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Abstract: Over the past years, experiments accumulated intriguing hints for new physics

(NP) in flavor observables, namely in the anomalous magnetic moment of the muon (aµ), in

R(D(∗)) = Br(B → D(∗)τν)/Br(B → D(∗)`ν) and in b→ sµ+µ− transitions, which are all

at the 3− 4σ level. In this article we point out that one can explain the R(D(∗)) anomaly

using two scalar leptoquarks (LQs) with the same mass and coupling to fermions related

via a discrete symmetry: an SU(2)L singlet and an SU(2)L triplet, both with hypercharge

Y = −2/3. In this way, potentially dangerous contributions to b → sνν are avoided

and non-CKM suppressed effects in R(D(∗)) can be generated. This allows for smaller

overall couplings to fermions weakening the direct LHC bounds. In our model, R(D(∗)) is

directly correlated to b→ sτ+τ− transitions where an enhancement by orders of magnitude

compared to the standard model (SM) is predicted, such that these decay modes are in the

reach of LHCb and BELLE II. Furthermore, one can also naturally explain the b→ sµ+µ−

anomalies (including R(K)) by a C9 = −C10 like contribution without spoiling µ − e

universality in charged current decays. In this case sizable effects in b → sτµ transitions

are predicted which are again well within the experimental reach. One can even address

the longstanding anomaly in aµ, generating a sizable decay rate for τ → µγ. However, we

find that out of the three anomalies R(D(∗)), b → sµ+µ− and aµ only two (but any two)

can be explained simultaneously. We point out that a very similar phenomenology can be

achieved using a vector leptoquark SU(2)L singlet with hypercharge 2/3. In this case, no

tuning between couplings is necessary, but the model is non-renormalizable.
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1 Introduction

So far, the LHC did not directly observe any particles beyond the ones present in the SM of

particle physics. However, we have intriguing hints for lepton flavor universality violating

NP.1 Most prominently, there exist deviations from the SM predictions in b → sµ+µ− at

the 4 − 5σ level [2–4] and the combination of the ratios R(D) and R(D∗) differs by 3.9σ

from its SM prediction [5]. Furthermore, the longstanding anomaly in aµ (3.1σ [6]) also

points towards NP.

R(D) and R(D∗) directly measure lepton flavor universality violation (LFUV), and in

the fit to the b → sµ+µ− data also the LHCb measurement of R(K) [7], which deviates

by 2.6σ from the SM, points at LFUV. Therefore, it is well motivated to search for a

simultaneous explanation of these two anomalies [8–20]. Furthermore, since ae agrees with

the SM prediction, also aµ can be considered as a LFUV quantity and one can address it

together with R(D(∗)) and/or b→ sµ+µ− [13, 21–23].

Concerning b→ sµ+µ−, a solution is not particularly challenging, as one competes with

a process which is in the SM loop and CKM suppressed, a rather small NP contribution,

involving moderate couplings and not too light masses, is sufficient (like for example in Z ′

models [24–36], models with loop effects of heavy scalars and fermions [37, 38] and also by

leptoquark models [9, 10, 12, 39–42]2). Also for the aµ anomaly many possible solutions

1See for example ref. [1] for a recent overview.
2In ref. [43] it was pointed out that NP effects in charm operators could account for the anomalies.

However, this would lead to q2 dependent effects and it could not explain signs for LFUV.
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exist. Here, we would just like to stress that LQs provide a natural solution since they can

give the desired large effect because of an mt/mµ enhancement [13, 44–47].

However, an explanation of R(D) and R(D∗) is getting more and more delicate. Since

these processes are mediated in the SM already at tree-level, a rather large NP contribution

is required to account for the O(20%) deviation. Therefore, new particles added to the SM

for explaining R(D) and R(D∗) cannot be very heavy and must have sizable couplings. In

the past, mainly three kinds of models with the following new particles have been proposed:

1. Charged Higgses [21, 48–52]

2. W ′ gauge bosons [11, 14, 53, 54]

3. Leptoquarks [9, 10, 12, 13, 15, 16, 19, 20, 42, 55–60]

Models with charged Higgses lead to (too) large effects in the total Bc lifetime [61] and,

depending on the coupling structure, can also be disfavored by the q2 distribution [62–64].

Interestingly, if the couplings of the charged Higgs are chosen in such a way that they

are compatible with the measured q2 distribution, these models are ruled out by direct

searches [65].

Models with W ′ gauge bosons are also delicate because they necessarily involve Z ′

bosons due to SU(2)L gauge invariance. If the Z ′ width is not unnaturally large, these

models are again ruled out by direct searches [11, 65].

In models with leptoquarks generating left-handed vector operators the coupling struc-

ture should be aligned to the bottom quark in order to avoid b → sνν bounds. However,

in this case the effect in R(D) and R(D∗) is proportional to the small CKM element Vcb
and large third generation couplings are required to account for the anomalies. These large

third generation couplings lead again to stringent bounds from direct LHC searches [65]

and electroweak precision observables [66]. In principle, these constraints can be avoided

with right-handed couplings [59] (including possibly right-handed neutrinos [16]). How-

ever, in such solutions no interference with the SM appears and very large couplings, close

to non-perturbativity, are required.

As stated above, LHC bounds from ττ searches can be avoided in case of non-CKM

suppressed leptoquark contributions to R(D) and R(D∗). However, for single scalar lep-

toquark representations, this leads to unacceptably large effects in b → s transitions [59].

Therefore, we propose a novel solution to the R(D(∗)) problem in this article: we introduce

two scalar leptoquarks with the same mass M and the same coupling strength to quarks

and leptons; an SU(2)L singlet (Φ1) and an SU(2)L triplet (Φ3) both with hypercharge

Y = −2/3. Here, the crucial observation is that Φ1 and Φ3 contribute with opposite

relative sign to R(D(∗)) than to b→ sνν processes such that the effect in R(D(∗)) is dou-

bled while the contributions in B → K(∗)νν cancel at tree-level (see figure 1). Therefore,

the couplings to the second quark generation can be larger, non-CKM suppressed effects

R(D(∗)) are possible and the required overall coupling strength is much smaller such that

the direct LHC bounds from ττ searches are significantly weakened and the remaining

bounds from pair production of third generation LQs are still below the TeV scale [67, 68].

Furthermore, this solution results in a simple rescaling of the SM contributions, predicts
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b

τν

cΦ1 + Φ3 b

ν ν

bΦ1 − Φ3 s

ℓ

Φ3

ℓ

s

Figure 1. Feynman diagrams contributing to b→ cτν, b→ sνν and b→ s`` processes. Both LQs

contribute to b→ cτν and b→ sνν but only Φ3 to b→ s``. Note that with our assumption on the

couplings to fermions, the LQs interfere constructively (destructively) in b→ cτν (b→ sνν).

naturally R(D)/R(D)SM = R(D∗)/R(D∗)SM and leaves the q2 distribution unchanged.

Adding couplings to muons, we can also address the b→ sµµ anomalies with a C9 = −C10

like contribution. Finally, adding a (small) right-handed coupling of Φ1 one can in principle

explain aµ.

This article is structured as follows: in the next section we will present the contributions

of our model to all relevant observables. Afterwards, we perform a phenomenological

analysis in section 3 before we conclude.

2 Model and observables

The scalar leptoquark singlet Φ1 and the triplet Φ3 couple to fermions in the following way:

L = λ1L
fi Q

c
f iτ2LiΦ

†
1 + λ3L

fi Q
c
f iτ2(τ · Φ3)†Li + h.c. . (2.1)

As motivated in the introduction, we assume that both leptoquarks have the same mass M .

In addition, to cancel their effect in b→ sνν processes, we impose the discrete symmetry

λLjk ≡ λ1L
jk , λ3L

jk = eiπjλLjk , (2.2)

on the couplings to fermions. Note that for Φ1 there is in principle an additional coupling

λRfiu
c
f `iΦ

†
1 allowed. We will assume that this coupling is zero and neglect its effect till

the discussion of aµ where small values of λRfi can be phenomenologically important due

to mt/mµ enhanced effects. For our analysis we assume that the couplings λLfi are given

in the down-quark basis. I.e. after EW symmetry breaking the couplings to left-handed

up-quarks involve CKM elements:

λLdf i ≡ λ
L
fi, λLuf i = V ∗fjλ

L
ji . (2.3)

We will now discuss the various relevant processes to which our model contributes. As

already noted above, our model is constructed in such a way that we do not get tree-level

contributions to b → sνν transitions, which we therefore omit in the following. We also

neglect couplings to the first generation of quarks and leptons. For quarks, this is only

possible in the interaction basis since CKM rotations induce either couplings to up or down

quarks. However, charged current decays of Kaons or D mesons involve large CKM angles

in the SM, making the relative effects of LQs small.
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2.1 R(D) and R(D∗)

We define the effective Hamiltonian for b→ c`ν transitions as

H
`fνi
eff =

4GF√
2
VcbC

fi
L [c̄γµPLb]

[
¯̀
fγµPLνi

]
, (2.4)

where in the SM CfiL = δfi and the contribution of our model is given by

CfiL =

√
2

8GFM2

Vcj
Vcb

λL3iλ
L∗
jf

(
1 + (−1)j

)
. (2.5)

With these conventions we have

R
(
D(∗)

)/
R
(
D(∗)

)
SM
≡ XD(∗) =

3∑
i=1

(
δ3i + C3i

L

)2
, (2.6)

assuming vanishing contributions to the muon and electron channels. This has to be

compared to the experimental values of

R(D∗)EXP = 0.316± 0.016± 0.010 , (2.7)

R(D)EXP = 0.397± 0.040± 0.028 , (2.8)

and the corresponding SM predictions [69, 70]

R(D∗)SM = 0.252± 0.003 , (2.9)

R(D)SM = 0.300± 0.008 . (2.10)

2.2 b→ s`+`− transitions

Using the effective Hamiltonian

H
`f `i
eff = −4GF√

2
VtbV

∗
ts

∑
a=9,10

Cfia O
fi
a ,

Ofi9(10) =
α

4π
[s̄γµPLb] [¯̀fγµ(γ5)`i] , (2.11)

we have

Cfi9 = −Cfi10 =
−
√

2

2GFVtbV
∗
ts

π

α

1

M2
λL3iλ

L∗
2f . (2.12)

The allowed range at the 2 σ level [2] (see also refs. [3, 4]) is given by

− 0.18(−0.35) ≥ C22
9 = −C22

10 ≥ (−0.71)− 0.91 , (2.13)

at the (1σ) 2σ level.

We will also need the process Bs → τ+τ−. The current experimental limit is [71]

Br
(
Bs → τ+τ−

)
EXP
≤ 6.8× 10−3 . (2.14)

The SM prediction is given by [72, 73]

Br
(
Bs → τ+τ−

)
SM

= (7.73± 0.49)× 10−7 , (2.15)
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and in our model we have

Br
(
Bs → τ+τ−

)
= Br

(
Bs → τ+τ−

)
SM

(
1 +

C33
10

CSM
10

)2

, (2.16)

with CSM
10 ≈ −4.3 [74, 75]. For the analysis of B → K(∗)τµ we will use the results of

ref. [33].

2.3 B0 − B̄0 mixing

Here we find
Heff = C1s̄γ

µPLbs̄γµPLb

C1 = −1
128π2

(
λL∗23 λ

L
33

)2
D2

(
m2
τ ,m

2
τ ,M

2,M2
) (2.17)

which corresponds to an effect of the order of 1%. This can be easily understood as follows:

since we need an O(10%) effect in R(D(∗)) at the amplitude level, this effects gets squared

for B0− B̄0 and there are no enhancement factors, the final effect is around 1% and below

the current sensitivity of approximately 10%.

2.4 aµ and τ → µγ

In order to aim at an explanation of aµ one needs a chirality enhanced effect. Therefore,

let us add to eq. (2.1) the following term

λRfiu
c
f `iΦ

†
1 + h.c. . (2.18)

In this case the numerically relevant mt enhanced contribution to aµ is given by

δaµ =
mµ

4π2
Re
[
C22
R

]
, (2.19)

with

CfiL = − Nc

12M2
mtλ

R
3fλ

L∗
3i

(
7 + 4 log

(
m2
t

M2

))
, (2.20)

and C23
R is obtained from C23

L by L↔R. We will assume that λR32 is small compared to λL32.

The world average of the measurement of aµ ≡ (g− 2)µ/2 is completely dominated by

the Brookhaven experiment E821 [76] and is given by [77] aexp
µ = (116 592 091± 54± 33)×

10−11 where the first error is statistical and the second one is systematic. The current

SM prediction is [6, 78–86] aSM
µ = (116 591 811 ± 62) × 10−11 where almost the whole

uncertainty is due to hadronic effects. This amounts to a discrepancy between the SM and

the experimental value of

δaµ = aexp
µ − aSM

µ = (278± 88)× 10−11 , (2.21)

i.e. a 3.1σ deviation.

For τ → µγ the branching ratio reads

Br (τ → µγ) =
αm3

τ

256π4
ττ

(∣∣C23
L

∣∣2 +
∣∣C23

R

∣∣2) . (2.22)

The current experimental bound is given by [87]

Br(τ → µγ) < 4.4× 10−8 . (2.23)

– 5 –
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Figure 2. Left: allowed regions by R(D) and R(D∗) in the λL23 − λL33 plane for M = 1 TeV using

the weighted average for R(D(∗))EXP/R(D(∗))SM. Note that already small couplings are sufficient

to account for R(D) and R(D∗). Therefore, the bounds from LHC searches are weakened and the

leptoquarks can also be easily heavier than 1 TeV and still explain the anomalies with couplings in

the perturbative regime. Right: prediction for Bs → ττ (red) as a function of R(D(∗))/R(D(∗))SM.

Here we neglected small CKM suppressed contributions.

3 Phenomenological analysis

3.1 R(D), R(D∗) and b→ sτ+τ−

Let us first consider the size of the couplings needed to explain R(D) and R(D∗). Here and

in the following, we will assume them to be real. As we can see in the left plot of figure 2,

we only need small couplings (of the order of 0.1 for 1 TeV leptoquarks) in order to explain

R(D), R(D∗). This is possible because we avoid contributions to b → sνν and hence our

effect in b→ cτν does not need to be CKM suppressed. Therefore, the bounds from ref. [65]

do not apply to our model and we are not in conflict with LHC bounds, especially because

the LQs can be much heavier than 1 TeV while still possessing perturbative couplings and

explaining R(D(∗)).

Next, note that neglecting small CKM factors, the contributions to b → cτν and

b → sττ depend on the same product of couplings λL23λ
L∗
33 (modulus small CKM ratios).

Therefore, we can express Bs → τ+τ− in terms of the effect in R(D(∗)):

Br (Bs → ττ)

Br(Bs → ττ)SM

=

(
1 + 2

π

α

Vcb
V ∗ts

√
XD(∗) − 1

CSM
10

)2

. (3.1)

The resulting numerical prediction for Bs → τ+τ− is shown in figure 2. We can see that

the branching ratio can be enhanced by up to three orders of magnitude compared to the

SM prediction. Therefore, even though it is experimentally challenging to search for, our

model can be tested with Bs → τ+τ− measurements at LHCb. Also an enhancement of

B → K(∗)τ+τ− in the same ballpark is predicted which could be tested at BELLE II.

– 6 –
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λ
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Figure 3. Left: contours and excluded region for B → Kτµ = (B → Kτ+µ− + B → Kτ−µ+)/2

for C22
9 = −0.5, i.e. assuming that C22

9 takes the central value obtained from the b → sµ+µ− fit.

The colored regions are allowed by the various processes. For R(D) and R(D∗) we used again the

weighted average for R(D(∗))EXP/R(D(∗))SM. Right: the contour lines show Br[τ → µγ] × 108.

The gray region is excluded by the current upper limit and (light) red region is allowed by aµ at

the (2σ) 1σ level. Note that both δaµ and τ → µγ are only a function of λL33/λ
L
32 and therefore

independent of b→ sµ+µ− transitions.

3.2 b→ sµ+µ− and b→ sτ±µ∓

Let us now consider the effect of including b→ sµ+µ− transitions in our analysis. In this

case effects in B → D(∗)µν/B → D(∗)eν are predicted if still addressing R(D) and R(D∗)

simultaneously. We checked that the effect is at the per-mill level which is compatible

with BELLE and BABAR measurements.3 However, interesting correlations with b→ sτµ

processes appear. Here we find

C32
9 = −2

π

α

Vcb
V ∗ts

λL32

λL33

(√
XD(∗) − 1

)
, (3.2)

C23
9 =

λL33

λL32

C22
9 , (3.3)

which depends only on the ratio λL33/λ
L
32 as a free parameter. Note that the dependence

on C22
9 is much weaker than on XD(∗) . The resulting bounds and predictions are shown in

the left plot of figure 3. We take the experimental limit [90]

Br [B→ Kτµ] < 4.8× 10−5 . (3.4)

Note that R(D(∗)) can only be fully explained for λL33/λ
L
32 > 1.

3This is contrary to ref. [13] which cannot explain R(D(∗)) and b→ sµ+µ− data simultaneously without

violating the bounds from B → D(∗)µν/B → D(∗)eν as pointed out in ref. [88]. However, this tension can

be relieved with leptoquarks masses larger than 5 TeV [89].
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3.3 aµ and τ → µγ

Considering only the couplings λL the effect in τ → µγ is negligibly small. Things get

much more interesting if we aim at a simultaneous explanation of the anomalous magnetic

moment of the muon. In this case chirally enhanced effects also appear in τ → µγ. We have

Br [τ → µγ] ≥ αm3
τ

16Γτ

a2
µ

m2
µ

∣∣∣∣λL33

λL32

∣∣∣∣2 . (3.5)

Here we set λR33 = 0.

Note that Br (τ → µγ) can only be enhanced by allowing λR33 to be different from zero,

resulting in the ≥ sign in eq. (3.5). The result is shown in the right plot of figure 3. Note

that aµ can only be explained for λL33/λ
L
32 < 0.65 (at the 2σ level). This is opposite to the

case of b → sµ+µ− which can only be explained for λL33/λ
L
32 > 1. Therefore, we conclude

that our model can explain out of the three anomalies R(D(∗)), b → sµ+µ− and aµ only

two simultaneously.

4 Conclusions and outlook

In this article we proposed a scalar leptoquark model which can give sizable effects on R(D)

and R(D∗) without suffering from problems with b→ sνν, q2 distributions in R(D(∗)), from

large couplings in the non-perturbative regime or from tensions with direct LHC searches

as it is the case for nearly all other models on the market. Our model predicts sizable

branching factions for b→ sτ+τ− processes (of the order of 10−3) being directly correlated

to R(D(∗)).

Furthermore, the model can naturally explain b → sµ+µ− (including R(K)) via a

C9 = −C10 contribution and therefore also predicts R(K∗) to be significantly below the

SM value. In case of a simultaneous explanation of R(D(∗)) with b → sµ+µ− we only get

effects in B → D(∗)µν/B → D(∗)eν at the per-mill level, but sizable ones in b → sτµ

processes (depending on only one free parameter), making them potentially observable at

LHCb or BELLE II in the near future.

The tension in aµ can be explained as well by adding a small right-handed coupling of

the SU(2)L singlet LQ to tops and muons. As a consequence sizable rates for τ → µγ are

predicted. Here the dependence on the remaining free parameter is opposite to b → sτµ

excluding a simultaneous explanation of all three anomalies, i.e. out of R(D(∗)), b→ sµ+µ−

and aµ our model can explain any two of them.

We stress that in general our approach of combining the SU(2)L singlet with the SU(2)L
triplet is the only way of explaining R(D) and R(D∗), without violating b→ sνν or direct

LHC bounds, if the SM is extended by scalar LQs only. However, one can get the same

phenomenology in B decays using a vector leptoquark SU(2)L singlet with hypercharge

2/3 and couplings to left-handed fermions. In this case, no tuning between couplings is

necessary and effects in b → sνν are automatically avoided. However, the model is non-

renormalizable and while our model with scalar leptoquarks only predicts effects of the

order of 1% in Bs − Bs mixing, this effect is much larger for the vector leptoquark [12].
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Figure 4. Allowed regions for R(D(∗)) and b → sνν assuming independent couplings and masses

for the leptquark singlet and triplet. Here M1(3) is the mass of Φ1 (Φ3).

Furthermore, adding right-handed couplings, the effect of the vector leptoquark in aµ is

only enhanced by the bottom mass but not by the top one.

In our model we assumed a discrete symmetry between the couplings of the two lepto-

quarks in order to cancel exactly the effect in b→ sνν. However, even if one disregards this

assumption and allows for independent masses and couplings of Φ1 and Φ3, a cancellation

in b → sνν is still possible. In fact, as shown in figure 4 the constraints from b → sνν

transitions still allow for an explanation of R(D(∗)) without severe fine-tuning. Therefore,

our imposed symmetry does not to be exact in order to provide a valid explanation of the

anomalies.

If one allows in addition for direct couplings (not only CKM induced couplings to

up-quarks) to first generation quarks, a sizable effect in K → πµµ/K → πee is possible

which could be tested at NA62 or KOTO [91] and interesting correlations with b → d

transitions occur. Therefore, a very detailed study of our model is important and promising

in order to explore the many interesting effects which can be observed by ongoing and future

experiments.
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