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Abstract: We propose a brane-world setup based on gauge/gravity duality in which the

four-dimensional cosmological constant is set to zero by a dynamical self-adjustment mech-

anism. The bulk contains Einstein gravity and a scalar field. We study holographic RG

flow solutions, with the standard model brane separating an infinite volume UV region

and an IR region of finite volume. For generic values of the brane vacuum energy, regular

solutions exist such that the four-dimensional brane is flat. Its position in the bulk is

determined dynamically by the junction conditions. Analysis of linear fluctuations shows

that a regime of 4-dimensional gravity is possible at large distances, due to the presence of

an induced gravity term. The graviton acquires an effective mass, and a five-dimensional

regime may exist at large and/or small scales. We show that, for a broad choice of po-

tentials, flat-brane solutions are manifestly stable and free of ghosts. We compute the

scalar contribution to the force between brane-localized sources and show that, in certain

models, the vDVZ discontinuity is absent and the effective interaction at short distances

is mediated by two transverse graviton helicities.
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1 Introduction and summary

Effective quantum field theories for low-energy interactions are a general framework ad-

dressing observable physics from particle physics to cosmology. While typically successful,

they have so far failed to address the cosmological constant problem, [1] (see also [2, 3]

and [4] for an updated review and references within). Indeed our main dynamical the-

ory underlying cosmology, General Relativity (GR), and those of particle physics, namely

quantum field theories in flat space-time, seem to be incompatible when it comes to vac-

uum energy.

Experiments (such as the Lamb shift [5] or the Casimir effect [6]) indicate that any

particle will give zero-point energy contributions to the vacuum energy, [7]. These con-

tributions scale with the fourth power of the cut-off, which can be as high as the Planck

scale, the generically assumed UV cut-off of any QFT. On the other hand, vacuum en-

ergy couples to gravity as an effective cosmological constant, which by Einstein’s equations

gives rise to a non-zero space-time curvature. If we assume the existence of supersym-

metry broken at some scale ΛSUSY , then the cosmological constant is expected to be of

order O(Λ4
SUSY ). Experiment states that such a scale must be quite larger than a TeV and

therefore supersymmetry cannot solve the cosmological constant conundrum.

For illustration purposes, we may simply consider the contributions to zero point energy

due to the electron: this provides a contribution to the vacuum energy of order O(m4
e).

According to the principle of equivalence for GR any form of energy gravitates. Due to

covariance, the vacuum energy gravitates as a cosmological constant.

Gravitationally, a positive cosmological constant will seed a de Sitter space-time with

a finite distance (curvature) scale, the de Sitter horizon scale1 (in the static frame). This

scale is inversely proportional to the square root of the cosmological constant. Putting

in the numbers for the vacuum energy due to the electron, would tell us that the size of

our Universe is comparable to the earth-moon distance, as Pauli was amused to note back

1A negative cosmological constant instead would give finite life-time for the universe.
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in 1920 (see references within [2]). Needless to say that the Universe will become a lot

smaller if we allow for heavier particles and higher UV scales or phase transitions in the

Universe (which will also provide a cosmological constant due to the energies of the broken

symmetry phase).

The experimental prediction, measured via gravity and cosmology, is the observed size

of the accelerating universe, which gives a different answer. Given the present size of our

observed universe, the observed vacuum energy is of order O((10−3eV )4).

We are allowed to change/renormalize the value of the cosmological constant by a bare

gravitational cosmological constant (cc) which can be added to the GR action. For this

to work, our bare cc must be such that it exactly switches off QFT contributions to a

renormalized value, the observed value of the cc. This involves an enormous fine-tuning

which is the (first) cosmological constant problem in its “classical” formulation. This

fine-tuning has to be done throughout the later history of the universe, for each time the

vacuum energy appears, a bare value should be there to switch it off almost exactly. To

this embarrassing fine-tuning between theory and experiment one has to add the second

problem of radiative instability of the vacuum: the cosmological constant will receive higher

loop corrections to each order spoiling the fine tuning undertaken for the first problem.

In many respects, this is a harder problem-one which has to be solved not only in the

gravitational but also in the QFT sector (for recent progress see the sequestering proposals

by [8–10]).

The cosmological constant problem may be also pointing to a shortcoming of GR

and there has been some effort to approach the problem from the viewpoint of modified

gravity theories [15] in four space-time dimensions. One idea which has been proposed is

to introduce in the gravity sector some new degree of freedom, usually a scalar field, which

can absorb vacuum energy contributions throughout the later evolution of the universe

leaving space-time curvature unchanged.

Any mechanism by which the cosmological constant is adjusted dynamically by some

extra degree of freedom is what is generally referred to as self-tuning (or self-adjustment)

of the cosmological constant. More generically, we will refer to a model as self-tuning if

flat four-dimensional space time is a solution to the gravitational field equations for generic

values of the vacuum energy.2

Most recently, the idea of self-tuning has been formulated in a subset of four-dimensional

scalar-tensor theories [13, 14]. In this setup, named Fab Four, the scalar field can eat up

any cosmological constant without fixing any of the parameters of the theory whilst space-

time curvature remains flat. For a cosmological setup for example, the scalar field is time

dependent for a locally flat Milne space-time. The presence of integration constants allows

zero curvature solutions whatever the value of the cosmological constant and without any

fixing of coupling constants of the theory. In other words, the cosmological constant is

fixed by the scalar field solution and not the theory, thereby realizing the self-tuning idea

or self-adjustment mechanism.

2For some ideas associated to a quasi-spontaneous breaking of conformal invariance see [11, 12].
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In this work we propose a framework which implements the self-tuning mechanism

using the brane-world idea, i.e. higher dimensions [15–19] and also, crucially, holography.

In the brane-world scenario [20–23], our four-dimensional universe (brane) is embedded

in a higher dimensional bulk. Ordinary matter and gauge fields are constraint to propa-

gate only on the brane, but gravity propagates in all dimensions and the brane interacts

gravitationally with the higher-dimensional degrees of freedom. The extra dimensions may

remain undetectable from present day experiments, if for example their size is sufficiently

small or the bulk is sufficiently curved.

In the original brane-world model of Randall and Sundrum (RS) [23] with a single

brane, the latter was embedded in a five-dimensional anti de Sitter space-time. In order

to have a flat brane solution to the field equations, a fine tuning was necessary between

the brane tension, interpreted as world-volume vacuum energy, and the (negative) bulk

cosmological constant. This was the brane-world version of the cosmological constant

problem-flat solutions are not generic in the presence of vacuum energy. They are on the

contrary very finely tuned. Brane-worlds were generalized in various directions and such

generalizations are reviewed in [15–19, 24–26].

It was a natural step to try and implement a brane-world version of the self-tuning

mechanism: the idea was that the brane vacuum energy due to matter may curve the bulk,

but leave the four-dimensional brane (our universe) flat. It was initially noted [27, 28]

(see also [29, 30]) that a non-trivial bulk scalar field could indeed relax the fine-tuning

for the cosmological constant on the brane in a 5 dimensional brane-world setup. This

idea was also implemented in 6 dimensional space-times, or co-dimension 2 [31–37], for

more generic gravity theories [38–40] or both [41]. Indeed the dynamical nature of the

scalar introduced integration constant(s) that did allow for a flat brane solution without

fine tuning of the brane tension. The 5 dimensional self-tuning solutions though had an

important shortcoming: they had a naked singularity in the bulk space-time at a finite

distance from the brane [27–30]. When this did not happen, the gravitational interaction

on the brane was not four-dimensional, [30]. Various other related setups were analyzed,

leading eventually to instabilities or hidden fine tunings [31–40].

It was also realized that various brane-words in AdS space-time have a holographic

interpretation, [42–45]. This opened a new perspective on the relevant physics as it is

mapped into QFT dynamics. The holographic correspondence provides a nontrivial map

between gravity/string theory dynamics in the bulk and QFT dynamics at the boundary.

Moreover it can be considered as a UV-complete definition of quantum gravity, [56]. The

study of holography for 20 years has revealed many novel features of QFT especially in

the strongly-coupled regime, as well as novel features of gravity and its connection to QFT

thermodynamics and hydrodynamics. The rules of the game have been understood in many

more contexts than the original N=4 sYM theory example and numerous successful checks

have been done.

When it comes especially to cosmology, holography suggests several intriguing dual

views encapsulated in the several versions of the de Sitter/(p)CFT correspondence, [46–50]

which has been also extended to general cosmological flows, [51]. These look different from

– 3 –
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the brane-world cosmology that is driven by moving branes3 and rolling vevs, [52, 55] , but

they may have a deeper connection.

In the rest of the introduction we describe the structure and holographic motivation

for the brane-world self-tuning setup we study, and we present a summary of our results.

1.1 Emergent gravity and the brane-world

An important realization of the self-tuning setup is suggested by the holographic ideas on

emergent gravity. This is a setup where the interactions of the Standard Model (SM),

including gravity, are generated by 4d conventional QFTs. For this to work, we need in

the simplest setup three ingredients, [56]

• The gauge theories and other interactions of the SM.

• A large-N, strongly coupled and stable 4d QFTN that will generate the gravitational

sector (this may be a non-abelian gauge theory where N is the number of colours).

• A theory of bifundamental “messengers” that will couple the QFTN to the SM by

renormalizable interactions. Therefore the messengers must be charged under both

gauge group of the SM as well as the QFTN gauge group. They must have large

masses, of order Λ (the UV cutoff scale).

At energy scales E � Λ the messengers can be integrated out and the SM is directly

coupled to the operators of QFTN . These operators involve the universal conserved stress

tensor of QFTN as well as many other operators. An appropriate linear combination of

the stress tensors becomes the universal metric that will couple to the SM fields, and

diffeomorphism invariance will be an emergent feature. This is were gauge/gravity duality

comes into play.

Rather than using the four-dimensional description above, we will now assume the

existence of a holographically dual version of the strongly coupled QFTN in terms of

classical gravity and other interactions in a 5-dimensional bulk space with a (UV) near-

AdS boundary. In this language, four-dimensional diffeomorphism invariance is manifest

and is a consequence of the overall energy conservation.

The SM is weakly coupled at E = Λ and therefore its coupling to QFTN follows the

semi-holographic setup: it can be represented by a 4-brane embedded in the bulk geometry

at the position corresponding to the cutoff scale induced by the messenger mass.

Therefore, in the gravitational description the setup is that of a SM-brane embedded

in the QFTN bulk gravitational theory. The bulk fields of the gravitational sector couple

to the SM fields on the brane. An important ingredient of this coupling is the induced

action for the bulk fields on the brane. This is generated by the SM quantum effects that

will induce a non-trivial action for the bulk fields. Since the SM fields are localized on the

brane, the same applies to this induced gravitational action.

In general, bulk operators that are not protected by symmetries will obtain brane

potentials that will scale as the fourth power of the cutoff scale Λ. For the bulk operators

3The (equivalent) time dependent brane world perspective was undertaken in [53] and the connection

to [52] was explained via Birkhoff’ s theorem in the presence of branes in [54].
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that are protected by symmetries, like the graviton, possible conserved currents (giving rise

to graviphotons) and the universal instanton density (giving rise to the universal axion)

the corrections start at two derivatives, and scale as Λ2, [56].

The framework of emergent gravity from 4d QFTs described above therefore can be

modeled in the gravitational picture with a 4-d SM brane embedded in the bulk space-time

generated by the QFTN . In this paper we will simplify this effective description by keeping

track of two basic bulk fields: the metric as well as a single scalar. With this field content

the action we will consider, up to two derivatives reads,

S = Sbulk + Sbrane, (1.1)

where

Sbulk = Md−1
p

∫
dd+1x

√
−g
[
R− 1

2
gab∂aϕ∂bϕ− V (ϕ)

]
, (1.2)

Sbrane = Md−1
p

∫
ddx
√
−γ
[
−WB(ϕ)− 1

2
ZB(ϕ)γµν∂µϕ∂νϕ+ UB(ϕ)R(γ)

]
(1.3)

where gab is the bulk metric, R is its associated Ricci scalar and γµν , R(γ) are respectively

the induced metric and intrinsic curvature of the brane. We have kept the dimension d

above general although our main concern is for d = 4. We expect Md−1
p ∼ N2.

The above action is the most general two-derivative action in Einstein-scalar theory

which preserves the full group of bulk diffeomorphisms (including those transverse to the

brane, since the latter is allowed to fluctuate). All we assume initially for the bulk poten-

tial is that it has a maximum supporting a (stable) AdS solution. We will be interested in

(fully backreacted) solutions in which the scalar field evolves in the bulk radial direction

(transverse to the brane), interpolating between an infinite volume asymptotic AdS bound-

ary region where ϕ approaches the maximum of V (ϕ), and a region with asymptotically

vanishing volume element, with the brane separating the two. In the dual field theory

language, the scalar corresponds to a relevant operator of the QFTN , and the solution to

a renormalization group (RG) flow driven by this operator. The large and small volume

regions correspond respectively to the UV and IR of the RG flow. This structure is rep-

resented in figure 1. Although the overall volume of the bulk is infinite, our model allows

regimes in which gravity behaves as four-dimensional, as an effect of the localized Ricci

scalar term on the brane in equation (1.3). This gives rise to a quasi-localized graviton

resonance as in the DGP model [57].

As we will eventually conclude, in this framework, and with the insights from the

holographic perspective, it is possible to avoid all the drawbacks of previous brane-world

self-tuning constructions. Holography provides an important guideline in organizing the

space of solutions. Furthermore, the IR endpoint of the RG-flow can be singularity-free

if the scalar field approaches another AdS extremum (in this case a minimum of the po-

tential). Moreover, some mild singularities are acceptable because they can be resolved.

Furthermore, the holographic interpretation naturally requires an infinite volume region in

the UV. As we will see, this is crucial for the self-tuning mechanism: any solution which

has finite volume on both sides of the brane must necessarily be fine-tuned.

– 5 –
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UV IRu

xµ

Figure 1. Sketch of the Holographic RG-flow solutions, with the brane acting as the interface

between an infinite volume UV region and a finite volume IR region. The coordinates xµ are

world-volume four-dimensional coordinates on the brane-world, u represents the holographic radial

direction.

In general, self-tuning models are severely constrained by Weinberg’s no-go theorem [1],

which essentially states that in any local theory with dynamical gravity, preserving local

Poincarè invariance, and whose solutions are determined by a local action principle, self-

tuning cannot work.4 The framework we present here avoids this theorem, and this has

a clear interpretation in view of holography: each solution contains quantities (the “vevs”

of the dual operators) which are not determined by extremizing a local action, but rather

by a regularity condition which relates the UV and the IR, and has no classical analog in

local field theories.

Given this input from holography it is now instructive to check our action ingredients

from the brane world perspective. For a start, our brane will be an asymmetric one,

separating an infinite volume UV region and a finite volume IR region. Asymmetric self-

tuning models were studied early on by [30], but these did not include an induced gravity

term. Secondly, given that the overall volume of our brane model is infinite, there will not

be a localized zero mode graviton fluctuation on the brane (as it is the case instead for the

classic RS model [23]). This is in turn where the induced gravity term plays an important

positive role for the phenomenology of our model providing a quasi-localized graviton zero

mode in the tensor fluctuations, by the same mechanism well-known in a flat bulk [57].

The particular role of asymmetry [58, 59], combined with the induced gravity term

were realized in [60] where dark energy models were constructed (but this time, without

4In the case of Fab Four, the scalar breaks Poincaré invariance thus evading Weinberg’s no-go theorem [2].
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a bulk scalar). In the latter paper it was also realized, however, that the positive role

played by the induced gravity term in the tensor fluctuations, was negative5 in the scalar

fluctuations: there, it was found that the induced gravity term contributed to a scalar

ghost whenever a spin 2 zero mode was not present in the spectrum. This was because

without a bulk scalar field, dynamical scalar fluctuations only existed on the brane, but

not in the bulk. This is where the bulk scalar in our model plays an essential role: it also

contributes in the scalar sector allowing, as we will see, for the absence of scalar (but also

tensor) fluctuation pathologies.

1.2 Results and outlook

In this setup we consider solutions to the classical equations of motion for gµν and ϕ that

correspond to Lorentz-invariant saddle points of the dual QFTN , as described by the action

Sbulk. The presence of the SM brane in the geometry is taken into account by the Israel

matching conditions.

Our goal in this paper is to first examine the existence of solutions to the bulk equations

which are holographically acceptable (either with regular bulk geometries or with good IR

singularities) having a flat induced metric on the brane. This is the essence of the self-

tuning mechanism: although there is a non-trivial vacuum energy (or cosmological term)

on the brane, the metric of the brane universe is flat.

We find that holographically acceptable solutions generically exist. In these solutions,

the brane is placed at a specific equilibrium position ϕ0 in the bulk, which is determined

dynamically by solving Israel’s junction conditions. We show that one can generically

find an acceptable equilibrium solution in the vicinity of a zero of WB, for a generic bulk

potential V (ϕ). Thus, the existence of self-tuning solutions is generic in this framework.

The next question we investigate is: is this equilibrium position stable? More specif-

ically, are the fluctuations around this solution regular (not ghost-like) and stable (not

tachyonic)? Connected to this question is also the following: what kind of interactions

such fluctuations mediate on the brane world? Is gravity similar to observable gravity? Is

the equivalence principle upheld?

We derive the fluctuation equations around the equilibrium brane position, for general

bulk and brane potentials. There are two sets of propagating modes. One is a spin-two

mode associated to the 5d graviton. We find that the equations it satisfies are similar to

the DGP scenario, [57] with the important difference that in our case the bulk geometry

is non-trivial.

We calculate the propagator that controls the interaction of sources on the SM-brane.

This propagator is DGP-like at short enough distances but is a massive propagator at long

distances6 The reason for this is the behavior of the bulk to bulk propagator on the brane.

At short enough distances it vanishes, with the same behavior as in flat space. But at long

enough distances it asymptotes to a constant that is determined by the bulk geometry. It

is this different behavior that is responsible for the mass at long distances.

5literally opposite in sign!
6This behavior was seen before in a DGP framework with a codimension higher than 1 thick

brane, [61, 62].
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The framework presented here has a rich gravitational phenomenology, displaying sev-

eral different potential signals of long- and short-distance modified gravity. The graviton

propagation is four-dimensional at both short and long distances, and also has a mass.

Depending on parameters, a five-dimensional phase may appear at intermediate distances.

The effective four-dimensional gravitational coupling constant is controlled by the induced

Einstein term on the brane, and the mass of the graviton is controlled by the same quan-

tity and by the geometry around the equilibrium position. We lay out the conditions for

constructing specific models in which the modified gravity regime falls outside the scales

probed by current observations. This includes having an arbitrarily light graviton in a

technically natural way.

The analysis of the scalar fluctuations is more involved.7 There is a single gauge

invariant scalar fluctuation in the bulk, but two invariant ones on the brane. We derive

the dynamics of the scalar fluctuations and we formulate it as matrix Sturm-Liouville

problem. This formulation enables us to derive sufficient conditions for the fluctuations

to be manifestly regular (not-ghostlike) and stable (not tachyons). We also construct the

brane-to-brane scalar propagator, which takes the form of a matrix coupling two kinds of

sources: the trace of the stress tensor, and the scalar “charge”.

We do not address here a full discussion of the phenomenology of the scalar sector. This

is an important aspect, because it leads to constraints from fifth-force and violation of the

equivalence principle. Moreover, it is important to investigate how the non-linearieties of

the theory modify the gravitational effects beyond one-graviton exchange, as these can lead

to stringent constraints on scalar-tensor theories (as was analyzed by [66] in the context of

“Fab Four”-like theories). However neither the linearized scalar-mediated interaction nor

the non-linear effects are universal, and they can manifest themselves at different scales in

a model-dependent way. Thus this discussion must be carried out in specific models and

is beyond the scope of the present paper.

Our results are encouraging but constitute only the tip of the iceberg. There are several

further tasks that must be accomplished before this setup is physically acceptable.

• A detailed analysis on the dependence of the observable parameters (4d Planck scale,

mass of the graviton) from the inputs (nature of bulk QFT, UV couplings and the in-

duced brane cosmological constant) must be made in order to assess which ingredients

provide a physical answer.

• The massive graviton has, generically, a vDVZ discontinuity, [64, 65]. Finding the

associated Vainshtein scale, [67, 68], is important in order to understand the viability

of the setup. It is important to note that the theory of the massive graviton is an

effective theory near the equilibrium position and for this reason is not subject to the

standard constraints on massive graviton theories. Such constraints are stringent if

the theory only a contains a massive 4d graviton and no other gravitational degrees

of freedom, [69]. On the other hand, consistent theories containing massive gravitons

like KK theory and string theory/holography have appropriate couplings to avoid

7For an earlier discussion of scalar fluctuations in brane-worlds with a bulk scalar, see [63].
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such direct constraints, [48, 70]. Similar considerations have also been addressed in

scalar-tensor theories of the “Fab Four” type in [66]. In that work it was shown that,

requiring non-linearities to screen extra scalar modes around spherically symmetric

solutions, together with the validity of effective field theory at the observed scales,

puts non-trivial constraints. In the present context, to answer the same questions

one would have to analyze solutions with spherically symmetric brane sources, and

investigate how the non-linear scale interplays with the other bulk and brane scales,

and it is not easy to “guess” whether the constraints will invalidate the framework.

This is an important but complex study, and will be left for a future work.

• It is interesting that this setup always provides for a massive graviton on the brane.

It has been observed that the cosmological evolution driven by a massive graviton

is similar to an effective cosmological constant M2
PΛ ∼ m2

0M
2
P , [17, 18] which is

the right size to explain the observable cosmological constant. Whether there is a

connection between these two observations remains to be seen by analyzing the full

cosmology of the theory.

• Although the conditions for “healthy” scalar fluctuations have been derived, more

details need to be known about the forces mediated by the scalar excitations. The

fact that there are two possible scalar excitations on the brane indicate that there

are generically two charges associated to the scalar interaction. The nature of the

scalar force, its range and its couplings to observable matter must be elucidated, as

a function of the inputs: the localized action and the bulk dynamics.

• The existence of a flat 4d-space-time solution which accommodates a large brane vac-

uum energy while allowing for reasonable gravitational interactions, does not fully

solve the problem. One should investigate how one arrives at such a solution dynam-

ically. For this one first needs to investigate alternative solutions with maximal sym-

metry but where the induced brane-world metric is positively or negatively curved.

The final step is to derive the full time-dependent evolution equations for the system

brane+bulk.

• The issue of radiative corrections to the framework we discuss in this paper is im-

portant. The bulk gravitational theory has both higher derivative corrections (that

are controllable at strong coupling according to AdS/CFT intuition) and loop correc-

tions that are controllable at large N . The induced brane action for the bulk fields

is expected to be generated by brane-field quantum effects and all such effects are

assumed to be included in the brane potential two-derivative terms. There can be

higher derivative corrections that we have neglected here. They will provide correc-

tions to the matching conditions that are not IR relevant. In the worst case scenario

they can affect the scale m4 that controls the onset of massive brane gravity.

• The full time-dependent dynamics of the system must be derived and analyzed. This

is tantamount to analysing the cosmological evolution of the setup. In particular

this is important in order to verify the naive expectation where the brane starts at

– 9 –
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early times in a bulk position near the boundary and far away from the “equilibrium”

position ϕ0. The ensuing evolution towards this equilibrium position can be mostly

driven by the brane cosmological constant giving therefore a period of brane inflation.

Approaching ϕ0 the effective cosmological constant becomes smaller and smaller and

the brane evolution is driven more and more by the energy densities on the brane.

These expectations are reasonable and should be verified. An interesting open prob-

lem is to assess what can act as dark energy in this setup. Several possibilities can

be investigated already within this framework, due to the presence of scalar modes

(including the brane position) which may act as quintessence or leave a residual

cosmological constant if the brane is slightly displaced from its equilibrium position.

• It is important to stress that the brane cosmological constant is not a fixed potential

of the bulk fields but also depends in general on brane-field order parameters (exam-

ples for the SM are the Higgs field or chiral symmetry condensates). This intertwines

interestingly with the self-tuning mechanism and in principle allows both an accom-

modation of phase transitions into the relaxation mechanism but also the possibility

that the solutions to the CC Problem and the Electroweak hierarchy problem are

intimately connected.

• The fact that gravity is generically 5 dimensional off the brane world indicates that

there may be a period in the evolution of the (brane) universe where there is an

exchange of energy between the SM-brane and the bulk, [62]. Such an effect can

affect the cosmology on the brane.8

This paper is structured as follows.

Section 2 presents the model, the vacuum solutions, and the self-tuning mechanism

arising from Israel’s junction conditions. We give a review of the geometry of holographic

RG flows and what makes for holographically acceptable singularities. We show that self-

tuning junctions are generically present for a wide variety of brane and bulk potentials,

and we give concrete examples with and without an IR singularity.

In section 3 we lay the ground for the analysis of linear perturbations around vacuum

solutions, and identify the relevant bulk and brane perturbations, as well as their gauge

transformations. After fixing the gauge we derive the linearized bulk field equations and

junction conditions for physical scalar and tensor perturbations.

Section 4 is dedicated to the analysis of tensor modes, and in particular to the calcu-

lation of the tensor-mediated interaction mediated between sources localized on the brane.

We compute the tensor brane-to-brane propagator and discuss its different regimes, and

discuss the associated phenomenology at different scales.

In section 5 we analyze scalar perturbations. We write the gauge-fixed linearized

junction conditions in terms of a single scalar perturbation, and show that the bulk equation

plus junction conditions can be written in terms of a vector-valued Sturm-Liouville problem

with Robin boundary conditions. We discuss the stability of the background solutions and

8This phenomenon has been investigated in phenomenological brane setups in [45, 80, 81].
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give sufficient conditions for the absence of ghosts/tachyons. We compute the scalar brane-

to-brane propagator which enter the scalar-mediated interaction between brane-localize

sources, and we speculate on a class of models free of the vDVZ problem.

Several technical details are left to the appendix. In appendix A we give a classification

of the different possible types of junctions; appendix B relates the boundary values of the

fields at the brane with the asymptotic behavior in the UV, in particular the UV coupling

for the relevant operator driving the flow in the dual field theory. In appendix C we review

Weinberg’s no-go theorem and describe how it is avoided in our framework. Appendix D

contains the technical details of the linear perturbations around the vacuum. Finally, in

appendix E we give details about the large- and small- momentum asymptotics of the bulk

Green’s function, which is one of the ingredients entering in the brane-to-brane propagator.

2 The self-tuning theory

We consider a scalar-tensor Einstein theory in a d + 1-dimensional bulk space-time

parametrized by coordinates xa ≡ (u, xµ). We consider a d-dimensional brane embed-

ded in the bulk parametrized by coordinates xµ . The most general 2-derivative action to

consider reads,

S = Sbulk + Sbrane (2.1)

where,

Sbulk = Md−1
p

∫
dd+1x

√
−g
[
R− 1

2
gab∂aϕ∂bϕ− V (ϕ)

]
+ SGH , (2.2)

Sbrane = Md−1
p

∫
ddx
√
−γ
[
−WB(ϕ)− 1

2
ZB(ϕ)γµν∂µϕ∂νϕ+ UB(ϕ)R(γ)

]
+ · · · , (2.3)

where gab is the bulk metric, R is its associated Ricci scalar and γµν , R(γ) are respectively

the induced metric and intrinsic curvature of the brane while V (ϕ) is some bulk scalar

potential. SGH is the Gibbons-Hawking term at the space-time boundary (e.g. the UV

boundary if the bulk is asymptotically AdS).

The ellipsis in the brane action involves higher derivative terms of the gravitational

sector fields (φ, γµν) as well as the action of the brane-localized fields (the “Standard

Model” (SM), in the case of interest to us). WB(ϕ), ZB(ϕ) and UB(ϕ) are scalar potentials

which are generated by the quantum corrections of the brane-localized fields (that couple

to the bulk fields, see [56]). As such, they are localized on the brane. In particular,

WB(ϕ) contains the brane vacuum energy, which takes contributions from the brane matter

fields. All of WB(ϕ), ZB(ϕ) and UB(ϕ) are cutoff dependent and generically, WB(ϕ) ∼ Λ4,

ZB(ϕ) ∼ UB(ϕ) ∼ Λ2 where Λ is the UV cutoff of the brane physics as described here. Its

origin was motivated in subsection 1.1.

2.1 Field equations and matching conditions

The bulk field equations depend only on V (ϕ) and are given by:

Rab −
1

2
gabR =

1

2
∂aϕ∂bϕ−

1

2
gab

(
1

2
gcd∂cϕ∂dϕ+ V (ϕ)

)
, (2.4)

∂a

(√
−ggab∂bϕ

)
− ∂V

∂ϕ
= 0 (2.5)
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The brane, being codimension-1, separates the bulk in two parts, denoted by “UV ” (which

contains the conformal AdS boundary region or more generally, in non-asymptotically

AdS solutions, the region where the volume form becomes infinite ) and “IR” (where the

volume form eventually vanishes, and may contain the AdS Poincaré horizon, or a (good)

singularity, or a black hole horizon etc, as we will discuss in section 2.3.2). We will take

the coordinate u to increase towards the IR region.

Denoting gUV
ab , g

IR
ab and ϕUV, ϕIR the solutions for the metric and scalar field on each

side of the brane, and by
[
X
]IR

UV
the jump of a quantity X across the brane, Israel’s

junction conditions are:

1. Continuity of the metric and scalar field:[
gab

]UV

IR
= 0,

[
ϕ
]IR

UV
= 0 (2.6)

2. Discontinuity of the extrinsic curvature and normal derivative of ϕ:[
Kµν − γµνK

]IR

UV
=

1√
−γ

δSbrane

δγµν
,

[
na∂aϕ

]IR

UV
= − 1√

−γ
δSbrane

δϕ
, (2.7)

where Kµν is the extrinsic curvature of the brane, K = γµνKµν its trace, and na a

unit normal vector to the brane, oriented towards the IR.

Using the form of the brane action, equations (2.7) are given explicitly by:[
Kµν−γµνK

]IR

UV
=

[
1

2
WB(ϕ)γµν + UB(ϕ)G(γ)

µν − ZB(ϕ)

(
∂µϕ∂νϕ−

1

2
γµν(∂ϕ)2

)
+
(
γµνγ

ρσ∇(γ)
ρ ∇(γ)

σ −∇(γ)
µ ∇(γ)

ν

)
UB(ϕ)

]
ϕ0(x)

, (2.8)

[
na∂aϕ

]IR

UV
=

[
dWB

dϕ
− dUB

dϕ
R(γ) +

1

2

dZB
dφ

(∂ϕ)2 − 1
√
γ
∂µ (ZB

√
γγµν∂νϕ)

]
ϕ0(x)

, (2.9)

where ϕ0(xµ) is the scalar field on the brane.

2.2 The Poincaré-invariant ansatz

We consider the case where the bulk space-time has d-dimensional Poincaré invariance,

so that the solution would be dual to the ground state of a Lorentz-Invariant QFT. The

brane will be embedded at specific radial distance u0 so that the induced metric is a flat

d-dimensional Minkowski metric. In the domain-wall (or Fefferman-Graham) gauge, the

metric and scalar field (on each side of the brane) are:

ds2 = du2 + e2A(u)ηµνdx
µdxν , ϕ = ϕ(u), (2.10)

We use the notation:
d

du
= ˙ , (2.11)
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and we denote by (AUV(u), ϕUV(u)) and (AIR(u), ϕIR(u)) the bulk solution in the UV and

IR regions, respectively. The brane sits at a fixed value u0 and we define:

A0 ≡ A(u0), ϕ0 ≡ ϕ(u0). (2.12)

Only ϕ0 (not u0) is a gauge-invariant quantity.9 The induced metric on the brane is

γµν = e2A0ηµν .

With the ansatz (2.10), the field equations (2.4)–(2.5) become equivalent to:

d(d− 1)(Ȧ)2 − 1

2
(ϕ̇)2 = −V (ϕ), Ä = − 1

2(d− 1)
(ϕ̇)2. (2.13)

These equations can be cast in a first order form by defining UV and IR superpotential

functions WUV(ϕ) and WIR(ϕ) [29], such that:

ȦUV(u) = − 1

2(d− 1)
WUV(ϕ(u)), ϕ̇UV(u) =

dWUV

dϕ
(ϕ(u)) , (2.14)

ȦIR(u) = − 1

2(d− 1)
WIR(ϕ(u)), ϕ̇IR(u) =

dWIR

dϕ
(ϕ(u)) . (2.15)

The scalar functions WUV,IR are both solutions to the (gauge-invariant) superpotential

equation:

− d

4(d− 1)
W 2 +

1

2

(
dW

dϕ

)2

= V. (2.16)

The choice of W determines the geometry on each side, up to the choice of an initial

condition (A∗, ϕ∗) , which only affects a shift in A (i.e. an overall choice of scale of the

d-dimensional theory). These boundary conditions have a clear interpretation in the bound-

ary QFT dual to the bulk gravitational theory: A∗ sets the scale of the boundary Minkowski

metric of the dual QFT while ϕ∗ determines the UV coupling constant of the scalar oper-

ator O(x) dual to ϕ. On the other hand W is invariant under bulk diffeomorphisms. The

superpotential equation (2.16) implies an inequality

|W (φ)| ≥ B(φ) ≡ 2

√
−d− 1

d
V (φ) (2.17)

which also defines the function B(φ) that acts as a lower bound on the space of solutions

of the superpotential equation, [73].

The continuity conditions (2.6)–(2.7) simply state that A(u) and ϕ(u) are continuous

across the brane:

AUV(u0) = AIR(u0) = A0, ϕUV(u0) = ϕIR(u0) = ϕ0. (2.18)

Therefore, only one initial condition (A∗, ϕ∗) must be imposed, for example in the UV. The

interpretation of these initial conditions is holographically clear and it will be discussed in

greater detail in subsection B.

9By gauge invariant we mean invariant under bulk diffeomorphisms.
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The non-trivial matching conditions are the ones imposed on the first derivatives, (2.8)–

(2.9). Indeed, the extrinsic curvature and normal derivatives of ϕ are given by:

Kµν = Ȧe2Aηµν , Kµν − γµνK = −(d− 1)Ȧe2Aηµν , na∂aϕ = ϕ̇. (2.19)

The junction conditions can be cast in a gauge-invariant form using the superpotentials

W on each side of the brane: making use of the expressions (2.14)–(2.15) for Ȧ and ϕ̇, as

well as (2.19), equations (2.8)–(2.9) simply become statements about the jump in the

superpotential and its derivative across the brane [30]:

WIR −WUV|ϕ0
= WB(ϕ0) (2.20)

dWIR

dϕ
− dWUV

dϕ

∣∣∣∣
ϕ0

=
dWB

dφ
(ϕ0), (2.21)

To summarize, the full system of bulk and brane field equations boils down to two bulk

equations, (2.16), relating the two super potentials WIR and WUV to the bulk poten-

tial V , and two matching conditions relating the bulk and brane superpotentials to-

gether, (2.20), (2.21). Before explaining the logic we will use in picking the relevant solu-

tions to these equations (which will be the subject of section 2.4), we make a digression on

holography and the properties and interpretation of the UV and IR parts of the geometry.

2.3 Holographic interlude

In a bulk theory allowing for a holographic interpretation, not all bulk geometries are

on the same footing. Below we summarize the structure of the “UV” (i.e. large volume)

and “IR” (small volume) regions of the bulk geometry, and their interpretation in the

holographic dictionary.

2.3.1 UV region

First of all, we will consider only UV-complete solutions, i.e. those containing a region

which extends all the way to an asymptotically AdS boundary where eA ∼ e−u/` → +∞.

The presence of such a region on one side of the interface is a crucial ingredient of the

self-tuning mechanism: this is because, as we will discuss below in more detail, generic

solutions in this region flow to the UV fixed point independently of the particular value

WUV(ϕ0) which solves equations (2.20)–(2.21). Therefore, we do not need to fine-tune the

UV side of the solution.

The asymptotic UV region usually corresponds to the scalar field asymptoting to a

maximum of the scalar potential. A given potential may allow for several UV fixed points,

but one can restrict the boundary conditions of the gravitational theory to pick one of them:

indeed, the choice of UV boundary conditions is part of the definition of the holographic

theory. This includes not only the choice of the UV extremum, but also the boundary

conditions on scalar fields, the boundary induced metric, etc.

Even with these restrictions, there always exist an infinite number of solutions to the

superpotential equation in the UV, which satisfy all the correct boundary conditions at

leading order in a near-boundary expansion, and differ by subleading terms.
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In fact, there exists an arbitrary integration constant CUV to the superpotential equa-

tion which parametrizes a continuous family of nonequivalent solutions which get closer

and closer to each other as one approaches the extremal point of V . For a recent detailed

discussion of the solutions to the superpotential equation, see [73]. All these solutions

asymptote the same AdS geometry, and they are all regular close to the boundary of AdS.

To be more explicit, such a “UV” AdS solution is realized near a maximum of bulk

potential (say at ϕ = 0),

V (ϕ) ' −d(d− 1)

`2
+
m2

2
ϕ2 + . . . (2.22)

The constant term fixes the asymptotic AdS length `, and the mass term fixes the dimension

of the corresponding operator10 by:

∆ =
d

2

(
1 +

√
1 +

4m2`2

d2

)
. (2.23)

We assume −d2/4 < m2 < 0 so that 2 < ∆ < d and the operator is relevant. The

superpotentials corresponding to (2.23) all have the form, for φ ' 0:

WUV(ϕ) =
2(d− 1)

`
+
d−∆

2
ϕ2 + . . .+ CUVϕ

d
d−∆

(
1 + . . .

)
+O

(
ϕ

2d
d−∆

)
. (2.24)

where the dots indicate analytic higher order terms, and CUV is an undetermined constant.

Solving for the scalar field and scale factor via equations (2.14), one finds:

eA(u) ' e−u/`, ϕ(u) ' g0

(
` eu/`

)d−∆
+

CUV`

(2∆− d)
g

∆
(d−∆)

0

(
` eu/`

)∆
, u→ −∞, (2.25)

where g0 is one more integration constants which, importantly, does not appear in the

superpotential. In the equation above, the factors of ` are inserted to absorbe the appro-

priate mass dimensionality of g0 and CUV (d−∆ and one, respectively) while keeping ϕ(u)

dimensionless.

We now describe how the solution above is interpreted in the holographic dictionary.

• The scale factor diverges as ϕ → 0, signaling an asymptotically AdS region with

conformal boundary at u = −∞, where the scalar reaches the “UV fixed point”

ϕ = 0.

• Both leading and subleading terms in the scalar field vanish as we go to the boundary

(u→ −∞), signaling that the fixed point is an attractor.

• The constant g0 controlling the leading term in the scalar field near-boundary expan-

sion represents the coupling of the dual operator O(x) associated to ϕ in the dual

10We assume here what is called “standard” form of the holographic dictionary. For operator dimensions

∆ such that d/2 − 1 < ∆ < d/2, there is an “alternative” definition of the theory which is obtained by

replacing ∆↔ (d−∆) in equation (2.23). We will not discuss this case further.

– 15 –



J
H
E
P
0
9
(
2
0
1
7
)
0
3
1

field theory in the far UV. In other words the UV CFT is deformed by a term of

the form:

Ssource =

∫
ddx g0O(x). (2.26)

Notice that g0 does not appear in the superpotential, but rather is generated by the

boundary conditions one imposes at the AdS boundary (extreme UV limit of the dual

field theory).

• Similarly, one has to fix asymptotically the boundary conditions for the leading term

in the metric. With a generic ansatz of the form,

ds2 → du2 + e−2u/`
(
γ(0)
µν + . . .

)
, u→ −∞, (2.27)

γ
(0)
µν represents the metric of the space where the UV CFT is defined , and it is also

fixed by boundary conditions at the AdS boundary. In particular, in the solution we

are considering, the CFT lives in flat space-time with Minkowski metric. It is crucial

that neither g0 nor γ
(0)
µν are fields with respect to which we have to extremize the

gravitational action, but they are part of the definition of the dual field theory.

• The subleading term in the near-boundary expansion of ϕ in equation (2.25) is con-

trolled by CUV. In the dual field theory, this term corresponds to the vacuum expec-

tation value of the operator O:

〈O〉 = CUV` g
∆

(d−∆)

0 (2.28)

We see explicitly from equations (2.24) and (2.25) that the integration constant CUV enters

only at subleading order, and all superpotentials get closer and closer to each other as

ϕ → 0, independently of CUV. In other words, no matter what initial conditions we pick

for WUV away from ϕ = 0, the solution is attracted to the same asymptotically AdS

boundary at ϕ = 0. This also implies that the initial condition W (0) = 2(d − 1)/` is

ill-defined because it does not fix the solution.

2.3.2 IR region

The situation is conceptually different in the IR. The difference between the UV and the

IR is that not all solutions reaching the IR are regular, and not all of them are acceptable,

but only those obeying some restrictions. The others are to be considered as “spurious”

solutions of Einstein’s equations which are unphysical from the holographic point of view,

i.e. they do not correspond to a true state (saddle-point) in the dual field theory.

More specifically, a solution is acceptable in the IR if it belongs to one of the two

classes below:

• IR-regular solutions;

• “Good” IR-singular solutions (near the boundary of field space).
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Below we will explain what characterizes these two classes. The crucial point is that,

as we will explain, independently of the choice of V (φ), there is at most a finite number of

IR-acceptable solutions of the superpotential equation.11

Before we delve into the classification of IR solutions we note that, on the IR side

of the brane, eventually eA → 0. Indeed, by definition, going towards the IR the scale

factor is decreasing. We will discard the presence of an IR brane (or “hard wall” in the

holographic lore) cutting off the small volume part of the geometry, and at which A reaches

a finite limit. This case suffers from the same problems as in non-computable singularities

that we will discuss below (i.e. it is neither regular nor acceptable). On the other hand,

assuming there is no hard wall, the scale factor cannot approach a non-vanishing constant

asymptotically, without the theory violating the null energy condition (this can be seen

using Ä = −(φ̇)2 < 0).

Regular solutions. These are solutions in which the curvature invariants are all finite as

eA → 0. In practice, in a co-dimension-one setup, the only asymptotic behavior compatible

with regularity is:

eA(u) ∼ e−u/`IR u→ +∞ (2.29)

where we approach the Poincaré horizon of an AdS space-time with curvature radius `IR.

This corresponds to both V (φ) and W (φ) approaching a finite constant:

V → −d(d− 1)

`2IR
, W → 2(d− 1)

`2IR
. (2.30)

Since the asymptotic geometry approaches AdS, we are again in the presence of an asymp-

totically conformal theory. However, now this is in the interior of the space, where the

scale factor approaches zero asymptotically. Therefore this CFT is found in the IR limit.

The actual IR limit of the scalar field, φIR, may be finite (in which case the dual theory

flows to an IR conformal fixed point at a finite value of the coupling), or it can be infinite

( runaway AdS behavior, [71, 72]).

An important difference with respect to the case of a UV fixed point is that solu-

tions W (φ) reaching an IR fixed point are isolated points in the space of solutions of the

superpotential equations and are not part of a continuous family. In other words, an in-

finitesimal deformation (in the space of solutions) leads to missing the fixed point and

flowing elsewhere while typically becoming singular in the process.

Acceptable singular solutions. Putting aside the AdS IR asymptotics described above,

all other cases eA → 0, lead to an IR naked singularity where we have additionally that

φ → +∞. However, some singularities may be acceptable from holographic arguments

or gravitationally if there exists a way of resolving them. The presence of a (classical

curvature) singularity in holography may be interpreted as follows:

1. The solution does not describe a semiclassical saddle point. These are what are

customarily called “bad” singularities in holography, [74].

11We exclude from the discussion here the case of flat directions in the dual QFT.
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2. The singularity appears because we have not included all possible relevant degrees

of freedom. If we include them then the singularity is resolved. Examples of such

resolutions exist both by re-including KK states of the bulk theory, [85, 86], or in

more complicated contexts stringy states, [87, 88]. Such resolvable singularities are

usually called “good singularities” in holography, [74].

A criterion for a “good” (i.e. resolvable) singularity was proposed by Gubser in [74]. It

postulates that the solution admits an infinitesimally small deformation which may cloak

the singularity behind a regular black hole horizon. In this way, “heating up” slightly the

theory, in principle, cloaks the naked singularity without a drastic change to the solution.

For a concrete example, take the case of our bulk action (2.2) with a specific Liouville

potential V (φ) ∼ exp bφ. In this case the general solution with the relevant planar (d− 1)-

symmetry is known [82]. It is found that black hole solutions exist only for b <
√

2d
d−1 ,

otherwise solutions have an uncloaked naked singularity. This agrees with the postulated

criterion (2.33) as we will see in a moment.

There is additional evidence concerning solutions with “good” singularities. The cal-

culation of correlators involves the solution of the fluctuation equations with appropriate

boundary conditions. There are two possibilities:

• The behavior of correlators at finite energy does not depend on the resolution of the

singularity. This case is realized if in the associated Sturm-Liouville problem only

one of the two linearly independent solutions is normalizable at the singularity. In

this case the boundary condition (normalizability) fixes the correlator uniquely. In

mathematical terms, an equivalent statement is that the corresponding radial Hamil-

tonian is essentially self-adjoint. We will call such “good” singularities computable

or IR-complete. Such a singularity resolution was encountered early on in higher

co-dimension brane world models [75], in [76], and in the holographic context in [77].

• The behavior of correlators at finite energy does depend on the resolution of the singu-

larity. This case is realized if in the associated Sturm-Liouville problem both linearly

independent solutions are normalizable at the singularity. In this case one needs an

extra boundary condition, (which is supplied by the singularity resolution). In math-

ematical terms, an equivalent statement is that the corresponding radial Hamiltonian

has an infinity of self-adjoint extensions determined by extra boundary conditions at

the singularity. Therefore, without an explicit resolution of the singularity the cor-

relators cannot be computed. We will call such “good” singularities non-computable

or IR-incomplete.Examples of such cases are described in detail in [71–73].

There are many examples where IR-completeness fails, but the most straightforward

is the example of a hard wall, i.e. an IR-brane that cuts-off the small volume region of the

geometry: in this case, all solutions of bulk wave equation are trivially normalizable at the

wall, but different boundary conditions lead to very different spectra. IR-incompleteness

does not necessarily mean that the holographic model is unphysical: rather it hints that

with the present ingredients we do not have enough information to compute any observable
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without embedding it into a more complete theory (a higher dimensional bulk geometry

or a string theory). For convenience, to make sure the five-dimensional description we are

using is predictive, we require IR-completeness. This puts a restriction on the asymptotics

of the bulk potential at infinity as we discuss below.

It can be shown (see e.g. [73]) that the IR-completeness criterion always implies Gub-

ser’s criterion. Both imply a bound on the growth rate of the potential in the IR. We

suppose for definiteness that the potential grows asymptotically as:

V (ϕ) ∼ −V∞ exp bϕ, b > 0, V∞ > 0. (2.31)

It is useful to define the quantity:

Q =

√
d

2(d− 1)
. (2.32)

Then:

1. Gubser’s criterion requires

b < 2Q (2.33)

2. IR-completeness requires:

b < 2

√
d+ 2

6(d− 1)
(2.34)

One can check that (2.33) is stronger than (2.34) for any d > 1.

This is not the end of the story: the conditions in equations (2.33)–(2.34) are not

sufficient as they refer to the potential but not to the solution itself. Indeed, whether or

not the singularity is acceptable according to one or the other criterion depends on the

behavior of the superpotential at infinity which characterizes the solution. Analyzing the

superpotential equation one finds two types of asymptotic solutions corresponding to the

potential behaving as in equation (2.31):

1. A continuous family, whose asymptotic behavior is independent of the parameter b

in (2.31):

WC(ϕ) ' C expQϕ, ϕ→ +∞, (2.35)

where C is an arbitrary positive constant.

2. An isolated solution with a milder asymptotic behavior:

W∗(ϕ) 'W∞ exp
b

2
ϕ, ϕ→ +∞, (2.36)

The parameter W∞ in this case is fixed, and given by:

W∞ =

√
8V∞

(2Q)2 − b2
. (2.37)

Due to equation (2.33), one sees that the special solution W∗ in equation (2.36) grows

more slowly than any of the solutions in the continous family,12 (2.35).

12More generally, the special solution is characterized by the property W∗(ϕ) ∼
√
V (ϕ) as ϕ→ +∞.
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Figure 2. Schematic view of the solutions of the superpotential equation that reach φ→ +∞. The

curve W∗ represents the special solution. The curves labeled C1 through C6 are different curves

belonging to the continuous family, and they grow exponentially faster than W∗. The function B

defines the boundary of the forbidden region as defined in equation (2.17).

It turns out that only the isolated solution W∗(ϕ) with special asymptotic behavior (2.36)

satisfies Gubser’s criterion and, in case (2.34) is satisfied, also IR-computability.13

A sketch of the superpotential solutions in the IR is given in figure 2.

The conclusion therefore is that there is at most a finite number of solutions that have

an acceptable behavior in the IR: those that reach an IR fixed point at a minimum of V ,

plus the special singular solution (2.36) that extends to infinity in field space. However all

of them may flow to the same UV. Therefore, imposing IR-regularity picks one or a few of

the many solutions which flow to the same asymptotic AdS boundary.

2.4 The self-adjustment mechanism

In the context of brane-worlds, the self-tuning paradigm [27, 28] appeared shortly after

the original Randall-Sundrum (RS) model with one or two branes [23] embedded in AdS

space-time.

In the original RS model, one has to fine-tune the tension of the brane with the bulk

cosmological constant in order for the embedded brane geometry to remain flat. Any

detuning of the brane tension, resulted in an effective inflation (or deflation) of the brane,

therefore to an effective cosmological constant acting on the brane, [89, 90]. The fine tuning

of the brane tension, in the context of the brane-world, is the translation of the well-known

fine tuning of the cosmological constant. Therefore this is the brane-world version of the

big cosmological constant problem [1].

It was noted that including a scalar field in the bulk geometry would introduce extra

freedom in the solutions, which relieved the brane to bulk fine-tuning condition [27, 28].

13In particular, even if we relax IR-computability, there is still only one solution satisfying Gubser’s

criterion.
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Unfortunately, this simple resolution did not come without problems of its own. We will

scrutinize this in more detail, as it is central to our discussion.

The equations at the heart of the self-tuning mechanism are the matching conditions

for the superpotential we wrote at the end of subsection (2.2):

WIR −WUV|ϕ0
= WB(ϕ0) (2.38)

dWIR

dϕ
− dWUV

dϕ

∣∣∣∣
ϕ0

=
dWB

dφ
(ϕ0), (2.39)

where both WUV(ϕ) and WIR(ϕ) are solutions of the superpotential equation,

− d

4(d− 1)
W 2 +

1

2

(
dW

dϕ

)2

= V. (2.40)

There are two possible ways of looking at these equations and what they constrain, and

these result in the “old” self-tuning solutions (which generically lead to bad IR singularities)

and holographically-motivated self-tuning, where the IR singularity disappears or if it still

persists, it is of a good kind.

Old self-tuning. This is the case discussed in most general terms by Csaki et al. in [30],

who consider essentially the same class of actions as the one here, apart from the induced

Einstein and kinetic terms on the brane. They arrive at the same equations (2.38)–(2.39)

and do a counting of integration constants which can be summarised as follows:

1. Each of the two functions W IR and WUV solves the first order equation (2.40), and

therefore each one is determined modulo an integration constant CUV, CIR;

2. For a generic brane potential WB(ϕ), the two matching conditions (2.38)–(2.39) fix

CUV, CIR for any generic value of ϕ0 (2.18).

In other words ϕ0 is a free integration constant which self tunes with an arbitrary value

of the brane tension while the brane remains geometrically flat. The effective cosmological

constant of the brane is zero14 independently of the brane-world tension and of the couplings

in the action. This indeed gives self-tuning solutions, but the heart of the problem is that

a generic value of CIR will result in a solution in the confinous family (2.35), which has an

unacceptable IR singularity. This was the case for all explicit solutions considered in [30]

(when V is given by a cosmological constant or an IR exponential potential), which indeed

are in the continuous branch (2.35). On the other hand, the special solution (2.36) was not

considered. Moreover, ϕ0 appears as a modulus of the solution.

Holographic self-tuning. According to the rules of holography, summarized in the

previous subsection, the perspective on the choice of integration constants is different:

1. The IR constant CIR should be fixed by demanding that the IR singularity is absent

(Poincaré horizon in AdS) or it is of the good type.

14By effective we mean the one measured on the brane by measuring the expansion of the brane universe.
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Typically there is only one such solution to eq. (2.40) (or at most a discrete set).

According to this point of view, the solution W IR should be fixed once and for all

to be the regular one, or the one with special asymptotics (2.36) in the case of an

IR-exponential potential,15 before we impose the matching conditions (2.38)–(2.39).

2. Once W IR is fixed by regularity , equation (2.38)–(2.39) will determine 1) the integra-

tion constant CUV in the UV superpotential; 2) the brane position in field space, ϕ0.

Therefore, demanding IR regularity fixes the brane position. This is desirable, as it is

likely that the old self-tuning setup still leaves some light radion-like modes in the spectrum,

since the brane position (in ϕ space) looks like a modulus. On the other hand, since the

good values of CIR are (generically) at most discrete, in the holographic version there is no

continuous deformation parameter in the space of solutions to the superpotential equation

plus matching conditions.

Notice that CUV contains information about the v.e.v of the operator dual to ϕ, so

the presence of the brane is changing the v.e.v’s with respect to the solution with no brane

in which WUV = W IR. On the other hand, we are still free to choose the UV sources,

which are encoded in the UV boundary conditions of equations (2.14) for the metric and

the scalar field.

We will now rewrite the matching conditions in a way which makes the philosophy

explained above algebraically manifest. Equations (2.38) and (2.39) can be rewritten in

such a way that one can obtain a solution without knowing anything about the behavior

of the UV superpotential: the latter can be eliminated from the equation and one is left

with a single equation that determines ϕ0 from V (ϕ) and the IR solution alone.

In fact, we solve (2.38)–(2.39) for WUV(ϕ0) and ∂ϕW
UV(ϕ0),

WUV(ϕ0) = W IR(ϕ0)−WB(ϕ0) ∂ϕW
UV(ϕ0) =

(
∂ϕW

IR − ∂ϕWB
)
(ϕ0), (2.41)

and then use the superpotential equation (2.40) for WUV to arrive at an equation for

ϕ0 only:

−Q
2

2

(
W IR(ϕ0)−WB(ϕ0)

)2
+

1

2

(
dW IR

dϕ
− dWB

dϕ

)2

ϕ0

= V (ϕ0), Q ≡

√
d

2(d− 1)
. (2.42)

This equation contains as input only the model data (the bulk and brane potentials) and

the IR solution, which is fixed by IR regularity. Once we solve it for ϕ0, we can obtain

WUV(ϕ0) from (2.41). This in turn can then be used as an initial condition for the UV

superpotential equation, and it fixes WUV(ϕ) completely.16

We pause here to clearly explain on how the adjustment mechanism of the cosmological

constant is realized in this model and what we mean by self-tuning.

A self-adjustment mechanism is one in which it is not necessary to pick special values of

the parameters of the model in order to obtain a solution to the field equations in which the

4d metric is Minkowski. Here, the model parameters are the bulk and brane potentials,

15Or more generally, for an arbitrary potential, the one with large-ϕ asymptotics W∗(ϕ) ∼
√
V (ϕ).

16The sign ambiguity in dWUV/dϕ is fixed by the sign of d(W IR −WB)/dϕ at the interface.
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and these include the 4d vacuum energy (which is contained in the ϕ-independent part

of WB(ϕ)).

The standard CC problem can be stated by saying that for generic values of the

parameters (in particular, of the 4d vacuum energy plus bare cosmological term), flat 4d

space is not a solution.

In our model on the other hand, for arbitrary potentials V and WB in the bulk and

brane, such that they allow a solution of equation (2.42), the “UV” side of the geometry

adjusts itself dynamically, for given CUV and ϕ0, so that flat space is a solution for the 4d

metric. As we discussed in section 2.3, generic initial conditions for WUV at ϕ0 (as long as

WUV > 0, as we will discuss in section 2.5) connect to the same large volume AdS region,

therefore any of these WUV gives rise to a regular geometry satisfying the same boundary

conditions. From the boundary field theory perspective, they differ only in the vacuum

expectation value of the operator dual to ϕ, which is encoded in the integration constant

which fixes WUV. This integration constant, (or in the field theory language, the v.e.v. of

the operator in the UV CFT), is the extra parameter which is not fixed by the bulk field

equations and which is responsible for the self-adjustment to flat space. Stated differently,

the UV geometry adjusts itself in order to be glued to the regular IR solution through the

interface, whatever the parameters at the interface are. We will give another picture of this

mechanism in purely 4d terms in appendix C when we discuss Weinberg’s no-go theorem.

This is not the end of the story, however. As we will see in the next sections, even

though we may have solutions generically, not all solutions are acceptable: as we will see

in the next section, the solution which we have called WUV does not always connect to an

asymptotically AdS region, but sometimes it actually describes a different IR geometry,

in which case the self-tuning mechanism does not work. Furthermore, one has to impose

some phenomenological and consistency requirement: the existence of 4d gravity at the

observed distance scales, which will be discussed in section 4.2, and the stability of the

solution (absence of ghosts and tachyons) (see section 5). These requirements may restrict

the range of allowed parameters in the potentials, but do not introduce a need for tuning

independent parameters.17 In any case, this has now become a problem in model building

(finding a set of bulk and brane potentials such that there is enough room for realistic

physics) rather than a conceptual fine-tuning or naturalness problem.

We end this section by discussing the relation between the integration constants of the

bulk gravitational equations and the parameters which define the dual field theory.

For a given choice of bulk and brane potentials in the action (2.2)–(2.3), any specific

bulk solution of the form (2.10) depends on two sets of integration constants:

(a) The two integration constants entering WUV and WIR by IR regularity, and the

equilibrium value ϕ0.

(b) The integration constants that determine the scalar field and metric profile by inte-

grating equations (2.14)–(2.15). These include the scale factor at the interface, A0,

as well as the brane position u0.

17This, on the contrary, is the case in the RS model, in which two a priori independent constants — the

bulk cosmological constant and the brane tension - need to be related to each other.
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As we have discussed, the integration constants in the first set are all fixed18 once the

action is given: either by regularity (WIR), or dynamically via equations (2.41) (WUV and

ϕ0). On the other hand, integration constants in the second set (b) are not fixed by any

quantity entering in the action: rather, they are completely fixed by the choice of the UV

coupling g0, which is part of the definition of the dual boundary theory:

A(u)→ − u

`UV
ϕ(u)→ g0 exp

(
∆−u

`UV

)
, u→ −∞, (2.43)

where ∆− = (d−∆), ∆ being the dimension of the operator dual to ϕ in the UV field theory.

As it is shown in appendix B, one can find a simple relation between the integration

constants at the brane, and the UV coupling g0:

g0 = e∆−A0

(
eĀ(ϕ0)/`UV

)∆−
, (2.44)

where Ā(ϕ0) depends only of integration constants in class (a) (and depends on neither A0

nor g0):

Ā(ϕ0) ≡ 1

∆−
logϕ0 +

1

2(d− 1)

∫ ϕ0

0

(
WUV

W ′UV

− 2(d− 1)

∆−ϕ

)
. (2.45)

2.5 Consistent self-tuning solutions

As we have seen in section 2.4, once the IR solution WIR and the brane potential WB

are fixed, the interface position ϕ0 and the UV superpotential WUV are determined by

the two equations (2.41). In this section we summarize the different possible qualitative

behaviors at the intersection, depending on the sign and the size of the brane potential at

the interface, WB(ϕ0). A detailed discussion is given in appendix A.

The first qualitative distinction comes from the sign of WUV(ϕ0), which is given by

the sign of WIR −WB at the interface:

A. WUV(ϕ0) > 0. In this case the scale factor is monotonic as we cross the interface,

like in figure 3 (a). The solution on the left of the interface (u < u0 in our conven-

tions) flows to the UV asymptotic region, and approaches the AdS boundary where

eA → +∞, independently of the precise value of WUV(ϕ0) (recall our discussion in

section 2.3.1 about the asymptotically AdS UV region being an attractor).

Notice that since WUV(ϕ0) must be in the allowed region, i.e. |WUV(ϕ0)| >
B(ϕ0), defined in (2.17). Positivity of WUV(ϕ0) automatically implies

that WB(ϕ0) < WIR −B(ϕ0).

B. WUV(ϕ0) < 0. In this case on the other hand the interface is a local maximum for

the scale factor, which decreases on both sides of the brane, as in figure 3 (b). The

junction connects two solutions of the “IR” type, and no asymptotic UV boundary

region. In order to be acceptable, the solution on both sides has to coincide with

the “special” IR solution which is either regular or have a good singularity. Since

18Up to possible discrete choices: if multiple solutions are allowed, these however are always isolated

points in the space of all possible choices of integration constants.
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UV IR
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IR1IR2
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u

e
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(a) (b)

Figure 3. The behavior of the scale factor eA as a function of the holographic coordinate u, in

the two cases WUV > 0 (left) and WUV < 0 (right). (a) In case A, the junction connects an IR

and a UV region. (b) In case B, the junction is a maximum of the scale factor and connects two

IR regions.

the special IR solution is unique, this happens only if the brane potential satisfies

the condition WB(ϕ0) = 2W∗(ϕ0), i.e. the junction is symmetric.19 This is an extra

condition which requires fine-tuning of the brane potential against the bulk. This

is the generalization of the usual RS fine tuning of the bulk vs. brane cosmological

constant.

We therefore arrive at the following statement:

A solution to the matching condition implements the self-tuning mecha-

nism only if:

WB(ϕ0) < WIR(ϕ0)−B(ϕ0).

(2.46)

On the other hand, as we will see, one of the results from the analysis of scalar fluctu-

ations in section 5 is the following:

A sufficient condition for stability is:

WB(ϕ0) > 0.
(2.47)

However, one can relax (2.47) and check stability on specific models case-by-case.

Notice that the r.h.s. of equation (2.46) is necessarily positive since W (ϕ0) < B(ϕ0) is

in the forbidden region. Therefore, the safest possibility is that both (2.46) and (2.47) are

satisfied at the same time.

We will now show that for a very broad class of brane potentials WB(ϕ), solutions of

the junction conditions exist which can self-tune away any large amount of vacuum energy

and satisfy 0 < WB(ϕ0) < WIR(ϕ0)−B(ϕ0).

First, we expect the function WB(ϕ) to scale (in units of the UV AdS radius) as

WB(ϕ) =
Λ4

M3
w(ϕ) (2.48)

19More generally, there may be a finite number of special IR solutions, in which case the bulk may be

asymmetric across u0 but still requires one of the tunings WB(ϕ0) = W ∗1 (ϕ0) + W ∗2 (ϕ0), where W ∗1 and

W ∗2 are the two IR-special solutions on the left and on the right.
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where Λ is the cut-off on the brane, M the 5-dimensional Planck scale and w(ϕ) is a

dimensionless function independent of Λ (we may expect a mild dependence on Λ in w(ϕ)

but for simplicity here we ignore this possibility). For a given class of functions w(ϕ), self

tuning is successful if:

1. a solution ϕ0 > 0 to equation (2.42) exists without assuming Λ to be small or without

tuning the parameters in w(ϕ),

2. the solution satisfies the condition (2.46). If in addition it satisfies also condi-

tion (2.47), the solution is manifestly ghost-free.

We now argue that, for the two conditions above to be satisfied, it is enough to ask

that w(ϕ) have a zero at some finite ϕ = ϕ̄, with positive derivative:

w(ϕ̄) = 0, w′(ϕ̄) > 0. (2.49)

As we will show, under these conditions:

1. we can always find an equilibrium position, which sits in the vicinity of ϕ̄, for any

value of Λ in a continuous range

0 < Λ < Λmax (2.50)

in which both conditions (2.46)–(2.47) are satisfied.

2. The maximum allowed value Λmax scales like [V (ϕ̄)]1/8. In particular, for a potential

which has an exponential behavior at large ϕ, Λmax scales exponentially with the

position of the zero of w(ϕ):

V (ϕ)→ −V∞ exp bϕ ⇒ Λmax ∝ exp
bϕ̄

8
(2.51)

With a small amount of tuning in the parameters of w(ϕ) (which may even be natural,

as we will discuss below) we can achieve ϕ̄� 1 and self-tune away a large vacuum energy.

The argument goes as follows. Suppose ϕ̄ is such that w(ϕ̄) = 0. If we go arbitrarily

close to ϕ = ϕ̄, no matter the value of Λ we reach a region where WB � WIR. In this

region, we can define a function ε(ϕ) such that:

WB(ϕ) = WIR(ϕ)ε(ϕ), ε(ϕ)� 1, (2.52)

Inserting this expression in equation (2.42) and linearizing in ε(ϕ), we find:

V (ϕ)ε(ϕ) +
1

4

(
d

dϕ
W 2

IR

)
ε′(ϕ) = 0, (2.53)

where we have used the fact that WIR solves the superpotential equation (2.40). We now

expand equation (2.53) with respect to ϕ, close to ϕ̄. Since ε(ϕ̄) = 0 by assumption,

ε(ϕ) = ε1(ϕ− ϕ̄) +O
(
(ϕ− ϕ̄)2

)
, ε1 =

Λ4

M3

w′(ϕ̄)

WIR(ϕ̄)
. (2.54)
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Equation (2.53) becomes, in this approximation, a linear equation in ϕ which is solved

by setting:

ϕ0 = ϕ̄−
∂ϕ(W 2

IR)

4V

∣∣∣
ϕ=ϕ̄

. (2.55)

Because we have taken V < 0 , and because WIR is a monotonically increasing function,

then ϕ0 > ϕ̄, and WB(ϕ0) > 0 by our assumption (2.49). Moreover, at ϕ0, WIR −WB '
WIR(1 − ε(ϕ0)) > B(ϕ0) as long as ε(ϕ0) is small. Thus WB(ϕ0) is in the range which

satisfies equations (2.46)–(2.47).

Thus we have shown that an acceptable equilibrium solution exists for any value of Λ,

provided ε(ϕ0) . 1. This condition however does depend on Λ, since ε = WB/W = Λ4w/W .

On the other hand the value of the equilibrium position (2.55) is independent of Λ, since

we have assumed that ϕ̄ itself does not depend on Λ. Thus, if Λ is too large, the value

ϕ0 in equation (2.55) will fall outside the region where ε is small, and the argument will

break down. We can put a bound on how large a Λ we can sustain by using the linearized

approximation for ε around ϕ̄, where:

ε(ϕ0) ' ε1(ϕ0 − ϕ̄) =
Λ4

M3

w′(ϕ̄)

WIR

∂ϕ(W 2
IR)

(−4V )

∣∣∣
ϕ=ϕ̄

. (2.56)

Thus, the condition ε . 1 translates into a condition for Λ. If we suppose ϕ̄� 1, enough to

be in the asymptotic exponential region for the potential, and use equations (2.61)–(2.63),

the condition is:

Λ . Λmax = C
exp(bϕ̄/8)

(w′(ϕ̄))1/4
, C ≡

(
M6V∞

8

(2Q)2 − b2

b2

)1/8

. (2.57)

Thus Λmax can be made very large if the zero of w(ϕ) sits at large ϕ.

2.6 Concrete examples

To end this section, we will present two concrete examples where the self-tuning mechanism

is at work. They are presented for illustrative purposes and we will not try to develop them

into fully phenomenologically acceptable models. Constructing a model that satisfies all

the stability constraints and leads to an acceptable phenomenology is beyond the scope

of this paper, although all the phenomenological requirements will be however explicitly

specified in sections 4 and 5, and will further constrain model-building beyond what we

discuss in the two examples below.

Here we will limit ourselves to showing that stable, self-tuning models with arbitrary

large 4d vacuum energy do exist.

In section 2.6.1 we present an example based on a polynomial bulk potential. In this

case the IR is non-singular, but at the equilibrium solution the brane has negative tension.

Thus equation (2.47) is violated and one cannot exclude the presence of ghost scalar modes,

and further analysis is required.

In section 2.6.2 on the other hand we will show a class of “safe” self-tuning models

that satisfies both requirements (2.46)–(2.47) for a very large range of parameters, including
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Figure 4. The superpotential from the UV (ϕ = 0) to the IR (ϕ = 1). The UV-IR matching is at

ϕ0 = 0.65. On the vertical axis, the superpotential is measured in units of the UV AdS radius.

very large contributions to the (bare) vacuum energy. These are based on the existence of

a solution close to a zero of W (ϕ), discussed in the previous subsection20

2.6.1 Case study I: an IR-regular model

To construct a model which is free of bulk singularities, we consider a potential with three

extrema at ϕ = 0,±v:

V (ϕ) = −12 +
1

2

(
ϕ2 − v2

)2

− v4

2
, (2.58)

Each extremum supports an AdS fixed point, and we will be interested in flows that start

in the UV at ϕ = 0 and end in the IR at ϕ = v. We have set the to unity the UV AdS

radius. For concreteness we also set v = 1. The regular IR solution is the one that flows

to the AdS fixed point at ϕ = 1. We take the brane potential to be:

Wb(ϕ) = ω exp[γϕ]. (2.59)

Depending on the values of ω and γ one may find solutions to the matching conditions

in the interval 0 < ϕ < 1. For instance, we use the following values:

ω = −0.01, γ = 5 ⇒ ϕ0 = 0.65. (2.60)

The superpotential is displayed in figure 4, and the scalar field profile in figure (5). In

order for the matching condition (2.42) to have a solution in the range (0, 1), with this

model we need wB negative, which is not manifestly ghost-free. Thus, although it is free of

20The main difficulty in constructing a manifestly ghost-free self-tuning model, i.e. one that satisfies

0 < W (ϕ0) < WIR(ϕ0)−B(ϕ0), is that the special solution WIR(ϕ) has the same scaling behavior as B(ϕ)

for large ϕ, and all solution lying between WIR and B(ϕ) follow very closely WIR, then eventually stop

(bounce) before reaching infinity. Thus, the strip 0 < WB(ϕ0) < WIR(ϕ0)−B(ϕ0) is very narrow. However,

the class of models we present in section 2.6.2 admits generically at least one solution falling in this strip.
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Figure 5. The scalar field profile as a function of the holographic radial coordinate. On the

horizontal axis, we have used the conformal coordinate r =
∫
e−Adu. In this coordinate, the AdS

boundary is at r = 0, and the (regular) IR horizon, is reached as r → +∞, where ϕ(r) approaches

the fixed point value ϕIR = 1. The solution is obtained by fixing the initial condition at the

interface, A(ϕ0) = 0. The position of the interface is r0 = 0.99.

bulk singularities, before using this model for phenomenology one has to check the absence

of ghosts explicitly by computing the spectrum of scalar fluctuations. This problem will

be absent in the class of models discussed in the next subsection.

2.6.2 Case study II: a class of stable self-tuning models

The main problem with the model in the previous section is that ϕ has a finite range

between the UV and the IR, and all solutions overshooting ϕ = 1 have bad singularities.

Hence, the equilibrium condition (2.42) may not have solutions in this range, or the solution

may violate the condition (2.46). Here we present a class of models which does not have

this shortcomings, and such that the junction is self-tuning and manifestly ghost free for a

wide range of parameters.

We investigate a model in which ϕ has infinite range: the UV fixed point is still at

ϕ = 0 but the IR is reached as ϕ→ +∞. The potential we choose is:

V (ϕ) = −12−
(

∆(4−∆)

2
− b2

4

)
ϕ2 − V1 sinh2 bϕ

2
(2.61)

where we have set `UV = 1 and d = 4. This potential is monotonically decreasing, behaves

at large ϕ as −(V1/4) exp(bϕ), and it supports solutions with acceptable singularities for

b < 2
√

2/3 since in d = 4, Q =
√

2/3.

The coefficient of the quadratic term was chosen so that m2 = ∆(∆ − 4) and the

dimension of the dual operator is manifest. For definiteness, we choose:

b =
Q

4
=

1

2

√
2

3
, ∆ = 3, V1 = 1, (2.62)
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Figure 6. The unshaded part of the graph is the region of parameter space (Λ, ϕ̄) where a flat,

manifestly stable (i.e. with WB(ϕ0) > 0) solution to the junction condition exists. This graph was

obtained numerically using the bulk potential of the form (2.61) with parameters given in equation

(2.62), and brane potential of the form (2.64).

but their precise values are not important (as long as b < 2Q, 2 < ∆ < 4 and V1 > 0.

With such potential, all solutions to the superpotential equations that extend to +∞ are

singular, and the special solution with a good singularity has asymptotics:

WIR '

√
2

(2Q)2 − b2
exp

bϕ

2
, ϕ→ +∞. (2.63)

As an example which follows the logic described in section 2.5, consider a polynomial

function WB(ϕ) which has at least one zero at ϕ̄ > 0, with positive derivative:21

WB(ϕ) = Λ4

[
−1− ϕ

s
+
(ϕ
s

)2
]
. (2.64)

The parameter s controls the position of the zero. Based on the discussion in section 2.5,

we expect to find a stable solution in the vicinity of ϕ̄, for all values of Λ up to a maximum

value on s.

This is indeed what happens: we have solved numerically the superpotential equation

for WIR, imposing IR asymptotics as in (2.63), and solved the equilibrium condition for s

in a range between 10 and 2000, for which ϕ̄ ranges between 15 and 3200. We always find

an acceptable (stable) equilibrium position close to ϕ̄, for values of Λ outside the shaded

region in figure 6. We see from that figure that, for a given value of ϕ̄, stable flat solutions

exit for large ranges of the vacuum energy scale Λ: the latter can be as large as 1030 for

ϕ̄ ∼ 2500 (which a tuning of s of only 1 in 103).

21For simplicity, here we have suppressed the bulk Planck scale M compared to equation (2.48). It can

be reistated by letting Λ4 → Λ4/M3. Λ and M are dimensionless since we have set `UV = 1.
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3 Linear perturbations around flat solutions

In order to assess the phenomenological viability of the framework we developed in the

previous section, it is crucial to address two important points:

1. The model must reproduce the standard four-dimensional gravitational interaction

between matter sources, at least in a broad enough range of distance scales to be

compatible with observation.

2. The vacuum equilibrium solution (flat defect at a fixed bulk position u0) must be

stable.

In this and the following two sections we will address these points at the level of linearized

perturbations around the vacuum solution.

Although the analysis of bulk linear perturbations in general Einstein-dilaton theories

is known (see for example [84] for a discussion), to be self-contained we briefly reproduce

it in this work. On the other hand, a full treatment of linear fluctuations in an asymmetric

brane-world with a general brane action like the one in (2.3) has not previously appeared

(to the best of our knowledge). The detailed calculations are presented in appendix D.

Here we report the main definitions and final results.

3.1 Bulk perturbations

To set up the study of linear perturbations, it is convenient to work in conformal coordi-

nates, such that:

ds2 = a2(r)
(
dr2 + ηµνdx

µdxν
)

, a(r)dr = du , a(r) = eA(u(r)) . (3.1)

A prime will denote derivative with respect to r, a dot with respect to u. Einstein’s

equations and the junction conditions in these coordinates can be found in appendix D.

We introduce perturbations of the metric and scalar field, on each side of the brane,

in the form:

ds2 = a2(r)
[
(1 + 2φ)dr2 + 2Aµdx

µdr + (ηµν + hµν)dxµdxν
]
, ϕ = ϕ̄(r) + χ (3.2)

where the fields φ,Aµ, hµν , χ depend on r, xµ and are treated as small quantities. We further

decompose the 5 dimensional bulk modes into tensor, vector and scalar perturbations with

respect to the 4 dimensional diffeomorphism group,

Aµ = ∂µW +ATµ , hµν = 2ηµνψ + 2∂µ∂νE + 2∂(µV
T
ν) + ĥµν (3.3)

with ∂µATµ = ∂µV T
µ = ∂µĥµν = ĥµµ = 0. All indices µ, ν are raised and lowered with the

flat Minkowski metric ηµν .

Therefore, we have one bulk tensor ĥµν , two bulk transverse vectors (ATµ , V
T
µ ), five

bulk scalars (φ, ψ, χ,W,E) (plus one brane scalar, describing brane bending as we will see
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later). At the linearized level, general coordinate transformations (δr, δxµ) = (ξ5, gµνξν)

act as gauge transformations, under which:

δψ = − a′

a
ξ5 δφ = − (ξ5)′ − a′

a
ξ5

δB = − ξ′ − ξ5, δE = − ξ, δχ = − ϕ̄′ξ5, (3.4)

δATµ = − (ξTµ )′, δV T
µ = − ξTµ

δĥµν = 0 (3.5)

where we have introduced a decomposition of the diffeomorphism parameter ξµ in its

transverse and longitudinal components, i.e. ξµ = ξTµ + ∂µξ with ∂µξTµ = 0.

The tensor mode ĥµν is gauge-invariant, and gauge symmetry plus constraints allow to

eliminate the two vectors and four of the bulk scalars. The remaining physical bulk scalar

can be identified with the gauge-invariant combination:

ζ = ψ − 1

z
χ, (3.6)

where z(r) is the background quantity:

z ≡ aϕ̄′

a′
. (3.7)

The bulk gauge-invariant fluctuations satisfy the second order equations:

ĥ′′µν + (d− 1)
a′

a
ĥ′µν + ∂ρ∂ρĥµν = 0 (3.8)

ζ ′′ +

[
(d− 1)

a′

a
+ 2

z′

z

]
ζ ′ + ∂ρ∂ρζ = 0. (3.9)

These two equations must be solved independently on each side of the interface, and the

solutions must be glued using the linearized junction conditions, to the discussion of which

we now turn.

3.2 Brane perturbations and first junction condition

We consider the perturbations in the brane position, which adds one more scalar pertur-

bation which is localized on the interface and couples to the bulk scalar modes via the

perturbed Israel matching conditions (2.8)–(2.9).

The brane is described by an embedding XA(σα) where XA = (r, xµ) and σα are world-

volume coordinates. We choose the gauge σα = xµδαµ , so the embedding is completely

specified by the radial profile r(xµ). We consider a small deviation from the equilibrium

position r0:

r(xµ) = r0 + ρ(xµ) (3.10)

The brane scalar mode ρ represents brane bending. This is an additional scalar mode

which only has dynamics in the tangential directions to the brane, and no bulk dynamics.
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The fluctuations on the brane are the brane bending mode plus those induced by the

bulk perturbations. In particular, the induced metric and scalar field on the brane are

given by:

γµν = a2
0

(
ηµν + hµν + 2

a′0
a0
ηµνρ

)
, ϕ = ϕ̄0 + χ+ ϕ̄′0ρ (3.11)

Above, and in what follows, a subscript 0 refers to background quantities evaluated at

the unperturbed brane position r0. The last term in each of the two equations above,

comes from expanding the background solution around the equilibrium position r0, using

equation (3.10).

The first junction conditions (2.6) (i.e. the continuity conditions for the scalar field

and induced metric), are given in terms of the scalar and tensor perturbations by:[
ψ +

a′

a
ρ
]UV

IR
= 0,

[
χ+ ϕ̄′0ρ

]IR

UV
= 0,

[
E
]UV

IR
= 0,

[
ĥµν

]IR

UV
= 0. (3.12)

Notice that if ρ 6= 0, neither ψ nor χ are continuous and neither is the gauge-invariant

variable ζ defined in equation (3.6). In fact, its jump equation is also gauge-invariant, as

we will discuss below, after introducing gauge-invariant brane quantities.

3.3 Gauge fixing and second junction condition

Under the linearized diffeomorphisms (3.4) , the brane-bending mode transforms as:

δρ(x) = ξ5(r0, x). (3.13)

It is useful to introduce the new bulk scalar variables:

ψ̂(r, x) = ψ +
a′(r)

a(r)
ρ(x), χ̂(r, x) = χ+ ϕ̄′(r)ρ(x), (3.14)

These variables are continuous across the interface, as it is clear from equation (3.12), and

their value at the brane is gauge invariant, as can be seen by combining the transforma-

tions (3.4) and (3.13):[
ψ̂
]UV

IR
=
[
χ̂
]IR

UV
= 0, δψ̂(r0) = δχ̂(r0) = 0. (3.15)

Therefore, on the brane we have one gauge-invariant induced tensor mode hµν(r0) and two

gauge-invariant scalar modes ψ̂(r0), χ̂(r0): we can think of one of them as induced from the

bulk mode ζ, and the other as being the invariant version of the brane-bending mode. The

jump condition for ζ can be read-off from its definition (3.6) and equations (3.14)–(3.15):[
ζ
]UV

IR
=
[ a′
aϕ̄′

]UV

IR
χ̂(r0). (3.16)

The fact that both ζ and its derivative (as we will see shortly) are discontinuous across the

brane makes the dynamics of scalar perturbation more complex to treat than for tensor

modes. The latter are continuous with discontinuous derivatives, a situation which can be

described in the standard way with a δ-function potential at the interface.
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To proceed further, it is convenient to fix the gauge completely. If one wishes, one

could choose the gauge ρ = 0, in which the brane sits at its unperturbed position22 and

the fields ψ and χ are continuous. This however does not make the bulk variable zeta

continuous, because equation (3.16) is gauge-invariant.

On the other hand, it is useful to work in a gauge which maximally simplifies the

equations in the bulk. We make the gauge choice:

χ = B = 0. (3.17)

In this gauge one can solve the bulk constraint equations for φ and E in favor or ψ, and

be left with the only bulk fluctuation ψ, which coincides with ζ.

The full derivation of the remaining junction conditions is detailed in appendix D. As

a result, we summarize below the bulk equations and matching conditions for tensor and

scalar modes, in the absence of brane sources (these will be added in the next subsections).

Below we specialize to the physical value d = 4. Here and in the rest of the paper we define:

U0 ≡ UB(ϕ0), Z0 ≡ ZB(ϕ0). (3.18)

Tensor modes. We have,

ĥ′′µν + 3
a′

a
ĥ′µν + ∂ρ∂ρĥµν = 0 (3.19)[

ĥµν

]IR

UV
= 0, a0

[
ĥ′µν

]IR

UV
= −U0∂

ρ∂ρĥµν(r0). (3.20)

where U0 ≡ UB(ϕ0). Equation (3.19) must be solved independently on the UV and IR

sides of the interface, and the results matched using the junction conditions (3.20). The

continuity condition was obtained in the previous subsection. For the derivation of the

second junction condition, see appendix D.3.

Scalar modes. With the gauge choice (3.17), the bulk equations and junction conditions

can be written in closed form in terms of the variable ψ and the brane-bending mode ρ

(for a detailed derivation, see appendix D.4):

ψ′′ +

(
3
a′

a
+ 2

z′

z

)
ψ′ + ∂µ∂µψ = 0, (3.21)[

ϕ̄′ρ
]IR

UV
= 0 ,

[
ψ
]IR

UV
= −

[
1

z

]IR

UV

ϕ̄′ρ ; (3.22)[
z2

6
ψ′
]IR

UV

=

(
2U0

a0
−
[ a
a′

]IR

UV

)
∂µ∂µ

(
ψ +

a′

a
ρ

)
+

1

a0

(
dUB
dϕ

)
0

ϕ̄′∂µ∂µρ; (3.23)[
zψ′
]IR

UV
= −6

dUB
dϕ

(ϕ0)∂µ∂µ

(
ψ +

a′

a
ρ

)
+

(
Z0

a0
∂µ∂µ − M̃b

2
)
ϕ̄′ρ ; (3.24)

where:

z ≡ aϕ̄′

a′
, M̃b

2
= a0

(
d2WB

dϕ2
(ϕ0)−

[
d2W

dϕ2

]IR

UV

)
. (3.25)

22The brane is not flat though, since the induced metric still receives contributions from the bulk fluctu-

ations, as it is clear from equation (3.11).
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All quantities on the right-hand side are evaluated at the unperturbed brane position. No-

tice that the perturbations enter on the right hand side only in the continous combinations

ψ̂(r0) and χ̂(r0), defined in equation (3.14). On the other hand, the junction conditions

above imply that both ψ and ψ′ are discontinuous at the interface.

To simplify the junction conditions, we can eliminate ρ on the right-hand side of

equations (3.23)–(3.24), in favor of the jump in ψ, by solving equation (3.22):

ϕ̄′(r0)ρ = − [ψ]

[1/z]
. (3.26)

Using this result, it is easy to show from the definition (3.14) that:

ψ̂(r0) =
[z ψ]

[z]
. (3.27)

In the two equations above, and in the ones that follows, we use the notation [ ] as a

shorthand for [ ]IRUV to indicate the jump of a quantity across the interface.

Using these results, equations (3.23)–(3.24) become relation between the left and right

functions and their derivatives:[
zψ′
]

= −
(

6

a0

dUB
dϕ

∣∣∣
ϕ0

)
2

[z ψ]

[z]
− 1

a0

(
Z02− a2

0M̃2
) [ψ]

[z−1]
(3.28)

[
z2ψ′

]
= 6

(
2
U0

a0
−
[ a
a′

])
2

[z ψ]

[z]
−
(

6

a0

dU

dϕ

∣∣∣
ϕ0

)
2

[ψ]

[z−1]
(3.29)

An efficient way to deal with this kind of boundary value problem will be developed

in section 5.

4 Tensor perturbations and induced gravity

We now concentrate on the analysis of the tensor modes, whose dynamics are described by

equations (3.19)–(3.20) and investigate to what extent these can reproduce the standard

observed gravitational interaction between brane matter sources.

In theories with extra dimensions, one way to obtain four-dimensional gravity is to have

normalizable massless (i.e. satisfying ∂µ∂µĥρσ = 0) modes. However, the system (3.19)–

(3.20), generically, does not admit such normalizable massless modes, unless the infrared

is IR-incomplete [71, 72, 77]. This is intuitively clear because the volume of the bulk

is infinite on the UV side. This is unlike what happens e.g. in the RS model, where the

asymptotic region containing the AdS boundary is cut-off, and the volume is finite, allowing

for zero-modes.23

An alternative way that four-dimensional gravity on a brane can arise from a higher-

dimensional theory is through the DGP mechanism of brane-induced gravity [57], in which

the gravitational interaction is the result of the superposition of infinitely many bulk modes

23For the sake of completeness, we note that one can have normalizable zero modes in infinite volume

if one accepts IR-incomplete singularities [77]. However, even in this case one needs to impose fine-tune

boundary conditions at the singularity. We will not consider this possibility further.

– 35 –



J
H
E
P
0
9
(
2
0
1
7
)
0
3
1

which give rise to a long-lived quasi-localized resonance on the brane. In this case, the

standard gravitational interaction is reproduced at short distances.

In this model we have the right ingredients for the induced gravity mechanism to be

at work: indeed, the junction conditions for tensor modes (3.20), are of the same form as

in the DGP model in flat space.24 Moreover, at distances shorter than the bulk curvature

scale, the second term in the bulk equation (3.19) can be neglected, therefore we can

expect the DGP mechanism to work as in flat space. In the rest of this section we will

explicitly confirm this expectation, and discuss in detail how the gravitational interaction

is reproduced (and modified) at different scales.

To investigate the gravitational interaction between brane sources, we must introduce

brane-localized matter, which we assume couples to the induced metric and possibly to the

dilaton field at the brane:

Sm =

∫
ddx
√
γLm(γµν , ψi, ϕ0) (4.1)

where ψi denotes collectively the matter fields (which we assume to be trivial in the vac-

uum). The matter stress tensor is then:

Tµν(x) = − 2
√
γ

δSm
δγµν(x)

. (4.2)

We assume the matter stress tensor to be conserved in the vacuum, ∂µTµν = 0. The

junction conditions including the stress tensor as a source are (see appendix D.3):[
ĥµν

]IR

UV
= 0 ,

[
ĥ′µν

]IR

UV
= −e−A0U0∂

ρ∂ρĥµν − e−A0
1

M3
T̂µν , (4.3)

where the source is given by

T̂µν = Tµν −
1

3
ηµνT +

1

3

∂µ∂ν
∂2

T, T ≡ ηµνTµν , (4.4)

and it is conserved and traceless, ∂µT̂µν = ηµν T̂µν = 0.

The field equation (3.19) and the matching condition (4.3) can be obtained by varying

the following quadratic action:

S = −1

2
M3

∫
ddxdre3A(r)

[
(∂rĥ)2 + (∂µĥ)2

]
− 1

2
M3U0e

2A0

∫
r=r0

ddx(∂µĥ)2

−e2A0

∫
r=r0

ddx T̂ (x)ĥ(x), (4.5)

in which we are temporarily suppressing the tensor indices.

The field equation resulting from the action (4.5) is:

∂r

(
e3A(r)∂rĥ

)
+
[
e3A(r) + U0e

2A0δ(r − r0)
]
∂µ∂

µĥ = δ(r − r0)
e2A0

M3
T̂ (4.6)

24In the DGP scenario in flat bulk space, U0 must be hierarchically large compared with the bulk Planck

scale. This is difficult to achieve in controlled frameworks like string theory, [61, 78].
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In this way we have written in compact form both the bulk field equation and the junction

conditions in a single equation. In order to solve it, we use the same procedure followed

in [57] in flat space and in [62] in AdS: we define a scalar Green’s function G(r, x; r′, x′),

such that: [
∂re

3A(r)∂r +
[
e3A(r) + U0e

2A0δ(r − r0)
]
∂µ∂

µ
]
G(r, x; r′, x′)

= δ(r − r0)δd(x− x′). (4.7)

Then, the solution of equation (4.6) is given by:

ĥµν(x, r) =
e2A0

M3

∫
ddx′G(r, x; r0, x

′)T̂µν(x′), (4.8)

where we have reinstated the tensor indices. The interaction mediated between brane-

localized sources is found by inserting the expression (4.8) back into the action (4.5):

Sint = − e
4A0

2M3

∫
d4x d4x′G(r0, x; r0, x

′)

(
Tµν(x)Tµν(x′)− 1

3
T (x)T (x′)

)
(4.9)

where we have used the transverse and traceless property of ĥµν . Notice that the tensor

structure is appropriate for the exchange of a massive tensor mode. In the next subsection

we will describe in detail the generic qualitative behavior of the brane-to-brane Green’s

function appearing in equation (4.9).

Notice that equation (4.9) does not yet describe the gravitational interaction measured

by flat-space observers on the brane, since the induced metric on the brane is γµν = e2A0ηµν .

Therefore, the distance measured by the x-coordinate is not the one measured on the brane

with the standard flat metric ds2 = dx · dx. To translate equation (4.9) into standard

coordinates, one must write it in a covariant way and carefully keep track of all the constant

warp factors. This final step will be performed in the next section, where we identify, among

other things, the effective four-dimensional Planck scale.

4.1 The bulk and brane propagators

To find the Green’s function appearing in equation (4.9), we Fourier transform

G(r, xµ; r0, 0) with respect to xµ to G̃(r, p; r0), change ∂µ∂µ → −p2 in equation (4.7) and

look for a solution of the form:

G̃(r, p; r0) = D(p, r)B(p) (4.10)

where D(p, r) is the bulk Green’s function, and it solves the equation:[
∂re

3A(r)∂r − e3A(r)p2
]
D(p, r) = −δ(r − r0)e3A0 . (4.11)

This equation must be solved imposing normalizable boundary conditions at the UV and

IR ends of the radial direction, so that the perturbation (4.8) represents a state in the

theory (an excitation above the vacuum) and not a change of the theory itself by a UV
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deformation. IR normalizability on the other hand amounts to a regularity requirement

for the perturbation.

Inserting the ansatz (4.10) into (4.7), and using (4.11), we find an algebraic equation

for B(p), whose solution is:

B(p) = − e−3A0

1 + [e−A0U0D(p, r0)] p2
. (4.12)

Inserting the above result in equation (4.10), we obtain the brane-to-brane propagator in

momentum space:

G̃(r0, p; r0) = −e−3A0
D(p, r0)

1 + [e−A0U0D(p, r0)]p2
(4.13)

Notice that, if there exists a regime in which

e−A0U0p
2D(p, r0)� 1, (4.14)

then the brane-to-brane propagator is approximately 4-dimensional, i.e. ∝ 1/p2, indicating

that it is possible to recover the standard four-dimensional interaction.

Below, we analyze the general features of the propagator (4.13), but we postpone the

discussion of the physical scales observed on the brane (these include the effective four-

dimensional Planck scale and the crossover scale) to the next subsection.

The detailed behavior of the brane-to-brane Green’s function is determined by the

function D(p, r) evaluated at r0. We will show below that the inequality (4.14) is always

satisfied at large enough p2, and always violated at small p2, regardless of the details of

the bulk theory. We will be focusing on the Euclidean propagator, therefore taking p2 > 0.

To gain some insight on the behavior of D(p, r0), we may look at the small and large

momentum limit of equations (E.3)–(E.6). The transition scale between these two regimes

is determined by the bulk curvature at the interface, R0 ≈ W (φ0): for p � R0 we can

neglect the derivative of A(r) and treat equations (E.3)–(E.6) as in flat space-time; for

p � R0 the curvature term dominates, and we can expand the solution as a power series

in p2. Below we discuss these two regimes in more detail.

The detailed discussion of the behavior of D(r0, p) for large and small momenta com-

pared to R0 is carried out in appendix E, where it is shown that:

D(r0, p) '


1

2p
p� R0,

d0 + d2p
2 + d4p

4 + . . . p� R0,

(4.15)

The coefficients di are explicitly computed in the appendix E.2, and are given by:

d0 = e3A0

∫ r0

0
dr′e−3AUV(r′). (4.16)

d2 = −e3A0

∫ r0

0
dr′e−3AUV(r′)

∫ r0

r′
dr′′e3AUV(r′′)

∫ r′′

0
dr′′′e−3AUV(r′′′) (4.17)

d4 = e3A0

∫ r0

0
dr′e−3AUV(r′)

∫ r0

r′
dr′′e3AUV(r′′)

∫ r′′

0
dr′′′e−3AUV(r′′′)

×
∫ r0

r′′′
e3AUV(riv)

∫ riv

0
drve−3AUV(rv) (4.18)
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Figure 7. The function D(r0, p) as a function of momentum, compared with 1/2p. This graph

is obtained numerically from the specific example with AdS UV and IR asymptotics presented in

section 2.6.1. The scales on both the horizontal and the vertical axis are in units of the UV AdS

length. The transition scale 1/rt (solid line) is about 4 (in UV-AdS units).

One may be worried that the expansion (E.10) could break down at some finite order (or

even at leading order) due to non-analyticity as p2 → 0: after all, in flat space, D(p, r0) ∼
p−1 as p2 → 0. However, as shown in appendix E.3, this cannot be the case and at

least the first two coefficients (4.16)–(4.17) are always well defined in holographic theories.

More specifically, the small-p expansion is analytic if the bulk spectrum of normalizable

eigenmodes has a mass gap. Otherwise, the expansion breaks down and some non-analytic

terms generically appear. However, as we show in appendix E.3, this happens at an order

higher than p4 (except in the case of a regular AdS IR fixed point, where the first non-

analytic term is of the order p4 log p).

The behavior of the bulk propagator, obtained numerically in the specific example

discussed in section 2.6.1, is sketched in figure 7.

Having determined the properties of the bulk spin-2 Green’s function, the tensor mode

brane propagator can be obtained from equation (4.13). However, in order to relate that

expression to the actual gravitational interaction measured by brane observers, we have

first to translate it in physical coordinates on the brane. Indeed, equations (4.9) and (4.13)

are expressed in terms of coordinates xµ (and the associated momenta pµ), but in these

coordinates the induced metric on the brane differs by the Minkowski metric by a scale

factor e2A0 :

γµν = e2A0ηµν (4.19)

In order to rewrite the results in a transparent way in physical coordinates, it is convenient

to first write equation (4.9) in a manifestly covariant way, and then change the embedding
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coordinates of the interface25 to:

yµ = eA0xµ, qµ = e−A0pµ, xµpµ = yµqµ. (4.20)

Introducing the appropriate factors of eA0 , the manifestly covariant form of equa-

tion (4.9) is:

Sint = − 1

2M3

∫
d4x
√
γ

∫
d4x′
√
γ G(r0, x; r0, x

′)

(
γµργνσ − 1

3
γµνγρσ

)
Tµν(x)Tρσ(x′),

(4.21)

where:

G(r0, x; r0, x
′) =

∫
d4p

(2π)4
G̃(r0, p; r0)eix

µpµ , (4.22)

and G̃(r0, p; r0) is given in equation (4.13). Performing the change of coordinate (4.20)

and writing everything in momentum space, we obtain the interaction between two brane

stress-tensors at physical momenta q2 in physical brane units:

Sint =

∫
d4q

(2π)4
G4(q)

(
Tµν(q)Tµν(−q)− 1

3
T (q)T (−q)

)
, (4.23)

where now the physical brane-to-brane propagator in momentum space is:

G4(q) = − eA0

2M3

D̃(q, r0)

1 + q2eA0U0D̃(q, r0)
, D̃(q, r0) = D(eA0q, r0). (4.24)

In deriving equation (4.24) one must carefully take into account an extra factor e4A0 arising

from the measure in the Fourier transform in terms of q rather than p.

There are several crossover scales, which we discuss below, governing the qualitative

behavior of the full brane-to-brane propagator G4(q).

1. The crossover scale mt: with respect to physical momenta, the crossover (4.15)

between large and small momentum behavior of the bulk propagator is now given by

D̃(q, r0) '


e−A0

2q
q � mt

d0 + q2 e2A0d2 + . . . q � mt

, mt ≈ e−A0R0. (4.25)

where R0 ≈W (ϕ0) is the bulk curvature scale close to the interface.

We define the associated distance scale rt ≡ 1/mt.

2. The DGP scale rc:

rc ≡
U0

2
; (4.26)

25We might have as well done a coordinate transformation in the whole bulk, but this would have affected

the asymptotic metric and would change the definition of the UV sources in a non-universal (i.e. solution-

dependent) way. Therefore, we prefer to keep working in the coordinates (2.10) in the bulk and rescale the

brane coordinates only.
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This scale arises within the large-q regime of the bulk propagator, q � mt. In this

regime, using the first line of equation (4.25), equation (4.24) can be approximated by:

G̃4(q) ' − 1

2M3

1

2q + 2rcq2
q � mt (4.27)

This is DGP-like [57], with the scale rc given in (4.26). This scale sets the transition

between a five-dimensional regime and a four-dimensional one:

G̃4(q) '


− 1

2M2
p

1

q2
q > 1/rc

− 1

2M3

1

q
q < 1/rc

(4.28)

with the four-dimensional effective Planck scale given by:

M2
p = 2rcM

3. (4.29)

We stress that the crossover in equation (4.28) takes place only if rc < rt, since the

approximation equation (4.27) holds only for q > 1/rt.

The dimensionless ratio between the measured 4d Planck scale and the DGP scale is

given in terms of the parameters of the model as:

rcMp =

(
MU0

4

)3/2

(4.30)

In particular, notice that it only depends on ϕ0 and not on the integration constant

A0, therefore equation (4.30) is independent on the UV coupling g0.

3. The graviton mass scale mg, which we define below. Below this energy scale, the

brane propagator becomes approximately constant as a function of q. As we will see

momentarily, this scale plays the role of an effective graviton mass.

The scale mg arises in the small-q regime, q � mt, in which we can use the small mo-

mentum expansion (second line of equation (4.25)) for the bulk propagator. Stopping

at O(p2) in this expansion, we obtain from equation (4.24):

G̃4(q) ' − 1

2M̃2
p

1

m2
g + q2 +O(q4)

q � mt (4.31)

The graviton mass scale mg and the effective Planck scale M̃p in this regime are

given by:

m2
g =

e−A0

U0d0

(
1− eA0d2

U0d2
0

) , M̃2
p = M3U0

(
1− eA0d2

U0d2
0

)
. (4.32)

4. The massive gravity crossover scale m4 This scale governs the regime in which

the brane propagator can be approximated by a massive graviton one. For this to

be the case, the O(q4) terms in the expression (4.31) must be negligible compared
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Figure 8. Graphical representation of the different regimes (depending on momentum) of the

brane-to-brane propagator, in the case rt > rc. In this example, we have chosen to set the massive

gravity transition scale m4 < 1/rt, therefore it is only below m4 that we have a four-dimensional

single-particle-like propagator.

to the O(q2) term: in such a regime, the graviton exchange mimics the interaction

mediated by a massive graviton with mass mg. Using the small-q expansion from

equation (4.25) in the definition (4.24), we find:

G4(q) = − 1

2M3U0

(
1 +

e−A0

d0U0
+ q2

(
1− eA0d2

d2
0U0

)
+q4

(
e3A0

d2
2

d3
0U0
− e3A0

d4

d2
0U0

)
+O(q6)

)−1

. (4.33)

Demanding that the q4 term be negligible with respect to the q2 term, we find that

the “massive graviton” approximation (4.31) holds at momenta:

q � m4, m2
4 ≡ e−2A0

(d0d2 − e−A0d3
0U0)

(d2
2 − d0d4)

. (4.34)

To analyze the overall qualitative behavior of graviton exchange as a function of the

distance scale, we must distinguish two situations: rt > rc and rt < rc. As we will see, the

behavior in these situations is DGP-like and massive-gravity-like, respectively.

• rt > rc (figure 8)

In this case we can broadly distinguish three regimes:

1. q > 1/rc: the interaction mimics four-dimensional massless gravity26 with

Planck scale given in by (4.29);

2. 1/rt < q < 1/rc: this is an intermediate DGP-like five-dimensional regime

approximated by equation (4.27);

3. q < 1/rt: the interaction matches onto a massive-graviton type exchange, with

mass mg given in (4.32). In particular, it mimics a massive graviton for all

momenta q � m4 (see equation (4.34 )

• rt < rc (figure 9)

In this case, there is no DGP-like regime, and the relevant transition scales are m4

(defined in equation (4.34)) and 1/rt:

26By massless here we refer to the 1/q2 behavior of the propagator, not to the tensor structure, which

for tensor modes is always the one of a massive graviton, see equation (4.23).
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Figure 9. Graphical representation of the different regimes (depending on momentum) of the

brane-to-brane propagator, in the case rt < rc. In this example, we have chosen to set the massive

gravity transition scale m4 > 1/rt, thus the transition across q ' 1/rt goes directly to a four-

dimensional massive propagator.
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1
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1

p2+m0
2

G4 HpL

4d massless5d
4d

massive

1/r 1/rmt 0 c

Figure 10. The effective brane-to-brane propagator for rt > rc. The vertical lines are from left to

right: 1/rt (solid), mg (dotted), 1/rc (dashed). All quantities are measured in boundary AdS units.

1. q > 1/rt: we have massless 4d propagation with Planck scale given again by

equation (4.29).

2. m4 < q < rt: higher derivative corrections (resulting from higher powers of q2

in the propagator) are important.

3. q < m4: the behavior is that of a massive graviton propagator with mass mg

and Planck scale M̃p given in equation (4.32).

Notice that if m4 > 1/rt, we have a four-dimensional single-particle behavior in

the entire range of momenta. This situation is schematically represented in figure 9.

Also, if mg � 1/rt < m4, the propagator can still be well approximated by a massless

propagator all the way down to momenta q ' mg.

The behavior of the brane-to-brane propagator in the two cases (rc < rt and rc > rt)

is shown in figure 10 and 11, respectively. In those figures we compare the various limiting

form of the propagator (massless, massive and DGP-like) to the result obtained numerically

in the IR-regular example in section 2.6.1. In those figures, we can see explicitly the

transitions discussed above.
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Figure 11. The effective brane-to-brane propagator for rt < rc. The vertical lines are from left to

right: 1/rc (dashed), mg (dotted), 1/rt (solid).

4.2 Gravity phenomenology

In this subsection we will identify the phenomenologically interesting regimes which can

be acceptable in the context of the class of models described in this paper, as a function

of the model parameters. These are the regimes where the one-graviton exchange is well

approximated by a 1/q2 potential over the distances at which Newtonian (or Einstein)

gravity describes observation accurately.27

Before we analyze such regimes, it is important to make the dependence on all the

parameters of the model explicit. Following the discussion in section B, these include not

only the brane and bulk (super)potentials which determine ϕ0, but also the UV coupling

g0 which determines A0, the warp factor at the brane, via equation (B.15).

First, we extract the explicit dependence on A0 of the expansion coefficients d0 and

d2 and d4, entering equation (4.32) and given in equations (4.16)–(4.18). As shown in

appendix E.2, the result takes the form:

di = e−A0Di(ϕ0) (4.35)

where the coefficients Di(ϕ0) are independent of A0. Furthermore, in appendix E.2 we

show that the magnitude of the coefficients Di is controlled by the bulk curvature close to

the junvtion, and we have roughly:

D2n(ϕ0) ≈ 1

R2n+1
0

, R0 ≈WUV(ϕ0) (4.36)

27Here we limit ourselves to the linear regime. One will still have to check what happens in the non-linear

regime, in particular the fate of the extra massive gravity mode and of the vDVZ discontinuity.
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We can now rewrite equations (4.32) in a way that makes the dependence on A0

explicit:

m2
g =

1

U0D0

(
1− e2A0D2

U0D0

) , M̃2
p =

M3U0

2

(
1− e2A0D2

U0D0

)
, (4.37)

m2
4 = e−2A0

D0D2 − e−2A0U0D3
0

D2
2 −D4D0

(4.38)

Using these results we can write the relevant scales discussed in the previous section

in terms of the bulk scale at the brane and UV coupling:

• Transition scale (between the large and small momentum behavior of the bulk

propagator, see equation (4.25)):

mt ≡
1

rt
= e−A0R0 (4.39)

• DGP scale:

mc ≡
1

rc
=

2

U0
; (4.40)

• Planck scale: in the DGP regime:

M2
p ≈M3U0; (4.41)

In the massive gravity regime:

M̃2
p ≈M3U0

(
1 +

e2A0

U0R0

)
; (4.42)

• Graviton “mass”:

m2
g =
R0

U0

1

1 + e2A0

U0R0

; (4.43)

• Massive gravity crossover scale (below which the interaction mimics a massive

graviton, see equation (4.34))

m2
4 ≈ e−2A0R2

0 + e−4A0U0R3
0. (4.44)

We will now translate some of these parameters in the language of the 4d dual field theory:

• On general grounds, we expect:

U0 =
Λ2

M3
u(ϕ0), (4.45)

where Λ is the UV cutoff of the theory on the brane and u(ϕ0) is a dimensionless

function which is model-dependent. This is the scaling one expects for the induced

correction to the 4d curvature term in the action (2.3).
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• The bulk curvature and Planck scale are expected to be related by the 5d holography

relation:
M

R0
≈ N2/3

`UVWUV(ϕ0)
(4.46)

where N is the number of degrees of freedom of the UV CFT. Equation (4.46)

can be justified from the large-N scaling (M`UV)3 = N2 and from the fact that

WUV(0) = 6/`UV. For a given choice of potentials, and for N large but fixed, we can

trust our results as long as the curvature is small in Planck units.28 Therefore, at

the point ϕ0 where the brane sits, we must demand:

WUV(ϕ0)

WUV(0)
≡ 1

6
`UVWUV(ϕ0)� N2/3 (4.47)

Since the superpotential is a monotonically increasing function, this means that for

any finite N there is a limit to how much we can push the brane position to large ϕ0.

• As discussed at the end of section 2.4 (and shown in more detail in appendix B), the

warp factor is related to the UV relevant coupling g0 by the relation:

eA0 = g
1/∆−
0 `UV e

Ā(ϕ0) (4.48)

where Ā(ϕ0) is given in equation (B.14) and is generically of order one. Thus, for

fixed ϕ0, large (small) scale factor at the interface translates into large (small) UV

coupling in AdS units.

• Finally, as discussed in the introduction, we must keep in mind that our holographic

setup is supposed to be an effective description of the physics below the UV cutoff Λ,

which is given by the scale of the messenger fields which couple the Standard Model

to the holographic degrees of freedom. Therefore, in the discussion that follows,

rUV ≡ 1/Λ will always be the short-distance cut-off.

In view of the results presented above, in the next two subsections we will analyze three

possible regions of parameter space which make gravitational interactions phenomenolog-

ically acceptable at the observed scales (roughly from sub-millimeter scales up to cosmo-

logical scales, to stay on the safe side). This will result in further constraints on model

parameters beyond those analyzed in section 2.5-2.6, which were arising from requiring

self-tuning (plus manifest stability of the background).

4.2.1 DGP scenario

In this scenario, rt > rc, and the distance scales we observe must all be smaller than

both the transition scale rt defined in equation (4.39) and the DGP scale (4.40). We have

ordinary gravity at scales:

Lobservation < rc (< rt). (4.49)

The situation is summarized in figure 12.

28More precisely, if we think of the gravity dual as the low-energy approximation of a full string theory

setup, we must require that R0 be smaller than the string scale, which in perturbative string theory is

parametrically smaller than M .
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Figure 12. The horizontal direction represents the hierarchy of distance scales in the DGP scenario.

The regime corresponding to the observed massless 4d gravity is represented in green. At distances

of the order rc we have a large-distance transition to the five-dimensional regime.

For this scenario to be compatible with observation, if we want to be conservative (i.e.

Lobservation is of cosmological size), we need the dimensionless quantity:

Mprc =

(
MU0

4

)3/2

≈
(

Λ

M

)3

u3/2(ϕ0) (4.50)

to be at least of order 1060. This can be achieved with a large cut-off scale29 (compared to

bulk Planck scale M) and can be enhanced if the equilibrium position is in a region where

the function u(ϕ) is parametrically large.

The assumption rt > rc translates into:

e−A0U0R0 ≈
U0M

N2/3

WUV(ϕ0)

g
1/∆−
0

. 1, (4.51)

where we have used the relations (4.46)–(4.48). The quantity U0M must be large by

equation (4.50). This can be compensated by N being large. Moreover we can choose the

UV coupling g0 to be large as well (in AdS-length units).

In this scenario, since we “live” below the transition scale rt, it does not matter what

the other scales (related to massive gravity behavior) are, since they will be relevant only

for physics at distances L > rt. Thus the first modification we observe as the scales go

larger is a transition to a 5d regime above the scale rc = U0.

At small scales on the other hand, in this scenario gravity is modified only below the

short-distance cut-off rUV = 1/Λ.

4.2.2 Massive gravity scenario 1

Suppose we still have rt > rc, i.e.

e−A0R0U0 < 1, (4.52)

but that the scales we observe are beyond rt, in the massive gravity regime. Then the DGP

transition is irrelevant as

rc < rt < Lobservation. (4.53)

In this case, rt must be a short distance scale for gravity modification. At distances larger

than rt, we observe normal gravity if we are between the distance scales:

1

m4
< Lobservation <

1

mg
(4.54)

29In the holographic setup discussed in [56] this translates into a large mass for the messenger fields.
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Figure 13. The horizontal direction represents the hierarchy of distance scales in the “massive

gravity 1” scenario. The regime corresponding to the observed massless 4d gravity is represented

in green. Gravity is modified at short distances at the scale rt, below which it becomes five-

dimensional, and at large distances at the scale 1/mg, above which it becomes massive.

Indeed, at distances smaller than m−1
4 there will be higher derivative corrections to the

graviton propagator, whereas at distances larger than mg the gravitational interaction

saturates. Therefore we need 1/m4 to be a microscopic distance scale and 1/mg to be a

cosmological one.

From equation (4.44) we notice that:

m4 ≈ e−A0R0

(
1 + e−2A0U0R0

)1/2 ≥ mt (4.55)

Then, the massive gravity scale m4 is generically at least as large as the transition scale

mt, and the left side of the inequality (4.54) is automatically satisfied in the regime (4.53).

The situation is summarized in figure 13.

The ratio of the graviton “mass” to the 4d Planck scale is obtained from equa-

tions (4.42)–(4.43):

mg

M̃p

=
R1/2

0

M3/2U0

1

1 + e2A0

U0R0

< 10−60 (4.56)

This condition is required if we want the transition to massive gravity to happen on cos-

mological scales.

Furthermore, we have to demand that the transition scale mt be at least above the

inverse (tenth of) millimeter:

mt

M̃p

= e−A0
R0

M3/2U
1/2
0

1(
1 + e2A0

U0R

)1/2
> 10−30. (4.57)

Notice that the denominators of equations (4.55) and (4.57) contains the combination:

e2A0/(U0R0) = eA0rt/rc. (4.58)

Although rt/rc > 1, the right hand side of the above equation can be large or small

depending on the warping, thus we have two possibilities:

• large warping i.e..

eA0 >
rc
rt

(4.59)

In this case, we can drop the “1” in the denominators and we obtain for the graviton

mass:

m2
g ≈ e−2A0R0 = m2

t (4.60)
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Figure 14. The horizontal direction represents the hierarchy of distance scales in the “massive

gravity 2” scenario. Similarly to the “massive gravity 1” scenario (figure 13), at distances larger

than 1/mg we have a transition to massive gravity. However there is no short-distance modification

until below the cut-off scale rUV.

As a consequence, it is impossible to satisfy equation (4.54): there is no room for the

several orders of magnitude of massless 4d gravity we observe.

• small warping i.e..

eA0 <
rc
rt

(4.61)

In this case we have
m2
t

m2
g

= e−2A0R0U0 = e−A0rc/rt (4.62)

Therefore, to have a large separation between mt and mg we need a very small

warping. The conditions (4.55)–(4.57) simplify to:

R1/2
0

M3/2U0
≈
(
M

Λ

)2 (`UVWUV(ϕ0))1/2

u(ϕ0)

1

N1/3
< 10−60 (4.63)

e−A0
R0

M3/2U
1/2
0

≈
(
M

Λ

)
WUV(ϕ0)

u1/2(ϕ0)g
1/∆−
0

1

N2/3
> 10−30 (4.64)

Both conditions above can be satisfied in a technically natural way for N large if for

example Λ/M and u(ϕ0) are also large and g0 is small in AdS units.

4.2.3 Massive gravity scenario 2

Alternatively, we can have rc > rt, i.e.

e−A0R0U0 > 1. (4.65)

In this case we are in the type of scenario represented in figure 11: there is no DGP

transition to a five-dimensional regime. Again, the massive gravity crossover scale m4 is at

least as large than mt, therefore at distances larger than rt we are in the massive gravity

regime. At distances shorter than rt on the other hand we are in the four-dimensional part

of the DGP regime. Thus, this scenario reproduces the observed gravitational interaction

at all scales satisfying:

rUV < Lobservation <
1

mg
, (4.66)

The situation is summarized in figure 14.

If we want to be the theory to be manifestly ghost free (see the discussion in the

section 5.2), we need R0U0 . 1. This can be compatible with equation (4.65) only for
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small warping, eA0 < 1. From equation (4.43) we deduce that the graviton mass and 4d

Planck scale are approximately:

M̃2
p 'M3U0, m2

g '
R0

U0
, (4.67)

and a conservative observational constraint that this be of cosmological scale is

mg

M̃p

=
R1/2

0

M3/2U0
≈
(
M

Λ

)2 (`UVWUV(ϕ0))1/2

u(ϕ0)

1

N1/3
< 10−60 (4.68)

i.e. the same constraint as equation (4.63). In this case however there is no short-distance

constraint analogous to (4.64), since gravity is “normal” at small distances (less than rt)

down to the UV cutoff.

5 Scalar perturbations and stability

We now turn to the analysis of linear perturbations in the scalar sector. The relevant modes

are defined in equation (3.2)–(3.3), in which we keep only the bulk scalar perturbations

ψ,E, φ, plus the brane-bending mode ρ defined in equation (3.10). We fix the gauge

χ = B = 0 everywhere (bulk and brane).

As we saw in section 3 (see also appendix D.4 for more detail), after solving the

constraints for E and φ, and after eliminating the brane-bending field ρ, one is left with

only the scalar mode ψ, which satisfies the bulk field equation (on each side of the brane):

ψ′′ +

(
3
a′

a
+ 2

z′

z

)
ψ′ + ∂µ∂µψ = 0, z ≡ aϕ′

a′
, (5.1)

and the matching conditions:[
zψ′
]

= −
(

6

a0

dUB
dϕ

∣∣∣
ϕ0

)
2

[z ψ]

[z]
− 1

a0

(
Z02− a2

0M̃2
) [ψ]

[z−1]
, (5.2)

[
z2ψ′

]
= 6

(
2
U0

a0
−
[ a
a′

])
2

[z ψ]

[z]
−
(

6

a0

dU

dϕ

∣∣∣
ϕ0

)
2

[ψ]

[z−1]
, (5.3)

where [X] ≡ XIR −XUV denotes is the discontinuity of any quantity X across the brane,

and 2 = ηµν∂µ∂ν .

One way to handle these matching conditions is to split the field ψ in two parts,

ψUV = ψ(r < r0) and ψIR = ψ(r > r0), and to write equations (5.2)–(5.3) as a matrix-like

boundary condition for ψUV and ψIR:(
ψ′UV

ψ′IR

)
r=r0

=
(

Γ1 + Γ2 ∂
µ∂µ

)(ψUV

ψIR

)
r=r0

(5.4)

where Γ1,2 are two 2 × 2 matrices given explicitly in equation (D.78) and which depend

only on background quantities. It is useful to introduce a two-component wave-function in

the whole bulk,

Ψ(r) =

(
ψUV(r)

ψIR(r)

)
(5.5)
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Then, we can write the problem in compact form as an asymmetric Sturm-Liouville

problem with boundary conditions at r0:

∂r [B(r)∂rΨ] + B(r)∂µ∂
µΨ = 0, r 6= r0 (5.6)

∂rΨ(r0) =
(

Γ1 + Γ2 ∂
µ∂µ

)
Ψ(r0), (5.7)

where we have introduced the matrix:

B(r) =

(
e2BUVθ(r0 − r) 0

0 e2BIRθ(r − r0)

)
, e2B(r) ≡ a3(r)z2(r), (5.8)

and z(r) was defined in equation (3.25). The wave-functions defined on the “wrong” side,

i.e. ψIR(r < r0) and ψUV(r > r0), are unphysical.

Therefore, we have two Sturm-Liouville problems, one on the left and one on the right,

with some generalization of Robin boundary condition which couple left and right modes

at the interface.30

In the following subsections we will investigate stability of the background solution

under scalar perturbations, and discuss the conditions such that:

1. the theory does not propagate ghosts, i.e. modes with the wrong sign of the kinetic

term;

2. the theory does not have tachyons around the flat solution, i.e. unstable modes that

grow exponentially with time.

The strategy we will follow will be to decompose the 5d-bulk modes into the corresponding

tower of 4d mass eigenstates (which we assume discrete for simplicity, but this generalizes

easily to a continuous spectrum), and to check for the absence of ghosts and tachyons in the

usual 4-d sense. In order to do this, we have to write the effective action of the 4d modes.

5.1 Action for scalar fluctuations

The starting point to write the action for the 4d modes is the 5d action for scalar fluc-

tuations. This can in principle be computed by expanding the Einstein-Dilaton action

to quadratic order, using the background equations, and eliminating the redundant fields

using constraints and gauge fixing. This is a very tedious calculation, but one can short-

circuit it by noting that there is a unique (up to a multiplicative constant) quadratic action

whose variation gives equation (5.6) plus the boundary conditions (5.7):

S5 = −C
2

∫
d4x

[ ∫
dr
[
∂rΨ

†B(r)∂rΨ + ∂µΨ†B(r)∂µΨ
]

+Ψ†(r0) ΣΓ1 Ψ(r0) − ∂µΨ†(r0) ΣΓ2 ∂
µΨ(r0)

]
(5.9)

30If the matrices Γ1,2 were diagonal, we would have one independent Sturm-Liouville equation with Robin

boundary conditions at r = r0 on each side.
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where we have introduced the matrix:

Σ ≡

(
−e2BUV(r0) 0

0 e2BIR(r0)

)
(5.10)

Varying the action (5.9) gives both the bulk field equations (5.6) and the matching condi-

tions (5.7) (from integrations by parts plus the variation of the localized terms).

The value of the prefactor C in equation (5.9) is irrelevant for now,31 but its sign is

crucial to decide whether there are ghosts in the model. However, it is well known that

the Einstein-Dilaton theory we started with, described by the action (2.2)–(2.3), has no

bulk ghost scalar modes, and the one physical bulk scalar perturbation is healthy. This

knowledge fixes the sign of the bulk kinetic term to be the correct one, therefore we conclude

that C must be positive. In the rest of this section we will set C = 1.

We will now evaluate the action on a “Kaluza-Klein” mode with 4d mass eigenvalue

m2, of the form:

Ψ(r, xµ) = Ψ(r)φ(x), (5.11)

where the radial wave-function Ψ satisfies (for r 6= r0):

− B−1 d

dr

(
B(r)

dΨ(r)

dr

)
= m2Ψ(r), r 6= r0, (5.12)

plus the boundary condition (5.7). Inserting the KK ansatz (5.11) in the action, and

using the boundary conditions, we arrive at the effective action for the four-dimensional

mode φ(x):

S4 = −1

2
N
∫
d4x

(
∂µφ∂µφ+m2φ2

)
, (5.13)

where

N =

∫
r<r0

dr e2BUVψ2
UV +

∫
r>r0

dr e2BIRψ2
IR −Ψ†(r0) ΣΓ2 Ψ(r0) (5.14)

The action (5.13) describes a four-dimensional scalar mode with mass m, and for it not to be

neither a ghost nor a tachyon we must require that the two conditions hold simultaneously:

i)N > 0, ii)m2 ≥ 0. (5.15)

5.2 No ghosts

We first consider the condition N > 0. The radial integrals in (5.14) are manifestly positive,

so the only constraint comes from the localized term. Using the explicit form of the matrix

Γ2 in equation (D.78), after some algebra the condition N > 0 becomes:

0 <

∫
drΨ†BΨ +

(
[zψ]
[z] −

[ψ]
[1/z]

)
K

(
[zψ]
[z]

− [ψ]
[1/z]

)
, (5.16)

31We will be concerned with the value of C when we couple the scalar mode to a source in a later

subsection.

– 52 –



J
H
E
P
0
9
(
2
0
1
7
)
0
3
1

where we have defined:

K ≡ a2
0

 τ0 −6dUBdϕ

∣∣∣
ϕ0

−6dUBdϕ

∣∣∣
ϕ0

Z0

 , τ0 ≡ 6

(
6

WB

WIRWUV

∣∣∣
ϕ0

− U0

)
. (5.17)

Therefore, it is sufficient that the matrix K in equation (5.15) have positive eigenvalues for

the no-ghost condition to be satisfied. The eigenvalues are given by:

λ± = a2
0

Z0 + τ0

2
±

√√√√(Z0 + τ0)2

4
−

(
τ0Z0 − 36

(
dUB
dϕ

∣∣∣
ϕ0

)2
) . (5.18)

They are both real since the matrix K is symmetric. In addition, they are both positive if

both conditions below are met:

τ0 > 0, Z0τ0 > 36

(
dUB
dϕ

∣∣∣
ϕ0

)2

. (5.19)

Recall that for the coupling of the induced gravity term, U0 > 0, for the spin-2 modes

not to be ghost-like at short distances. Note that for the scalar perturbations this term

contributes with the wrong sign and this agrees with the observation made in [60].

The first condition in equation (5.19) implies, among other things, WB(ϕ0) > 0, i.e.

the brane has positive tension. This is not surprising, as negative tension branes that are

allowed to fluctuate usually lead to ghost-like modes or tachyons [79]. Similarly, the second

condition demands that Z0 > 0, meaning that the scalar field brane kinetic term should

have the correct sign.

Notice that (5.19) is not a functional constraint, i.e. it does not need to be satisfied

for arbitrary value of ϕ: it only needs to hold at the stabilized brane position.

The relations (5.19) are useful sufficient conditions for the absence of ghosts. They are

not necessary, since even if they are violated, equation (5.16) may still hold thanks to the

positive contribution to the bulk term. However this has to be checked by performing the

fluctuation analysis. On the other hand, the relations (5.19) are very simple and depend

only on background quantities.

5.3 No tachyons

We now consider a solution of equations (5.6)–(5.7) which is a 4d mass eigenstate, i.e.

∂µ∂
µΨ = m2Ψ. This implies that Ψ satisfies the radial eigenstate equation (5.12), with

eigenvalue m2. The model has tachyonic instabilities if the radial operator (5.12) has

negative eigenvalues.

We now multiply both sides of equation (5.12) by Ψ† and integrate over the radial

direction:

m2

[∫
r<r0

e2BUVψ2
UV+

∫
r>r0

e2BIRψ2
IR

]
= −

∫
r<r0

ψUV(e2BUVψ′UV)′−
∫
r>r0

ψIR(e2BIRψ′IR)′.

(5.20)
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Integrating by parts and using the boundary conditions, as well as the mass shell condition

∂µ∂
µ = m2, we find:

m2

∫
B ψ2 =

∫
(Ψ′)†B(Ψ′) + Ψ†(r0)Σ

(
Γ1 +m2Γ2

)
Ψ(r0). (5.21)

The first term on the r.h.s. is positive, therefore (recall the definition of N in equa-

tion (5.14)):

m2N −Ψ†(r0)ΣΓ1Ψ(r0) ≥ 0. (5.22)

Using the explicit form of Γ1 from equation (D.78) and the definition (5.10), we find:

ΣΓ1 = a4
0

M̃2

[1/z]2

(
1 −1

−1 1

)
, (5.23)

which leads to a lower bound on the eigenvalues:

m2N ≥ a4M̃2 [ψ]2/[1/z]2. (5.24)

This implies that, if there are no-ghosts (N > 0), then the absence of tachyonic instabilities

is guaranteed if:

M̃2 ≡ d2WB

dϕ2

∣∣∣
ϕ0

−
[
d2W

dϕ2

]IR

UV

≥ 0. (5.25)

This is a “positive mass squared” condition for the effective brane mass.

5.4 Scalar-mediated interaction

In this section we derive the interaction between two brane sources mediated by the ex-

change of the scalar modes, at the linearized level.

The action including localized sources can be obtained by adding to equation (5.9)

the linearized version of the brane-matter action (4.1), keeping only scalar modes. The

corresponding sources at linear order are:

Tµν = − 2
√
γ

δSm
γµν

, O =
δSm
δϕ

. (5.26)

We will assume Tµν is conserved, therefore it does not couple to the E-mode in the

decomposition (3.3). Then, we keep only the metric perturbation ψ, which will couple to

the trace of the stress tensor, T ≡ ηµνTµν .

The resulting action is:

S = −M
3

2

∫
d4x

[ ∫
dr
[
∂rΨ

†B(r)∂rΨ + ∂µΨ†B(r)∂µΨ
]

+Ψ†(r0) ΣΓ1 Ψ(r0) − ∂µΨ†(r0) ΣΓ2 ∂
µΨ(r0)

]
+

∫
d4x e4A0Ψ̂†T (5.27)
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where we have introduced the vectors:

Ψ̂ =

(
ψ̂(r0)

χ̂(r0)

)
, T =

(
e−2A0T

O

)
. (5.28)

We have fixed the overall multiplicative constant C in the quadratic part of the action (5.27)

by demanding that the bulk term matches the Einstein action expanded to quadratic order.

In writing the last line in equation (5.27), one has to take into account that the brane is

at r = r0 + ρ: expanding around the equilibrium position, one finds that only the gauge-

invariant, continuous combinations ψ̂ = ψ(r0) +A′(r0)ρ and χ̂ = χ(r0) + ϕ̄(r0)ρ enter.

We now rewrite the sources in terms of Ψ ≡ (ψUV, ψIR). Using equations (3.26)–(3.27),

we find:

Ψ̂ = PΨ, P ≡ −zIRzUV

[z]

(
1
zIR
− 1
zUV

1 1

)
. (5.29)

The source term in equation (5.27) becomes then:

Ssource =

∫
d4xe4A0 Ψ†J J =

(
JUV

JIR

)
≡ P †T . (5.30)

The bulk equation is still given by (5.6), but the matching condition (5.7) is now

modified by the addition of the sources:

∂r [B(r)∂rΨ] + B(r)∂µ∂
µΨ = 0, r 6= r0 (5.31)

∂rΨ(r0) = ΓΨ(r0) + Σ−1 J
M3

, Γ ≡ Γ1 + Γ2 ∂
µ∂µ. (5.32)

where the matrix Σ is given in equation (5.10).

To compute the interaction between sources on the brane, we will write the bulk-to-

brane Green’s function associated to equations (5.31)–(5.32), i.e. we look for a solution (in

momentum space) of the form:

Ψ(r, p) = G(r, r0; p)
J (p)

M3
, (5.33)

where G(r, r0; p) is a 2× 2 matrix propagator satisfying:

−∂r [B(r)∂rG(r, r0; p)] + p2B(r)G(r, r0; p) = 0, r 6= r0 (5.34)

∂rG(r, r0; p)
∣∣∣
r0

= ΓG(r0, r0; p) + Σ−1 (5.35)

To solve equations (5.34)–(5.35), we take G of the form:

G(r, r0; p) = D(r; p)H(p), D =

(
DUV(r) 0

0 DIR(r)

)
. (5.36)

where H is a constant 2 × 2 matrix and the diagonal matrix D(r; p) satisfies the bulk

equation:

− B∂2
rD − ∂rB∂rD + p2BD = 0, r 6= r0, (5.37)
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with normalizable boundary conditions in the UV and in the IR. Since the upper and

lower part of D are independent functions on r < r0 and r > r0 respectively, we are free

to choose any (non-vanishing) boundary condition at r0 for each of them. A convenient

choice is:

D′(r0) = −Σ−1 (5.38)

where Σ is defined in equation (5.10).

With the ansatz (5.36)–(5.37), H must satisfy the algebraic matrix equation:[
D′(r0; p)− ΓD(r0; p)

]
H(p) = Σ−1 (5.39)

which can be solved by inverting the left hand side. Then, with the boundary condi-

tion (5.38), the brane-to-brane scalar propagator G(p) = D(r0; p)H(p) is:

G(p) = −
[
ΣΓ + (D)−1 (r0; p)

]−1
. (5.40)

This is the matrix version of equation (4.13), the matrix ΣΓ in the denominator being the

quadratic form governing the brane-localized terms.

By inserting the solution (5.33) back in the action we obtain the interaction mediated

by scalar modes:

Sint = −1

2

∫
d4q

(2π)4
T †(q)Gs(q)T (−q), (5.41)

where:

Gs(q) ≡
e4A0

2M3

[
P †−1Σ

(
Γ1 + e2A0q2Γ2

)
P−1 + P †−1 D−1(r0; q)P−1

]−1
. (5.42)

The above expression is now expressed in terms of the physical momentum observed on

the brane, q = e−A0p, and we have rotated back to the basis of stress-tensor and dilaton

charge sources, (5.28).

We can simplify equation (5.42) by noticing that the first term in the parenthesis is

nothing but the matrix ΣΓ, expressed in terms of the basis (ψ̂(r0), χ̂(r0)), and we can

read-off its expression from equations (D.80) and (D.81):

P †−1Σ
(
Γ1 + e2A0q2Γ2

)
P−1 = e4A0M̃2

(
0 0

0 2

)
+ e4A0

 τ0 −6dUBdϕ

−6dUBdϕ

∣∣∣
r0

Z0

 q2. (5.43)

In order for the model to be viable, one must carefully examine the strength and the

range of the coupling to matter, and compare it with current constraints on fifth forces

and violations of the equivalence principle. We will postpone this discussion to further

work, where we will explore in more detail the phenomenology (and viability) of concrete

realisations of the framework. Here, we limit ourselves to observe the following important

features:

1. The scalar modes that couple to the dilaton have a mass controlled by M̃2, which is

determined by the second derivatives of the bulk and brane potentials at the interface.

This can be large as it is expected to scale as Λ4. On the other hand, the modes

which couple to the trace of the stress tensor, and which come from the gravitational

sector, have a mass which is controlled by the D−1(r0, 0), as in the case of the spin 2.
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2. Similarly, the normalization of the propagator (i.e. the strength of the coupling) is

roughly controlled by the two eigenvalues of the second term in equation (5.43), given

explicitly in equation (5.18). If these are large, i.e. if both τB(r0), ZB(r0)� UB(r0),

these modes may have weaker couplings to matter than the spin-2 modes.

For a full phenomenological discussion one must provide a specific model of the coupling

of the dilaton to brane matter, diagonalize the propagator matrix and take into account

the mixing between the modes. This goes beyond the scope of the present work.

5.5 On the presence of the vDVZ problem

We will not attempt here a complete discussion of the phenomenology related to the scalar

mode exchange. However, we close off by briefly discussing a point which is worth pointing

out: the possibility that the exchange of the light scalar modes (those which correspond

to the zero eigenvalue of the mass matrix appearing in equation (5.43), and couple to the

trace of the stress tensor) may naturally cancel that of the longitudinal component of the

tensor modes at scales where the interaction looks effectively four-dimensional. If that is

the case, the interaction will be completely similar to the exchange of massless gravitons

with only two helicities, i.e. the van Dam-Veltman-Zakharov problem [64, 65] would be

absent at the linear order.

Consider the total interaction between two brane stress tensors, to which both the

tensors and scalars contribute, over distances larger than the inverse mass of the “heavy”

scalar modes, corresponding to the non-zero eigenvalue in equation (5.43), with M̃ ≈
Λ. Beyond this scale, the scalar contribution reduces effectively to the exchange of the

light modes and we can ignore the effect of the scalar charge O of the source, defined in

equation (5.28). Although this is not completely equivalent, we can simplify the discussion

by simply setting the scalar source O = 0 in equation (5.28). This leaves the coupling to

the stress tensor trace (the upper component of T ) in equation (5.41).

Now suppose that the momenta are in the “DGP” regime, where the “bulk” contribu-

tions (i.e. the last term in equation (5.42) for the scalar, and the “1” in the denominator

of equation (4.24) for the tensor) are negligible. Then, the total exchange between two

stress tensors, mediated by the tensor and the light scalar modes, gives the approximate

potential:

V(q) ' − 1

q2

[
1

2M3U0

(
Tµν(q)Tµν(−q)− 1

3
Tµµ (q)T νν (−q)

)
+

1

2M3τB
Tµµ (q)T νν (−q)

]
.

(5.44)

where we recall the definition (5.17):

τ0 = 6

(
6

WB

WIRWUV

∣∣∣
ϕ0

− U0

)
. (5.45)

Now suppose that:
WB

WIRWUV

∣∣∣
ϕ0

� U0, ⇒ τ0 ' −6U0. (5.46)
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Then equation (5.44) becomes approximately:

V(q) ' − 1

q2

[
1

2M2
p

(
Tµν(q)Tµν(−q)− 1

2
Tµµ (q)T νν (−q)

)]
, M2

p = M3U0, (5.47)

i.e. the scalar mode changes the 1/3 into 1/2 in the tensor structure, which becomes that of

a massless graviton with two transverse polarizations. We have already seen this mechanism

in brane-world models supporting localized massless gravitons, in which the brane-bending

mode cancels the extra longitudinal polarization of the would-be five-dimensional graviton

zero mode [91]. The novelty here is that the same mechanism is reproduced at the level of

quasi-localized resonances, in the regime where the DGP mechanism is at work.

The left-over interaction from the light scalar, i.e. the first subleading term in the

approximation (5.46), takes the form:

δV (q) ' 1

2M2
eff

Tµµ (q)T νν (−q)
q2

, M2
eff = M2

p

(
WUVWIR

WB

)
ϕ0

U0 � M2
p , (5.48)

where the last inequality follows from the assumption (5.46). If WB(ϕ0) < 0, this mismatch

can be seen as the exchange of a healthy (i.e. non-ghostlike) light scalar with a coupling

much weaker than gravity. Depending on the scales in the model, this can be made invisible

in precision tests of the equivalence principle.

The price to pay in this situation is that we have to relax the sufficient condition τ0 > 0

which would automatically make the model ghost-free: although there are manifestly no

ghosts in the high momentum regime, one still has to check that this situation persists at

all momenta, both in the 5d and in the massive gravity regime, when the tensor and scalar

modes decouple because of the differences in the tensor and scalar bulk propagators.

The absence of ghosts is equivalent to the requirement that the quantity (5.14) is

positive for all modes. This question can be addressed using a spectral representation

for the propagator, and checking for violation of positivity of the corresponding spectral

density.32 This leads to the conclusion that, if we cancel the linearized vDVZ discontinu-

ity at large momenta to reproduce equation (5.47), this necessarily introduces ghost-like

modes.33 Indeed, consider the spectral representation for the effective 4d Euclidean scalar

propagator:

G4(q) =

∫ +∞

0
ds

ρ(s)

q2 + s
. (5.49)

The spectral density ρ(s) is essentially given by the quantity N−1, computed for m2 = s, in

equation (5.14). Stability requires ρ(s) to be non-negative for all s > 0. On the other hand,

to cancel the vDVZ discontinuity, in the relevant momentum range where the propagator

32In the recent work [92], this formalism was used to constrain self-tuning models. In fact, the reasoning

in [92] applies to theories featuring “degravitation” of the cosmological constant, in which the coupling

of (effective) gravitons to vacuum energy vanishes, and a change in vacuum energy has no effect. This is

stronger than self-tuning, and it is not the case in our framework, in which a change in the vacuum energy

does have an effect (it changes the background solution) but it does not contribute to the 4d curvature.
33We thank Massimo Porrati for an illuminating discussion on this point.
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behaves as 1/q2 we must have:

G4(q) ' −1

6

1

2M3U0

1

q2
(5.50)

which is incompatible with equation (5.49) in which ρ(s) is non-negative.

Therefore, the resolution of the vDVZ problem must be sought at the nonlinear level.

We leave this for future work.
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A The different types of junctions

In this appendix, we analyze the different possible qualitative behavior at the intersection,

depending on the sign and the size of the brane potential (and its derivative) at ϕ0. As

we have seen in section 2.4, once the IR solution WIR and the brane potential WB are

fixed, the interface position ϕ0 and the UV superpotential WUV are determined by the two

equations (2.41).

We begin with some preliminary considerations.

1. First, we have to fix some discrete ambiguities. Notice that the superpotential equa-

tion (2.40) is invariant under W → −W , thus there is a two-fold degeneracy of

solutions. We fix this ambiguity by choosing WIR > 0. Since there is the flow equa-

tions have the symmetry (u,W )→ (−u,−W ), fixing the positie sign of W implies by

equation (2.15) that the coordinate u increases as A(u) decreases, i.e. that u increases

towards the IR.

2. Notice that the matching conditions (2.7) are written assuming the same direction of

the normal on both sides of the interface, therefore the direction of u does not change

as we cross the brane.

3. The function W (ϕ(u)) is a monotonically increasing function of u:

d

du
W (ϕ(u)) = ϕ̇W ′(ϕ(u)) = (ϕ̇)2 (A.1)

Therefore in crossing the interface from the IR to the UV, we have to continue the

solution in the direction where W decreases, because this is the same direction in

which u decreases. This is explained in figure 15: the arrows indicate the direction

of increasing u (which is the same as increasing W ), and at the interface the arrows

must point away from the brane on one of the solutions and towards the brane on

the other.
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φ

UV

W
IR

W

φ

IR

W
UV

W

(a) (b)

Figure 15. The figures above show the allowed ways of joining two solutions of the superpotential

equation at the interface. The arrows indicate the direction of increasing u, which coincides with

the direction of increasing W . The junction must be such that the arrows on the IR solution point

away from the brane, whereas those on the UV solution point towards the brane. In terms of ϕ,

this condition can be realized on opposite sides of the point ϕ = ϕ0 when W ′UV > 0 (left figure), or

on the same side, when W ′UV < 0 (right figure). The dotted lines indicate how the solutions would

continue past the interface.

4. Finally, notice that in the (ϕ,W (ϕ)) plane there is a forbidden region, where no solu-

tion to the superpotential equation (2.40) exists: it is the region where W ′ becomes

imaginary. Indeed, for W ′(ϕ0) to be real, W (ϕ0) must satisfy:

|W (ϕ0)| > B(ϕ0), B(ϕ) ≡
√
−2V (ϕ)

Q
. (A.2)

where Q =
√
d/2(d− 1). This condition in particular must hold for WUV(ϕ0) =

WIR(ϕ0) − WB(ϕ0). This implies that there can be no solutions to the matching

condition such that |WIR(ϕ0)−WB(ϕ0)| < B(ϕ0). This fact will be used later.

We will now analyse the full geometry we obtain depending on the value of WB and its

derivative at the interface. We must distinguish three cases.

A1. WB(ϕ0) < 0

In this case, WUV(ϕ0) > WIR(ϕ0) > 0 and the structure of the full solution is as shown

in figure 16. The sign of W ′UV is fixed by the sign of W ′IR −W ′B at the interface. If

W ′(ϕ0) > 0, the solution can connect directly to the UV at ϕ = 0 (figure 16 (a) ).

On the other hand, if W ′UV < 0, then by the junction rules shown in figure 15 we

must follow WUV for increasing ϕ (i.e. on the same side of the interface in field space

(figure 16 (b)). As shown in the figure, the solution will eventually reach the curve

B(ϕ) where it can be glued continuously (as described in [73]) with a solution with

W ′ > 0, which will in turn flow to the UV fixed point.
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(a) (b)

Figure 16. Sketch of the global behavior of the superpotential in case A1, when WB < 0. The left

figure corresponds to the case W ′UV(ϕ0) > 0, whereas the right figure corresponds to W ′UV(ϕ0) <

0. In the former case, the UV solution connects directly to the fixed point at ϕ = 0. In the

latter, it continues past ϕ0 and goes to the UV fixed point after a bounce at some ϕ > ϕ0. The

shaded area corresponds to the forbidden region −B(ϕ) < W (ϕ) < B(ϕ), where B(ϕ) is defined in

equation (A.2).

(a) (b)

Figure 17. The behavior of the full solution in case A2, i.e. WB(ϕ0) > 0 and WUV(ϕ0) > B(ϕ0).

The left and right figures correspond to W ′UV(ϕ0) > 0 and W ′UV(ϕ0) < 0. In the latter case, like in

the analog situation in case A1 (figure 16 (b)), the solution bounces at ϕ > ϕ0 before reaching the

interface from the right.

A2. 0 < WB(ϕ0) < WIR(ϕ0)−B(ϕ0)

In this case, we have B(ϕ0) < WUV(ϕ0) < WIR(ϕ0), and depending on the sign of W ′

the structure is essentially the same as in case A1, except that the UV superpotential

starts lower than the IR superpotential (see figure 17).

B. WB(ϕ0) > WIR(ϕ0) +B(ϕ0)

In this case WUV(ϕ0) is negative. The two possible behaviors across the interface

corresponding to either sign of W ′IR(ϕ0)−W ′B(ϕ0) are represented in figure 18. Notice

that as we cross the interface into the “UV” region, we are forced to follow the

superpotential to more and more negative values. However, now Ȧ(u) = −W > 0,
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(a) (b)

Figure 18. The behavior of the superpotential in case B, when WIR(ϕ0) −WB(ϕ0) < −B(ϕ0).

Contrary to cases A1 and A2, in this case the solution does not connect to the UV on either side of

the interface. Rather, the interface joins two “IR” (i.e. finite-volume) regions (hence both branches

are labeled IR in the figures). Without fine tuning, at least one of them will have an unacceptable

singularity.

thus the scale factor actually increases with u, and the maximum value is attained at

the interface: thus this solution does not connect to an asymptotic AdS boundary,

but it connects two finite-volume regions with asymptotically vanishing scale factor

(i.e. two regions of the IR type). For generic brane potential, the solution will be

singular, i.e. the interface will not connect two IR-acceptable solutions. For this to

happen, we need a fine-tuning of the bulk and brane potentials, i.e. we need:

WB(ϕ0) = 2WIR(ϕ0). (A.3)

This fine-tuning is the asymmetric version of the similar fine-tuning of the brane

tension to the bulk cosmological constant in the one-brane Randall-Sundrum setup.

Based on the discussion above, solutions of type B do not have an asymptotically

AdS large-volume region (thus the holographic dual is not UV-complete) and they do not

realize the self-tuning mechanism. This leaves cases A1 and A2. Following the discussion

in section 5, if WB > 0 the model is manifestly ghost-free. Thus, case A2 is safe, whereas

in case A1 one still has to check the absence of ghosts explicitly.

B The holographic parameters and the integration constants

In this appendix we show how choosing the integration constants for the metric at the

interface is equivalent to fixing the UV data at the AdS boundary.

To this end it is convenient to rewrite the metric in conformal coordinates:

ds2 = eA(r)
(
dr2 + ηµνdx

µdxν
)
, ϕ = ϕ(r), du = eA(r)dr. (B.1)

In these coordinates, (2.14)–(2.15) become:

A′UV = − eAUV

2(d− 1)
WUV, ϕ′UV = eAUV

dWUV

dϕ
, ′ ≡ d

dr
. (B.2)
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and similarly in the IR. We have to choose initial conditions for equations (B.2), and this

can be done in two equivalent ways:

1. At the interface: there, the value ϕ = ϕ0 is fixed by the superpotential matching

equations. Then, the free integration constants of equations (B.2) are r0 (the position

of the interface) and A0 ≡ A(r0).

2. At the AdS boundary. This makes the holographic interpretation of the integration

constant transparent, since in holographic theories, fixing the near-boundary behavior

of the metric and scalar fields fixes the geometry and the couplings of the dual field

theory in the UV. Conventionally, the boundary is set at r = 0. This fixes one of

the two integration constants. Then, the asymptotic form of the metric and scalar

field are:

expA(r) =
`UV

r

(
1 +O(r2)

)
, ϕ(r) = g0r

∆−(1 +O(r)), r → 0, (B.3)

where ∆− = d − ∆ and `2UV = d(d − 1)/V (ϕ = 0). The quantity g0 appears as

the second integration constant, and it represents the value of the relevant coupling

deforming the UV CFT.

The two ways of fixing the integration constants are equivalent, and we will show below

how one can translate from one to the other. In particular, we will show how, once the

equilibrium position ϕ0 is fixed, the choice of the UV coupling g0, determines both r0 and

A0. This allows to translate the dependence on A0 into a dependence on g0, which is a

physical parameter of the UV theory.

We start by integrating equations (B.2), on the UV side, with respect to ϕ:

AUV(ϕ) = A0−
1

2(d− 1)

∫ ϕ

ϕ0

WUV

dWUV/dϕ
, r(ϕ) = r0 +

∫ ϕ

ϕ0

dϕ̃
e−AUV(ϕ̃)

dWUV/dϕ̃
, ϕ < ϕ0, (B.4)

where A0 and r0 are arbitrary integration constants. Given A0 and r0, one can in principle

invert the relation between r and ϕ and obtain AUV(r), ϕUV(r).

With equations (B.4), we have fixed the solution completely by choosing the integration

constants (A0, r0) at the brane. The boundary of AdS in this solution corresponds to

setting34 ϕ = 0 in equations (B.4). If we want to adhere to the usual conventions in which

the boundary is at r = 0 in conformal coordinates, then we must choose:

r0 =

∫ ϕ0

0
dϕ̃

e−AUV(ϕ̃)

dWUV/dϕ̃
(B.5)

This equation fixes the (coordinate) distance from the boundary to the brane, in terms of

the bulk metric. With this determination, equation (B.4) becomes:

r(ϕ) =

∫ ϕ

0
dϕ̃
e−AUV(ϕ̃)

W ′UV(ϕ̃)
. (B.6)

34We supposed that the UV AdS fixed-point to be at a maximum of the potential situated at ϕ = 0, see

section 2.3.
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We can extract the dependence on A0 of the result (B.5) by using the expression for

A(ϕ) in equation (B.4):

r0 = e−A0

∫ ϕ0

0

dϕ̃

W ′UV(ϕ̃)
exp

(
− 1

2(d− 1)

∫ ϕ̃

ϕ0

WUV(ϕ̃)

dW ′UV(ϕ̃)

)
. (B.7)

To connect A0 with the UV boundary data g0 appearing in equation (B.3), we need

the asymptotic behavior of ϕ close to the boundary. This can be read-off by taking the

ϕ → 0 limit of equations (B.4). Close to ϕ = 0, the superpotential WUV has the form

characteristic of a UV fixed point,35

WUV '
2(d− 1)

`UV
+

∆−
2
ϕ2 + . . . , `UV ≡

√
d(d− 1)

V (0)
. (B.8)

Then, from (B.4), the scale factor behaves as:

A(ϕ) ∼ 1

∆−
logϕ + Ā+O(ϕ), ϕ→ 0, (B.9)

where Ā is a constant, defined by:

Ā = lim
ϕ→0

[
AUV(ϕ) +

1

∆−
logϕ

]
. (B.10)

Using equation (B.8) and (B.10) we can write r(ϕ) for ϕ→ 0 from equation (B.6):

r(ϕ) ' `UV

∆−
e−Ā

∫ ϕ

0
dϕ̃
ϕ̃1/∆−

ϕ̃
= `UVe

−Āϕ1/∆− , (B.11)

which we can invert for ϕ(r) close to r = 0:

ϕ(r) ' g0r
∆− g0 ≡

(
eĀ

`UV

)∆−

(B.12)

We want to relate the constant Ā defined in equation (B.10) to the integration constant

A0 defined at the brane, appearing in equation (B.4). This can be done by writing the

limit in equation (B.10) as:

Ā = lim
ϕ→0

[
A0 −

1

2(d− 1)

∫ ϕ

ϕ0

WUV

W ′UV

+
1

∆−

∫ ϕ

ϕ0

1

ϕ
+

1

∆−
logϕ0

]
(B.13)

Since the above expression is finite, we can put the second and third term under the same

integral sign and take the limit by replacing ϕ with zero: in doing so, we find the desired

relation between A0 and Ā:

Ā = A0 + Ā(ϕ0), Ā(ϕ0) ≡ 1

∆−
logϕ0 +

1

2(d− 1)

∫ ϕ0

0

(
WUV

W ′UV

− 2(d− 1)

∆−ϕ

)
. (B.14)

35In special cases the flow maybe driven by a vev and ∆− → ∆+.
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Notice that Ā(ϕ0) depends only on quantities appearing in the action, which determine

both ϕ0 and WUV via the matching conditions plus IR regularity.

Using equation (B.14) and (B.12) we can finally relate A0 to the UV data g0 and the

equilibrium position:

g0 = e∆−A0

(
eĀ(ϕ0)

`UV

)∆−

. (B.15)

In holography, AdS boundary conditions are specified by fixing g0: by equation (B.15) this

fixes A0 (and thus completely fixes the geometry), since the quantity in the parenthesis

is determined dynamically from the matching equations at the interface. The coordinate

position of the brane is also fixed by equation (B.7).

C Avoiding Weinberg’s no-go theorem

Any claim to have a working self-adjustment mechanism for the cosmological constant has

to be confronted with Weinberg’s no-go theorem [1] (see also [60] for an updated review

and discussion). Below, we review Weinberg’s theorem and we show how our framework

avoids it.

Weinberg’s argument starts from the following assumptions. Consider a model based

on an action of the form:

S[φi, γµν ] =

∫
d4xL(φi, γµν), (C.1)

where the Lagrangian density L depends on the four-dimensional metric γµν plus other

fields generically denoted by φi (which may be scalars or tensors with respect to the four-

dimensional Lorentz group).

Now suppose the field equations that one obtains stemming from the action (C.1) have

a solution which preserves rigid space-time translations xµ → xµ +αµ. The field equations

in this case reduce to:
∂L
∂γµν

= 0,
∂L
∂φi

= 0. (C.2)

We will suppose that the two equations above hold independently.36 On such a solution,

the fields are constant and diffeomorphism invariance is broken to rigid space-time GL(4)

transformations, under which:

xµ →Mµ
νx

ν , γµν → γρσM
ρ
µM

σ
ν , L → L detM. (C.3)

Using these transformations properties one can easily show that, under an infinitesimal

GL(4) transformation M = 1 + δM :

δL = TrδML =
∂L
∂φi

δφi +
∂L
∂γµν

(δMµν + δMνµ) (C.4)

36Weinberg also considers the case when the two equations are proportional to each other, i.e. when

γµν
∂L
∂γµν

=
∑
i

f(φi)
∂L
∂φi

This is not the case in the model under consideration, and will not be of interest here.
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We now solve the field equations for the fields φi and set their values on-shell:

∂L
∂φi

= 0 ⇒ φi = φ̄i, (C.5)

Then, equation (C.4) implies:

∂L
∂γµν

=
1

2
γµνL ⇒ L =

√
gVeff(φ̄i) (C.6)

where Veff(φi) is some function that depends on the fields φi only. Finally, the metric field

equation is:
δL
∂γµν

=
1

2

√
γγµνVeff(φ̄i) = 0 (C.7)

which generically will not be satisfied unless the parameters in the Lagrangian obey one

relation, i.e. they are fine-tuned.

Now we will reproduce this line of reasoning in the holographic setup and show where

the loophole lies. First, we have to bring the problem in the same form as in Weinberg’s

argument. To this end, we will reduce the problem of extremizing the original action (2.1)

to a purely 4d problem with an effective action of the same form as in equation (C.1),

where the only remaining dynamical variables are the induced metric and scalar field on

the interface, γµν(u0), φ(u0). To do this we first extremize the bulk action, on each side of

the interface, but without imposing the matching condition.

On each side, we take an ansatz of the form:

ds2 = du2 + eA(r)γ(0)
µν dx

µdxµ, φ = φ(u) (C.8)

where γ
(0)
µν is invariant under space-time translations (this is a slight generalization of the

solution (2.10) ) and coincides with the metric of the UV dual CFT (cfr. equation (2.27),

therefore it is fixed by the UV boundary condition, as we discussed in subsection 2.3.1.

One can show that the action, evaluated on such solutions, is a total derivative:

Son−shell = −
∫
ddx

√
γ(0)

∫
du

∂

∂u

[
e4A(u)W (φ(u))

]
. (C.9)

Using this result, the on-shell action reduces to the sum of three boundary terms:

• Two finite boundary terms coming from each side of the interface,

SUV = −e4A(u0)

∫
d4x

√
γ(0)WUV(φ0), SIR = e4A(u0)

∫
d4x

√
γ(0)WIR(φ0). (C.10)

where WUV and WIR are the solutions of the superpotential equation on each side (in

particular, as we have discussed in section 2.3, WIR is fixed by regularity). To write

equation (C.10) we have assumed continuity of the metric and the scalar fields.

• A divergent boundary term SUV coming from the boundary of AdS, which can be

renormalized by supplementing the original action with appropriate counterterms.
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The counterterms do not depend on the solution (C.8) . After renormalization is

carried out, one is left with [83]:

S0 =

∫
d4x

√
γ(0)CUVg

d/d−∆
0 =

∫
d4x

√
γ(0)〈O〉g0, (C.11)

where in the second equality we have used equation (2.28). Notice that this con-

tribution does not depend on A0 nor φ0. One may have expected also a boundary

term from the far IR, but this always vanishes if the solution is IR-regular or has an

acceptable IR singularity.

So far we have “integrated out” the bulk but we have not yet solved the field equations

for the metric and scalar field at the interface. The effective 4d action for these variables is

the sum of the terms in equations (C.10) and (C.11), plus the world-volume action (2.3):

Seff [A0, ϕ0;CUV] =

∫
d4x

√
γ(0)CUVg

d/d−∆
0 (C.12)

+

∫
d4x

√
γ(0)e4A0

[
WIR(ϕ0)−WUV(ϕ0;CUV)−WB(ϕ0)

]
This action depends on the dynamical variables (ϕ(u0), A(u0)); on the fixed quantities g0

and γ
(0)
µν which are part of the definition of the UV CFT; and on the extra free parameter

CUV. Notice that we should not vary the effective action with respect to g0 nor γ
(0)
µν nor CUV

(in particular the first line in equation (C.12) is a constant, independent of the dynamical

variables.

Extremizing the action with respect to the dynamical variables (ϕ0, A0) gives back the

matching conditions, (2.20)–(2.21), as expected.

We can now compare the action (C.12) with the one assumed in the no-go theo-

rem, (C.1). First, notice that the A0 equation of motion is essentially the same as (C.7):

Veff(A0, ϕ0;CUV) ≡ e4A0

[
WIR(ϕ0)−WUV(ϕ0;CUV)−WB(ϕ0)

]
= 0. (C.13)

Contrary to equation (C.7) however, this equation determines the extra parameter CUV

(which does not appear in the full definition of the model, neither in the bulk nor on the

brane nor on the boundary) and does not require fine-tuning between the model parame-

ters. This is where the no-go theorem fails: it assumed that the action depends only on

dynamical variables, determined by their own field equations, and that there are no extra

free parameters. This is true for weakly coupled field theories. Here however the quantity

CUV is not a dynamical variable but it is determined in a different way: on the gravity

side, by insisting that the UV solution, through the matching conditions at the brane,

glues correctly to the fixed IR-regular solution; in the dual field theory language, it is the

strong coupling dynamics which determines the value of the VEV of the operator in the

UV. These are affected also by the low energy degrees of freedom. Indeed, it is natural

that the presence of the brane-world degrees of freedom at intermediate energies affect the

UV value of the VEVs and the running of couplings, but not the bare UV coupling g0.
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D Linearized bulk equations and matching conditions

In this appendix we derive the perturbed equations and matching conditions for the tensor

and scalar modes. We restrict to the physically interesting case of a five-dimensional bulk,

i.e. from now on we set d = 4. We use conformal coordinates in the bulk, such that the

unperturbed metric and scalar field are:

ds2 = a(r)
(
dr2 + ηµνdx

µdxν
)
, ϕ = ϕ̄(r), (D.1)

where ηµν = diag(−,+,+,+). We denote derivatives with respect to r by a prime.

The background Einstein equations are, in these coordinates:

− a2V (ϕ̄) = 3

(
2
a
′2

a2
+
a′′

a

)
, (ϕ̄′)2 = 6

(
2
a
′2

a2
− a′′

a

)
, (D.2)

or in terms of the superpotential:

a′ = −a
2W

6
, ϕ̄′ = a

dW

dϕ
. (D.3)

The brane is located at the equilibrium position r0. All quantities with a subscript 0 are

evaluated at r0 (e.g. a0 ≡ a(r0) etc).

We write the perturbed 5-d metric and scalar field as:

ds2 = a2(r)
[
(1 + 2φ)dr2 + 2Aµdx

µdr + (ηµν + hµν)dxµ, dxν
]
, (D.4)

ϕ = ϕ̄(r) + χ, (D.5)

where the quantities φ,Aµ, hµν , χ are functions of r, xµ and will be treated as small per-

turbations around the r-dependent homogeneous background. We further decompose the

metric perturbations in a scalar-tensor decomposition:37

hµν = 2ηµν ψ + 2∂µ∂νE + ĥµν , Aµ = ∂µW (D.6)

where the tensor perturbation ĥµν is transverse and traceless: ∂µĥµν = hµµ = 0. Unless

explicitly stated, all indices are raised and lowered with the flat Minkowski metric ηµν .

D.1 Perturbed bulk equations

In the bulk, the system contains one tensor perturbation ĥµν and (before gauge-fixing) five

scalar perturbations (ψ, φ,W,E, χ). The components of the linearized Einstein tensor are:

G(1)
rr = 12

a′

a
ψ′ + 3∂µ∂µψ − 3

a′

a
∂µ∂µ(W − E′), G(1)

rµ = 3
a′

a
∂µφ− 3∂µψ

′ (D.7)

G(1)
µν = −1

2

[
a−3

(
a3ĥ′µν

)′
+ ∂ρ∂ρĥµν

]
+ 3ηµν

[
ψ′′ + 3

a′

a
ψ′ − a′

a
φ′ + 2

a′′

a
ψ − 2

a′′

a
φ

]
−∂µ∂ν

[
2ψ + φ− (W − E′)′ − 3

a′

a
(W − E′)

]
. (D.8)

37We set to zero the transverse vector modes ATµ and V Tµ appearing in the general decomposition (3.3),

since there is no physical vector in the bulk, and these modes decouple.
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The linearized Einstein equations are then:

G
(1)
ab = M−3

(
1
√
g

δSbulk[g, φ]

δgab

)(1)

, (D.9)

where the right hand side is the linearized matter stress tensor obtained from the variation

of the matter bulk action in equation (2.2). At linear order, Einstein equations do not

couple tensor and scalar modes and we can discuss the two sectors separately.

Tensor modes. Since there are is no tensor-like matter, the transverse-traceless part

of the right hand side of equation (D.9) is identically zero (this can be easily checked

explicitly). Therefore, the linearized field equation for tensor modes ĥµν is obtained by

setting to zero the first square bracket in equation (D.8), and it reads:

∂r

(
a3∂rĥµν

)
+ a3∂ρ∂ρĥµν = 0. (D.10)

Scalar modes. Keeping only scalar modes, the perturbed Einstein equations (D.9) are,

to linear order:

(rr) 4
a′

a
ψ′ + ∂µ∂µψ −

a′

a
∂µ∂µ(W − E′)

=
1

6
ϕ̄′ χ′ − a2

6

dV

dϕ
χ− a2

3
V (ϕ̄)φ, (D.11)

(rµ)
a′

a
φ− ψ′ = 1

6
ϕ̄′χ (D.12)

(µ 6= ν) 2ψ + φ− (W − E′)′ − 3
a′

a
(W − E′) = 0 (D.13)

(µ = ν) ψ′′ + 3
a′

a
ψ′ − a′

a
φ′ + 2

a′′

a
ψ − 2

a′′

a
φ =

=
(ϕ̄′)2

6
φ− 1

3

(
(ϕ̄′)2

2
+ a2V

)
ψ − ϕ̄′

6
χ′ − a2

6

dV

dϕ
χ (D.14)

where the right hand sides are the explicit form of the linearized matter stress tensor

appearing in equation (D.9). We also have the perturbed Klein-Gordon equation (which is

not independent of equations (D.11)–(D.14) , but it can be useful to work with):

(KG) 0 = a−3
(
a3χ′

)′
+ ∂µ∂µχ− a2d

2V

dϕ2
χ

−2a2dV

dϕ
φ− ϕ̄′φ′ + 4ϕ̄′ψ′ − ϕ̄′∂µ∂µ(W − E′) (D.15)

These equations contain five scalar perturbations, but we can impose two scalar gauge

conditions plus two scalar constraints (this will be discussed in detail in appendix D.4).

These leave one physical scalar bulk fluctuation, which can be taken to be the gauge-

invariant combination:

ζ(r, xµ) ≡ ψ(r, xµ)− 1

z(r)
χ(r, xµ), z ≡ aϕ̄′

a′
(D.16)
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From equations (D.11)–(D.14) one can obtain a single second order equation for the ζ(r, xµ),

which reads:

∂r
(
a3z2∂rζ

)
+ a3z2∂µ∂µζ = 0. (D.17)

Regardless of the gauge fixing, one can arrive at equation (D.16) by solving equation (D.12)

for φ and equation (D.11) for ∂µ∂µ(W − E′) in favor of χ and ψ, and inserting their

expression in equation (D.15).

Equations (D.10) and (D.17) describe the full system of linearized perturbations in

the bulk.

D.2 Brane perturbations and linearized junction conditions

In order to write the linearized Israel matching conditions (2.8)–(2.9) we need to write the

perturbed induced metric, normal vector, and extrinsic curvature, to linear order, in terms

of the metric perturbations (D.4)–(D.6), plus the brane-bending mode ρ(xν). The latter is

defined by perturbing the embedding equation:

r(xµ) = r0 + ρ(xµ), (D.18)

where r0 is the unperturbed equilibrium position.

The normal vector nA and induced metric γAB ≡ gAB − nAnB are, to first order in

perturbations:

nA = a−1(r0 + ρ) (1− φ,−Aµ − ∂µρ) , (D.19)

γABdX
AdXB = a2(r0 + ρ) [(Aµ + ∂µρ)drdxµ + (ηµν + hµν)dxµdxν ] , . (D.20)

It is convenient to explicitly expand to linear order in ρ the prefactor a(r0 + ρ) in equa-

tion (D.20), and to write the perturbed induced metric as:

γµν = a2
0

(
ηµν + h̃µν

)
, h̃µν ≡ hµν + 2

a′0
a0
ηµνρ. (D.21)

The scalar field perturbation at the (perturbed) brane position is:

ϕ(r(xµ)) = ϕ̄0 + χ+ ϕ̄′0ρ (D.22)

In equations (D.21)–(D.22) all quantities are evaluated at r0, the unperturbed equilibrium

position.

From equation (D.21)–(D.22) we can deduce the continuity conditions (2.6) to linear

order: [
hµν + 2ηµν

a′0
a0
ρ
]IR

UV
= 0,

[
ϕ̄′0ρ+ χ

]IR

UV
= 0. (D.23)

Notice that the bulk metric and scalar field perturbations are not continuous at the

brane, unless one chooses a gauge where ρ = 0. This is not the most convenient choice to

deal with bulk perturbations, however. We will come back to the gauge fixing problem in

appendix D.4 when we discuss in detail the matching conditions in the scalar sector.
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The linearized junction conditions are given by (2.8)–(2.9). On the right hand side,

in addition to the brane action Sbrane in equation (2.3), we allow the possibility of some

localized matter:

Sloc = Sbrane[γ, ϕ] + Sm, Sm ≡
∫
d4x
√
γLm(ψi, ϕ0) (D.24)

The localized matter fields ψi (which may include the Standard Model fields), are taken

to be trivial in the vacuum. We assume the matter fields are minimally coupled to the

induced metric but may have a direct coupling to the dilaton ϕ evaluated on the brane.

The localized matter stress tensor is defined as:

Tµν = − 2
√
γ

δSm
δγµν

(D.25)

We also define the “dilaton charge operator” O of the localized matter as:

O =
1
√
γ

δSm
δϕ

. (D.26)

With these ingredients, the perturbed matching conditions are derived by linearizing

both sides of the two equations:[(
Kµν − γµνK

)(1)
]IR

UV

=

(
1
√
γ

δSbrane[γ, ϕ]

δγµν

)(1)

− 1

2M3
Tµν , (D.27)[(

na∂aϕ
)(1)

]IR

UV

= −
(

1
√
γ

δSbrane[γ, ϕ]

δϕ

)(1)

− 1

M3
Oχ. (D.28)

In order to proceed, we need the components of the extrinsic curvature KAB = ∇AnB.

They are:

Krr = 0, Krµ = a′ (Aµ + ∂µρ) , (D.29)

Kµν = a′(r0 + ρ) [(1− φ)ηµν + hµν ] + a(r0)

[
1

2
h′µν − ∂(µ (Aν) + ∂νρ)

]
. (D.30)

Notice that Aµ appears only in the combination Aµ + ∂µρ.

Using the scalar-tensor decomposition (D.6), the left hand sides of the matching con-

ditions (D.27)–(D.28) are, to linear order in the perturbations:(
Kµν − γµνK

)(1)
= −3a′0

[(
1− φ+

a′′0
a′0
ρ+ 2ψ

)
ηµν + 2∂µ∂νE + ĥµν

]
+a0

[
1

2
ĥ′µν − 3ηµνψ

′ + (∂µ∂ν − ηµν∂ρ∂ρ)
(
E′ −W − ρ

)]
, (D.31)(

na∂aϕ
)(1)

= a−1
0

[
ϕ′0 + χ′ + ϕ′′0ρ−

a′0
a0
ϕ′0ρ− ϕ′0φ

]
. (D.32)

The right hand sides of equations (D.27)–(D.28) are obtained by linearizing the ex-

pressions on the right hand side of equations (2.8)–(2.9). For this, we need the linearized

expressions of the brane Ricci tensor for the induced metric in equation (D.21):

R(γ)
µν = −1

2
∂ρ∂ρh̃µν −

1

2
∂µ∂ν h̃

ρ
ρ + ∂ρ∂(µ h̃ν)ρ, h̃µν ≡ hµν + 2

a′0
a0
ηµνρ. (D.33)
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Decomposing hµν in tensor and scalar components as in equation (D.6), the above expres-

sion becomes:

R(γ)
µν = −1

2
∂ρ∂ρĥµν − (2∂µ∂ν + ηµν∂

ρ∂ρ)

(
ψ +

a′0
a0
ρ

)
(D.34)

whence:

R(γ) = − 6

a2
0

∂ρ∂ρ

(
ψ +

a′0
a0
ρ

)
, (D.35)

G(γ)
µν = −1

2
∂ρ∂ρĥµν − 2 (∂µ∂ν − ηµν∂ρ∂ρ)

(
ψ +

a′0
a0
ρ

)
. (D.36)

Notice that the longitudinal component E of the metric perturbation drops out of the

Ricci tensor.

We can finally obtain, to linear order in the perturbations, the expressions on right

hand sides of equations (D.27)–(D.28):(
1
√
γ

δSbrane[γ, ϕ]

δγµν

)(1)

=
1

2
a2

0W0

[
ηµν + ĥµν + 2∂µ∂νE

+2ηµν

(
ψ +

a′0
a0
ρ

)
+
W ′0
W0

ηµν
(
χ+ ϕ̄′0ρ

) ]
−U0

[
1

2
∂ρ∂ρĥµν + 2 (∂µ∂ν − ηµν∂ρ∂ρ)

(
ψ +

a′0
a0
ρ

)]
−
(
dUB
dϕ

)
0

(∂µ∂ν − ηµν∂ρ∂ρ)
(
χ+ ϕ̄′0ρ

)
, (D.37)(

1
√
γ

δSbrane[γ, ϕ]

δϕ

)(1)

=

(
dWB

dϕ

)
0

+

(
d2WB

dϕ2

)
0

(
χ+ ϕ̄′0ρ

)
+

−Z0

a2
0

∂µ∂µ
(
χ+ ϕ̄′0ρ

)
+

6

a2
0

(
dUB
dϕ

)
0

∂µ∂µ

(
ψ +

a′0
a0
ρ

)
(D.38)

The brane matter stress tensor and dilaton charge appear as inhomogeneous source terms

in equations (D.27)–(D.28).

In the following two subsections we will decompose the junction conditions in their

tensor and scalar components, respectively.

D.3 Tensor junction conditions

Since tensor and scalar modes are decoupled at linear order, to study the tensor modes it is

enough to set all the scalar modes to zero in the equations found in the previous subsection:

φ = W = ψ = E = ρ = 0, hµν = ĥµν . (D.39)

The continuity equation across the interface, equation (D.23) becomes simply[
ĥµν

]IR

UV
= 0, (D.40)

i.e. tensor modes are continuous across the interface.
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The tensor (i.e. transverse and traceless) part of the second junction conditions is found

by imposing (D.39) in equations (D.27) and (D.37) , and moreover by keeping only the

transverse traceless component of the matter stress tensor, defined by:

T̂µν = Tµν −
1

3
ηµνT +

1

3

∂µ∂ν
∂2

T +
1

3
ηµν

∂ρ∂σ

∂2
Tρσ −

2

∂2
∂(µ∂

ρTν)ρ +
2

3

∂µ∂ν
∂2

∂ρ∂σ

∂2
Tρσ (D.41)

where T ≡ Tµµ and ∂2 = ∂µ∂µ. We will assume the matter stress tensor to be conserved,

in which case the expression above reduces to the first three terms only:

T̂µν = Tµν −
1

3
ηµνT +

1

3

∂µ∂ν
∂2

T. (D.42)

Setting all modes to zero except ĥµν in equations (D.31) and (D.37) and replacing Tµν by

T̂µν , equation (D.27) becomes:[
−3a′0ĥµν +

1

2
a0ĥ
′
µν

]IR

UV

=
1

2
a2

0W0ĥµν −
1

2
U0∂

ρ∂ρĥµν −
1

2M3
T̂µν . (D.43)

Notice that the first term on each side cancel thanks to the continuity of ĥµν and to

the background matching condition since, in conformal coordinates and for d = 4, a′ =

−a2W/6, and [W ]IRUV = W0 by equation (2.20). This leaves the simple jump condition for

the first derivative (plus the source term):

a0

[
ĥ′µν

]IR

UV
= −U0∂

ρ∂ρĥµν −
1

M3
T̂µν . (D.44)

D.4 Scalar junction conditions

The relevant modes are defined in equation (3.2), in which we keep only the bulk

scalar modes,

φ, χ, Aµ = ∂µB, hµν = 2ψηµν + 2∂µ∂νE, (D.45)

plus the brane-bending mode ρ(x) defined in equation (3.10). Unlike the tensor modes,

these fields are not gauge-invariant. Rather, they transform as follows under an infinitesi-

mal scalar coordinate transformation (δr, δxµ) = (ξ5, gµν∂νξ):

δψ = − a′

a
ξ5 δφ = − (ξ5)′ − a′

a
ξ5

δB = − ξ′ − ξ5 δE = − ξ (D.46)

δχ = − ϕ̄′ξ5, δρ = ξ5(r0, x).

It is convenient to partially fix the gauge:

B = 0 (D.47)

by an appropriate shift ξ(x, r). This leaves a residual gauge freedom with parameters

ξ5(x, r) and r-independent ξ(xµ): a ξ5-transformation can be compensated by an appro-

priate ξ(r, x) to leave the condition B = 0 unchanged, and only ξ′ affects B. Therefore we
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are still free to do radial gauge-transformations and r-independent space-time diffeomor-

phisms and keep this gauge choice.

In this gauge, setting the brane sources to zero,38 the first matching conditions (2.6)

become: [
a2(r0 + ρ) (2ψηµν + 2∂µ∂νE)

]UV

IR
= 0,

[
ϕ̄(r0 + ρ) + χ

]IR

UV
= 0 (D.48)

Expanding the scale factor and the background scalar field profile, these are equivalent to

the following continuity conditions:[
ψ̂
]UV

IR
= 0,

[
χ̂
]UV

IR
= 0,

[
E
]IR

UV
= 0 (D.49)

where we have defined the new bulk perturbations:

ψ̂(r, x) = ψ +A′(r)ρ(x), χ̂(r, x) = χ+ ϕ̄′(r)ρ(x), (D.50)

where A′ = a′/a.

The gauge-invariant scalar perturbation (3.6) has the same expression in terms of these

new continues variables:

ζ = ψ̂ − A′

ϕ̄′
χ̂. (D.51)

In general however ζ(r, x) is not continuous across the brane, since the background quantity

A′/ϕ̄′ jumps: [
ζ
]UV

IR
=

[
A′

ϕ̄′

]UV

IR

χ̂(r0) (D.52)

Notice that this equation is gauge-invariant since, under a gauge transformation:

δχ̂(r, x) = −ϕ̄′(r)
[
ξ5(r, x)− ξ5(r0, x)

]
, (D.53)

therefore χ̂(r0) on the right hand side of equation (D.52) is invariant.

It is convenient to fix the remaining gauge freedom by imposing:

χ(r, x) = 0. (D.54)

To do this, one needs different diffeomorphisms on the left and on the right of the brane,

since ϕ̄′ differs on both sides. The continuity for χ̂ then becomes the condition:

ρUV(x)ϕ̄′UV(r0) = ρIR(x)ϕ̄′IR(r0) (D.55)

i.e. the brane profile looks different from the left and from the right. This is not a problem,

since equation (D.55) tells us how to connect the two sides given the background scalar

field profile.

In the gauge (D.47)–(D.54) we have:

ζ = ψ = ψ̂ −A′ρ, χ̂(r0) = ϕ̄′(r0)ρ. (D.56)

38The localized sources will be added back at the end of this section.
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This makes it simple to solve for φ using the bulk constraint equation (in particular, the

rµ-component of the perturbed Einstein equation (D.12):

φ =
a

a′
ψ′ =

a

a′
ψ̂′ +

(
a′

a
− a′′

a

)
ρ (D.57)

where it is understood that this relation holds both on the UV and IR sides.

In the gauge χ = B = 0, we can write the second matching conditions (D.27)–(D.28),

using equations (D.31)–(D.32) and (D.37)–(D.38):[
− 3a′

(
2ψ̂ ηµν + 2∂µ∂νE

)
+

1

2
a0(ϕ̄′)2ρ ηµν + a0 (∂µ∂ν − ηµν∂σ∂σ)

(
E′ − ρ

) ]IR

UV

=
a2(r0)

2
WB(ϕ0)

(
2ηµνψ̂ + 2∂µ∂νE

)
r0

+
a2(r0)

2

dWB

dϕ

∣∣∣
ϕ0

ηµν ϕ̄
′
0ρ

−2UB(ϕ0) (∂µ∂ν − ηµν∂σ∂σ) ψ̂ − dUB
dϕ

∣∣∣
ϕ0

(∂µ∂ν − ηµν∂ρ∂ρ)
(
ϕ̄′0ρ

)
, (D.58)[

ϕ̄′

a′
ψ̂′ +

(
(ϕ̄′)2

6a′
− ϕ̄′′

aϕ̄′

)
ϕ̄′ρ

]IR

UV

= −d
2WB

dϕ2

∣∣∣
ϕ0

ϕ̄′ρ +
ZB(ϕ0)

a2
ϕ̄′∂σ∂σρ −

6

a2

dUB
dϕ

∣∣∣
ϕ0

∂σ∂σψ̂ (D.59)

Using the background matching conditions (2.20) and (2.21), as well as the defini-

tions (2.14)–(2.15) in conformal coordinates,

a′

a2
= − 1

2(d− 1)
W, ϕ̄′ = a

dW

dϕ
, (D.60)

one can see that the first two terms on each side of equation (D.58) cancel each other, and

we are left with an equation that fixes the matching condition for E′(r, x):[
E′ − ρ

]IR

UV
= −2

U0

a0
ψ̂(r0)− 1

a0

(
dUB
dϕ

)
0

ϕ̄′0ρ (D.61)

Equation (D.59) fixes the discontinuity of ψ̂′. It is convenient to write the equations

for ψ̂ and ρ in the form:[
ψ̂
]IR

UV
= 0 ;

[
ϕ̄′ρ
]IR

UV
= 0 ; (D.62)[

ϕ̄′a

a′
ψ̂′

]IR

UV

=

[(
ZB(ϕ0)

a
∂µ∂µ −M2

b

)
ϕ̄′ρ− 6

a

dUB
dϕ

(ϕ0)∂µ∂µψ̂

]
r0

(D.63)

where we have defined the brane mass:

M2
b ≡ a(r0)

d2Wb

dϕ2

∣∣∣
ϕ0

+

[(
(ϕ̄′)2

6

a

a′
− ϕ̄′′

ϕ̄′

)]IR

UV

. (D.64)

Using the background Einstein’s equations (D.3) this can also be written as:

M2
b =

[
a′

a
− a′′

a′

]IR

UV

+ a

(
d2WB

dϕ2
−
[
d2W

dϕ2

]IR

UV

)
, (D.65)
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(to see this, use (D.2) and take a radial derivative of eq. (D.3) to write

ϕ̄′′ = ad2W/dϕ+ a′/a).

We can eliminate E from equation (D.61) by acting with ∂µ∂µ on both sides and using

Einstein’s equations (D.11) and (D.12), with χ = 0:

2E′ = − a
a′

[
2ψ +

a

a′

(
2
a′2

a2
− a′′

a

)
ψ′
]
. (D.66)

Notice that the combination multiplying ψ′ can be written as (a/a′)(ϕ̄′)2/6 using (D.2).

The bulk equation (3.9) for ζ (≡ ψ in this gauge) on both sides of the brane is:

ψ′′ +

(
3
a′

a
+ 2

z′

z

)
ψ′ + ∂µ∂µψ = 0, (D.67)

where z = ϕ̄′a/a′. We can also write it in terms of ψ̂ using (D.56).

To summarize, we arrive at the following equations and matching conditions, either in

terms of ψ:

ψ′′ +

(
3
a′

a
+ 2

z′

z

)
ψ′ + ∂µ∂µψ = 0, (D.68)[

ψ
]IR

UV
= −

[
a′

aϕ̄′

]IR

UV

ϕ̄′ρ,
[
ϕ̄′ρ
]IR

UV
= 0 ; (D.69)[

a2

a′2
ϕ̄
′2

6
ψ′
]IR

UV

=

(
2U0

a
−
[ a
a′

]IR

UV

)
2

(
ψ +

a′

a
ρ

)
+

1

a0

(
dUB
dϕ

)
0

ϕ̄′2ρ; (D.70)[
aϕ̄′

a′
ψ′
]IR

UV

= − 6

a0

(
dUB
dϕ

)
0

2

(
ψ +

a′

a
ρ

)
+

(
ZB(ϕ0)

a
2− M̃b

2
)
ϕ̄′ρ ; (D.71)

2 ≡ ∂µ∂µ, z ≡ aϕ̄′

a′
, M̃b

2
= a

(
d2WB

dϕ2
−
[
d2W

dϕ2

]IR

UV

)
. (D.72)

Notice that these equations have 6 free parameters: 4 in the bulk (two integration

constants for equation (D.68) in the UV, and two in the IR) and two brane parameters

(ρ on each side). From these 6 we can subtract one: a rescaling of the solution, which

is not a true parameter since the system is homogeneous in (ρ, ψ). There is a total of 4

matching conditions, plus 2 normalizability conditions if the IR is confining, or only one

if it is not. Therefore,in the confining case, we should find a quantization condition for

the mass spectrum, whereas in the non-confining case the spectrum is continuous and the

solution unique given the energy. The goal will be to show that such solutions exist only

for positive values of m2, defined as the eigenvalue of 2. To see this, one must go to the

Schrodinger formulation.

To put the matching conditions (D.69)–(D.71) in a more useful form, it is convenient

to eliminate ρL,R altogether using equations (D.69):[
a′

a
ρ

]
= −[ψ], [ϕ̄′ρ] = 0 (D.73)
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These can be solved to express the continuous quantities ψ̂(r0) and ϕ̄′ρ which appear on

the r.h.s. of (D.70)–(D.71) in terms of ψUV,IR only ([x] ≡ xIR − xUV for any quantity x):

ψ̂(r0) =
[z ψ]

[z]
, ϕ̄′(r0)ρ = − [ψ]

[1/z]
. (D.74)

Using the above identifications, equations (D.70)–(D.71) become relation between the left

and right functions and their derivatives:[
zψ′
]

= − 6

a0

dUB
dϕ

∣∣∣
ϕ0

2
[z ψ]

[z]
− 1

a0

(
Z02− a2

0M̃2
) [ψ]

[z−1]
(D.75)

[
z2ψ′

]
= 6

(
2
U0

a0
−
[ a
a′

])
2

[z ψ]

[z]
− 6

a0

dUB
dϕ

∣∣∣
ϕ0

2
[ψ]

[z−1]
(D.76)

Since the left hand side is in general non-degenerate, these equations can be solved to give

ψ′L and ψ′R as linear combinations of ψL and ψR, i.e. one can put (D.75)–(D.76) in the

general form: (
ψ′UV(r0)

ψ′IR(r0)

)
= (Γ1 + Γ2∂

µ∂µ)

(
ψUV(r0)

ψIR(r0)

)
(D.77)

where the matrices Γ1 and Γ2 are given by:

Γ1 =
a0M̃2

[z]2

(
−z2

IR z2
IR

−z2
UV z2

UV

)
,

Γ2 =
1

[z]2a0

 −12zIR
dUB
dϕ

∣∣∣
ϕ0

+ τ0 + Z0z
2
IR 6zIR

(
zIR
zUV

+ 1
)
dUB
dϕ

∣∣∣
ϕ0

− τ0
zIR
zUV
− Z0z

2
IR

−6zUV

(
zUV
zIR

+ 1
)
dUB
dϕ

∣∣∣
ϕ0

+ τ0
zUV
zIR

+ Z0z
2
UV 12zUV

dUB
dϕ

∣∣∣
ϕ0

− τ0 − Z0z
2
UV

 ,

(D.78)

where

M̃2 =
d2WB

dϕ2

∣∣∣
ϕ0

−
[
d2W

dϕ2

]
, τ0 = 6

(
6

WB

WIRWUV

∣∣∣
ϕ0

− U0

)
. (D.79)

D.5 Gauge-invariant action for scalar modes

Here we show that the action for the scalar perturbation, equation (5.9), can be written

in a gauge-invariant form. To this end, we show that the action depends solely of the

gauge-invariant bulk variable ζ and gauge-invariant brane variables ψ̂(r0), χ̂(r0).

First, notice that equation (5.9) was obtained in the gauge χ = 0 in the bulk. In

this gauge, the scalar quantity ψ coincides with the gauge-invariant variable ζ (see equa-

tion (3.6)). Therefore, the bulk part of the action (first line in equation (5.9)) can be

written in a manifestly gauge-invariant fashion by replacing the 2-component object Ψ

with Z ≡ (ζIR, ζUV).

Next, we consider the localized terms in the second line of equation (5.9). Using the

expressions for Γ1 and Γ2 in equation (D.78) and after some tedious algebra we obtain, for

the first localized term:

Ψ†(r0) ΣΓ1 Ψ(r0) = a4
0M̃2

(
[zψ]
[z] − [ψ]

[1/z]

)( 0 0

0 2

) [zψ]
[z]

− [ψ]
[1/z]

 , (D.80)
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and for the second:

∂µΨ†(r0) ΣΓ2 ∂
µΨ(r0) = a2

0∂µ

(
[zψ]
[z] − [ψ]

[1/z]

) τ0 −6dUBdϕ

∣∣∣
ϕ0

−6dUBdϕ

∣∣∣
ϕ0

Z0

 ∂µ

 [zψ]
[z]

− [ψ]
[1/z]


(D.81)

where τ0 was defined in equation (D.79).

From equation (D.73) we observe that the components of the 2-vectors entering the

above matrix products coincide, in our gauge χ = 0, with the gauge-invariant combinations:

− [ψ]

[1/z]
= χ̂(r0),

[zψ]

[z]
= ψ̂(r0) (D.82)

i.e. the gauge-invariant dilaton and metric trace on the brane.

E The bulk propagator for tensor modes

The bulk propagator D(p, r) is defined by equation (4.11). It must satisfy normalizability

conditions at the asymptotic AdS boundary (UV) and in the deep interior (IR). Here,

normalizability is to be understood as square-integrability with respect to the appropriate

integration measure, i.e. ∫
e(d−1)A|Ψ|2 <∞. (E.1)

The bulk propagator D(p, r) can then be written in terms of normalizable UV and IR

eigenfunctions of the radial operator ∂re
(d−1)A∂r, with “energy” determined by p2:

D(p, r) =


Ψ

(p)
UV(r) r < r0

Ψ
(p)
IR (r) r > r0

(E.2)

where ΨUV and ΨIR satisfy the equations:[
∂re

(d−1)AUV(r)∂r − e(d−1)AUV(r)p2
]

Ψ
(p)
UV = 0 (E.3)[

∂re
(d−1)AIR(r)∂r − e(d−1)AIR(r)p2

]
Ψ

(p)
IR = 0 (E.4)

and the matching conditions:

Ψ
(p)
IR (r0) = Ψ

(p)
UV(r0) (E.5)[

∂rΨ
(p)
IR − ∂rΨ

(p)
UV

]
r0

= −1 (E.6)

The matching conditions (E.5)–(E.6) follow by integrating equation (4.11) on a small in-

terval across the interface.

The mode functions in equation (E.2) are normalizable in the UV and IR, respectively.

The solution therefore has four integration constants and four conditions (two normalizabil-

ity conditions plus two matching conditions) that fix the wave-functions uniquely (notice

that the system is not homogeneous, and does not have a rescaling freedom).
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E.1 Large-p behavior

At large Euclidean p2, we can approximate the bulk equations as in flat space, neglecting

the derivatives of A(r),

∂2
rΨ(p)(r) = p2Ψ(p)(r). (E.7)

For small r, the AdS boundary acts as an infinite barrier and imposes a vanishing wave-

function at r = 0 (this is equivalent to normalizability in the UV). In the interior, assuming

the IR is reached as r → +∞,39 the solutions for positive p2 are real exponentials, and for

normalizability we require the solution to be vanishing as r → +∞.

The solution satisfying appropriate boundary conditions (vanishing in the IR and for

r → 0) and matching condition at r0 is:

Ψ
(p)
IR =

sinh pr0

p
e−pr, Ψ

(p)
UV =

e−pr0

p
sinh pr, p ≡

√
p2 (E.8)

For large pr0, we observe that:

D(p, r0) ' 1

2p
, pr0 � 1 (E.9)

like in flat space.

E.2 Perturbation expansion for small-p

For small p, the bulk propagator has the form of an expansion in p2:

D(r0, p) = d0 + p2d2 + p4d4 + . . . (E.10)

where the coefficients di can be computed perturbatively in p2 solving equation (4.11)

iteratively. We concentrate on the case d = 4.

• O(p0): setting p = 0 in equations (E.3) and (E.4), we can integrate them immediately

and find:

Ψ
(0)
UV = C

(0)
1,UV

∫ r

0
e−3AUV(r′)dr′ + C

(0)
2,UV, Ψ

(0)
IR = C

(0)
1,IR

∫ r

0
e−3AUV(r′)dr′ + C

(0)
2,IR

(E.11)

Normalizability implies C
(0)
2,UV = C

(0)
1,IR = 0. The matching conditions (E.5)–(E.6)

determine the values:

C
(0)
1,UV = e3A0 , C

(0)
2,IR = e3A0

∫ r0

0
e−3AUV(r′)dr′ (E.12)

Therefore, to lowest order in small p:

Ψ
(0)
UV(r) = e3A0

∫ r

0
e−3AUV(r′)dr′, Ψ

(0)
IR (r) = e3A0

∫ r0

0
e−3AUV(r′)dr′, (E.13)

and we find:

D(0, r0) = d0 = e3A0

∫ r0

0
e−3AUV(r′)dr′ (E.14)

39This is the case for example when the IR geometry asymptotes to an AdS interior. A full classification

of the possible IR geometries in a general Einstein-dilaton theory, can be found in section 4 of [73].
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• O(p2): to the next order, we write:

Ψ
(p)
UV ' Ψ

(0)
UV + p2Ψ

(2)
UV, Ψ

(p)
IR ' Ψ

(0)
IR + p2Ψ

(2)
IR (E.15)

The corrections to the wave-functions at order p2 satisfy the equations:

∂r

(
e3AUV(r)∂rΨ

(2)
UV

)
= e3AUV(r)Ψ

(0)
UV r < r0 (E.16)

∂r

(
e3AIR(r)∂rΨ

(2)
IR

)
= e3AIR(r)Ψ

(0)
IR r > r0. (E.17)

The matching conditions for Ψ(2) are:

Ψ
(2)
IR (r0) = Ψ

(2)
UV(r0),

(
∂rΨ

(2)
IR

)
(r0) =

(
∂rΨ

(2)
UV

)
(r0) (E.18)

as follows from equations (E.5)–(E.6) and from the matching conditions at order p0.

Integrating twice equations (E.16)–(E.17), the general solution with normalizable

homogeneous parts are:

Ψ
(2)
UV(r) =

∫ r

0
dr′e−3AUV(r′)

∫ r′

0
dr′′Ψ

(0)
UV(r′′)e3AUV(r′′)

+C
(2)
UV

∫ r

0
dr′e−3AUV(r′) (E.19)

Ψ
(2)
IR (r) =

∫ r

r0

dr′e−3AIR(r′)

∫ r′

r0

dr′′Ψ
(0)
IR (r′′)e3AIR(r′′)

+C
(2)
IR

∫ r

0
dr′e−3AUV(r′) (E.20)

Imposing the continuity conditions (E.18) at r = r0 we find:

C
(2)
UV = −

∫ r0

0
dr′Ψ

(0)
UV(r′)e3AUV(r′),

C
(2)
IR =

∫ r0

0
dr′e−3AUV(r′)

[
C

(2)
UV +

∫ r′

0
dr′′Ψ

(0)
UV(r′′)e3AUV(r′′)

]
. (E.21)

Inserting this result into equation (E.19) we find:

Ψ
(2)
UV(r) = −

∫ r

0
dr′e−3AUV(r′)

∫ r0

r′
dr′′Ψ

(0)
UV(r′′)e3AUV(r′′). (E.22)

Recall that d2 = Ψ
(2)
UV(r0): evaluating equation (E.22) at r = r0 and using equa-

tion (E.13), we obtain:

d2 = −e3A0

∫ r0

0
dr′e−3AUV(r′)

∫ r0

r′
dr′′e3AUV(r′′)

∫ r′′

0
dr′′′e−3AUV(r′′′). (E.23)

• O(p2n) One can continue the above procedure iteratively: the wave-functions at order

2n satisfy the equations

∂r

(
e3AUV(r)∂rΨ

(2n)
UV

)
= e3AUV(r)Ψ

(2n−2)
UV r < r0 (E.24)

∂r

(
e3AIR(r)∂rΨ

(2n)
IR

)
= e3AIR(r)Ψ

(2n−2)
IR r > r0. (E.25)
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and must be continuous, with continuous derivative, at r0. This system of equation

is identical to the one we have solved at order p2, and the solution is as follows:

Ψ
(2n)
UV (r) = −

∫ r

0
dr′e−3AUV(r′)

∫ r0

r′
dr′′Ψ

(2n−2)
UV (r′′)e3AUV(r′′). (E.26)

The coefficient d2n is obtained by evaluating the above expression at r0 and consists

of 2n+ 1 alternating integrals:

d2n = (−)ne3A0

∫ r0

0
dr1e

−3AUV(r1)

∫ r0

r1

dr2e
3AUV(r2)

∫ r2

0
dr3e

−3AUV(r3) . . .

. . .

∫ r0

r2n−1

dr2ne
3AUV(r2n)

∫ r2n

0
dr2n+1e

−3AUV(r2n+1). (E.27)

We will now extract the explicit dependence on A0 of the expansion coefficients d2n. This

can be achieved by writing AUV as a function of ϕ as in equation (B.4),

AUV(ϕ) = A0 +AUV(ϕ0, ϕ), AUV(ϕ0, ϕ) ≡ − 1

2(d− 1)

∫ ϕ

ϕ0

WUV

dWUV/dϕ
(E.28)

and by changing variables to ϕ in all the integrals (4.16)–(4.18), using the identity (valid

for 0 < ϕ < ϕ0 and 0 < r < r0):

dϕ

dr
= eAUV(r)dWUV

dϕ
. (E.29)

The result takes the form:

di = e−A0Di(ϕ0) (E.30)

where the coefficients Di(ϕ0) are independent of A0 but depend only on the superpotentials

and the equilibrium position ϕ0:

D0(ϕ0) =

∫ ϕ0

0
dϕ′

e−3AUV(ϕ0,ϕ′)

W ′UV(ϕ′)
; (E.31)

D2(ϕ0) = −
∫ ϕ0

0
dϕ′

e−3AUV(ϕ0,ϕ′)

W ′UV(ϕ′)

∫ ϕ0

ϕ′
dϕ′′

e3AUV(ϕ0,ϕ′′)

W ′UV(ϕ′′)

∫ ϕ′′′

0
dϕ′′′

e−3AUV(ϕ0,ϕ′′′)

W ′UV(ϕ′′′)
(E.32)

and similarly for D4(ϕ0).

Therefore, the expansion coefficients of the bulk propagator at low momenta all scale

as e−A0 times a function that depends only on the bulk potentials.

Notice that, for fixed ϕ0, the exponential e−AUV appearing in the integrals, is bounded

between zero and one, and:

e−AUV(ϕ0,ϕ) →

{
0 ϕ→ 0

1 ϕ→ ϕ0.
, (E.33)

As a consequence, the scale controlling Di is approximately the bulk curvature R at the

interface, encoded in the superpotential factors in the denominators:

R0 ≈WUV(ϕ0), (E.34)

and we have, roughly:

D2n(ϕ0) ≈ 1

R2n+1
0

, (E.35)
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E.3 Regularity of the small-p expansion

Here we discuss if and at which order the expansion in p2 used in equation (E.10) may

break down.

First, consider the case when the bulk theory has a confining IR. In this case the

spectrum of normalizable eigenmodes is discrete, and the bulk Green’s function D(p, r)

can be expanded in terms of the eigenfunctions of the bulk radial operator:

D(p, r) =
∑
n

fn
p2 +m2

n

(E.36)

where fn are some constants and mn are the “eigenvalues” for the radial kinetic operator,

that is:

∂re
3A∂rhn(r) + e3A(r)m2

nhn(r) = 0 (E.37)

In this case, it is clear from equation (E.36) that the small momentum expansion is regular.

Things are more subtle if the bulk theory has no gap, but rather it has a continuous

spectrum starting at m = 0. This is the case either if the theory reaches a conformal

fixed point in the IR, or if ϕ reaches infinity but the superpotential grows slower than

exp γϕ with γ2 < 1/6 [71, 72]. In both cases, the IR is reached as the conformal coordinate

r → +∞, where the scale factor behaves as:

eAIR(r) ∼ 1

rz
, r → +∞, z ≥ 1 (E.38)

The constant z is related to the steepness of the bulk potential, with z = 1 corresponding

to AdS asymptotics in the interior (thus to the case of a conformal IR fixed point). For

more details, the reader is referred to [71, 72].

The small-p behavior is expected to be governed by the far IR of the theory, i.e. by the

behavior of the geometry as r →∞. In this region, the bulk wave equation simplifies to:

h′′(r)− 3z

r
h′(r)− p2h(r) = 0 (E.39)

This approximation is valid in the asymptotic region where the metric can be approximated

by (E.38), and is independent of the value of p. The solution of equation (E.39) which is

normalizable at infinity is:

ΨIR(r) = cIR(p)r
1+3z

2 K 1+3z
2

(pr) (E.40)

where K is the modified Bessel function which is exponentially vanishing at infinity, and

cIR(p) is for the moment unknown.

For fixed large r, but for p � 1/r, we can also expand equation (E.40) for small

argument:

ΨIR(r) ' cIR(p)
{
p−

1+3z
2
[
1 + α1r

2p2 +O(r4p4)
]

+ βp
3z+1

2 r1+3z
[
1 + α2r

2p2 +O(r4p4)
]}
,

(E.41)

where α1, α2 and β are some fixed constants arising from the expansion of the Bessel

function.
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We can compare equation (E.41) with the small-p expansion of the IR wave-function

ΨIR given in equation (E.15). To lowest order in this expansion the normalizable IR wave-

function is a constant (see equation (E.12):

Ψ
(0)
IR = C(0). (E.42)

This is consistent with the fixed r, p → 0 limit of equation (E.41) if the momentum

dependence in cIR(p) is fixed to be:

cIR(p) = C(0)p
3z+1

2 . (E.43)

Inserting this expression back in equation (E.41) we find, at small p and large r:

ΨIR(r) ' C0

{(
1 + α1r

2p2 +O(r4p4)
)

+ β(pr)1+3z
(
1 + α2p

2r2 +O(r4p4)
)}

(E.44)

The only source of non-analyticity in the above expression is the p1+3z prefactor. Thus, we

have a regular expansion in p at least up to the order 1 + 3z ≥ 4. The larger is z (and the

faster the scale factor vanishes), the further the non-analytic terms arise in the expansion.

The coefficients d2n are well-defined and finite as long as 2n < 1 + 3z. The earliest the

expansion can fail is at 2n = 4 for z = 1, with the appearance of terms p4 log p which are

familiar for massless fields in asymptotically AdS space-times.

Notice that we may evade the above argument, and have a singular limit of D(p, r0) as

p→ 0, only if we somehow lose the constant solution (E.42). This is the case, for example,

in the Randall-Sundrum type matching: if we impose Z2 symmetry at the brane, then the

matching condition (E.6) to lowest order in p becomes (∂rΨ
(0)
IR )(r0) = −1/2 which is not

obeyed by the constant solution. This signals a singularity of the propagator as p → 0,

which indeed turns out to be the massless pole associated to the graviton zero mode in

this theory. However, in our case we can only find the solution (E.12) to the matching

conditions, thus the expansion makes sense up to order 1 + 3z.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
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