases we see

that Y1 is a one row diagram with even number of boxes and Y2 is a one column diagram

with even number of boxes.

Some instanton partition functions (for example �Z
(1,1)
(0,0),(0,0)) for some set of pairs Y1,

Y2 have large expansion coefficients of order 1
ε1

. These cases are similar to the ones we

discussed above but here we should take into account the pairs with N = −1 and neglect

the ones with N > −1.
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s1 s2 s3 ...... s2k−2s2k−1 s2k

Figure 5. The bold line corresponds to Y2 - an empty diagram; the thin lines indicate Y1 - a one

row diagram.

D The calculation of ♦
LF

(0,0)
(0,0),(0,0) and ♦

LF
(0,0)
(0,1),(0,1)

Let as calculate ♦
LF

(0,0)
(0,0),(0,0). As we know from appendix C, Y2 is empty and Y1 (see

figure 3(a)) is a one row diagram with even number of boxes. Let us look at

Zbf (a
(0)
2 ,∅ | a(1)

1 , Y1). By using (C.1) we will get

Zbf (a
(0)
2 ,∅ | a(1)

1 , Y1) =
∏
s∈Y ∗2

(ε1 (−η1 − η2 − η + 2 + L∅(s)) + ε2) , (D.1)

where we used the fact that the arm-length AY1(s) = 0 when s ∈ Y ∗1 . One can see from

figure 5 that L∅(s1) = −1, L∅(s2) = −2 . . .L∅(s2k) = −2k. If a box of Y1 is also in

Y ∗1 we must use (B.2) which, in this case can be written as 1 + L∅(sj) = 0 (mod 2). We

see that the leg-lengths must be odd numbers so, Y ∗1 = {s1, s3, . . . s2j−1, . . . , s2k−1}. Thus

L∅(s2j−1) = 1− 2j where j = 1, . . . , k. Inserting this into (D.1) we will get

Zbf (a
(0)
2 ,∅ | a(1)

1 , Y1) =

k∏
j=1

(ε1 (−η1 − η2 − η + 3− 2j) + ε2) . (D.2)

The next step is to take ε1 → 0. The result is

Zbf (a
(0)
2 ,∅ | a(1)

1 , Y1)
ε1→0−−−→ εk2 , (D.3)

all the other bifundamentals are derived with the same steps. Here are the results:

Zbf (a
(0)
1 ,∅ | a(1)

1 , Y1)
ε1→0−−−→ εk1

k∏
j=1

(η1 − η2 − η + 2− 2j) ; (D.4)

Zbf (a
(1)
1 , Y1 | a(2)

2 ,∅)
ε1→0−−−→ (−ε2)k ; (D.5)

Zbf (a
(1)
1 , Y1 | a(2)

1 ,∅)
ε1→0−−−→ εk1

k∏
j=1

(−η4 + η3 + η − 2 + 2j) . (D.6)

To get the light asymptotic limit for the denominator of (2.1) one must use (C.3) and the

constraint rules (B.4) and (B.5). The result will be

Zbf (a
(1)
2 ,∅ | a(1)

1 , Y1)
ε1→0−−−→ εk2 ; (D.7)

Zbf (a
(1)
1 , Y1 | a(1)

2 ,∅)
ε1→0−−−→ εk1

k∏
j=1

(2η − 2 + 2j) ; (D.8)

Zbf (a
(1)
1 , Y1 | a(1)

1 , Y1)
ε1→0−−−→ (ε2ε1)k

k−1∏
j=0

(2 + 2j) . (D.9)
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Now taking the product of (D.3)–(D.6) and dividing it to the product of (D.7)–(D.9) one

gets (5.1).

Now I will derive ♦F
(0,0)
(0,1),(0,1). As we know from appendix C, Y2 is a Young diagram

with only one column (see 3(b)) containing 2m boxes and Y1 a one row Young diagram

(see 3(a)) with 2k boxes. The bifundamentals are derived in the same way as in the first

case. The results for the numerator of (2.3) are:

Zbf (a
(0)
2 ,∅ | a(1)

2 , Y2)
ε1→0−−−→ (−ε2)m

m∏
i=1

(2i− 1) ; (D.10)

Zbf (a
(0)
1 ,∅ | a(1)

2 , Y2)
ε1→0−−−→ (−ε2)m

m∏
i=1

(2i− 1) ; (D.11)

Zbf (a
(0)
2 ,∅ | a(1)

1 , Y1)
ε1→0−−−→ εk2 ; (D.12)

Zbf (a
(0)
1 ,∅ | a(1)

1 , Y1)
ε1→0−−−→ εk1

k∏
j=1

(η1 − η2 − η + 2− 2j) ; (D.13)

Zbf (a
(1)
2 , Y2 | a(2)

2 ,∅)
ε1→0−−−→ εm2

m∏
i=1

(2i− 1) ; (D.14)

Zbf (a
(1)
2 , Y2 | a(2)

1 ,∅)
ε1→0−−−→ εm2

m∏
i=1

(2i− 1) ; (D.15)

Zbf (a
(1)
1 , Y1 | a(2)

2 ,∅)
ε1→0−−−→ (−ε2)k ; (D.16)

Zbf (a
(1)
1 , Y1 | a(2)

1 ,∅)
ε1→0−−−→ εk1

k∏
j=1

(η − η4 + η3 − 2 + 2j) (D.17)

and for the denominator:

Zbf (a
(1)
2 , Y2 | a(1)

1 , Y1)
ε1→0−−−→ (−ε2)kεm2

m∏
i=1

2i ; (D.18)

Zbf (a
(1)
2 , Y2 | a(1)

2 , Y2)
ε1→0−−−→ (−ε2)mεm2

m∏
i=1

2i

m∏
i=1

(2i− 1) ; (D.19)

Zbf (a
(1)
1 , Y1 | a(1)

1 , Y1)
ε1→0−−−→ (−ε2)kεk1

k∏
j=1

2j ; (D.20)

Zbf (a
(1)
1 , Y1 | a(1)

2 , Y2)
ε1→0−−−→ (−ε2)mεk1

k∏
j=1

(2η − 2 + 2j)
m∏
i=1

(2i− 1) , (D.21)

by dividing the numerator to the denominator one gets (5.12).

E H±, H̃±, F±, F̃± without variable exchange

HL
−(q) =

ε2
ε1

√√
1− q + 1

(
E(q)−

√
1− qK(q)

)
2F1

(
A+ 1

2 , B + 1
2 ; η + 1; q

)
√

2πη 8
√

1− q
, (E.1)
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H̃L
−(q) = −ε2

ε1

√√
1− q+1(1−q)3/8√q

(√
1− qK(q)+E(q)

)
2F1

(
A+ 1

2 , B+ 1
2 ; η+1; q

)
√

2πη
(
−q +

√
1− q + 1

) ,

(E.2)

HL
+(q) =

√
2
√√

1− q + 1(1− q)3/8
(√

1− qK(q) + E(q)
)

2F1(A,B; η; q)

π
(
−q +

√
1− q + 1

) , (E.3)

H̃L
+(q) =

√
2
√√

1− q + 1
(√

1− qK(q)− E(q)
)

2F1(A,B; η; q)

π 8
√

1− q√q
, (E.4)

FL+(q) =

√√
1− q + 1(1− q)3/8

√
2η
(
−q +

√
1− q + 1

) × (E.5)(
η
(√

1− q + 1
)

2F1

(
A,B +

1

2
; η; q

)
−Aq 2F1

(
A+ 1, B +

1

2
; η + 1; q

))
,

FL−(q) =

√√
1− q + 1(1− q)3/8

√
2η
(
−q +

√
1− q + 1

) × (E.6)(
η
(√

1− q + 1
)

2F1

(
A+

1

2
, B; η; q

)
−Bq 2F1

(
A+

1

2
, B + 1; η + 1; q

))
,

F̃L+(−q) =

√√
1− q + 1(1− q)3/8√q

√
2η
(
−q +

√
1− q + 1

) × (E.7)(
A
(√

1− q + 1
)

2F1

(
A+ 1, B +

1

2
; η + 1; q

)
− η 2F1

(
A,B +

1

2
; η; q

))
,

F̃L−(−q) =

√√
1− q + 1(1− q)3/8√q

√
2η
(
−q +

√
1− q + 1

) × (E.8)(
B
(√

1− q + 1
)

2F1

(
A+

1

2
, B + 1; η + 1; q

)
− η 2F1

(
A+

1

2
, B; η; q

))
.
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