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Abstract: Minimal Composite Higgs Models (MCHM) have long provided a solution to

the hierarchy problem of the Standard Model, yet suffer from various sources of fine tuning

that are becoming increasingly problematic with the lack of new physics observations at

the LHC. We develop a new fine tuning measure that accurately counts each contribution

to fine tuning (single, double, triple, etc) that can occur in a theory with np parameters,

that must reproduce no observables. We then use a novel scanning procedure to perform

a comprehensive study of three different two-site, 4D, SO(5) → SO(4) MCHMs with all

third generation fermions included, distinguished by the choice of the lepton embeddings.

These are the MCHM5-5-5
5-5-5, MCHM5-5-5

14-14-10 and MCHM5-5-5
14-1-10, where MCHMq−t−b

l−τ−ν has

the lepton doublet partner in representation l, tau partner in representation τ , and so

on. We find that embedding at least one massive lepton in the symmetric 14 of SO(5)

moderately reduces the tuning for the case of low top partner masses (in line with previous

results), but that this is balanced against the increased complexity of the model when

one properly accounts for all sources of fine tuning. We study both the current relative

fine-tuning of each scenario, and the future prospects. Noting that the different scenarios

behave differently with respect to future improvements in collider measurements, we find

that the MCHM5-5-5
14-1-10 enjoys a relatively low increase in fine tuning even for a future lower

bound on the top partner masses of 3.4 TeV (or equivalently a maximum Higgs-fermion or

Higgs-gluon coupling deviation of 2%).
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1 Introduction

The hierarchy problem of the Standard Model (SM) has long been used to motivate the

existence of new physics at the TeV scale. A well-known and compelling extension of the SM

involves the replacement of the elementary Higgs boson by a composite state that emerges

as a pseudo-Nambu-Goldstone boson of a new, spontaneously broken global symmetry [1–

3]. As seen in the case of the pion mass in QCD, such a theory naturally contains a hierarchy

between a characteristic mass scale associated with some new fundamental physics (for a

example a strongly-coupled new sector), near which heavy resonances are expected to

congregate, and an anomalously light object. One can also use compositeness to explain

the fermion mass hierarchies [4, 5]. An important innovation in more recent work is the

notion of “partial compositeness”, in which SM fermions and gauge fields are a mixture

of elementary fields and the new composite states. Whilst the precise choice of global
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symmetry remains open (see [6–13] for examples), the model based on SO(5) × U(1)X →
SO(4) × U(1)X is known as the Minimal Composite Higgs Model (MCHM), since this is

the smallest symmetry group consistent with custodial symmetry that leads to exactly four

Nambu-Goldstone bosons [14, 15]. This symmetry breaking pattern fixes the embedding

of the SM gauge sector but leaves considerable freedom of choice in the embedding of the

SM fermion sector, in which case it is most usual to explore several possible options.

The current lack of evidence for BSM physics at the LHC is telling us that the com-

positeness scale in any realised composite Higgs scenario is probably significantly higher

than the electroweak scale, in which case it is worth critically examining the level of fine

tuning in these theories. Fine tuning comes from a variety of sources, the most obvious

being that the Higgs vacuum expectation value (VEV) must be kept below the composite-

ness scale. One must also make the theory reproduce a variety of observations including

the Higgs VEV, the Higgs mass and the fermion masses, each of which can in principle

contribute an independent source of fine tuning. It is known, for example, that the Higgs

mass is specifically correlated with the mass of the lightest top partner for certain choices of

the embedding of the composite states in SO(5) [10–12, 16–20], making light top partners

essential for naturalness in these models.

In MCHM theories without partially composite leptons, one observes that embedding

the quarks in 5 or 10 representations of SO(5) leads to a well-known “double tuning” effect,

which can ultimately be traced back to the calculation of the Higgs potential. One must

first tune the parameters to obtain a Higgs VEV below the compositeness scale. Even then,

this does not lead to viable electroweak symmetry breaking if one includes only the leading

contribution to the Higgs potential, since the resulting functional form (in the Higgs field)

has a minimum at the origin. The inclusion of formally subleading contributions produces

a second term which can give rise to electroweak symmetry breaking provided that the

parameters that enter the coefficient of the leading term can be tuned sufficiently far down

from their natural size, independently of the initial tuning.

Embedding at least one quark chirality in the 14 representation provides a partial

solution to this problem, since one now obtains two different functional forms in the Higgs

potential at leading order. In practise, however, a large ad-hoc tuning is then required to

reduce the Higgs mass, which turns out to be generically much higher than the electroweak

scale in these models. It has recently been shown, however, that a more elegant solution

is to include partially composite leptons in the model, since they must be accounted for in

any complete description in any case, and they can introduce extra effects [21]. Naively,

it might be expected that the leptons play only a small role in the phenomenology of

the model. At any given order in the Higgs potential calculation, for example, the lepton

contribution (assuming similar embeddings to the quarks) will be considerably smaller than

the quark contribution due to the much smaller Yukawa couplings and, to a lesser extent,

the lack of a colour factor. However, if one puts the leptons in a 14 representation, but the

quarks in 5 or 10 representations, one obtains two functional forms in the Higgs potential

at leading order for the leptons, with a suppressed contribution from the quarks. The two

terms in the Higgs potential naturally come out to be of similar order, with less need for

an additional ad-hoc tuning compared to the case of the initial quark approach.
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In previous work by a subset of the current authors [22], comprehensive scans of MCHM

scenarios without partially composite leptons were performed, with three different choices

of the SM top quark embedding (and lighter fermions neglected). In each case, the regions

of the parameter space consistent with the Higgs VEV, top quark mass and the Higgs mass

were identified and used to obtain current and projected constraints on fine tuning as a

function of existing and hypothetical limits on the top partner masses, charged vector-

boson resonance masses, Higgs coupling deviations and the compositeness scale. In this

paper, we revisit this work with the addition of the partially composite third generation

leptons, also introducing the possibility of partially composite b quarks for good measure.

As such, the matter content of the models considered includes composite fermions with the

quantum numbers of the heaviest flavour of SM quarks and leptons. We consider one quark

representation (since the details of the tuning will be relatively insensitive to the choice of 5

or 10 representations for the quarks), and scan over three different lepton representations.

These are the composite lepton doublet, tau and tau neutrino in 5-5-5 respectively, in

the symmetric-antisymmetric 14-14-10, or in the fully-composite tau 14-1-10. These

models have between 19 and 25 input parameters, and we must find regions of this large

parameter space that correctly reproduce the b quark, τ lepton and top quark masses, in

addition to the Higgs mass and VEV. Such a large number of observables and parameters

requires a sophisticated treatment, both in the definition of the fine tuning measure, and

the method used to find the small regions of the considerable parameter space volume that

give rise to the correct SM behaviour. We approach the first problem by generalising the

fine-tuning measure of [22] to cope with N observables, and in doing so we count the total

fine tuning in a more accurate way than in [21] which leads to interesting conclusions. We

solve the second problem by using a combination of the MultiNest implementation of the

nested sampling algorithm, plus a second stage of MCMC sampling, to efficiently find the

desired regions in our candidate MCHM parameter spaces. Such regions are punishingly

hard to find by random means, and our approach will be useful in the study of other

composite Higgs models, all of which can be expected to rely on delicate cancellations

between parameters to produce known phenomenology.

The rest of our paper is structured as follows. We provide a short overview of the two-

site 4D MCHM in section 2, and review the standard derivations of the relevant fermion

expressions from the composite fermion Lagrangian. This includes formulae for the SM

observables as functions of the model parameters. Our scanning technique is described

in section 3. In section 4 we outline how to deal with the tuning of N observables, and

present a computationally effective method of producing a total fine tuning. Our results

are presented in section 5, before we present our final conclusions in section 6.

2 The minimal composite Higgs

2.1 Model overview

A particularly elegant mechanism for realising a composite Higgs boson is to take a com-

posite sector that emerges from a confining gauge theory (e.g. the theories considered

in [23–32]) and associate the Higgs with a pseudo Nambu-Goldstone boson (pNGB) that
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derives from the spontaneous breaking of a global symmetry. The symmetry breaking pat-

tern SO(5) → SO(4) preserves precision electroweak measurements through compatibility

with custodial symmetry [33], and produces four pNGBs which is exactly the number re-

quired to form a Higgs doublet. The interactions of the pNGBs are determined by low

energy theorems, and hence the only remaining task is to specify the form of the interac-

tions between the SM fermions and the composite sector, which boils down to choosing

the precise embeddings of the elementary fermions in representations of SO(5). In this

paper, we focus on the two-site 4D models that were previously described in [18, 34, 35].

The mechanics of the collective breaking will be broadly summarised below. However, this

study uses well-established bosonic expressions, e.g., derived in [22, 35], and we refer the

reader to these for a pedagogical guide. We will delve into more detail of the behaviour of

the fermion sector under the breaking.

The models that we consider consist of an elementary site (Site 0) and a composite

site (Site 1), as summaried in figure 1. Site 1 is populated by composite partners to

the elementary fields, to be thought of as the first set of resonances arising from the

new strongly-coupled sector. It contains fields invariant under a global symmetry G1 =

SO(5)1 × U(1)X , where the extra factor U(1)X turns out to be necessary to provide the

correct hypercharge for the fermions. Site 0 is populated by fermion and gauge fields

with the same (gauged) symmetry group and the same fermion representations as the SM,

excluding the Higgs doublet. It is useful to promote the elementary symmetry group to

an exact global symmetry G′0 = SO(5)0 × U(1)X , by introducing spurious, non-dynamical

gauge and fermion fields, and by temporarily assuming that all fields on the elementary

site are non-dynamical. This is done purely for mathematical convenience, as it allows us

to construct the Lagrangian of the low-energy effective theory by writing terms symmetric

under the global product group G′0 ×G1. G′0 ×G1 is then spontaneously broken down to

the global, diagonal subgroup G, and the NGBs associated with this breaking are eaten

by the G1 gauge fields to produce massive, vector bosons transforming in the adjoint

representation of G. At the same time, G1 spontaneously breaks to H1 = SO(4)1×U(1)X ,

producing 4 NGBs that provide a fully composite Higgs boson. The SM fields observed in

nature are linear combinations of the elementary and composite source fields, i.e. they are

“partially composite”.

One can now “turn off” the spurious fields on Site 0, and gauge only the SM SU(2)L×
U(1)Y subgroup of G′0 (leaving the SM fermions in incomplete representations of G′0). The

effect is to break G down to the SM electroweak gauge group, but the explicit breaking is

weak due to the fact that the couplings and masses on the composite site are much larger

than their SM counterparts. Hence, the Higgs remains light due to its pNGB nature.

The spontaneous breaking G1 → H1 can be parameterised by a field Φ1, with a U(1)X
charge of QX = 0 and a non-zero vacuum expectation value of 〈Φ1〉 = (0, 0, 0, 0, 1). One

can write:

Φ1(Π) = 〈Φ1〉 exp(iΠâT â) , (2.1)

where ΠâT â contains the four NGBs for the four broken SO(5)1 generators, {T â}. This

field transforms as Φ1 → g1Φ1. Site 0 and Site 1 are connected by a link field Ω that will
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be described by a separate σ-model, and which transforms as Ω→ g0Ωg†1, g0, g1 ∈ G′0, G1.

Ω parameterises the NGBs from the spontaneous breaking of G1 × G0 → G, and its

addition allows the realisation of partially composite fermions through the presence in the

final Lagrangian of bilinears that involve a fermion on Site 0 and a fermion on Site 1. The

physical content of the theory becomes apparent when one transforms to the unitary gauge,

which can be accomplished via:1

Φ = ΩΦ1 . (2.2)

In this gauge, the would-be NGBs that are eaten to generate the composite vector masses

are set to zero. Using the SO(5)1 basis {T a ∈ H1, T
â ∈ G1/H1}, one can show that

Φ =
1

ĥ
sin

ĥ

f

(
h1, h2, h3, h4, ĥ cot

ĥ

f

)T
, (2.3)

where ĥ =
√
hâhâ. We identify the usual Higgs doublet as

H =

(
ih1 + h2

ih3 + h4

)
=

(
0

h

)
(2.4)

with the usual vacuum 〈H〉 = (0, v)T . Therefore we match fields and see

h4 = ĥ = h =⇒ Φ = (0, 0, 0, sh, ch)T and 〈Φ〉 = (0, 0, 0, ξ,
√

1− ξ2)T , (2.5)

where sh = sin h
f , ch = sin h

f , ξ = sin v
f and f is the NGB decay constant.

The Lagrangian for our models can be constructed by combining separate contributions

that describe the elementary and composite sites, and the mixing between them. The

elementary site contribution from Site 0 is given by

L0 =− 1

4g2
2,0

WµνW
µν − 1

4g2
1,0

BµνB
µν

+

(
Λ

dqmQ

)2

q̄i /D0q +

(
Λ

dtmT

)2

t̄ci /D0t
c +

(
Λ

dbmB

)2

b̄ci /D0b
c

+

(
Λ

dlmL

)2

l̄i /D0l +

(
Λ

dτmT

)2

τ̄ ci /D0τ
c +

(
Λ

dνmV

)2

ν̄ci /D0ν
c

+ . . . ,

(2.6)

with {Wµν , Bµν} representing the SU(2)L×U(1)Y ∈ SO(5)0×U(1)0 field strength tensors,

and the matter content: tc representing the elementary right-handed top-like quark, q being

a left-handed doublet for the third quark generation, and so on. The covariant derivative

involving the elementary gauge fields is denoted by D0. Terms involving lighter fermions

are neglected (but noted for completeness by the dots), and we also note that the quark

1For brevity, we have dropped from this discussion an extra link field ΩX for the U(1)X factor, but the

details can be found in [35].
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Figure 1. The group structure of the two-site model considered here, with coloured-in regions

denoting gauged groups. There are four sources of breaking: spontaneous SO(5)1 → SO(4)1 by Φ1,

SO(5)0×SO(5)1 → SO(5)0+1 by Ω, explicit SO(5)0+1 → SU(2)0×U(1)x0 by removing non-dynamic

fields, SU(2)0 ×U(1)x0 × SU(2)1 ×U(1)x1 → SU(2)weak ×U(1)Y by gauging the SM group.

kinetic terms do not yet follow canonical normalisation. The normalisation factor will be

explained shortly.

The composite site Lagrangian contains the terms:

L1 =− 1

4g2
ρ

ρµνρ
µν − 1

4g2
X

ρX,µνρ
µν
X +

f2
1

2
(D1,µΦ)(Dµ

1 Φ)T

+ Q̄i /D1Q+ Q̄ci /D1Q
c + T̄ i /D1T + T̄ ci /D1T

c + B̄i /D1B + B̄ci /D1B
c

−mQQ̄Q
c −mT T̄ T

c −mBB̄B
c −mYT Q̄T

c −mYBQ̄B
c − Y (Φ, Q, T,B)

+ {Q→ L, T → T , B → V}+ h.c. + . . . ,

(2.7)

where ρ and ρX are the field strength tensors for the composite, G1 gauge field; Φ contains

the Higgs fields, and D1 is the covariant derivative involving the composite gauge fields.

{Q,T,B,L, T ,V} and their charge conjugates {Qc, T c, Bc, Lc, T c,Vc} are the composite

Dirac fermions that mix, respectively, with the elementary fields {q, t, b, l, τ, ν}. Three

types of term can be written for the fermions: diagonal mass terms, mΨ, off-diagonal mass

terms, mYΨ
, and Yukawa-like terms, Y (Φ, Q, T,B, L, T ,V) that couple the fermions to the

Higgs. These terms are given below for each fermion representation. The need to keep the

Higgs potential finite means that QcT terms are not present despite being allowed by all

symmetries of the model.

– 6 –
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Finally, we can write the mixing Lagrangian as:

Lm =
f2

Ω

4
(D0+1,µΩ)(Dµ

0+1Ω)† + ΛqRq(Ω)qQc + ΛtRt(Ω)tcT + ΛbRb(Ω)bcB

+ ΛlRl(Ω)lLc + ΛτRτ (Ω)τ cT + ΛνRnu(Ω)νcV + h.c. + . . . ,

(2.8)

where Ω is the link field defined earlier, and D0+1 is a covariant derivative that contains

both elementary and composite fields. The remaining terms mix q and Qc, tc and T ,

and so on, in a form that is consistent with the original G0 × G1 symmetry. This mixing

is accomplished using projections, R(Ω), that correspond to the G1 representations that

q, tc, etc. are embedded in. Since the elementary fermions are not canonically normalised,

the actual couplings on the mixing terms go like dqmQ for the q, dtmT for the tc term, and

so on. That is, we parameterise the elementary-composite mixing by an angle tan θψ =

dψ ∈ [0, 1]. After we have our effective theory, it turns out to be convenient to redefine the

scale of each bare mass to canonical normalisation: Λψ → dψmΨ.

At low energies, the composite site degrees of freedom (ρ, Q, T , B, L, T , V) can

be integrated out to obtain an effective theory, where momentum-dependent form factors

encode the details of the composite site:

Leff =
1

2
P Tµν

[
ΠW (p2, h)WµWν + ΠB(p2, h)BµBν + ΠWB(p2, h)W 3

µBν
]

+ Πt(p
2, h)t̄/pt+ Πb(p

2, h)b̄/pb+ Πtc(p
2, h)t̄c/pt

c + Πbc(p
2, h)b̄c/pb

c

+Mt(p
2, h)ttc +Mb(p

2, h)bbc

+ {q → l, t→ τ, b→ ν}+ h.c. + . . . ,

(2.9)

where Πi and M are the form factors and P T is the transverse projection operator. Once

a choice has been made for the precise embedding of the elementary fermions, explicit

expressions for the form factors can be obtained.

The one-loop Higgs potential can be shown to be

V (h) =

∫ ∞
0

dp2

16π2
p2

(
9

2
log Πw

)
− 2

∑
ψ=t,b,τ,ν

Ncψ

∫ ∞
0

dp2

16π2
p2 log

[
p2(1 + Πψ)(1 + Πψc)− |Mψ|2

]
≡ −γs2

h + βs4
h . (2.10)

The second term in the first line of eq. (2.10) is the fermion contribution to the potential,

and will be discussed in the next section. It includes a factor for the number of colours of

each fermion Ncψ. The potential is expanded up to quartic order in the Higgs fields, to

make connection with the usual SM Higgs potential. The Higgs VEV is then given by:

ξ =
γ

2β

= sin2

(
v

f

)
≈ v2

f2

(2.11)

– 7 –
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and the (composite) Higgs mass by

m2
h =

8β

f2
ξ(1− ξ) . (2.12)

The mass of each SM fermion (ψ = t, b, τ) can be calculated from the form factors in

eq. (2.10):

mψ =
Mψ(0, v)√

Πψ(0, v)Πψc(0, v)
. (2.13)

In the following, we will explore three different theories that are distinguished by

the choice of embedding for the leptons. For each model, we scan the composite sector

parameter space to find points that reproduce measured observables. These observables

are the Higgs VEV and mass, and the masses of the top quark, bottom quark and tau

lepton. The tau neutrino will be treated as massless, however certain representations of

the lepton composite partners can realise a see-saw model [21]. In practise, the Higgs

VEV only ever appears in the ratio v2/f2 and hence we can simply rescale f to give the

correct Higgs VEV instead of treating it as an extra input parameter. After performing

this rescaling, we take the points that give correct values for the remaining observables

and calculate the spectrum of predicted resonances and the expected deviations from the

SM Higgs couplings. The latter are parameterised as a fraction of the composite Higgs-χ-χ

coupling c with the SM Higgs-χ-χ coupling cSM,

rχ =
c(hχχ)

cSM(hχχ)
. (2.14)

Comparison of these predictions with current and anticipated collider results will give us

limits on the fine tuning of each theory.

2.2 Details of the gauge sector

The gauge sector is common to each of our theories, and is unchanged from [22, 35].

An angle tθ ≡ tan θ, assumed to be small, quantifies the amount of mixing between the

elementary and composite sectors, whilst the masses of the two lightest vector resonances

are given by mρ and ma. We vary these parameters in the intervals:

tθ ∈ [0, 1] mρ,ma ∈ [0.5, 10] TeV (2.15)

with ma > mρ. For each point, we check that the value of f found is consistent with

all dimensionful parameters having magnitudes less than 4πf (both in the gauge and the

fermion sectors).

Form factors in the gauge sector depend only on the symmetry breaking pattern so are

the same in all models studied here. We vary gρ, fc and fΩ via the mixing angle and masses

tθ =
g2,e

gρ
, m2

ρ =
1

2
g2
ρf

2
c , m2

a =
1

2
g2
ρ(f

2
c + f2

Ω) . (2.16)

The form factor for the W boson is

ΠW = −
p2(p2 − (1 + t2θ)m

2
ρ)

g2
2(1 + t2θ)(p

2 −m2
ρ)

+
1

4
s2
h

[
2m2

ρ(m
2
a −m2

ρ)t
2
θ

g2
2(1 + t2θ)(p

2 −m2
a)(p

2 −m2
ρ)

]
, (2.17)
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where g2 is the observed SU(2)L gauge coupling. Plugging into (2.10) and performing the

integral results in a contribution to the s2
h part of the Higgs potential of:

γg = −
9m4

ρ(m
2
a −m2

ρ)t
2
θ

64π2(m2
a − (1 + t2θ)m

2
ρ)

ln

[
m2
a

(1 + t2θ)m
2
ρ

]
(2.18)

at leading order in tθ.

The composite sector features several massive vector-boson resonances that are charged

under SU(2)L × U(1)Y . The quantum numbers and masses are given, to a very good

approximation, by 1±1 with mass mρ1 = mρ and 3±0 with mass mρ3 = mρ/ cos θ. The

effect is to modify the hV V coupling (where V is a Z or W boson), by

rV =
√

1− ξ . (2.19)

There is also a correction to the loop-induced hγγ coupling, which is given by [36, 37]:

rγ =

∣∣∣∣∣A1rV +
∑

ξ=t,b,τ N
c
χQ

2
χA1/2,χrχ

A1 +
∑

ξ=t,b,τ N
c
χQ

2
χA1/2,χ

∣∣∣∣∣ =

∣∣∣∣∣A1rV + 4
3A1/2,trt + 1

3A1/2,brb +A1/2,τrτ

A1 + 4
3A1/2,t + 1

3A1/2,b +A1/2,τ

∣∣∣∣∣ ,
(2.20)

where rt, rb and rτ are the modifications to the htt, hbb and hττ couplings that we will

describe in the following sections, and Ai,χ is the loop function for particle χ with spin i

and number of colours N c
χ. These are approximately [37]:

A1 ≈ −8.324, A1/2,t ≈ 1.375, A1/2,b ≈ −0.072− 0.095i, A1/2,τ ≈ −0.024− 0.022i .

(2.21)

The lighter fermion contributions are negligible compared to the heavier terms. They are

included here for completeness, though are not included in the fine tunings given below.

Finally, the modification to the hgg coupling is the same as that of the htt coupling if one

neglects the contribution of lighter states.

2.3 Details of the fermion sector

As noted above, the specific fermion form factors that enter eq. (2.9) depend on the way

that each composite fermion is embedded in the SO(5)1 group. That is, there is more than

one way of representing the fermion multiplet in the Lagrangian such that it is invariant

under an SO(5) rotation. We are interested in all of the lowest dimension representations,

the trivial 1, the fundamental 5, the antisymmetric 10 and the symmetric traceless 14.

As per [21, 35], we will focus on three interesting ensembles of embedding: MCHM5-5-5
5-5-5,

MCHM5-5-5
14-14-10 and MCHM5-5-5

14-1-10. MCHMq−t−b
l−τ−ν is the SO(5) → SO(4) composite Higgs

model with the lepton doublet partner in representation l, tau partner in representation τ ,

and so on. We hold the quark sector fixed but vary the composite lepton representations

in the definition of each model. We expect that alternate quark embeddings would give

qualitatively similar results with respect to the relative differences in fine tuning for each

of our lepton embedding choices (although the absolute scale may differ).
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2.3.1 MCHM5-5-5
5-5-5

We begin with the case of the new composite sector particles each embedded in the fun-

damental representation. In this case, we have a partner for each right-handed, third

generation fermion, and two for each left-handed doublet:

Qt, T ∼ 52/3 , Qb, B ∼ 5−1/3 , Lτ , Lν , T ∼ 5−1 , V ∼ 50 , (2.22)

where T,B, T ,V are the composite partners of the right-handed elementary top, bottom,

tau and tau neutrino respectively. Qt, Qb, Lτ , Lν are the composite partners for the left-

handed states in the third generation quark and lepton doublets of the elementary sector.

It is a quirk that in 5-5-5 models, we require two partners for each doublet. This is required

since the decomposition of a composite fiveplet under SO(4) ' SU(2)× SU(2) only allows

the coupling of one SM doublet (e.g. qL ∈ (2,2)2/3) and one SM singlet (e.g. tR ∈ 12/3).

To couple another SM singlet (e.g. bR ∈ 1−1/3) we must introduce a second fiveplet to

preserve symmetry [34]. We thus need to add the appropriate terms to equation (2.7),

i.e. mYT Q̄T
c → mYT Q̄tT

c, and so on. Similarly, for equation (2.8), we add terms such as

q̄∆qQ
c → q̄∆qtQ

c
t + q̄∆qbQ

c
b, and the same in the leptonic sector.

The Yukawa couplings in the composite sector are:

Ly = Yt(Q̄tΦ)(Φ†T c) + Yb(Q̄bΦ)(Φ†Bc) + Yτ (L̄τΦ)(Φ†T c) + Yν(L̄νΦ)(Φ†Vc) . (2.23)

The remaining modifications to the Higgs couplings are now:

rϕ =
1− 2ξ√

1− ξ
, ϕ = g, t, b, τ . (2.24)

In SU(2)L × U(1)Y notation, the first layer of multiplets containing top-like massive

resonances are

• 12/3 = T2/3 with mass m12/3
;

• 21/6 = (T2/3, B−1/3) with mass m21/6
; and

• 27/6 = (T5/3, B2/3) with mass m27/6
.

More details for the model (including expressions for the form factors) are given in ap-

pendix A.1.

2.3.2 MCHM5-5-5
14-14-10

Our second case embeds the leptonic sector in the symmetric and antisymmetric represen-

tations. These give us the freedom to avoid the double-tuning present in the fundamental

representation. This parametrically enlarged tuning emerges from the 5-5-5 and 10-10-10

representation structures, requiring subleading terms (i.e. ∼ O(d4
ψ)) to provide cancella-

tions of Higgs mass terms [17, 18]. With a 14-14 present, we have extra quadratic invariants

in the Yukawa sector, eq. (2.26), that provide quadratic and quartic Higgs fields without

requiring significant subleading terms for cancellation. These can be seen explicitly in the
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source term form factors listed in the appendix, where for 14-14-10 we have O(s2, s4) at

order O(d2
ψ).

We now have one partner for each SM lepton (since the lepton embedding no longer

follows the 5-5-5 pattern), and the same as above for the quark sector,

Qu, T ∼ 52/3 , Qd, B ∼ 5−1/3 , L, T ∼ 14−1 , V ∼ 100 . (2.25)

The Yukawa couplings in the composite sector are

Ly = Yt(Q̄tΦ)(Φ†T c) + Yb(Q̄bΦ)(Φ†Bc) + YτΦ†L̄T cΦ + Ỹτ (Φ†L̄Φ)(Φ†T cΦ) + YνΦ†L̄VcΦ
(2.26)

The remaining modifications to the Higgs couplings are now

rτ =
(6ξ − 3)ya − 2(20ξ2 − 23ξ + 4)ỹa√

1− ξ(2(5ξ − 4)ỹa − 3ya)
(2.27)

rt, rb, rg =
1− 2ξ√

1− ξ
, (2.28)

where ya, ỹa are the proto-Yukawa couplings for the composite tau partner, as described

in the next section. Further details on this model, includuing form factor expressions, are

given in appendix A.2.

2.3.3 MCHM5-5-5
14-1-10

Our final model embeds the lepton doublet in a 14 for the tuning reason above. However,

we are now interested in seeing the effect of a fully composite tau. That is, the tau couples

to a partner in the singlet representation:,

Qu, T ∼ 52/3 , Qd, B ∼ 5−1/3 , L ∼ 14−1 , T ∼ 1−1, V ∼ 100 . (2.29)

The Yukawa couplings in the composite sector are

Ly = Yt(Q̄tΦ)(Φ†T c) + Yb(Q̄bΦ)(Φ†Bc) + Yτ (Φ†L̄Φ)T c + YνΦ†L̄VcΦ . (2.30)

The top partners are as above. The modification to the Higgs couplings is now:

rϕ =
1− 2ξ√

1− ξ
, ϕ = g, t, b, τ . (2.31)

Further details can be found in appendix A.3.

3 Scan details

The models described above have between 25 independent parameters in the MCHM5-5-5
14-1-10

and 27 in the MCHM5-5-5
5-5-5, that we use to derive four observables measurable at the LHC:

the masses of the SM Higgs mH , top quark mt, bottom quark mb and tau lepton mτ . These

four observables determine the likelihood of a particular parameter point.

The free parameters are:

• The bare masses of the lightest scalar resonances mρ,ma ∈ [0.5, 10] TeV;

• The angle of composite-elementary mixing in the gauge sector tθ ∈ [0, 1];

• The on-diagonal bare masses of the top partners mQu ,mQd ,mT ,mB, mL(mLa ,mLn),2

2These are required only for MCHM5-5-5
5-5-5.
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mT ,mV ∈ [0.5, 10] TeV where the indices are described in the previous section;

• The off-diagonal bare masses of the top partners myu ,myd ,myτ ,myn ∈ [0.5, 10] TeV;

• The proto-Yukawa couplings yt, yb, yτ , (ỹτ ),3 yν ∈ [−10, 10] TeV; and

• The extent to which the measured SM particles are composite dqu , dqd , dt, db,

dl(dla , dln),2 dτ , dν ∈ [0, 1], where the extrema are respectively fully elementary or

fully composite .

Rather than make simplifying assumptions to reduce the complexity of the parameter

space (as in [21], where a random sampling approach was used), we scan the full dimen-

sionality of each model using the Multinest implementation of the nested sampling tech-

nique [38–40]. This has proven very successful in exploring complicated, multidimensional

functions encountered in a range of cosmology and particle physics examples. In order to

apply it here, we first formulate the scan as a Bayesian inference problem as follows.

Given a set of input parameters, x, we wish to obtain the region of the parameter space

in which the masses of the SM fermions included in our study match the observed values.

Given O ≡ {mh,mt,mb,mτ} the likelihood of any particular model with Np parameters

x is

p(O|x) =
∏
a

exp

(
−

[Oa(x)−Oaexp]2

2(σa)2

)
, (3.1)

where Oa(x) is the predicted value of the ith observable with experimentally measured

value Oaexp, σa is the error in Oaexp, and the product runs over all observables. For our

purposes σa characterises how close we want the masses to be to their observed values.

Given a prior knowledge, p(x), of the distribution of model parameters we can determine

the posterior probability of x via Bayes’ theorem

p(x|O) =
p(O|x)p(x)

Z
. (3.2)

The normalisation constant, Z, is the Bayesian evidence

Z =

∫
p(O|x)(x)p(x)dNpx . (3.3)

The nested sampling algorithm evaluates the evidence by Monte Carlo integration (after

first transforming the multidimensional integral into a one-dimensional integral that can

be evaluated numerically). Correctly weighted posterior samples are obtained as a by-

product, and it is these samples that we use in the following sections to determine our fine

tuning results. Even with the nested sampling technique, we find that the scans have very

long convergence times due to a rapidly falling acceptance rate, something which is to be

expected in a large volume where correctly reproducing the required observables depends

on delicate cancellations between terms in complicated functions of the input parameters.

The goal of our study, however, is merely to find large samples of points with the correct SM

3This is required only for MCHM5-5-5
14-10-10.
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behaviour in order to analyse their behaviour. We thus do not impose strict convergence

on the scans, but merely run for long enough to obtain hundreds of suitable points. We do

not seek to make statistical inferences from our final results, and we use flat priors on all

parameters.

The particular values for the observables Oi used in this scan were O1 = mh = 125±
5GeV; O2 = mt = 155±15GeV; O3 = mb = 2.7±0.5GeV; O4 = mτ = 1.8±0.5GeV; where

the true observable values are assumed to be normally distributed around the predicted

SM values with standard deviations as given.4

Approximately 80 million points are sampled for each model, with around 40,000

passing initial EWSB conditions. We choose to study the subset that are in the vicinity of

the correct SM behaviour by applying mass cuts as follows:

{120, 140, 2.2, 1.3} ≤ {mH ,mt,mb,mτ} ≤ {130, 170, 3.2, 2.3} . (3.4)

This gives us a few hundred viable points for each model. We use each of these as

the starting point for a Markov Chain Monte Carlo sampling of the same parameter space

for each model, giving us a more thorough exploration of each possible preferred region.

We use the Metropolis-Hastings algorithm [42], with step sizes for each parameter given

by 0.01 times the current value of the parameter. Our final plots use points from the

Metropolis-Hastings output that pass the mass cuts.

4 Fine-tuning in many observables

Including a composite Higgs sector is a well-established method of raising the scale of

natural new physics above 1TeV. Partial compositeness of the heaviest flavour of quarks

and leptons goes further to raise this scale without unsatisfying fine tuning. To consistently

deal with fine-tuning comparisons between models, we would like to explore a measure that

extends the usual concept of tuning to one that consistently considers every source of tuning

∆. The amount of fine tuning in any particular parameter xi to produce the observable O
has historically been that introduced by Barbieri and Giudice,

∆OBG,i = ∆OBG(xi) =

∣∣∣∣xiO ∂O
∂xi

∣∣∣∣
O=Oexp

, (4.1)

where we use the definitions from the previous section. This gives a measure of fine tuning

for each parameter. To find the total fine-tuning in O, ∆O(~x), one might simply take the

maximum of all the ∆BG,i. Alternatively, one may define a vector of BG measures ∇Oa in

the intuitive way,

∇Oa =


∆BG,1

∆BG,2

. . .

∆BG,np

 (4.2)

4The values are not precisely the experimentally determined values — they have strong and electroweak

RGE running applied, as outlined in [41].
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and take the magnitude of this vector over np parameters

∆O(~x) =

√√√√ np∑
i

(∆BG,i)2 = |∇Oa | . (4.3)

Similarly, to extend to no observables, {Oa}, we can average over each fine-tuning

∆1 =
1

no

no∑
a=1

∆Oa . (4.4)

This has been the state-of-the art until recently. However, as pointed out by [22], it is often

the case that these fine-tuning vectors are not aligned. That is, the fine-tuning may come

from more than one source and the fine-tuning measure should reflect this special double

tuning — a higher order tuning. If they are completely orthogonal, then the higher order

tuning should be simply the product of each single tuning. If they are completely parallel,

the higher tuning should disappear.

For any two particular tuning vectors {∇Oa ,∇Ob}, a quantity displaying these crite-

ria is

∆ab
2 =

∣∣∣∣∣∇Oa · ∇Oa ∇Oa · ∇Ob∇Oa · ∇Ob ∇Ob · ∇Ob

∣∣∣∣∣
1
2

O=Oexp .

(4.5)

For orthogonal tunings, ∇Oa · ∇Ob → 0 and thus ∆ab
2 → ∇Oa∇Ob . For aligned tunings

∇Oa = λ∇Ob , then ∇Oa · ∇Ob → λ∇Oa∇Oa and thus ∆ab
2 → 0. Noting that equation (4.5)

is the area spanned by any two tuning vectors, this behaviour should be intuitive.

The total fine tuning ∆2 should then fulfil the criteria that (i) for all observables

independent it be a maximum, (ii) for only one independent observable it vanish, and (iii)

for the limiting case of two independent observables, it simply be the single double-tuning

measure. For three observables, the measure satisfying these is

∆2 =
1

2
(∆ab

2 + ∆bc
2 + ∆ca

2 ) . (4.6)

One can see that for observable c proportional to b, Oc = κOb, then ∆bc
2 → 0 and ∆ac

2 →
∆ab

2 . This comes from both eq. (4.5) disappearing for aligned tunings, and eq. (4.1) being

insensitive to a scaling κ. Thus, ∆2 behaves as we would like. For more than three

observables, the third criterion is not unique. In particular, for four and five observables,

there are two configurations for, e.g. observables a and b to be independent. Configuration

1 has all dependency on one observable, configuration 2 has the dependency shared across

variables, shown in figure 2.

Configuration 1 algebraically satisfies criterion (iii) in a simple extension of eq. (4.6)

to unordered pairs over no observables

∆2 =
1

no − 1

(no2 )∑
{ a,b }|b<a

∆ab
2 . (4.7)
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(a) We have one set of dependen-

cies Oa = κ1Ob = κ2Od.

(b) We have two dependencies

Oa = κ1Ob and Oc = κ2Od.

Figure 2. The configurations available for one source of double-tuning amongst four observables.

However, calculating eq. (4.7) for configuration 2 gives more unordered pairs, and thus

a factor of 4/3 above configuration 1. This is the limit of inaccuracy in equation (4.7),

but for randomly distributed observables the correction drops to < 10% typically. For

the purposes of fine-tuning being an order of magnitude calculation, we will accept this

measure as a good approximation.

The generalisation of equation (4.5) to three observables is also quite straightforward,

where we take the volume spanned by three particular tuning vectors:

∆abc
3 =

∣∣∣∣∣∣∣
∇Oa · ∇Oa ∇Oa · ∇Ob ∇Oa · ∇Oc
∇Oa · ∇Ob ∇Ob · ∇Ob ∇Ob · ∇Oc
∇Oa · ∇Oc ∇Ob · ∇Oc ∇Oc · ∇Oc

∣∣∣∣∣∣∣
1
2

O=Oexp

. (4.8)

Being a volume, this follows the same behaviour as the double tuning derived above. We

sum various triple tunings with the extension

∆3 =
1

no − 2

(no3 )∑
{ a,b,c }|c<b<a

∆abc
3 . (4.9)

In general, the N -th order of tuning of a set of N particular observables ∇N =

(∇Oa ,∇Ob , . . .) is given by

∆ab...
N = |∇T

N ·∇N |
1
2 (4.10)

and the N -th higher order tuning over all no observables is

∆N =
1

no − (N − 1)

(noN )∑
{ a,b,... }|...<b<a

∆ab...
N . (4.11)

Finally, we simply sum each order of tuning for a measure of higher order tuning:

∆ =

no∑
i=1

∆i . (4.12)

This is the measure by which we evaluate the success of each leptonic embedding in im-

proving the naturalness of the MCHM. Before stating and comparing our results with those
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of previous studies [21, 22], it must be noted that our new measure will give larger abso-

lute numbers for the fine tuning. To see why, consider three factors: arbitrary increase

of parameters, arbitrary increase of observables, and genuinely more sensitive expressions

(i.e. compare the general double tuning of Higgs mass/vev to the double tunings of the

new observables). For random fine-tuning vectors, we would expect the following general

dependencies.

At order one of tuning, the number of observables N will not affect the measure as

they are averaged out. In terms of np from equation (4.3), ∆O goes as

∆O ∼ √np . (4.13)

At order two of higher order tuning — that is, double fine tuning — the measure goes as

(equations (4.5) and (4.6)):

∆2 ∝
1

no − 1

(
no
2

)
=

no!

(no − 1)2!(no − 2)!
=
no
2
∼ no , (4.14)

∆2 ∝

∣∣∣∣∣∇a · ∇a ∇a · ∇b∇a · ∇b ∇b · ∇b

∣∣∣∣∣
1/2

∼
√
∇2
a∇2

b ∼ np . (4.15)

assuming mostly orthogonal observables. That is, at second order, the measure scales

linearly with number of both parameters and observables. At third order, the measure

goes as

∆3 ∝
1

no − 1

(
no ,

2

)
∼ n2

o (4.16)

∆3 ∝ n3/2
p . (4.17)

Higher orders ∆N follow this pattern of ∼ nN−1
o , n

N/2
p . Of course there is a further

scaling of the measure when considering higher numbers of observables. When going from

three to four observables, not only do we increase the fine tuning out-of-hand by (4/3)2 ≈
1.8, we also add in the possibility of order-four tuning, which is generically a factor of ∆1

greater than order-three.

Considering all of these artefacts of the tuning measure, we arrive at a generic increase

from [22] to this paper of5

factor ≈
(

5

3

)(5−1)

·
(

27

9

)(5/2)

= 120 . (4.18)

5 Results

Below, we present the scan results in terms of the fine-tuning found at each viable parameter

point. The tuning of each lepton embedding is shown against the lightest vector-boson

resonance mass mρ, the lightest top partner resonance mass mT , the Higgs coupling ratios

5We remind the reader that Barnard, White have three observables and nine parameters.
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rχ and the vacuum misalignment ξ ≈ v2/f2. A convex hull is provided to understand the

general limits of minimal fine tuning (note that given the logarithmic scale, the hull may

not always appear to be convex). We observe, in line with the prediction above (4.18),

that the fine-tuning is generally two orders of magnitude higher in this lepton-sensitive case

than the top-only case of [22]. If we were interested in comparing with lepton-insensitive

models, for example, we could normalise by this factor. Such a normalised plot is given

in figure 3, along with the unnormalised results. For the rest of this section, we stick

to using the new measure without additional normalisation, which will permit a relative

comparison of our lepton embeddings (since we use the same observables in each case, and

the difference between the number of parameters is not significant).

A comparison of our new tuning with less sophisticated tuning measures can be seen in

the bottom right panel of figure 4, which shows the fine tuning for the MCHM5-5-5
5-5-5 model

as a function of the vacuum misalignment ξ. Our measure gives higher values for fine

tuning relative to the single tuning ∆1 or the naive fine-tuning measure 1/ξ, which is to be

expected. In this case, with the leptons and quarks all embedded in fundamental represen-

tations of SO(5), the lepton sector is not contributing much at all to the phenomenology

of the model, which suffers from the double tuning effect highlighted previously.

A general note on the results described below is in order. The argument for including

composite lepton partners is two-fold [21] (1) to raise the top partner masses that can be

found in the parameter space, irrespective of tuning, and (2) to lower the tuning by making

judicious choices of lepton embedding. Regarding the first, we find large parameter volumes

that allow for top partner masses ≥ 1TeV. This is in agreement with [22], which uses the

same sophisticated scanning technique. Regarding the second, we take the tuning as an

order-of-magnitude measure. That is, we consider differences in tuning of less than a factor

of ten as being not significant. In this sense, there is already some question of the usefulness

in considering leptons as in previous papers, where the most finely tuned was MCHM5-5-5
5-5-5

with ∆ ≡ O(100) and the least finely tuned was MCHM5-5-5
14-1-10 with ∆ ≡ O(20) [21], i.e. a

non-significant effect. Our results reflect this, with even smaller differences of up to a factor

of two between model tunings. This can be considered a result of the new tuning measure:

when tuning dependencies are fully considered, there is no tuning-based preference between

lepton embeddings in the lepton-inclusive MCHM. However, tunings between models do

not equally scale as top partner masses grow, so this may be a point of model distinction

as colliders are able to exclude the O ≡ 1TeV partners.

5.1 MCHM5-5-5
5-5-5 fine-tuning

Here we present the results for the fundamental representation, found in figure 4. The full

tuning is quite severe, partly due to the generic fine tuning reasons explained above, with

a minimum tuning of ∆ = 1082 at a top partner mass of m27/6
= 1.37TeV. However, this

model is particularly badly tuned, due to the quark and lepton double tuning required to

achieve EWSB. Our previous study showed a sharply linear relationship between the light-

est top partner mass and the fine tuning of the point for a model that did not include the

lepton sector [22]. Our present case, however, is complicated by the fact that the inclusion

of the lepton sector introduces both extra parameters and extra potential sources of tuning.
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Figure 3. A comparison of non-normalised (upper) and normalised (lower) fine tunings in the

mass of top partners.

These sources include the single tuning associated with reproducing the Higgs VEV and

masses of the Higgs and SM fermions, and the new possibilities for multiple tunings across

combinations of these observables. It is still true, however, that the fine tuning decreases

with lower masses for new particles, a smaller hierarchy between elementary and composite

scales, and greater divergence from Standard Model Higgs coupling predictions. There is

evidence to suggest that the fine tuning rises more steeply with the lightest partner mass

if this mass exceeds 3 TeV. We also see that points for which the 27/6 multiplet is the

lightest top partner are significantly less finely tuned than points where it tends to be the

12/3. This can be understood from the fact that the 27/6 does not mix directly with the
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Figure 4. Tuning in the MCHM5-5-5
5-5-5 model as a function of Higgs coupling ratios, lightest scalar

resonance mass, top partner masses, and vacuum misalignment.

elementary top quark, and hence its mass is less constrained and easier to keep light than

that of the 12/3. A precision of less than 3% on the Higgs couplings to gluons or fermions

would lead to a dramatic increase in the fine tuning of the model. This precision provides

the same tuning limits as excluding top partners up to 2.6 TeV. Currently, however, Run

I constraints still allow even the least finely tuned configurations.
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5.2 MCHM5-5-5
14-14-10 fine-tuning

Here we present the results for the case of symmetric representations for the leptonic doublet

and the tau lepton, found in figure 6. We find a lower measure of tuning in this case than for

the fundamental, which can be partly attributed to the convenient cancellation of double

tuning described in section 2.3. A minimum fine tuning was found to be ∆ = 637 at a top

partner mass of m27/6
= 1.34 TeV. The fine tuning again decreases with lower masses for

new particles, a smaller hierarchy in scales, and greater divergence from Standard Model

Higgs coupling predictions. We see again that in the cases where the 27/6 is the lightest

top partner, we generally find a lower tuning.

There is evidence to suggest that, unlike in the MCHM5-5-5
5-5-5 case, tuning increases

more quickly for top partner masses greater than 1 TeV. We caution, however, that the

extreme difficulty of finding viable points in this model leads to a poor sampling density

near the convex hull. The tuning is somewhat below that of the MCHM5-5-5
5-5-5 model for

low top partner masses, but may be comparable at higher masses. Again, the reason can

be attributed to the tuning measure used. Where previous works consider only the worst

tuning in a particular parameter, we consider a cumulative measure that is sensitive to

both the cancellation of double tuning, and the MCHM5-5-5
14-14-10-specific tuning required

to achieve low Higgs, top and tau masses that may be more significant at higher top

partner masses. Our tuning measure also counts the increase in the number of parameters

as a negative feature. Thus, although one can alleviate the double tuning in this model

through organising to have a leading order contribution to the quartic Higgs potential

term from the leptons, and a sub-leading contribution from the quarks, one has had to

introduce additional complexity to do so, thus lessening the attractiveness of the symmetric

representation. Due to this, we consider the tuning difference between the previous and

current embedding to be not significant.

A measurement of Higgs-top coupling up to 3% would provide the same tuning con-

straint as excluding top partners up to 3.4 TeV. Note that the Higgs-tau coupling modifi-

cation has a different structure from the other models considered. In this case, the modifi-

cation is much more forgiving — there exists parameter space with very little modification

at low tuning. This is shown in figure 5.

5.3 MCHM5-5-5
14-1-10 fine-tuning

Finally, we show the results for the case of a fully composite tau lepton, found in figure 7.

The tuning is similar to the previous case, with a minimum tuning of ∆ = 594 at a top

partner mass of m27/6
= 1.37 TeV. As such, by the order-of-magnitude argument, the

tuning at these low masses does not prefer this to the previous models. However, where

a natural symmetric representation shows a sharp rise in the fine tuning with better top

partner mass exclusion limits and more precise Higgs coupling measurements, the present

model remains relatively untuned even at top partner masses of m27/6
= 3.3 TeV, which

corresponds to a coupling ratio precision of rψ ≈ 2% (in the MCHM5-5-5
14-1-10, Higgs coupling

modifications have identical fine-tunings regardless of the species of particle being coupled
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Figure 5. The tuning of Higgs-tau coupling modifications.

with). This leaves the fully composite tau scenario as the likely most-natural representation

once further Run II data is released.

6 Conclusions

We have performed comprehensive scans to study the fine tuning of three Minimal Com-

posite Higgs scenarios with realistic lepton sectors, distinguished by the choice of lepton

embeddings. In doing so, we have had to develop a new fine tuning measure that counts

the expanded range of single and multiple tunings that can occur in these scenarios. We

find that the resulting measure scales with the number of observables and parameters in

any given problem, and thus naturally penalises additional model complexity.

To deal with the significantly large parameter spaces encountered in MCHM models

with leptons included, we developed a sophisticated sampling approach based on a com-

bination of nested sampling and Markov Chain Monte Carlo sampling. Even with this, it

proves extremely difficult to find viable points for study in these models, typically requiring

weeks of cluster running in each case. The third generation quark doublet, right-handed

top and right-handed bottom are all assumed to be embedded in the fundamental repre-

sentation of SO(5). Contrary to previous work, we find that the advantage of embedding

at least one of the leptons in a 14 representation of SO(5) is less dramatic than previous

studies due to the complexity cost built in to the new fine tuning measure. Embedding

each of the third generation lepton doublet, right-handed tau and right-handed tau neu-

trino in fundamental representations of SO(5) leads to a minimum fine tuning of ∆ = 1082,

which is expected to increase with top partner mass limits at the LHC, and better collider

measurements of the Higgs couplings. This can be compared with a minimum tuning of

∆ = 637 for the MCHM5-5-5
14-14-10 and a minimum tuning of ∆ = 594 for the MCHM5-5-5

14-1-10

model. The absolute value of these fine tunings is significantly worse than previous quoted

values due to the new measure, but one may choose to normalise out the complexity cost at

each order of tuning, as given in the equation following eq. (4.16). In this case, the current

minimum fine tunings for the MCHM5-5-5
5-5-5, MCHM5-5-5

14-14-10 and MCHM5-5-5
14-1-10 scenarios are

approximately 10%, 20% and 20% respectively. Note that these optimistic tunings should

be compared to tunings of other models that have also been appropriately normalised.
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Figure 6. Tuning in the MCHM5-5-5
14-14-10 model as a function of Higgs coupling ratios, lightest

scalar resonance mass, top partner masses, and vacuum misalignment.

– 22 –



J
H
E
P
0
9
(
2
0
1
7
)
0
4
9

Figure 7. Tuning in the MCHM5-5-5
14-1-10 model as a function of Higgs coupling ratios, lightest scalar

resonance mass, top partner masses, and vacuum misalignment.
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Finally, it is interesting to note that our explored models behave differently with respect

to future improvements in collider measurements. The MCHM5-5-5
14-14-10 scenario, although

currently less fine-tuned than the MCHM5-5-5
5-5-5, will look similarly unnatural once Higgs

coupling measurements of the fermion decay channels reach a precision of 3%, or top

partner exclusion limits reach a mass of 3.4 TeV. The MCHM5-5-5
14-1-10 scenario, meanwhile,

enjoys a relatively low increase in fine tuning, even up to Higgs coupling limits of 2%,

or top partner limits of 3.3 TeV. Higgs coupling limits and top partner limits provide

complementary probes for the naturalness of composite Higgs scenarios in the next decade.
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A Fermion representation expressions

The source term form factors implicitly defined in equations (2.9) and (2.10) can be written

in terms of the decomposed form factor expressions (A.1), (A.2), (A.3). Each representa-

tion’s form factors generally depend on the four following functions:

AL(m1,m2,m3,m4,∆) = ∆2
(
m2

1m
2
2 +m2

1m
2
4 +m2

2m
2
3

− p2(m2
1 +m2

2 +m2
3 +m2

4) + p4
)

AR(m1,m2,m3,m4,∆) = ∆2
(
m2

1m
2
2 +m2

2m
2
3 − p2(m2

1 +m2
2 +m2

3 +m2
4) + p4

)
AM (m1,m2,m3,m4,∆1,∆2) = ∆1∆2m1m2m4(m2

3 − p2)

B(m1,m2,m3,m4,m5) = m2
1m

2
2m

2
3 − p2

(
m2

1m
2
2 +m2

1m
2
3 +m2

2m
2
3 +m2

2m
2
5 +m2

3m
2
4

)
+ p4

(
m2

1 +m2
2 +m2

3 +m2
4 +m2

5

)
− p6 (A.1)

The precise expressions for the source terms in this study are slightly different from both [22,

35], so we present them in full for each representation. The expressions for the SO(4)

decomposed form factors are to be found originally in [35]. They are included here for

completeness.

A.1 MCHM5-5-5
5-5-5

Top quark:

Πt =
∆2
qt

(mQtdQt)
2

+ Π̂(4)
qt + Π̂(4)

qb
+
s2
h

2

(
Π̂(1)
qt − Π̂(4)

qt

)
Πtc =

∆2
t

(mTdT )2
+ Π̂

(4)
t + (1− s2

h)
(

Π̂
(1)
t − Π̂

(4)
t

)
Mt =

1√
2
sh

√
1− s2

h

(
M̂

(1)
t − M̂

(4)
t

)
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Bottom quark:

Πb =
∆2
qb

(mQbdQb)
2

+ Π̂(4)
qt + Π̂(4)

qb
+
s2
h

2

(
Π̂(1)
qb
− Π̂(4)

qb

)
Πbc =

∆2
b

(mBdB)2
+ Π̂

(4)
b + (1− s2

h)
(

Π̂
(1)
b − Π̂

(4)
b

)
Mb =

1√
2
sh

√
1− s2

h

(
M̂

(1)
b − M̂

(4)
b

)
Tau lepton:

Πτ =
∆2
lτ

(mLτdLτ )2
+ Π̂

(4)
lτ

+ Π̂
(4)
lν

+
s2
h

2

(
Π̂

(1)
lτ
− Π̂

(4)
lτ

)
Πτc =

∆2
τ

(mT dT )2
+ Π̂(4)

τ + (1− s2
h)
(

Π̂(1)
τ − Π̂(4)

τ

)
Mτ =

1√
2
sh

√
1− s2

h

(
M̂ (1)
τ − M̂ (4)

τ

)
Tau neutrino lepton:

Πν =
∆2
lν

(mLνdLν )2
+ Π̂

(4)
lν

+ Π̂
(4)
lτ

+
s2
h

2

(
Π̂

(1)
lν
− Π̂

(4)
lν

)
Πνc =

∆2
ν

(mNdN )2
+ Π̂(4)

ν + (1− s2
h)
(

Π̂(1)
ν − Π̂(4)

ν

)
Mν =

1√
2
sh

√
1− s2

h

(
M̂ (1)
ν − M̂ (4)

ν

)
with the SO(4) decomposed form factors given by

Π̂(1)
qt/b

=
AL(mT/B, 0,mYT/B + YT/B, 0,Λqt/b)

B(mQt/b ,mT/B, 0,mYT/B + YT/B, 0)
,

Π̂(4)
qt/b

=
AL(mT/B, 0,mYT/B , 0,Λqt/b)

B(mQt/b ,mT/B, 0,mYT/B , 0)

Π̂
(1)
t/b =

AR(mQt/b , 0,mYT/B + YT/B, 0,Λt/b)

B(mQt/b ,mT/B, 0,mYT/B + YT/B, 0)
,

Π̂
(4)
t/b =

AR(mQt/b , 0,mYT/B , 0,Λt/b)

B(mQt/b ,mT/B, 0,mYT/B , 0)

M̂
(1)
t/b =

AM (mQt/b ,mT/B, 0,mYT/B + YT/B,Λqt/b ,Λt/b)

B(mQt/b ,mT/B, 0,mYT/B + YT/B, 0)
,

M̂
(4)
t/b =

AM (mQt/b ,mT/B, 0,mYT/B ,Λqt,b ,Λt/b)

B(mQt/b ,mT/B, 0,mYT/B , 0)
(A.2)

The same expressions apply for the leptonic form factors, with the substitutions q →
l, t→ τ, b→ ν.
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A.2 MCHM5-5-5
14-14-10

The quark expressions are as above.

Tau lepton:

Πτ =
∆2
l

(mLdL)2
+ Π̂

(9)
l +

(
Π̂

(4)
l − Π̂

(4)
l

)(
1−

s2
h

2

)
+

1

4
s2
h(1− s2

h)
(

5Π̂
(1)
l − 8Π̂

(4)
l + 4Π̂

(9)
l

)
Πτc =

∆τ

(mT dT )2
+ Π̂(9)

τ + 2
(

Π̂(4)
τ − Π̂(9)

τ

)(4

5
− 3

4
s2
h

)
+

1

5
(4− 5s2

h)2
(

5Π̂(1)
τ − 8Π̂(4)

τ + 3Π̂(9)
τ

)
Mτ =

3i

2
√

5

(
M̂ (4)
τ − M̂ (9)

τ

)
sh

√
1− s2

h +
i

8
√

5
(4− 5s2

h)
(

5M̂ (1)
τ − 8M̂ (4)

τ + 3M̂ (9)
τ

)
Tau neutrino lepton:

Πν =
∆2
l

(mLdL)2
+ Π̂

(9)
l + (1− s2

h)
(

Π̂
(4)
l − Π̂

(9)
l

)
Πνc =

∆2
ν

(mNdN )2
+ Π̂(6)

ν +
1

2
s2
h

(
Π̂(4)
ν − Π̂(6)

ν

)
Mν =

−1√
2
sh

√
1− s2

hM̂
(4)
ν

with the SO(4) decomposed form factors given by

Π̂
(9)
l =

AL(mT , 0,mYT , 0,Λl)

B(mL,mT , 0,mYT , 0)
,

Π̂
(4)
l =

AL(mT ,mV ,mYT + YT /2, YV/2,Λl)

B(mL,mT ,mV ,mYT + YT /2, YV/2)
,

Π̂
(1)
l =

AL(mT , 0,mYT + (YT + ỸT )4/5, 0,Λl)

B(mL,mT , 0,mYT + (YT + ỸT )4/5, 0)

Π̂(9)
τ =

AR(mL, 0,mYT , 0,Λτ )

B(mL,mT , 0,mYT , 0)
,

Π̂(4)
τ =

AR(mL,mV ,mYT + YT /2, YV/2,Λτ )

B(mL,mT ,mV ,mYT + YT /2, YV/2)
,

Π̂(1)
τ =

AR(mL, 0,mYT + (YT + ỸT )4/5, 0,Λτ )

B(mL,mT , 0,mYT + (YT + ỸT )4/5, 0)

Π̂(4)
ν =

AR(mL,mT , YV/2,mYT + YT /2,Λν)

B(mL,mT ,mV ,mYT + YT /2, YV/2)
,

Π̂(6)
ν =

AR(mL, 0, 0, 0,Λν)

B(mL,mV , 0, 0, 0)
,

M̂ (9)
τ =

AM (mL,mT , 0,mYT ,Λl,Λτ )

B(mL,mT , 0,mYT , 0)
,
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M̂ (4)
τ =

AM (mL,mT ,mV ,mYT + YT /2,Λl,Λτ )

B(mL,mT ,mV ,mYT + YT /2, YV/2)
,

M̂ (1)
τ =

AM (mL,mT , 0,mYT + (YT + ỸT )4/5,Λl,Λτ )

B(mL,mT , 0,mYT + (YT + ỸT )4/5, 0)
,

M̂ (4)
ν = −i AM (mL,mV ,mT , YV/2,Λl,Λν)

B(mL,mT ,mV ,mYT + YT /2, YV/2)
(A.3)

A.3 MCHM5-5-5
14-1-10

The quark expressions are as above.

Tau lepton:

Πτ =
∆2
l

(mLdL)2
+ Π̂

(9)
l +

(
Π̂

(4)
l − Π̂

(4)
l

)(
1−

s2
h

2

)
+

1

4
s2
h(1− s2

h)
(

5Π̂
(1)
l − 8Π̂

(4)
l + 4Π̂

(9)
l

)
Πτc =

∆ν

(mT dT )2
+ Π̂(1)

τ

Mτ =
−
√

5

4
shM̂

(1)
τ

Tau neutrino lepton:

Πν =
∆2
l

(mLdL)2
+ Π̂

(9)
l + (1− s2

h)
(

Π̂
(4)
l − Π̂

(9)
l

)
Πνc =

∆2
ν

(mVdV)2
+ Π̂(6)

ν +
1

2
s2
h

(
Π̂(4)
ν − Π̂(6)

ν

)
Mν =

−i√
2
sh

√
1− s2

hM̂
(4)
ν

with the SO(4) decomposed form factors given by

Π̂
(9)
l =

AL(0, 0, 0, 0,Λl)

B(mL, 0, 0, 0, 0)
, Π̂

(4)
l =

AL(0,mV , 0, YV/2,Λl)

B(mL, 0,mV , 0, YV/2)
,

Π̂
(1)
l =

AR(mT , 0, YT
√

4/5, 0,Λl)

B(mL,mT , 0, YT
√

4/5, 0)
,

Π̂(1)
τ =

AR(mL, 0, YT
√

4/5, 0,Λτ )

B(mL,mT , 0, YT
√

4/5, 0)

Π̂(4)
ν =

AR(mL, 0, YV/2, 0,Λν)

B(mL, 0,mV , 0, YV/2)
, Π̂(6)

ν =
AR(0, 0, 0, 0,Λν)

B(0,mV , 0, 0, 0)
,

M̂ (1)
τ = −

AM (mL,mT , 0, YT
√

4/5,Λl,Λτ )

B(mL,mT , 0, YT
√

4/5, 0)
,

M̂ (4)
ν = −iAM (mL,mV , 0, YV/2,Λl,Λν)

B(mL, 0,mV , 0, YV/2)
(A.4)
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