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Abstract: We study the entanglement entropy between (possibly distinct) topological

phases across an interface using an Abelian Chern-Simons description with topological

boundary conditions (TBCs) at the interface. From a microscopic point of view, these TBCs

correspond to turning on particular gapping interactions between the edge modes across the

interface. However, in studying entanglement in the continuum Chern-Simons description,

we must confront the problem of non-factorization of the Hilbert space, which is a standard

property of gauge theories. We carefully define the entanglement entropy by using an

extended Hilbert space construction directly in the continuum theory. We show how a given

TBC isolates a corresponding gauge invariant state in the extended Hilbert space, and hence

compute the resulting entanglement entropy. We find that the sub-leading correction to the

area law remains universal, but depends on the choice of topological boundary conditions.

This agrees with the microscopic calculation of [1]. Additionally, we provide a replica

path integral calculation for the entropy. In the case when the topological phases across

the interface are taken to be identical, our construction gives a novel explanation of the

equivalence between the left-right entanglement of (1+1)d Ishibashi states and the spatial

entanglement of (2+1)d topological phases.
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1 Introduction

A chiral topological phase of matter with a boundary is host to gapless boundary modes.

The gapless modes often provide a fingerprint of the bulk topologically ordered phase and

can provide universal, measurable phenomena in real material samples. Heuristically the

boundary modes signal a change in topological order from the bulk topological phase to

the external vacuum with trivial topological order. An interesting question arises at more

complicated heterointerfaces between two topological phases: how do the boundary modes

reorganize themselves in the composite system? In the case where the two phases are

topologically identical, the gapless boundary modes can be “erased” along the seam via

interactions that introduce a gap in the boundary modes, and in this sense make them

invisible in the low energy effective theory. Of equal interest is the physics involved in

gluing together distinct topological phases. In some cases one may find that the gapless

heterointerface modes must persist even when the gapless modes are coupled across the

interface with interactions, while in other cases the gapless modes can be unstable to gap

formation. It is the latter case in which we are interested.
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It is known that the set of gapping interactions that can glue (gap out) the boundary

modes for two given topological phases is not unique. Subject to algebraic constraints, there

can exist many choices for gapping interactions. These classes of gapping interactions were

studied in the context of quantum entanglement in ref. [1] using ‘coupled wire’ constructions

of Abelian topological phases. There it was shown that the choice of gapping interaction can

leave an imprint on the bipartite entanglement spectrum and entropy when the entangling

cut is taken along the gapped heterointerface. Interestingly, in this sense the low energy

physics should remember the heterointerface, even though it is gapped.

Explicitly, it was found that the choice of gapping interactions can modify the low-

energy entanglement spectrum and the sub-leading correction to the area law in the en-

tanglement entropy. The latter effect is perhaps most surprising because the constant,

sub-leading correction is known to be a universal, topological quantity [2, 3]. The cal-

culations that predict these effects all rely on coupled-wire constructions, and while such

constructions are theoretically convenient, there are some limitations in their description.

For example, they are discretized in at least one spatial direction, i.e., the system is made

from discretized wires/strips, and translation symmetry is implicitly assumed parallel to

the wires. These two issues limit the types of entanglement cuts and spatial geometries

that can be simply handled. In principle, lacking any corroborating analytic or numeric

calculations, it is not clear if all of the conclusions of [1] are independent of the coupled

wire model description. Here we seek to support and extend these results of [1] using a

more generic field theoretical approach.

The goal of this paper is to revisit the question of entanglement along heterointerfaces

from the point of view of the bulk topological theory in the continuum. Indeed, the effective

low energy physics at the boundary of a topological phase is mirrored by a bulk topological

field theory, through anomaly inflow. From the point of view of entanglement in the bulk

theory there are two questions that become immediately relevant. First, when we have

heterointerfaces of topological phases, it is natural to ask how to address the gapping

physics in the continuum. For the Chern-Simons theory describing Fractional Quantum

Hall (FQH) states, the natural answer to this question involves a set of prescribed conditions

for matching the gauge fields living on either side of the interface. Such conditions might

be termed interface conditions. However, in the case where the spaces on either side of the

interface are homeomorphic, by regarding the space hosting the two phases as the Schottky

double of a single topological phase, the matching conditions can be thought of as boundary

conditions, and this is the language we will use in this paper. Generic boundary conditions

available to Chern-Simons theory will typically “break” the topological nature, i.e., they

will introduce a complex structure on the boundary in question. This, for instance, is

necessary for defining the chirality of the induced gapless boundary modes for a single

topological phase. However, as an alternative, it is possible to choose topological boundary

conditions, which obviate the need for a complex structure. We will argue that these

boundary conditions are appropriate for the context of gapped interfaces, at least as far as

the low energy physics is concerned. More precisely, at least perturbatively, and as long

as the gap does not close, the addition of non-topological boundary terms are expected to

modify only the quantitative details of the low-energy theory.
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Topological boundary conditions (TBCs) have been discussed and classified in previous

literature. Generically, the choice of TBCs is itself not unique and depends on certain

algebraic properties of the K-matrix. Additionally, since TBCs are playing the same role

as gapping interactions for the topological field theory (that is, they glue two theories

together), it is perhaps unsurprising then that these algebraic criteria are equivalent to

those classifying gapping interactions. These criteria were discussed at length in ref. [4]

where it was emphasized that these boundary conditions isolate a Lagrangian subspace of

the K-matrix and so pick a polarization for states on the interface. It was additionally

pointed out in ref. [5] that TBCs are equivalent to anomaly matching: the unbroken gauge

group on the boundary remains anomaly-free.

The second question to address is how to define entanglement in the continuum gauge

theory. As has been recently understood, the Hilbert spaces of theories with gauge invari-

ance generically do not admit tensor-factorization of spatial regions due to the enforcement

of non-local constraints [6, 7]. This is mirrored by the fact that the set of gauge invariant

operators are generated by Wilson loops which are inherently non-local. Several proposed

attempts to define bipartite entanglement in gauge theories have been studied in the re-

cent literature [7–15] and can be classified into two approaches: the algebraic approach and

the extended Hilbert space approach. The former focuses on the definition of the reduced

density matrix as living in an operator algebra. There the inability of the Hilbert space

to factorize is mirrored by the existence of a non-trivial center of the algebra associated

to a subspace; the reduced density matrix is block-diagonalized with respect to this center

and entanglement is computed in each block. The latter approach embeds the physical

Hilbert space in a larger, factorizable Hilbert space. Generically this space contains states

that do not obey gauge invariance and the gauge invariant state must be identified by the

application of constraints. Once identified, the state can be reduced and the entangle-

ment computed. It is worth mentioning that while both approaches have well-defined and

controlled procedures on the lattice, the extension to continuum gauge theories is subtle.

In this paper, we will confine our discussion to Abelian Chern-Simons theories with

gauge group U(1)N . Our main interest will be in studying the effect of topological bound-

ary conditions on the entanglement entropy across an interface. We will discuss how to

unambiguously embed the physical, gauge-invariant Hilbert space of Chern-Simons theory

in the presence of such an interface into a tensor-factorizable extended Hilbert space. Re-

markably, the physical states (thought of as living inside the extended Hilbert space) satisfy

a generalized Ishibashi condition specific to the choice of topological boundary conditions,

which allows a straightforward computation of the entanglement entropy. This offers a

novel explanation of the known equivalence of spatial entanglement in Chern-Simons the-

ory and the left-right entanglement of Ishibashi states [16–18], and offers a connection of

our problem to the recent papers addressing the entanglement of bosonic CFTs across

topological interfaces [19–22]. Additionally, we also give a replica path integral calculation

of the entanglement entropy. We pursue this in two ways — the first is via a direct path

integral calculation involving the replica trick within Chern-Simons theory. Passing to

field variables obeying the TBCs within the path integral, we find that the replica com-

putation reduces to a familiar Chern-Simons path integral but with an effective K-matrix.
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The second involves introducing a regulator surface enveloping the entanglement cut and

reducing the path integral to a transition amplitude between CFT boundary states living

at the intersection of the regulator surface with the heterointerface. The results obtained

using all the above techniques of course agree with each other, and also with the micro-

scopic calculations of [1]. This shows that the entanglement entropy depends explicitly

upon the choice of TBCs, or equivalently from a microscopic point of view on the choice

of gapping interactions between the edge-modes across the interface, but that this is nev-

ertheless a universal feature which can be reproduced from the effective topological field

theory description.

The rest of this paper is organized as follows: in section 2 we begin with a brief

classical discussion of interfaces in Abelian Chern-Simons theory with topological boundary

conditions, and their relation with the gapping interactions studied in [1]. We then consider

the quantum version of these interfaces in section 3 and present the extended Hilbert space

calculation of the entanglement entropy across such interfaces. In section 4, we reproduce

the same result using the replica path integral in the two ways discussed above. Finally,

we have a short conclusion disussing future directions and two appendices.

2 Classical interfaces and topological boundary conditions

In this section, we discuss classical interfaces in Abelian Chern-Simons theory with the

gauge group U(1)N . Recall that the action of U(1)N Chern-Simons theory on a 3-manifold

M is given by

SCS =
1

4π

∫
M
KIJAI ∧ dAJ (2.1)

where I = 1, · · · , N and KIJ is a symmetric integral matrix of rank N called the level

matrix. By an interface, we mean a codimension-one surface Σ in M , with different K-

matrices on either side of Σ (see figure 1). In particular the Chern-Simons theories on

either side of Σ differ in their actions, namely in their K-matrices. We denote the gauge

fields on the left and right of the interface by A
(L)
I and A

(R)
I , and the respective K-matrices

by K(L) and K(R). We denote the space-time as M =ML ∪ΣMR and write the action as

SCS =
K(L)IJ

4π

∫
ML

A
(L)
I ∧ dA(L)

J +
K(R)IJ

4π

∫
MR

A
(R)
I ∧ dA(R)

J + SΣ(AL, AR). (2.2)

Here SΣ denotes additional boundary/interface terms with support on Σ which one might

possibly add; we will make some comments on the role of these boundary terms shortly.

In the present section, we will consider the above theory from a classical point of view,

focusing on interface boundary conditions; we will then revisit interfaces from a quantum

point of view in the next section. There are a number of generalizations that we might

make, including the discussion of non-Abelian Chern-Simons theories, but we will leave

these to future work.

Consistent boundary conditions on Σ are determined by ensuring that the symplectic

structure is continuous across Σ. We take a brief detour to explain what this means. The

– 4 –
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K(R)

K(L)

⌃

Figure 1. Two topological phases separated a codimension one defect Σ. The time dimension has

been suppressed here.

variation of the Chern-Simons action (2.1) on a general 3-manifold M with boundary ∂M

is given by

δSCS =
1

2π

∫
M
KIJδAI ∧ dAJ −

1

4π

∫
∂M

KIJaI ∧ δaJ + δS∂M (2.3)

where a is the connection on ∂M induced from M , and the last term above comes from

the variation of any potential boundary terms. The classical equations of motion are given

by KIJdAJ = 0. We regard the variation of the action taken on-shell (o.s.) as a 1-form

on the field space of classical solutions;1 we will denote this as the canonical symplectic

1-form, Θ. For the present action it is defined as

Θ = δSCS

∣∣∣
o.s.

= − 1

4π

∫
∂M

KIJaI ∧ δaJ + δS∂M . (2.4)

The symplectic 2-form is the differential of the canonical 1-form:

Ω = δΘ = − 1

4π

∫
∂M

(
KIJδaI ∧ δaJ

)
. (2.5)

Because S∂M adds an exact form to the canonical 1-form, the symplectic 2-form is unaf-

fected by its presence. Because K is non-degenerate, Ω promotes the classical phase space

to a symplectic vector space. Although generically this vector space will be infinite dimen-

sional, Chern-Simons theory provides us with many cases in which it is finite (e.g., when

the gauge group is compact and ∂M is closed and compact [23]); the process of choos-

ing boundary conditions amounts to finding a half-dimensional subspace upon which the

symplectic form vanishes. For example, standard boundary conditions in Chern-Simons

amount to fixing some component of a on the boundary. The role of S∂M then is to ensure

that Θ vanishes when restricted to fields obeying this boundary condition;2 alternatively

this can be thought of ensuring a well-defined variational principle. We will refer to this as

putting Θ in canonical form. Fixing a component of a generically involves the introduction

of a boundary term that either breaks diffeomorphism invariance on ∂M , or introduces a

metric structure on ∂M . The standard boundary term for this is

S∂M =
1

4π

∫
∂M

V IJaI ∧ ∗aJ (2.6)

1That is we regard δ as a field space differential and these should be regarded formally as anticommuting.

In the text, we explicitly denote the wedge products of forms on M , while leaving the antisymmetrization

of forms on field space implicit. Thus, for example, eq. (2.5) is non-zero for a symmetric K-matrix.
2This is equivalent to the continuity across the cut of the symplectic one-form on a family of hypersurfaces

Σt parallel to Σ.

– 5 –
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where ∗ is the Hodge star for a Riemannian metric on ∂M, and V IJ is taken to be a

symmetric, positive-definite matrix. Suitable choices for V enforce the fixing of either

the holomorphic or antiholomorphic (with respect to the orthonormal coordinates of the

metric) component of a. When reducing a Chern-Simons path integral to that of a chiral

Wess-Zumino-Witten (WZW) theory on ∂M , such a boundary term introduces dynamics,

i.e., a non-vanishing Hamiltonian, as we discuss further in section 4.2.

Alternatively, returning to (2.5), for suitable even-dimensional K-matrices, we can

look for vanishing subspaces of K itself. As we will see, these boundary conditions do

not require the addition of an extra boundary action and in particular do not require a

choice of metric on ∂M . As such they are called topological boundary conditions [4]. In a

completely generic physical context, one would expect both metric-dependent bulk terms

in the action (e.g., a Maxwell term), and additional metric-dependent boundary terms as

well. However, we expect that the effect of such terms is to modify inessential details

of the gapped boundary/interface theory,3 and that moreover, the study of topological

boundary conditions is sufficient for the study of many properties (such as entanglement)

of the gapped interfaces in which we are interested. As such, we will ignore these extra

possible terms.

To elaborate on this, let us return to the case of the interface theory which is of interest

in the present paper. An equivalent way to think about this theory on ML ∪Σ MR (in

the case where ML and MR are topologically equivalent) is to “fold” the theory along

the common boundary, Σ.4 Doing so, we obtain a Chern-Simons theory with gauge group

U(1)2N on the spaceN (which is topologically equivalent toML,R) with boundary ∂N = Σ.

The K-matrix of this theory is given by

K = KL ⊕ (−KR). (2.7)

The signature (number of positive eigenvalues and number of negative eigenvalues) of K
is (N,N) if, for example, KL,R are each positive definite. For the rest of this paper we

will assume this is the case, although this is not a necessary supposition (removing the

assumption only modifies some details of the calculations we present); what is necessary is

that the total signature (the number of positive eigenvalues minus the number of negative

eigenvalues) of K is zero. Under these conditions, we re-write the action as

SCS =
KIJ

4π

∫
N
AI ∧ dAJ (2.8)

where

K =

(
K(L) 0

0 −K(R)

)
, A =

(
A(L)

A(R)

)
. (2.9)

3To clarify, it is well known that the degrees of freedom in Maxwell-Chern-Simons theory decouple into

a flat connection and a topologically massive gauge field [24]. The former contributes to the topological

entanglement entropy, while the latter adds a massive contribution to the entanglement entropy [25].
4Of course, in a generic situation we do not mean to require that ML,R are homeomorphic. Indeed,

they could very well have different topology. Consequently, this discussion can be thought of as applying

to a tubular neighbourhood of Σ, but we will present the material from a simplified point of view.

– 6 –
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Below we will denote the induced U(1)2N connection on Σ as a. Let us then consider what

kind of boundary conditions can be imposed on the field A.

Reviewing [4], we will regard U(1)2N as a torus, TΛ = R2N/Λ, for Λ ' Z2N . The

corresponding Lie algebra will be denoted tΛ ' Λ ⊗ R. In this language, K is an integral

symmetric bilinear form on Λ. The dual lattice Λ∗ is the set of homomorphisms from Λ to

the integers that we will denote as the lattice of charges. It is clear that the image of K,

Im (K), is contained in Λ∗. Basic gauge invariant operators of the theory are constructed

from q ∈ Λ∗ by Wilson loop operators

〈Wq〉 = 〈exp

(
i

∮
C
q(A)

)
〉 = 〈exp

(
i

∮
C
qIAI

)
〉 = exp

(
−2πiqI K−1

IJ q
J
total

)
(2.10)

where qtotal is the sum total of additional Wilson loop operators threading Wq.
5 Thus, Wil-

son loop operators with charges differing by an element of Im (K) will have identical expec-

tation values, and so it is natural to work with operators in the quotient D ≡ Λ∗/Im (K) [4].

As discussed previously, the continuity of the symplectic structure across the interface (con-

sistent boundary conditions) now requires

Ω = − 1

4π

∫
Σ
KIJ δaI ∧ δaJ = 0 (2.11)

where I,J = 1, 2, . . . 2N. In this paper, we will focus on the class of topological boundary

conditions in which a lies in a Lagrangian subspace of K [4, 5, 26, 27] . A subspace t0 ⊂ tΛ
is called Lagrangian with respect to K if

vIKIJwJ = 0, ∀v, w ∈ t0, (2.12)

and has a dimension that is half the rank of K. Such a subspace exists only if the total

signature of K is zero [4]. From equation (2.9), this means that the signature of K(L) must

equal the signature of K(R). As mentioned above, we will implicitly assume that both

K(L) and K(R) are positive definite and so must have the same rank if the total signature

is to vanish. At the level of the canonical 1-form, we see that Θ is canonical without the

addition of a boundary action:

Θ = − 1

4π

∫
Σ
KIJ aI ∧ δaJ = 0. (2.13)

The restriction of a to a Lagrangian subspace of K means that it takes values in a

subalgebra t0 ⊂ tΛ whose dimension as a Lie algebra is half that of tΛ. The restriction to the

subalgebra t0 has another important interpretation: infinitesimal U(1)N transformations

lying in t0 have a vanishing inner product with the canonical 1-form and so there are no

dynamical degrees of freedom carrying charge with respect to this group. That is to say t0
generates an unbroken U(1)N of true gauge transformations. In the context of the unfolded

theory, we see that TBCs then ensure that a particular linear combination of fields remain

gauge invariant across Σ.

5The expectation value results from the following: the presence of additional Wilson loops operators

augment the background equations of motion to dA = −2π
∑
mK−1 · qmδ(Cm), where

∑
m q
I
m = qItotal and

δ(Cm) indicate the flux only has support along the contours threading the original Wilson loop. Evaluating

the holonomy of such a connection produces the above result.
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K(R)
K(L)

⌃

⌃
K(R)

K(L)

⌃

⌃

Figure 2. (Left) Generically an interface will support global U(1)N charges (depicted here as

Wilson lines ending on Σ. (Right) The TBCs provide an identification of the gauge group across Σ

and therefore describe Wilson lines that can permeate the interface.

We denote the injection of t0 into tΛ as P. We then have

PT ·K · P = 0. (2.14)

The unbroken Lie algebra can be described as t0 ' Λ0 ⊗ R for a lattice Λ0 ⊂ Λ such that

the unbroken group is a torus T0 = RN/Λ0. We will sometimes call this the restricted

lattice. In this context, P is an injection of Λ0 into Λ and PT is a surjection from the lattice

of charges Λ∗ to a sublattice of boundary charges Λ∗0. We will refer to this as the restricted

dual lattice. Given a basis for Λ, P is an integral matrix with 2N rows and N columns. In

the current basis let us choose

P =

(
v(L)

−v(R)

)
for N ×N integer matrices v(L,R), in terms of which (2.14) becomes

v(L)T ·K(L) · v(L) − v(R)T ·K(R) · v(R) = 0. (2.15)

We will refer to (2.15) as the classical gluing condition. Then in order for topological

boundary conditions to exist between the two theories, K(L) and K(R) must allow for

integral solutions to (2.15), a significantly non-trivial condition. However, if such a solution

exists, then an infinite number of solutions exist: for example, multiplying v(L) and v(R)

by the same integer will also solve (2.15). In this paper, we project to a minimal set of

solutions by requiring P to be primitive [28]. That is, expressing P as a 2N × N integral

matrix, we require that the
(

2N
N

)
possible N × N minors have a gcd of 1. We give a

geometric interpretation of this condition in appendix A, but for a discussion of primitivity

in the condensed matter context, see [1, 29–31].

Note that in the unfolded theory, (2.15) tells us that particular linear combinations

of the connections can permeate the interface. These connections then see an effective

K-matrix which is continuous across the interface:

Keff ≡ v(L)T ·K(L) · v(L) = v(R)T ·K(R) · v(R). (2.16)

– 8 –
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In the present context, K(L/R) have the same rank, and so v(L/R) are square matrices.

The above equation then details what linear combinations of the gauge field permeates Σ

so that it remains anomaly free under gauge transformations in T0. However, as we have

previously emphasized, it is not actually necessary to take K(L,R) to have the same rank,

but only that K have zero total signature. When the ranks of the K-matrices differ then

v(L/R) no longer have to be square and so only a subspace of charges can permeate Σ.

2.1 Examples

For the sake of pedagogy, let us examine some examples of gappable interfaces.

2.1.1 K(L) = (kL), K(R) = (kR)

For a first example K(L,R) are positive integer 1 × 1 “matrices”, (kL,R). In this case, the

gluing condition has us looking for integer solutions {v(L), v(R)} to

v(L)2
kL = v(R)2

kR. (2.17)

Primitivity requires that v(L) and v(R) be relatively prime. Let k = gcd[kL, kR] and write

kL,R = κL,R k with κL and κR relatively prime integers. We find that integer solutions

to (2.17) only exist if κL,R are perfect squares (κL,R = n2
L,R for some integers nL,R). Then

there are exactly four solutions:

v(L) = ±nR v(R) = ±nL. (2.18)

One can readily check for PT = (±nR,±nL) and K = (n2
L k)⊕ (−n2

R k) that PT ·K · P = 0,

and so this also defines a Lagrangian subspace for K(L)⊕ (−K(R)). The effective K-matrix

for this interface is

Keff = v(L)2
K(L) = v(R)2

K(R) = k n2
L n

2
R. (2.19)

This example is particularly instructive because we see that the gluing condition not only

determines the matrices v(L) and v(R), but also restricts the set of K-matrices.

2.1.2 K(L) = K(R) = K

As a second example, we illustrate the fact that K can be glued to itself in not only

the trivial manner (e.g., the gauge field being continuous across the interface, aL = aR,

corresponds to the solution v(L) = −v(R) = 1N×N ), but in fact, in multiple ways. Thus,

even in this homogeneous case, the choice of boundary conditions is far from unique. Taking

the determinant of the gluing condition, we have

det(v(L))2 = det(v(R))2. (2.20)

Depending on the details of K, we may have several solutions beyond the identity matrices

that solve the gluing condition. As an explicit example,

K =

(
k 0

0 k(m2 − n2)

)
v(L) =

(
m n

0 1

)
v(R) =

(
−n −m
1 0

)
(2.21)
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for integers k,m, n and m2 6= n2, solves the gluing condition. One can easily check that

the minors of P are {m,−m2 +n2,−n, n,−1,m} and so this solution is also primitive. The

effective K-matrix is

Keff =

(
km2 kmn

kmn km2

)
. (2.22)

Interestingly the subleading correction to the area law in the entanglement entropy depends

on the topological boundary conditions. The initial K-matrix has a determinant γ =

k2(m2 − n2) whereas the effective matrix has γeff = k2m2(m2 − n2). As we will see, the

subleading correction to the area law is modified from −1
2 log[γ] when trivial boundary

conditions are chosen to −1
2 log[γeff ] when the more complicated topological boundary

conditions are chosen. For more examples of K(L) = K(R) gapped interfaces, see [1].

2.2 Comments on topological boundary conditions and the connection to the

coupled wire construction

Before moving on to the discussion of entanglement, we remark that in some instances

it will be convenient to describe topological boundary conditions by the injection of the

complementary space of t0. We will call this injection M : tc0 ↪→ tΛ and so the fields on Σ

can be equivalently characterized by the kernel of MT :

a ∈ t0 ⇒ MT · a = 0. (2.23)

Given the block basis for P, we can write M out explicitly as

M =

(
ML

MR

)
=

(
K(L) · v(L)

K(R) · v(R)

)
. (2.24)

It is easy to verify that vectors in the pre-image of P lie in the kernel of MT . Suppose

we have a primitive solution to (2.15), and let a be a t0-valued connection on Σ in the

pre-image of the injection P:

a =

(
a(L)

a(R)

)
= P · a =

(
v(L) · a
−v(R) · a

)
. (2.25)

Then

MT · a =
(
v(L)T ·K(L), v(R)T ·K(R)

)( v(L) · a
−v(R) · a

)
=
(
v(L)T ·K(L) · v(L) − v(R)T ·K(R) · v(R)

)
· a = 0. (2.26)

Although it is known in the condensed matter literature that TBCs are equivalent to

primitive gapping vectors [5, 26], let us offer an intuitive picture of this relation in terms of

the gapping interactions studied in [1]. We first notice that in terms of the matrix M in the

block basis, the equation to be solved for the boundary to support topological boundary

conditions is

ML
T ·
(
K(L)

)−1
·ML −MR

T ·
(
K(R)

)−1
·MR = 0. (2.27)
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Figure 3. (a) The hypersurface R intersects the interface Σ transversely. In the “coupled wire

construction,” R is foliated by one dimensional wires each hosting a bosonic theory. In the contin-

uum, R supports a connection that breaks up into components normal and tangent to Σ. (b) R can

possess noncontractible cycles and correspondingly the bosonic theory will contain winding modes.

which is precisely the commensurability condition of gapping vectors as usually

presented [1, 32].

To illustrate the significance of ML,R, let us define a hypersurface R that intersects the

surface Σ transversely. For example, we can regard R as a constant-time hypersurface, as

shown in figure 3(a). Relating this to the discussion in [1], one can think of R as discretized

into a family of wires, or strips, running parallel to Σ as a model for the gapped topological

phase [1, 33–35]. In the continuum, we proceed by breaking the connection into components

normal to (i.e., those that pull back to zero) and tangent to Σ. The normal component

of A acts as a Lagrange multiplier, constraining the components of the connection in the

directions parallel to Σ to be flat. We then write6 a(L,R) = i∗A
(L,R) = dφ(L,R). The action

in terms of these pure gauge modes is a total derivative and so the path integral is then

over the U(1)2N -valued fields living on R (see, for instance, [23]). This is the standard

reduction of Abelian Chern-Simons theory to U(1) Wess-Zumino-Witten (WZW) on R.

The TBCs on a(L,R) will impose boundary conditions on the field φ(L,R) on the interface

R ∩ Σ (or, from the coupled wire point of view, impose conditions on the wires on either

side of Σ). Above we saw that P embeds the unbroken boundary Lie algebra, t0, into the

original Lie algebra, tΛ. This embedding is in the kernel of MT (cf. eq. (2.23)). Then, up

to a constant shift, the pure gauge modes of A(L,R) are related via

MT
L · φ(L) +MT

R · φ(R) = 0. (2.28)

If R contains non-contractible cycles (as for example in the situation sketched in fig-

ure 3(b)), then φ(L,R) could have non-trivial integer windings: φ
(L,R)
I (x+2π) = φ

(L,R)
I (x)+

2πP(L,R)
I . However the boundary conditions (2.28) tell us that these windings must lie in

the restricted lattice, Λ0:(
P(L)

P(R)

)
∈ Λ0 ⇒ MT

L · P(L) +MT
R · P(R) = 0. (2.29)

6By the map i, we denote the inclusion map of a wire into M , taken on either side of Σ. Since U(1)N is

not simply connected, the definition of φ(L,R) should be taken to apply locally, or equivalently, that φ(L,R)

is not required to be single-valued.

– 11 –



J
H
E
P
0
9
(
2
0
1
7
)
0
5
6

Inside the WZW path integral we can then glue the φL,R theories together via a δ-functional

that enforces (2.28). We can regard this δ-functional as the limit of a sharply peaked

Gaussian of the fields, which we can write, up to normalization, as∏
~x∈Σ

∏
I

δ[MT
L
IJ
φ

(L)
J +MT

R
IJ
φ

(R)
J ]

∼ lim
gI→∞

exp

(
−
∑
I

∫
Σ
d2~x

gI
2

(
MT
L
IJ
φ

(L)
J +MT

R
IJ
φ

(R)
J

)2
)
. (2.30)

This introduces an effective quadratic interaction at infinite coupling into the Euclidean

action. Since this term is relevant we might loosely regard it as the IR end of the RG flow

for a more generic gapping interaction. In fact the specific form of the interaction is not

important, only that it has a minimum that enforces (2.28). For instance, we could have

used a Sine-Gordon type interaction with a limit that gI →∞:

exp

(
−
∑
I

∫
Σ
d2~x gI

(
cos
(
MT
L · φ(L) +MT

R · φ(R)
)I
− 1

))
(2.31)

as introduced in [1].

3 Quantum interfaces and topological entanglement entropy

In the previous section, we considered the problem of finding appropriate interface con-

ditions at a co-dimension one defect in U(1)N Chern-Simons theory. In this section, we

want to consider the quantum version of this problem. In particular, we are interested

in understanding the role of the above topological boundary conditions on the topological

entanglement across the interface. Because we are interested in formulating calculations

of entanglement in a gauge theory directly (i.e., we will not resort to surgery methods, as

in [36]), we must confront the fact that the Hilbert space does not factorize spatially. To

begin our discussion then, we explain how to deal with this by extending the Hilbert space.

3.1 Extended Hilbert space and quantum gluing

Let us first consider the simplest possible case: we take a U(1) Chern-Simons theory at

level k without defect, i.e., without a Σ interface, and take space to be a 2-sphere. The

entanglement cut then is as shown in figure 4(a), with k the same on either side. That

is, we wish to compute the entanglement entropy of the ground state under a partition

S2 = D ∪S1 D̄ of S2 into two discs D and D̄.

Recall that the entanglement entropy is defined as follows: consider a Hilbert space

H which admits a tensor factorization H = HA ⊗ HĀ. Then given any unit-norm state

|ψ〉 ∈ H, one constructs the reduced density matrix

ρ̂A = TrHĀ |ψ〉〈ψ|. (3.1)

The entanglement entropy between A and Ā is then defined as the von Neumann entropy

of ρ̂A:

SEE(A) = −TrHA ρ̂A ln ρ̂A. (3.2)
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D

D̄

q

�q

(A) (B)

Figure 4. (A) The spatial 2-sphere partitioned into two discs D and D̄. (B) The 2-sphere with an

anyon q in D and −q in D̄.

Returning to our problem of computing the entanglement entropy between D and D̄, we

immediately encounter a conceptual problem. For the entropy to be well-defined, we need

HS2
?
= HD ⊗HD̄. (3.3)

However, as was shown in [37], the Hilbert space HS2 of Chern-Simons theory on the 2-

sphere (without Wilson lines) is one-dimensional, while the Hilbert space HD on a disc

(without Wilson lines) is a direct sum of Kač-Moody modules corresponding to integrable

representations of the u(1)k extended Kač-Moody algebra (namely those labeled by z ∈
π1(U(1)) = Z)7 [23, 39],

HD =
⊕
z∈Z
H(z)
D H(z)

D = span
{
|z〉, J−n|z〉, J−nJ−m|z〉 · · ·

}
(3.4)

and in particular is infinite dimensional. Therefore, equation (3.3) is clearly not true. This

problem is not new, but merely a manifestation of the standard problem with defining

entanglement entropy in gauge theories — the physical Hilbert space of gauge invariant

states in gauge theories typically does not admit a simple tensor factorization. In this

situation, one needs to choose a suitable redefinition of the entanglement entropy. A

resolution to this problem that has appeared recently in the literature is to embed the

gauge invariant Hilbert space into a larger Hilbert space that admits a tensor product

factorization, Hgauge inv ⊂ Ĥ = ĤA ⊗ ĤĀ. The price one pays for this of course is that Ĥ
will contain states that are not gauge invariant.

We refer to this as the extended Hilbert space approach. While this approach has been

detailed for gauge theories on the lattice, [7, 9], and has been analogously been detailed in

the continuum at the level of the classical phase space [10], continuum examples are sparse

(see, for instance, [14, 15] for a path integral description in electromagnetism, and [40] for

entanglement in closed string theory). Below we provide a clear and explicit example of

7More precisely, |z 6= 0〉 are desendents of the identity primary |0〉 via the action of the extended

symmetry. Also, {Jn} are generators of the u(1)k Kač-Moody algebra which satisfy

[Jm, Jn] =
k

2
nδn+m,0.

For a more complete description of extended Kač-Moody algebras, their commutation relations, and their

representations, see [36, 38].
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implementing the extended Hilbert space approach in a continuum quantum gauge theory.

The basic idea is that even though equation (3.3) is false, it is nevertheless possible to

realize the Hilbert space HS2 as a subspace inside the extended Hilbert space HD ⊗HD̄:

HS2 ⊂ HD ⊗HD̄, (3.5)

where the precise injection depends on a choice of boundary conditions at the entanglement

cut. To see how this works, let us consider the operator which generates infinitesimal gauge

transformations on HD:

QD(λ) =
k

4π

∮
∂D

λA =
k

4π

∑
n

λnJn, (3.6)

where λ(θ) =
∑

n∈Z λne
inθ is the gauge transformation on ∂D, and Jn are the genera-

tors of the u(1)k Kač-Moody algebra. Note that the term gauge transformation here is

a slight abuse of language because for Chern-Simons theory on the disc D, the “gauge

transformations” at ∂D are not really gauge symmetries, but are to be treated as global

symmetries. That is, as per the discussion above, the Hilbert space furnishes a non-trivial

representation of the generators of these transformations. Similarly, the generator of gauge

transformations on HD̄ is given by

QD̄(λ̄) =
k

4π

∮
∂D̄

λ̄ A =
k

4π

∑
n

λ̄nJ̄n. (3.7)

The gluing of the Chern-Simons theories on the two discs to form a Chern-Simons theory on

the sphere involves a gluing map, which here can be specified by making an identification

between {λn} and {λ̄n}. Let us consider the simplest such condition, λn = λ̄−n. Since gauge

transformations are local, it is natural to define the generator for gauge transformations

on the entire S2 as the following operator on HD ⊗HD̄
QS2(λ) = QD(λ)⊗ 1 + 1⊗QD̄(λ̄)

=
k

4π

∑
n

λn
(
Jn ⊗ 1 + 1⊗ J̄−n

)
, (3.8)

where in the last equality above we have used the gluing condition. For a state |ψ〉 ∈ HS2

to be physical, we must impose the gauge invariance condition

QS2(λ)|ψ〉 = 0, ⇒
(
Jn ⊗ 1 + 1⊗ J̄−n

)
|ψ〉 = 0. (3.9)

Equation (3.9) can be regarded as the quantum gluing condition. Importantly, the quantum

gluing condition uniquely identifies a one-dimensional subspace inside HD ⊗HD̄, which is

spanned by the Ishibashi state8 corresponding to the identity operator9[41, 42]. We denote

8Often the Ishibashi condition is stated at the level of the Virasoro algebra, (Ln ⊗ 1− 1⊗ L̃−n)|ψ〉 = 0.

Here we have a refinement of this condition to the level of the current algebra. Of course the conformal

condition is additionally satisfied because the Virasoro generators will be given by a Sugawara construction:

Ln ∼
∑
m JmJn−m [38].

9Specifically, Gauss’s law identifies the J0 (J̄0) eigenvalue with the anyonic charge (mod k) piercing D

(D̄) and so in this case fixes the identity primary. This precludes |ψ〉 from being a generic linear combination

of primary states, e.g. a Cardy state.
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this state (and subsequent Ishibashi states) with the “double bracket” notation:

|0⟫ =
∑
z∈Z

∑
m

|z,m〉 ⊗ |z,m〉. (3.10)

where m labels an orthonormal basis of states for the conformal module corresponding to

the identity primary [41]. We have thus identified the physical Hilbert space HS2 as a one-

dimensional subspace of the extended Hilbert space HD ⊗ HD̄. As a consequence of this

identification, we can now compute a well-defined entanglement entropy between D and D̄

by tracing out HD̄. This is essentially the computation of left-right entanglement entropy

in Ishibashi states carried out in [17, 18]. These papers showed by explicit computation

that the left-right entanglement entropy in the Ishibashi state |0⟫ exactly reproduces the

topological entanglement entropy of Chern-Simons theory on S2, where S2 is bi-partitioned

into two discs,

SEE(D) = −1

2
log k. (3.11)

While this result is well-known, the above formulation of the continuum extended Hilbert

space definition of the entropy and the quantum gluing condition provides a universal

explanation for why this calculation works, at the level of Chern-Simons theory, and is an

important result of this article.10

The above discussion can be generalized to the scenario where the state contains anyon

insertions. The charge of an anyon inserted in D is only well-defined up to the image of

the K-matrix and so for U(1)k we can choose its representative in Zk. The corresponding

Hilbert space, HD(q) is the irreducible integral representation of the extended u(1)k Kač-

Moody algebra spanned by the chiral primary operator of charge q and its descendants, as

enforced by Gauss’s law. Correspondingly we must insert an anyon of charge −q in D̄ (see

figure 4(B)). Here again, the Hilbert space on the 2-sphere HS2(q,−q) is one-dimensional,

while the Hilbert space of the discs HD(q) and HD̄(−q) are infinite dimensional. The

gluing condition in this case is the same as before, and uniquely identifies HS2(q,−q) ⊂
HD(q)⊗HD̄(−q) as

|q⟫ =
∑
z∈Z

∑
m

|z + q/k,m〉 ⊗ |z + q/k,m〉. (3.12)

The left-right entanglement entropy of this state once again matches the topological entropy

of Chern-Simons theory in the presence of anyons [18]:

SEE(D, q) = −1

2
log k. (3.13)

(Strictly speaking, we are glossing over a subtlety in that the state |q⟫, as embedded

in HD ⊗ HD̄, has infinite norm. In order to properly normalize this state to unity, one

must employ a suitable regularization. This adds a non-universal divergent contribution

to the entanglement [18].) The generalization of these calculations to non-Abelian groups

is entirely straightforward.

10See also [16] for a different perspective involving gapping terms and quantum quench into a CFT.
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3.2 Interface entanglement entropy

Now let us consider the more generic case where D and D̄ host K-matrix theories K(L)

and K(R), respectively, and subject to the commensurability condition (2.15) for some

primitive integral matrices v(L) and v(R). Additionally, we consider placing the entangle-

ment cut right along the heterointerface. The insight in this case is that the Hilbert space

on S2, HS2 [K(L),K(R)] is still one-dimensional,11 and so the primary task in defining the

entanglement entropy across the interface is to identify the appropriate one-dimensional

subspace within HD
[
K(L)

]
⊗HD̄

[
K(R)

]
. The topological boundary conditions from sec-

tion 2 instruct us how to do so in the following way.

The tensor product spaceHD⊗HD̄ furnishes a representation of U(1)2N gauge transfor-

mations that do not vanish on ∂D. From section 2, we know that the topological boundary

conditions isolate an unbroken U(1)N ⊂ U(1)2N at the interface12 which have vanishing

inner product with Θ and so can be regarded as gauge transformations. This suggests

that the appropriate quantum gluing condition is to require HS2 to be a gauge invariant

subspace with respect to this unbroken U(1)N . To be specific, we write the generator of

gauge transformations on HD
[
K(L)

]
for convenience as

QD[λ
(L)
I ] =

KIJ
(L)

4π

∮
∂D

λ
(L)
I A

(L)
J =

KIJ
(L)

4π

∑
n

λ
(L)
I;nJ

(L)
J ;n (3.14)

and similarly on HD̄
[
K(R)

]
,

QD̄[λ
(R)
I ] =

KIJ
(R)

4π

∮
∂D̄

λ
(R)
I A

(R)
J =

K
(R)
IJ

4π

∑
n

λ
(R)
I;nJ

(R)
J ;n . (3.15)

Now we regard
(
λ(L)T , λ(R)T

)T
as lying in the image of the injection P : t0 ↪→ tΛ. That

is λ
(L)
n = v(L) · λn and λ

(R)
n = −v(R) · λ−n for some λ ∈ t0. The generator of gauge

transformations on S2 can then be defined as

QS2(λ) =
1

4π

∑
n

λI;n

[(
M (L)T · J (L)

n

)I
⊗ 1− 1⊗

(
M (R)T · J (R)

−n

)I]
. (3.16)

The state annihilated by QS2(λ) for generic λn then spans the gauge invariant Hilbert space

on S2. This state can be regarded as the suitable U(1)N generalization of the Ishibashi

state from the previous subsection. In fact, defining J
(L)
n ≡ v(L) ·Jn and J

(R)
n ≡ −v(R) · J̃n,

then the quantum gluing condition becomes

Keff ·
(
Jn ⊗ 1 + 1⊗ J̃−n

) ∣∣ψ〉 = 0. (3.17)

Thus, even in the inhomogeneous theory, the topological boundary conditions ensure that

the entanglement across the interface is well-defined in terms of the left-right entanglement

11Once gauge fields have been identified via topological boundary conditions, every Wilson loop operator

on S2 is contractible to the identity (see figure 2).
12The injection of this unbroken group into U(1)2N is analogous to the identification of gauge tranforma-

tions on D with gauge transformations on D̄.
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of the appropriate Ishibashi state. This left-right entanglement entropy can be straightfor-

wardly computed, and one finds

SEE(D) = −1

2
log |det(Keff)|, (3.18)

in agreement with the microscopic calculation of [1]. Of course, the definition of this

Ishibashi state is intrinsically tied to the choice of boundary conditions, which is in turn

directly manifested in the entropy. Indeed, the calculation in [1] involving gapping interac-

tions in the coupled wire construction was in effect equivalent to computing the left-right

entropy in the above Ishibashi state; note however that here, we have arrived at it from an

entirely bulk Chern-Simons point of view. Again, we emphasize that the above discussion

is only formal, because the Ishibashi states that we have identified are not normalizable and

so an appropriate regularization needs to be employed. Therefore the entanglement entropy

will have non-universal contributions that depend on the choice of regularization. In the

following section we consider the computation from the perspective of the replica trick. In

section 4.2, we will see that an analogous regularization naturally arises from a regulator

surface enclosing the entanglement cut and supplementing the action by including (2.6) as

a boundary term.

4 Topological entropy from the replica trick

Given the above discussion, the role of TBCs in topological entanglement seems to be fairly

straight-forward from the point of view of the left-right entanglement of the chiral edge

theories. Indeed, this is essentially the context of the calculation in [1]. However, it is

instructive to illustrate the role of TBCs in alternative entanglement calculations involving

the replica trick. Let us briefly recall this method. Given a reduced density matrix ρ̂, the

nth Rényi entropy is defined as

S(n) =
1

1− n log (Tr ρ̂n) . (4.1)

The conventional von Neumann entanglement entropy is given by analytically continuing

this to non-integer n and taking the limit as n→ 1. In the case where ρ̂ is calculated from

the identity sector with no anyon charges, S(n) has the path integral representation

S(n) =
1

1− n log (Zn/Z
n
1 ) (4.2)

where Zn is the Euclidean path integral formed by cyclicly identifying replica fields. This

replica path integral typically possesses a conical singularity at the origin indicating an

angular deficit that vanishes as n→ 1. Fortunately, Chern-Simons is a topological theory

— even after gauge fixing the path integral is metric-independent [43]. Because of this we

can choose a metric to smooth out the conical singularity and the entanglement entropy is

given as the path integral on a (possibly complicated) replicated geometry.

In the simpler case without heterointerfaces, such replica path integrals were studied

in [36] using systematic surgery methods for generic Chern-Simons theories along with
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generic choices of state, spatial topology, and entanglement cuts. The simplest scenario

considered is the state on a spatial S2, bipartitioned into hemispheres. As shown in [36],

the replica geometry reproducing the nth Rényi entropy is topologically equivalent to S3.

This path integral can be evaluated from modular properties of the theory via the following:

S3 admits a Heegard splitting into two solid tori and to each torus the Chern-Simons path

integral produces the identity state (since there are no Wilson lines inserted). The path

integral on S3 can be interpreted as the overlap of identity states on separate tori with

alternative cycles identified: ZS3 is the identity component of the modular S-matrix [37]:

ZS3 = S0
0. (4.3)

For K-matrix/Abelian topological theories, S0
0 = (detK)−1/2 , and in this simple case,

the Rényi entropies are independent of n. Hence, the entanglement entropy is given by the

logarithm of S0
0.

Direct path integral evaluations on the other hand are much more subtle: despite being

a free Gaussian theory, these path integrals must be carefully gauge-fixed and the resulting

determinants must be regularized. For the rest of the paper we will be concerned with the

theory defined on S3. For a homogeneous theory, the path integral is described carefully

in appendix B, reproducing the above result.

In the case of a theory with a heterointerface, the replica path integral is more com-

plicated due to the proliferation of alternating topological phases. As we will see, when

considering the state on S2, replica methods will again lead to a geometry diffeomorphic

to S3, but one which is “striped” by alternating topological phases. We will now explore

this replica geometry and discuss methods of computing the Rényi entropy.

4.1 Interface entanglement

We regulate the replica trick calculations by excising a tubular neighbourhood of circumfer-

ence ε about the entanglement cut. This results in a cutoff surface, as illustrated in figure 5.

In this figure, we have decompactified S3 to R3 and then suppressed a dimension for clarity.

This excision has the effect of regulating the replica path integral for trρ̂n by excising a

cylinder with circumference nε. This space is conformally equivalent13 to S1 ×H2 (a fact

well utilized in the study of entanglement entropy. See [44–46], for example). Equivalently,

we can view this as a solid torus, as shown in figure 5(c), in which there are regions with

alternating topological phases as we traverse the cycle of length nε.

Conveniently, for the spatial bipartition of the state on S2, this entire replica structure

can also be encoded into a set of TBCs. To see this, we fold the replica theory with a

parity transformation on each of the K(R) phases to achieve a 2nN -component Chern-

13Explicitly, if we were to begin with the Euclidean metric ds2 = dτ2 +dr2 +r2dθ2 on R3, we can perform

a Weyl transformation to a metric ds2 = dθ2 + dτ2+dr2

r2
. The regulator surface maps to the boundary of

the Poincaré disc H2.
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Figure 5. (Left) A cartoon of the reduced density matrix after tracing out the K(R) phase.

Regions with level matrix K(L) are denoted by pink shading in this and all other figures, and

regions with level matrix K(R) are denoted by blue shading. The introduction of the regulator

results in a “keyhole” region in the reduced density matrix. (Middle) Tr(ρ̂n) is obtained by gluing

n copies of the first figure together cyclically. The figure represents this pictorially for n = 2. In

these illustrations, a transverse dimension, which can be interpreted as Euclidean time, has been

suppressed. (Right) This construction is conformally equivalent to a path integral on S1 × H2,

which can also be viewed as a solid torus. Top and bottom of this subfigure are identified.

K(L)

K(L)

K(R)

K(R)

M
+
,1

M
+
,2

M
�
,1

M
�
,2 K(n=2)

M
(n

=
2
)

+

M
(n

=
2
)

�

K(L)

K(L)

K(R)

K(R)

K(L)

K(L)
K(R)

K(R)

Figure 6. Replica path integral with n = 2. We first conformally map to S1 × H2 and then

“fold” with parity transformations on the K(R) phases. The edges at the fold determine topological

boundary conditions Mi,±. Alternatively this can be packaged as a larger CS theory with a 2nN ×
2nN K-matrix, K(n) and the edges have topological boundary conditions M(n)

± .

Simons theory with K-matrix

K(n) =

 n⊕
q=1

K(L)

⊕
 n⊕
q=1

−K(R)

=



K(L) 0 . . . 0 0 0 . . . 0

0 K(L) . . . 0 0 0 . . . 0
...

...
. . .

... 0 0 . . . 0

0 0 . . . K(L) 0 0 . . . 0

0 0 . . . 0 −K(R) 0 . . . 0

0 0 . . . 0 0 −K(R) . . . 0

0 0 . . . 0
...

...
. . .

...

0 0 . . . 0 0 0 . . . −K(R)


(4.4)

on a cylinder of length ε. For convenience, we have taken a basis in which K has each of

the K(L) blocks side-by-side. We denote the connection on this folded geometry as A. This

is illustrated in figure 6.
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In this basis, each end of the cylinder, Σ±, has topological boundary conditions denoted

by matrices M(n)
± :

M(n)
+ =


K(L) · v(L) 0 . . . 0 K(R) · v(R) 0 . . . 0

0 K(L) · v(L) . . . 0 0 K(R) · v(R) . . . 0
...

. . .
...

... 0
. . .

...

0 0 . . . K(L) · v(L) 0 0 . . . K(R) · v(R)

 ,

M(n)
− =


K(L) · v(L) 0 . . . 0 0 0 . . . K(R) · v(R)

0 K(L) · v(L) . . . 0 K(R) · v(R) 0 . . . 0
...

...
. . .

...
...

. . .
...

...

0 0 . . . K(L) · v(L) 0 0 . . . 0

 (4.5)

such that M(n)
±

T
· A pulls back to zero on Σ±, respectively. The replica path integral is

then the path integral on this cylinder in the limit that ε goes to zero.

Let us introduce a coordinate τ transverse to Σ±. Regarding Aτ as a Lagrange multi-

plier, its path integral imposes the equation of motion as a constraint. The path integral

can then be written formally as

Zn =

∫ 2nN∏
I=1

∏
i

DAi,Iδ
[
εij

K(n)

4π
· ∂iAj

]
δΣ±

[
M(n)
± · a±i

]
× exp

(
i
K(n),IJ

4π

∫
dτd2x εijAi,I∂τAj,J

)
(4.6)

where by δΣ± we actually mean a product of two delta functions enforcing the boundary

conditions at each end and a± is the pullback of A to Σ±, respectively.

Eq. (4.6) can be readily rewritten as a path integral of pure gauge modes, an avenue

that we will take shortly. However let us see how much we can gain by working with the

Chern-Simons field directly. We write the index I = ({aq}q=1,...,n, {āq}q=1,...,n) where, for a

fixed q, aq and āq ranges from 1 to N . This is to reflect the block structure of the K-matrix:

q indexes each replica and aq indexes a K(L) block within that replica and similarly for āq
and the −K(R) blocks. We then implement the following change of path integral variables:

Ai,I =


n⊕
1

v(L) 0

0
n⊕
1

(
−v(R)

)
 ·

(
Ã

(L)
i,aq

Ã
(R)
i,āq

)
. (4.7)

In doing so, there will be associated Jacobians in the measure — determinants of v(L) and

−v(R) raised to a regulator-dependent dimension, nP. Note that, in at least this näıve
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treatment, these powers of the Jacobians scale with n:

Zn =
(

det(v(L)) det(−v(R))
)nP

×
∫ ∏

i

n∏
q=1

N∏
aq=1

DÃ(L)
i,aq

N∏
āq=1

DÃ(R)
i,āq

{
δ

[
εij
K
aqbq
eff

4π
· ∂iÃ(L)

j,bq

]
δ

[
εij
−K āq b̄q

eff

4π
· ∂iÃ(R)

j,b̄q

]

× δΣ± [B.C.s] exp

i n∑
q=1

(
K
aqbq
eff

4π

∫
εijÃ

(L)
i,aq

∂τ Ã
(L)
j,bq
− K

āq b̄q
eff

4π

∫
εijÃ

(R)
i,āq

∂τ Ã
(R)

j,b̄q

)
(4.8)

where we recall Keff = v(L)T ·K(L) · v(L) = v(R)T ·K(R) · v(R). Above we use the shorthand

“δΣ± [B.C.s]” to denote the delta functions enforcing the boundary conditions on Σ± in

terms of the redefined fields.

Let us elaborate on this result. From the definitions of M(n)
± we see that the boundary

condition on Σ+ enforces Keff ·
(
a

+,(L)
i,aq

− a
+,(R)
i,āq

)
= 0 for each q = 1, . . . , n, while on Σ−

we have a similar condition but cyclicly permuted: Keff .
(
a
−,(L)
i,aq

− a
−,(R)
i,āq−1

)
= 0, where we

use the shorthand ā0 ≡ ān. Then up to another Jacobian (with a power once again scaling

with n), the δ-functionals enforce that Ã(L) and Ã(R), together, become a continuous field:

passing through Σ+, Ã
(L)
a1 transitions into Ã

(R)
ā1
, which when passing through Σ− moves to

Ã
(L)
a2 and so on, cyclicly until Ã

(R)
ān transitions back to Ã

(L)
a1 . We now recognize that the

action and flatness constraints of these fields are that of a single homogeneous theory with

K-matrix Keff on the n-replicated manifold:

Zn =
(

det(v(L)) det(−v(R))
)nP

(detKeff)−nP′ Zn[Keff ]. (4.9)

From here it is straightforward to see that in calculating the Rényi entropy all that matters

is the effective homogeneous theory for Keff , because the other determinants drop out:

S(n) =
1

1− n log

(
Zn
Zn1

)
=

1

1− n log

(
Zn[Keff ]

Z1[Keff ]n

)
. (4.10)

Having thus ‘homogenized’ the theory, we take the geometric regulator to zero and thus

find that the topological entanglement entropy across the heterointerface is

SEE = S(n) = −1

2
log |detKeff | . (4.11)

4.2 Wess-Zumino-Witten description of the replica path integral

The above calculation should be regarded as a formal result. In particular, we did not

carefully specify a regularization scheme when manipulating functional determinants, not-

ing only the important fact of their dependence on n. To refine this, let us go back and

evaluate (4.6) as a path integral of WZW fields living on the regulator surface. In doing so,

we will show that the replica calculation reduces to a transition amplitude between con-

formal boundary states. Indeed, our use of TBCs determines these boundary states to be
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the familiar Ishibashi states of the replicated theory. Given the discussion in section 3, this

bears resemblance to the familiar LREE computations. However, we emphasize that this is

not, a priori, a boundary LREE calculation, but instead a precise rewriting of the CS path

integral as a CFT transition amplitude. We then regard the following as a complementary

physical picture to the discussion in section 3.

In the previous section, we packaged the replica path integral into a single theory on

a solid cylinder with a U(1)2nN gauge field A and a 2nN × 2nN K matrix, K(n). In doing

so, TBCs given by M(n)
± were defined on the interface surfaces Σ± separated by Euclidean

time ε:

ZR3

n [K(L),K(R),M (L),M (R)] = lim
ε→0

Z [0,ε]×H2 [K(n),M(n)
Σ±
, ε]. (4.12)

The flatness constraint (4.6) is solved locally by writing

Ai,I = ∂iφI . (4.13)

The action of these pure gauge modes is localized on the regulating surface, R = [0, ε]×∂H2.

As discussed at the end of section 2, φI need not be single-valued. Since ∂Σ± ' S1 the

bosons possess winding periodicities labelled by a 2nN integer vector P(n). Shortly we will

see that in order to give dynamics to the theory on R, we can introduce the non-topological

term VIJ
4π

∫
R aI ∧ ∗RaJ , where ∗R denotes the Hodge star for a Riemannian metric on R.

To be definite, let the coordinate on ∂H2 be σ ranging from 0 to `. We then choose the

metric to be orthonormal with respect to ∂τ and ∂σ. The limit in (4.12) can then be

expanded as a series in ε/`→ 0. We take the action on R to contain the terms

S =
K(n)IJ

4π

∫
R
dτ dσ ∂τφI∂σφJ − i

VIJ

4π

∫
R
dτ dσ ∂σφI∂σφJ . (4.14)

Note that the first term in (4.14) is first order in either derivative; in quantizing along either

the interval [0, ε], or along ∂H2 the Hamiltonian will exactly vanish. Thus we see that VIJ

supplements this theory with a Hamiltonian. However, the choice of V is non-universal and

not expected to affect the outcome of the topological entanglement. Later we will choose

it for convenience.

Let us now map out how we will proceed. We will shortly show that the problem at

hand is equivalent to the partition function of a 2d CFT at central charge c+ c̃ = 2nN on

a finite cylinder. In the context of boundary CFTs [47, 48], it is a standard result that this

partition function can either be viewed as the trace of a state defined along the interval

[0, ε], or as the Euclidean transition amplitude from a conformal boundary state on ∂Σ−
to a conformal boundary state on ∂Σ+. It is most convenient to formulate our problem in

the latter language. That is we will express (4.12) as

Zn = lim
ε/`→0

⟪∂Σ
(n)
− |e

− 2πε
`

(
L

(n)
0 +L̃

(n)
0 −

nN
12

)
|∂Σ

(n)
+ ⟫ (4.15)

where |∂Σ
(n)
± ⟫ are suitable boundary states and L

(n)
0 and L̃

(n)
0 are the Virasoro generators.

This approach will allow us to evaluate Zn in canonical quantization and thus avoid the

subtlety of functional Jacobians coming from field redefinitions.
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Informed from our discussion in the previous section, we make the field redefinition

φ =


n⊕
1

v(L) 0

0
n⊕
1

(
−v(R)

)
 · φ′ ≡ v · φ′ (4.16)

for which the action simplifies to

S =
K(n)

eff

IJ

4π

∫
dτ dσ ∂τφ

′
I∂σφ

′
J − i

V′IJ

4π

∫
dτ dσ ∂σφ

′
I∂σφ

′
J (4.17)

for K(n)
eff ≡

(⊕n

1
Keff

)
⊕
(⊕n

1
−Keff

)
and V′ such that V = vT ·V′ ·v. We choose a frame,

E, (and coframe, F ) for the K-matrix, defined by

K(n)
eff

IJ
= E(n)I

Aη
ABE(n)J

B F (n)A

JE
(n)I

A = δIJ (4.18)

where η is a signature (nN, nN) diagonal matrix of ±1. We then define fields ΦA =

E(n)I
Aφ
′
I and velocity, vAB = F (n)A

I V′
IJF (n)B

J in this frame. Because vAB is non-universal,

we will simply choose it for convenience to be proportional to δAB.

This system is easily quantized. It will be convenient to split the index A in an way

analogous to the analysis in section 4.1. That is, we take A = ({aq}q=1...n, {āq}q=1...n) with

aq and āq for a given q ranging from 1 to N . The mode expansion for ΦA is then

ΦA(τ, σ) = ϕA(τ) +
i2π

`
(PL,A (τ − iσ)− PR,A (τ + iσ))

+ i
∞∑

k=−∞,k 6=0

1

n

(
α

(L)
A,k e

2πk
`

(τ−iσ) + α̃
(R)
A,k e

2πk
`

(τ+iσ)
)

(4.19)

where PL,A and α
(L)
A,k are non-zero only in the upper block, and vice-versa for PR,A and

α̃
(R)
A,k. That is, PL,A = δ

aq
A PL,aq , PR,A = δ

āq
A PR,āq , α

(L)
A,k = δ

aq
A α

(L)
aq ,k

, and α̃
(R)
A,k = δ

āq
A α̃

(R)
āq ,k

.

Modes within the same replica block obey the commutation relations

[ϕA(0),PB] = iηAB [α(L)
aq1 ,m

, α
(L)
bq2 ,k

] = mδq1,q2δaq1bq2 δm+k

[α̃
(R)
āq1 ,m

, α̃
(R)

b̄q2 ,k
] = mδq1,q2δāq1 b̄q2

δm+k. (4.20)

The normal-ordered Hamiltonian of the system is

H =
1

4π

∫ `

0
dσ : ∂σΦ̂Aδ

AB∂σΦ̂B :=
2π

`

(
L

(n)
0 + L̃

(n)
0 − nN

12

)
. (4.21)

where

L
(n)
0 =

n∑
q=1

N∑
aq ,bq=1

δaq ,bq

(
1

2
P̂(n)
L,aq
P̂(n)
L,bq

+
∞∑
k=1

α
(L)
aq ,−kα

(L)
aq ,k

)
(4.22)

L̃
(n)
0 =

n∑
q=1

N∑
āq ,b̄q=1

δāq ,b̄q

(
1

2
P̂(n)
R,āq
P̂(n)

R,b̄q
+

∞∑
k=1

α̃
(R)
āq ,−kα̃

(R)
āq ,k

)
(4.23)
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We specify the boundary states, |∂Σ±⟫ by the constraints that they satisfy the replica TBCs(
M(n)T

+ · ∂σφ̂
)
|∂Σ+⟫ =

(
M(n)T

− · ∂σφ̂
)
|∂Σ−⟫ = 0. (4.24)

These states will be labeled by their zero mode eigenvalues, {P(n)
± }, which, in the current

frame, are respectively spanned by a collection of integer vectors {zi±}i=1,2,...,n ∈ ZN :

P(n)
+ =

(
P(n)
L,+

P(n)
R,+

)
=



z1
+

z2
+
...

zn+
z1

+

z2
+
...

zn+


P(n)
− =

(
P(n)
L,−
P(n)
R,−

)
=



zn−
z1
−
...

zn−1
−
z1
−
z2
−
...

zn−


. (4.25)

Additionally, the oscillator portion of the boundary states are subject to the boundary

condition(
α

(L)
aq ,k
− α̃(R)

āq ,−k

)
|∂Σ+⟫ = 0

(
α

(L)
aq ,k
− α̃(R)

āq−1,−k

)
|∂Σ−⟫ = 0 (4.26)

for each q = 1, . . . , n. In the second equation in eq. (4.26), one should regard ā0 ≡ ān.

These boundary conditions are reminiscent of those in section 3, replicated and cyclicly

identified,14 and so we see the familiar role of the Ishibashi state appearing, this time from

the replica trick. The full boundary state at Σ+ can be written as the superposition over

all occupations of Fock states with equal left- and right-occupation:

|∂Σ+⟫ =
∑

{zi+}∈ZN

∞∑
{maqk}=1

n∏
q=1

N∏
aq=āq=1

∞∏
k=1

1

maqk!

(
1

k
α

(L)
aq ,−kα̃

(R)
āq ,−k

)maqk
|{P(n)

+ (zi+)}〉

≡
∑

{zi+}∈ZN

∞∑
{maqk}=1

|{P(n)
+ (zi+)}; ~maqk〉 (4.27)

and similarly for ∂Σ−

|∂Σ−⟫ =
∑

{zi−}∈ZN

∞∑
{maqk}=1

n∏
q=1

N∏
aq=āq=1

∞∏
k=1

1

maqk!

(
1

k
α

(L)
aq ,−kα̃

(R)
āq−1,−k

)maqk
|{P(n)
− (zi−)}〉

≡
∑

{zi−}∈ZN

∞∑
{maqk}=1

|{P(n)
− (zi−)}; ~maqk〉. (4.28)

14Indeed, on R, it is the oscillator modes of ∂σφ that span the current algebra: Jk ∼ αk, J̃k ∼ α̃k.
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The Euclidean evolution of |∂Σ+⟫ to the other end of the interval gives us

e
− 2πε

`

(
L

(n)
0 +L̃

(n)
0 −

nN
12

)
|∂Σ

(n)
+ ⟫

= e
2πε
`
nN
12

∑
{zi}∈ZN

e
− 2πε

`

(∑n
i=1 z

i
+
T ·Keff ·zi+

) n∏
q=1

N∏
aq=1

∞∏
k=1

∞∑
maqk=1

e−
4πε
`
kmaqk |{P(n)

+ (zi+)}; ~maqk〉.

(4.29)

Now it is easy to see what will happen in the inner product with ⟪∂Σ−|. In the zero mode

sector, the inner product on the lower block (i.e., P(n)
R ) will enforce zi+ = zi− while the

upper (P(n)
R ) block will enforce zi+ = zi−1

− . The sum over the integer vectors will then

collapse to a sum over a single integer vector z. Similarly because the oscillators of |∂Σ−⟫
have been cyclicly permuted from the definition of |∂Σ+⟫, the only nonzero portion of this

inner product comes from the occupations satisfying ma1k = ma2k = . . . = mank ≡ mak

and so this product also collapses:

⟪∂Σ
(n)
− |e

− 2πε
`

(
L

(n)
0 +L̃

(n)
0 −

nN
12

)
|∂Σ

(n)
+ ⟫

= e
4πε
`
nN
24

∑
z∈ZN

e−
2πε
` (n zT ·Keff ·z)

N∏
a=1

∞∏
k=1

∞∑
mak=1

e−
4πε
`
nkmak . (4.30)

As is familiar, the sum over occupations, mak, along with the oscillator products, and the

overall coefficient, gives the Dedekind η-function,
(
η
(
i2nε
`

))−N
[38], while the sum over z

gives the Riemann θ-function associated to the matrix Keff [49]. We then have that the

replica path integral becomes

Zn = lim
ε/`→0

(
η

(
i
2nε

`

))−N
ϑ(Keff)

(
0
∣∣∣i2nε

`

)
. (4.31)

Dividing this by the normalization

Zn
Zn1

= lim
ε/`→0

(
η

(
i
2nε

`

))−N (
η

(
i
2ε

`

))nN
ϑ(Keff)

(
0
∣∣∣i2nε

`

)
ϑ−n(Keff)

(
0
∣∣∣i2ε
`

)
. (4.32)

Using the modular properties, η(τ) = (−iτ)−1/2 η(−1/τ) and ϑΩ(0|τ) =

det−1/2 (−iτΩ)ϑΩ(0| − 1/τ), we can expand this in the limit that ε/`→ 0:

Zn
Zn1

= lim
ε/`→0

det−1/2 (Keff) detn/2 (Keff)

×
(
η

(
i
`

2nε

))−N(
η

(
i
`

ε

))nN
ϑ(Keff)

(
0
∣∣∣i `
nε

)
ϑ−n(Keff)

(
0
∣∣∣i`
ε

)
= lim

ε/`→0
e
πN`
24ε

(1−n)(1+n)
n det(n−1)/2(Keff). (4.33)

The Rényi entropy is given as

S(n) =
1

1− n log

(
Zn
Zn1

)
= lim

ε/`→0

{
πN

24

1 + n

n

`

ε
− 1

2
log |det(Keff)|

}
. (4.34)
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and the entanglement entropy is the n→ 1 limit of this:

SEE = lim
ε/`→0

{
πN

12

`

ε
− 1

2
log |det(Keff)|

}
. (4.35)

We see that the piece independent of the cutoff is precisely the determinant of the effective

K matrix. This concludes our assertion that not only do TBCs modify the topological

entanglement, but in precisely the same fashion as in [1].

5 Discussion

In this paper we have addressed the gapped interfaces between topological phases from

a bulk Chern-Simons approach. Central to this discussion is the existence of topological

interface conditions. The algebraic properties of these boundary conditions are closely

related to the existence of the gapping potentials in the chiral boundary theory. This is a

restatement of the fact that the “glue-ability” of two Chern-Simons theories is equivalent

to “gappability” of the interface chiral modes. Although derived from a classical symplectic

analysis, we showed that TBCs lead to a natural quantum criteria for isolating the Chern-

Simons ground state in the extended Hilbert space approach to entanglement. From there

we showed that the signatures of the TBCs are seen in the entanglement entropy across

a heterointerface. In particular, the TBCs can be thought of as identifying which linear

combinations of gauge fields can permeate the interface. The effective theory of these

gauge fields at the boundary is characterized by a new K-matrix that we call Keff and the

topological entanglement probes this matrix. These results nicely corroborate with known

results in the condensed matter literature.

There are several natural extensions to the program that we have initiated here. First,

we have focused on states of Chern-Simons theory defined on constant time slices having

the topology of S2. Although, this is sufficient for illustrating the sensitivity of the TEE

to the interface conditions, this is a drastic simplification to the wealth of states we could

construct in Chern-Simons theory. In particular we can define a state on any Riemann

surface. Even in a homogeneous theory, the entanglement structure on such surfaces is

more interesting: the Hilbert space is no longer one-dimensional and so there are multiple

sectors from which one can define an entanglement entropy, and additionally there may be

more than one topologically inequivalent way of bi-partitioning the surface. The analysis

of heterointerfaces adds additional, interesting structures to this problem: in particular,

if a bi-partition requires the interface to consist of multiple components, one can imagine

choosing different TBCs on each component. We expect the reasoning in section 3 to play

a guiding role in such analysis; indeed one may even hope to develop a set of rules akin to

“surgery for hetero-interfaces.”

A second generalization is to explore the gluing of two non-Abelian topological phases.

Although in this context there is no natural notion of a K-matrix, only an integer k, the

classification of TBCs should not be discarded as simple. We again expect isolating a half-

dimensional unbroken gauge symmetry to play a central role in this analysis; e.g., if joining

phases with groups, G and G̃, the TBCs should define a half-dimensional Lie group H
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immersed into G× G̃, while also satisfying algebraic properties involving the levels. This,

itself, presents an interesting geometric problem. For discussions of entanglement, Wilson

line contributions to the entropy provide an additional subtlety to this problem that does

not arise in the Abelian context.
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A Geometric interpretation of primitivity

In this appendix, we explore some of the implications of the primitivity condition of sec-

tion 2. We want to look at this condition geometrically and show that it is a sufficient

condition for uniquely embedding the torus U(1)N ' TΛ0 ↪→ U(1)2N ' TΛ. Recall that

primitivity requires that the
(

2N
N

)
N ×N minors of the matrix

P =

(
v(L)

−v(R)

)
(A.1)

have gcd 1. The key to this is to note that P encodes how many times TΛ0 wraps TΛ as one

traverses through one of its cycles. This is easiest to see in a linear embedding of TΛ0 into

TΛ. That is, given global coordinates ~θ = {θ1, . . . , θN} on TΛ0 all ranging from [0, 1], and

coordinates {~θL; ~θR} = {θL,1, . . . , θL,N ; θR,1, . . . , θR,N} on TΛ, also ranging from [0, 1], then

the map P · ~θ is a topological embedding when v(L) and v(R) are non-degenerate integral

matrices. The submanifold is then the graph of {~θL,−v(R)v(L)−1 · ~θL}, or alternatively,

{−v(L)v(R)−1 · ~θR, ~θR}, inside of TΛ. However, several choices of v(L) and v(R) yield the

same graph. Let us illustrate this with a simple example.

Let K(L) = 9 and K(R) = 1 be 1×1 K-matrices. Ignoring primitivity, solutions to

the gluing conditions are v(L) = m, v(R) = ±3m for some integer m. This embedding of

U(1) ↪→ U(1)2 is given in the figure below. The embedded submanifold in fact depends

only on the ratio −v(L)/v(R); different choices of m give different coverings of the same

manifold. Requiring v(L) and v(R) to be relatively prime then fixes an equivalence class of

this ratio which corresponds to the minimal covering.

This same principle can be extended to the U(1)N case. Let us focus on the graph of

{~θL; −v(R)v(L)−1 · ~θL}. The key point is that every element of the matrix v(R)v(L)−1
is a

ratio of two N × N minors of P. To see this note that for any N × N invertible matrix,

the inverse can be written as

v(L)−1
=

1

det v(L)
CT
L , (A.2)
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Figure 7. (Left) The graph of v(L) = m, v(R) = −3m. Note that the value of m is irrelevant for

the graph. (Right) The same graph as wrapped on the torus.

where CT
L is the matrix of cofactors of v(L) defined by its (N − 1)× (N − 1) minors via

CLij = (−1)i+jm
(L)
ij (A.3)

where m
(L)
ij is the minor formed from removed the ith row and jth column from v(L). A

typical element of v(R)v(L)−1
is then

(
v(R)v(L)−1

)
ij

=
1

det v(L)

N∑
k=1

v
(R)
ik (−1)j+km

(L)
jk . (A.4)

However, this is the ratio of det v(L) and the determinant of the matrix formed from

replacing the jth row of v(L) with the ith row of v(R), which are both N × N minors

of P. The same logic can be run for the equivalent parameterization of the graph as

{−v(L) · v(R)−1 · ~θR; ~θR}. Thus an embedding in which all of the minors share a common

factor yields precisely the same graph as one in where they are relatively prime. Hence,

primitivity can be seen as a geometric condition for eliminating equivalent embeddings.

B Direct calculation of homogeneous Chern-Simons topological entan-

glement

In section 4.1, we showed through a change of path integral variables that the topological

Rényi entropy across the heterointerface in S3 can be regarded as the Rényi entropy of

an effective homogenized theory. One can imagine then evaluating this homogenized path

integral from the standard surgery arguments (e.g. [37]). However, without a well defined

notion of cutting and gluing along a heterointerface, we supplement this with a more direct

evaluation of the path integral on S3. To be more specific, after performing the Fadeev-

Popov procedure, the Chern-Simons path integral on a three manifold M3, can be evaluated

as [43]

ZM3 [K] = det′
−1/4
Ω1

(
K2

16π2
∆1

)
det′

−1/4
Ω3

(
K2

16π2
∆3

)
det′Ω0

(
K

4π
∆0

)
, (B.1)
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where det′Ωp is the determinant (excluding zero modes) over the vector space of p-forms on

M3, and ∆p = d†d+ d d† is the corresponding Laplace operator15 on Ωp. We are interested

in factoring out the determinant of the K-matrix from this product:

ZM3 [K] '
(

det
K

4π

)P0−P1/2−P3/2 (
det′

−1/4
Ω1

(∆1) det′
−1/4
Ω3

(∆3) det′Ω0 (∆0)
)N

(B.2)

where N is the rank of K and the combination of powers P0 −P1/2 −P3/2 will be

discussed below. It is well known that the second factor, i.e., the one raised to the power

N, is a topological invariant of M3 related to the Ray-Singer torsion [50, 51]: T
−N/2
R.S. .

Because TR.S. is a probe of the underlying manifold, and not of the anyonic ground state

degeneracy (that is to say it is independent of K), we disregard this contribution to the

path integral (that is, we normalize ZM3 [K] by ZM3 [IN×N ]). We regulate the powers Pp

through zeta function methods and so

Pp = ζ∆p(0) (B.3)

for the spectral zeta function of ∆p (excluding the zero modes). We simplify this by noting

that Ωp admits the Hodge decomposition Ωp = ΩT
p ⊕ ΩL

p ⊕ Ωh
p where ΩT

p , ΩL
p , and Ωh

p

are the transverse, longitudinal, and harmonic eigenspaces of the Laplacian, respectively.16

It can be shown that ΩL
p is isomorphic to ΩT

p−1 and furthermore, by Hodge duality, that

ΩT,L
p ' ΩL,T

d−p [52]. Excluding the zero modes, then the regulated power of k can be further

decomposed into

− 1

2

(
PT

1 + PL
1

)
− 1

2
PL

3 + PT
0 = −1

2

(
PT

1 + PT
0

)
− 1

2
PT

0 + PT
0 = −1

2
PT

1 (B.4)

so we see that only the transverse subspace of the original one-forms contribute to this

power, as we should have expected from a gauge-invariant theory.

Now let us specialize to M3 = S3. Using the standard metric on S3, the degeneracies

and eigenvalues for the transverse eigenfunctions of 1-form Laplacian are D` = 2`(` + 2)

and λ` = −(`+ 1)2, respectively [52]. The zeta function is then

ζ−∆T
1

(s) =
∞∑
`=1

2`(`+ 2)(`+ 1)−2s = 2ζH(2s− 2; 2)− 2ζH(2s; 2) (B.5)

where ζH(z; q) is the Hurwitz zeta function, defined for Re(z) > 1 by
∑∞

n=0 (n+ q)−z ,

and then analytically continued for complex z. The special values of ζH(z; q) are well

known and now we may take the s → 0 limit. In particular, we note ζH(0; q) = 1
2 − q

and ζH(−n; q) = −Bn+1(q)
n+1 where Bn+1(q) is the Bernoulli polynomial when n is a natural

number. Doing so we have

PT
1 = 2ζH(−2; 2)− 2ζH(0; 2) = 1. (B.6)

15To define ∆p, we need to introduce a Riemannian metric on M3. Indeed this metric is introduced in the

gauge-fixing stage. Remarkably, however, the following results are independent of the metric chosen [43].
16That is any p-form can be written as ωp = d†σp+1 + dηp−1 +χhp for some p+ 1 form σ, some p− 1 form

η, and χ annihilated by the Laplace operator.
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The end result is that

ZS3 [K] ' det−1/2K (B.7)

consistent with the known topological entanglement entropy.

As a brief aside, we can convince ourselves that these path integrals are properly

normalized by repeating this procedure on M3 = S1×T 2. We then expect that the answer

should be the dimension of the Hilbert space on the torus: ZS1×T 2 = dimHT 2 = detK.

Indeed by explicit calculation using the flat product metric on S1 × T 2 ' S1 × S1 × S1,

the eigenvalues for ∆T
1 are

λ2 =
1

4

(
m2 + n2 + p2

)
(B.8)

where m,n, and p are integers, not all simultaneously zero. Each non-zero eigenvalue has

degeneracy 2 and so the spectral zeta function for this Laplacian is then

ζ∆T
1

(s) =
∑

m,n,p∈Z3\{0,0,0}

2

(
m2 + n2 + p2

4

)−s
= 22s+1ζE,3(s; 0) (B.9)

where ζE,D(s; q) =
∑

~n∈ZD\~0
(
|~n|2 + q2

)−s
converges for s > D/2 to the Epstein zeta

function. Analytically continuing this to ζE,3(0; 0) = −1 see then that the standard result

is exactly reproduced:

ZS1×T 2 ' detK = dimHT 2 . (B.10)
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