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1 Introduction

D-brane in a given background containing AdS spacetime is an interesting object to explore.

It carries the information about the open string sector in the background. In the AdS/CFT

correspondence [1–3], a certain D-brane configuration in the background involving the AdS

spacetime is related to the defect conformal field theory (dCFT) [4, 5]. For example, a

certain D5-brane in the AdS5×S5 background is dual to the three dimensional dCFT of

the N=4 SYM theory [5]. In a suitable approximation, D branes on curved spacetime can

be described by Born-Infeld type action. The Born-Infeld type action of supersymmetric

D-brane has the important symmetry, κ symmetry. By a suitable gauge fixing, one can

obtain the supersymmetric worldvolume theory on the Born-Infeld type action of D-brane.

In refs. [6, 7], by choosing a static gauge combined with a suitable κ gauge fixing, the

supersymmetric worldvolume theory of D-brane in flat space is obtained, with the explicit

supersymmetric transformation worked out.
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One can certainly adopt the same strategy to D-branes in the background involving

the AdS spacetime. In fact, κ symmetric action of D-branes in the AdS5×S5 background

was obtained using supercoset approach. One can guess that again by taking the static

gauge with suitable κ gauge fixing condition one can obtain the worldvolume theories of

supersymmetric D-branes on the AdS5×S5 background.1 However there is a subtlety in

this program. In [8], the author considered the D3-brane whose world volume spans the

four directions in AdS5 other than the radial direction but neither the usual covariant

gauge fixing condition nor Killing spinor gauge fixing works.2 Note that the configuration

is supersymmetric since the D3 brane of interest is parallel to the D3 branes, whose near

horizon geometry turns into AdS5×S5. Indeed in [9], the D3 brane is shown to satisfy the

generalized calibration, hence is supersymmetric.3 Analogous result is worked out at [11],

where they consider M2 brane in AdS4×S7 where M2 brane is parallel to M2 branes which

make AdS geometry. They show that Killing spinor gauge is incompatible with the static

gauge of the M2 brane worldvolume action. Given these results, one might wonder if

there are some restrictions on the possible supersymmetric worldvolume theory on the

AdS spacetime. It turns out that this problem is intimately related to the classification of

supersymmetric D-brane embeddings into the AdS spacetime.

In this paper we are looking for the supersymmetric worldvolume theories of 1/2-BPS

D-branes on the AdS5×S5 background. Since the worldvolume supersymmetry is of our

concern, it is natural to take the probe brane analysis. In order to study the worldvolume

theory of 1/2-BPS D-branes we start from the data obtained from the covariant open string

description of supersymmetric D-branes developed in [12, 13]. The covariant description

can be applied to any background if the superstring action on it is given and, as the first

non-trivial application, has led to the classification of 1/2-BPS D-branes in some plane

wave backgrounds [13, 14].4 As for the AdS5×S5 background, the classification has been

worked out in [17–19] and table 1 shows its result. As a consistency check, we note that

the same data listed in table 1 have been also obtained in [20] in the context of pure spinor

formalism [21].

The covariant open string description provides us a definite guideline for further study

of supersymmetric D-branes, although it gives no more information about D-branes other

than the classification data. Starting from the table 1, we consider all possible types

of corresponding D-brane configurations and use a suitable static gauge for the D-brane

worldvolume diffeomorphism. For the fermionic κ symmetry of the D-brane action, the

covariant κ symmetry gauge is adopted. For each of the configurations, we identify the

1This will be one more useful example of supersymmetric theories on curved background, which can find

the application to the localization of the gauge theory on a curved background.
2We think the subtlety arises since the D3 brane whose world volume we consider is parallel to D3

branes, which make the geometry. If we start from intersecting configuration of Dp branes with D3 branes,

which are geometrized, such subtlety does not arise. All brane configurations considered in the paper are

of this type.
3For recent exploration of the generalized calibration in the AdS backgrounds, see for example ref. [10]

and references therein.
4The IIB plane wave has a connection with the AdS5×S5 background through the Penrose limit [15].

One may refer a work [16] done in the plane wave background, which may be related to the present one.
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D(-1) D1 D3 D5 D7 D9

(n,n′) (0,0)
(2,0)

(0,2)

(3,1)

(1,3)

(4,2)

(2,4)

(5,3)

(3,5)
—

Table 1. 1/2-BPS D-branes in the AdS5×S5 background. n (n′) represents the number of Neumann

directions in AdS5 (S5).

worldvolume supersymmetry realized on the D-brane worldvolume and obtain the associ-

ated worldvolume supersymmetry transformation rules for the worldvolume fields.

We restrict ourselves to the purely static Lorentzian D-brane configurations without

any worldvolume flux. Here the Lorentzian means that the worldvolume time is identi-

fied with that of the background spacetime. Thus, the configurations for (0,0) and (0,2)

D-branes of table 1 are not considered. As one may realize, there are twelve types of

Lorentzian configurations. Six of them correspond to the AdS type D-branes in which

the AdS radial direction is one of worldvolume coordinates, and the remaining six are of

non-AdS type in which the AdS radial direction is transverse to the D-brane worldvol-

ume. We will treat the AdS and non-AdS type branes separately. We would like to note

that the AdS type D-branes may also be considered under the name of AdS embedding

of D-branes by taking the near horizon limit of intersecting D3⊥Dp brane configurations

in flat spacetime [5]. It turns out that, for purely static configurations without any world-

volume flux, only AdS type branes admit the supersymmetric worldvolume theories. Note

that the corresponding D-brane configurations are obtained from the supersymmmetric

intersecting D-brane configurations after turning D3 branes into AdS geometry [5]. For

non-AdS type branes, the analysis suggests that world volume fluxes should be turned on

or some motions in transverse directions should be considered to have the supersymmetric

world volume theory. Our work suggests that only D-branes tabulated at table 1 admit

the supersymmetric worldvolume theory. In order to confirm it, the worldvolume theories

of non-AdS type branes should be worked out, which are beyond the scope of this paper.

The organization of this paper is as follows. In section 2, we describe the way of

realizing the worldvolume supersymmetry for a given D-brane configuration after reviewing

some necessary elements. In section 3, we investigate the worldvolume supersymmetry for

the AdS type D-branes. Then the non-AdS branes are considered in section 4. The

discussion with our conclusion follows in section 5. Finally, appendix A contains our

notation and convention with the expressions of superfields.

2 Generalities

In this section, we briefly review the AdS5×S5 background with its associated Killing

spinor and the symmetries of Dp-brane action. We then describe how to identify the

supersymmetry realized on the brane worldvolume for a given brane configuration.
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2.1 AdS5×S5 background

In the Poincaré patch coordinates, the metric for the AdS5×S5 geometry is written as

ds2 = u2
[
−
(
dx0
)2

+ (d~x)2
]

+
du2

u2
+ dΩ2

5 , (2.1)

where (d~x)2 = (dx1)2 + (dx2)2 + (dx3)2 and dΩ2
5 is the metric of S5 parametrized by five

angular coordinates φα (α = 1, . . . , 5),

dΩ2
5 =

(
dφ1
)2

+ sin2 φ1
[(
dφ2
)2

+ sin2 φ2
[(
dφ3
)2

+ sin3 φ2
[(
dφ4
)2

+ sin4 φ2
(
dφ5
)2]]]

,

(2.2)

with ranges of 0 ≤ φ1, φ2, φ3, φ4 ≤ π and 0 ≤ φ5 ≤ 2π. Here, we have taken the common

radius R of the AdS5 and S5 to be one, R = 1. The ten dimensional coordinates are

equationed as

Xµ =
{
x0, x1, x2, x3, u, φ1, . . . , φ5

}
(2.3)

and from the metric (2.1) the zehnbein is chosen to be

e0,1,2,3 = udx0,1,2,3 , e4 =
du

u
, ea

′
=

a′−5∏
α=1

sinφαdφa
′−4 . (2.4)

In addition to the metric (2.1), another constituent of the AdS5×S5 background is the

Ramond-Ramond five form field strength given by

F5 = 4e0 ∧ e1 ∧ e2 ∧ e3 ∧ e4 + 4e5 ∧ e6 ∧ e7 ∧ e8 ∧ e9 . (2.5)

The AdS5×S5 background composed of (2.1) and (2.5) is maximally supersymmetric.

Its supersymmetry structure is encoded in the spacetime Killing spinor ηI , which is the

solution of the spacetime Killing spinor equation Dµη
I(X) = 0 for the AdS5×S5 back-

ground.5 The Killing spinor equation has been solved in refs. [22, 23], and its solution is

expressed in a simpler form if we split ηI as

ηI = ηI+ + ηI− , (2.6)

where ηI± are defined by

ηI± = P IJ± ηJ (2.7)

with the projection operator

P IJ± =
1

2

(
δIJ ± Γ0123τ

IJ
2

)
. (2.8)

In this splitting, we see that η1
± and η2

± are not independent from each other because

η2
± = ∓Γ0123η

1
± . (2.9)

5The explicit form of the covariant derivative Dµ can be found in eq. (A.5).
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Thus, to avoid this redundancy, it is convenient to define

η± ≡ η1
± , (2.10)

to which η1 and η2 are related by

η1 = η+ + η− , η2 = −Γ0123 (η+ − η−) , (2.11)

as checked from eqs. (2.6), (2.9) and (2.10). If we now use η±, then the solution of the

Killing spinor equation is expressed as6

η+(X) = u1/2S(φ) (ε+ − x · Γε−) ,

η−(X) = u−1/2Γ4S(φ)ε− , (2.12)

where ε± are constant spinors, x · Γ = x0Γ0 + x1Γ1 + x2Γ2 + x3Γ3 (or x0Γ0 + ~x · ~Γ), and

S(φ) is a spinorial function of five angles of S5 given by

S(φ) =

9∏
a′=5

exp

(
1

2
φa

′−4Γ(a′−1)a′

)
. (2.13)

We note that, since ηI is taken to have positive chirality in this paper, ε+(ε−) is a positive

(negative) chirality spinor,

Γ11ε± = ±ε± , (2.14)

and has sixteen independent free components.7

2.2 Symmetries of Dp-brane action

The Dp-brane action Sp is composed of the Dirac-Born-Infeld (DBI) and the Wess-Zumino

(WZ) parts:

Sp = SDBI + SWZ , (2.15)

where

SDBI = −
∫
Mp+1

dp+1σ
√
− det (Gij + Fij) , SWZ =

∫
Mp+2

Hp+2 , (2.16)

Here, Mp+1 represents the Dp-brane worldvolume and Mp+2 is a (p + 2)-dimensional

manifold whose boundary is identified with Mp+1, that is, ∂Mp+2 =Mp+1.

In the DBI part, Gij is the pullback of the AdS5×S5 supergeometry described by the

Cartan one-form vector superfield Lâ onto the worldvolume,

Gij = LâiL
b̂
jηâb̂ , Lâi = ∂iZ

MLâM , (2.17)

where i, j are the worldvolume indices (i, j = 0, 1, . . . , p). Fij is a combination of the field

strength Fij of the worldvolume gauge field Ai (Fij = ∂iAj − ∂jAi) and the pulled-back

background NS-NS two-form superfield B. In the form notation, F is given by

F = F − B = dA+ 2i

∫ 1

0
dsLâs ∧ Θ̄IΓâτ

IJ
3 LJs , (2.18)

6While the complex spinor notation is adopted in [22], we use the real or Majorana-Weyl spinor notation

throughout the paper.
7The definition of Γ11 is given in (A.6).
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where LI is the Cartan one-form spinorial superfield and the subscript s in the superfields

means that the fermionic coordinate Θ inside the superfields is replaced by Θ → sΘ. In the

WZ part, Hp+2 is the supersymmetric closed (p+2)-form consisting of various combinations

of the Cartan one-form superfields and F .8

The Dp-brane action has three manifest symmetries. Firstly, it is invariant under the

worldvolume reparametrization

σi → σi − λi(σ) , (2.19)

where λi(σ) is the local reparametrization parameter. Under this, the worldvolume fields

transform as follows.

δλΘI = λi∂iΘ
I , δλX

µ = λi∂iX
µ , δλAi = λj∂jAi + ∂iλ

jAj . (2.20)

We note that both of ΘI and Xµ are scalars from the worldvolume viewpoint. Secondly,

the action is spacetime supersymmetric under the transformations

δηZ
MLâM = 2iη̄IΓâΘI , δηZ

MLIM = ηI , (2.21)

where ηI is the Killing spinor of eq. (2.11) with eq. (2.12). More precisely, the DBI and the

WZ parts of the action are supersymmetric separately. Actually, supersymmetry is natural

because the super coset method respects the background supersymmetry by construction.

If we expand the spacetime supersymmetry transformation of eq. (2.21) in terms of Θ,

we get

δηΘ
I = ηI +O

(
Θ2
)
,

δηX
µ = −ieµâΘ̄IΓâηI +O

(
Θ3
)
,

δηAi = −ieâi Θ̄IΓâτ
IJ
3 ηJ +O

(
Θ3
)
, (2.22)

where eµâ is the inverse of the zehnbein eâµ given in eq. (2.4) and

eâi = ∂iX
µeâµ . (2.23)

The transformation for the worldvolume gauge field Ai is determined from the invariance

of F of eq. (2.18), δηF = 0 [6, 7].

The last one is the local fermionic κ symmetry, which is in some sense the most

important one since it guarantees the worldvolume supersymmetry after gauge fixing. The

κ symmetry transformation rules are given by

δκZ
MLâM = 0 , δκZ

MLIM = κI , (2.24)

where the transformation parameter κ satisfies, for the κ symmetric projection Γ(p),

Γ(p)IJκJ = κI . (2.25)

8For a comprehensive study on the WZ part, see for example ref. [24] where the systematic Chevalley-

Eilenberg cohomology has been used to construct Hp+2.
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The κ symmetry projection is basically the pullback of various gamma matrix products

onto the Dp-brane worldvolume and, for the type IIB case, its explicit expression [25] is

Γ(p) =
1√

− det (Gij + Fij)

(p+1)/2∑
n=0

1

2nn!
γj1k1···jnknFj1k1 · · · FjnknJ

(n)
(p) ,

J
(n)
(p) =

(−1)n

(p+ 1)!
εi0i1···ipγi0i1···ipτ

n+(p−3)/2
3 τ2 , (2.26)

where γi1···in = γ[i1 · · · γin] and γi is the pullback of Γâ, γi = Lâi Γâ. The important properties

of Γ(p) are

Γ(p)2 = 1 , TrΓ(p) = 0 , (2.27)

and, as is verified with the τ matrices (A.3), Γ(p) can always be put into the form

Γ(p) =

(
0 β

(p)
+

β
(p)
− 0

)
. (2.28)

The two blocks β
(p)
+ and β

(p)
− satisfy β

(p)
+ β

(p)
− = β

(p)
− β

(p)
+ = 1, which is Γ(p)2 = 1 of (2.27),

and their expressions for each p will be given in the next section. If we now write down

the κ symmetry transformation rules for the worldvolume fields by expanding eq. (2.24) in

terms of Θ, then they are

δκΘI = κI +O
(
Θ2
)
,

δκX
µ = ieµâΘ̄IΓâδκΘI +O

(
Θ3
)
,

δκAi = ieâi Θ̄
IΓâτ

IJ
3 δκΘJ +O

(
Θ3
)
, (2.29)

where the transformation rule for Ai is determined from δκF = −2iLâ∧L̄IΓâτ IJ3 δκΘJ [6, 7].9

2.3 Worldvolume supersymmetry

If a given configuration or embedding of Dp-brane in a specific supersymmetric background

preserves some fraction of the background supersymmetries, then the preserved supersym-

metries should be respected on the D-brane worldvolume theory. How are they realized and

described? One way to answer this practical question is to follow the procedure developed

in refs. [6, 7]. In this subsection, following refs. [6, 7], we describe how to identify the su-

persymmetry on the worldvolume and give the associated supersymmetry transformation

rules for the worldvolume fields.

For a given Dp brane, we first consider its configuration based on the data of table 1

and align the worldvolume coordinates with those of spacetime as

X`i(σ) = σi (i = 0, 1, . . . , p) , (2.30)

which is equivalent to specify indices (`0, `1, . . . `p) among ten spacetime coordinates (2.3).

This is nothing but the static gauge which fixes the worldvolume reparametrization sym-

metry (2.19). Since the Lorentzian branes are of our concern, X`0 will be always X0(= x0),

9The expression for δκF itself has bee derived in ref. [26].
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that is, `0 = 0 or x0(σ) = σ0. The remaining spacetime coordinates transverse to X`i will

be denoted by Xf , which describe the transverse fluctuations of Dp-brane. Since the brane

may be placed in some transverse position, it is convenient to split Xf as

Xf = Xf
0 + X̃f , (2.31)

where Xf
0 denote the constant transverse position of brane and X̃f are the fluctuations

around them. We note that we could consider more general configurations where Xf

depend on X`i as Xf = Xf (X`i). One typical example would be the constant motion

along certain transverse directions: ∂0X
f = constant. In this paper, however, we will

restrict ourselves to purely static configurations and turn off any worldvolume fluxes

As alluded to in the last subsection, the Dp brane has a local worldvolume symmetry,

the κ symmetry. As we do in a theory with local gauge symmetries, we should fix it

properly before doing any actual calculation. Here, we take the covariant κ symmetry

fixing condition given by

Θ1 = 0 , Θ2 = θ , (2.32)

or (1 + τ3)IJΘJ = 0. This condition is an admissible one because it is in accord with

the criterion for the admissible fixing condition [25]: τ3 does not commute with Γ(p) of

the κ symmetry projector (2.25), [τ3,Γ
(p)] 6= 0. Though the covariant fixing condition is

not so helpful in simplifying the D-brane action, it is convenient to explore the symmetry

structure in a covariant way.10

Having fixed the reparametrization and the κ symmetries, we look at the spacetime

supersymmetry transformation (2.22). Then we easily see that the transformation violates

the gauge-fixing conditions of eqs. (2.30) and (2.32) because δηΘ
1 6= 0 and δηX

`i 6= 0.

One possible way of resolving this situation is to introduce the compensating κ and the

worldvolume reparametrization transformations and define a new transformation δ as

δ ≡ δη + δκ + δλ . (2.33)

The parameters κ and λ of the compensating transformations are determined in terms of

ηI such that the new transformation δ keeps the gauge-fixing conditions, that is, δΘ1 = 0

and δX`i = 0. They can be found order by oder in θ and are, at the leading order,

κ1 = −η1 +O
(
θ2
)
, κ2 = −β(p)

− η1 +O
(
θ2
)
,

λi = ie`iâ θ̄Γ
â
(
η2 + β

(p)
− η1

)
+O

(
θ3
)
, (2.34)

where β
(p)
− appears due to eq. (2.28). In this way, we have the transformation δ consistent

with the gauge-fixing conditions and interpret it as the worldvolume supersymmetry.

Let us now turn to the theory on the Dp-brane worldvolume. From the viewpoint of

the worldvolume theory, the static gauge describing the embedding of the brane can be

regarded as the ‘vacuum’ configuration. Then, as usual, the supersymmetry preserved by

10See for example ref. [27], where the covariant gauge is adopted in studying the D3-brane in the plane

wave background.
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the ‘vacuum’ is specified by the free components of the supersymmetry parameter satisfying

the equation δ(fermion) = 0, that is, δθ = 0, which we call the worldvolume Killing spinor

equation. If we rewrite δθ = 0 by plugging (2.20), (2.22), (2.29) into (2.33) with (2.34), it

becomes a fairly simple equation,

0 = η2 − β(p)
0 η1 , (2.35)

where β
(p)
0 depends on the ‘vacuum’ configuration and is defined by

β
(p)
0 ≡ β

(p)
−

∣∣∣
θ=0, Ai=0, Xf=Xf

0

. (2.36)

We would like to note that the worldvolume Killing spinor equation (2.35) is an exact one

because θ = 0 in the ‘vacuum’ configuration.

Further evaluation of (2.35) using (2.11) and (2.12) leads us to have

0 = −
(

Γ0123 + β
(p)
0

)
η+ +

(
Γ0123 − β(p)

0

)
η−

= − u1/2Γ0123

(
1− Γ0123β

(p)
0

)
S0(φ) (ε+ − x · Γε−)

+ u−1/2Γ0123

(
1 + Γ0123β

(p)
0

)
Γ4S0(φ)ε− , (2.37)

where some coordinates among u and x1,2,3 are understood to be constants if they are trans-

verse directions, and S0(φ) means S(φ) of (2.13) in which the angular directions included

in Xf are set to constant values. In the investigation of the worldvolume supersymmetry

structure of a ‘vacuum’ configuration, the first step is to check if the square of Γ0123β
(p)
0

in eq. (2.37) is equal to one,
(

Γ0123β
(p)
0

)2
= 1. If it is the case, Γ0123β

(p)
0 has eigenvalues

of ±1. This means that 1 ± Γ0123β
(p)
0 play the role of projection operators and give us

the possibility of identifying which components of ε± are free. The next step is to send

Γ0123β
(p)
0 to the right of S0(φ), which is done by evaluating S−1

0 (φ)Γ0123β
(p)
0 S0(φ) with

repeated use of the following identity

e−
1
2
φΓa(a+1)Γae

1
2
φΓa(a+1) = Γa cosφ+ Γa+1 sinφ . (2.38)

Generically, the resulting expression is not of the form of projection operator but a sum

of many gamma matrix products with coefficients composed of trigonometric functions.

However, as we will see in the next section, it becomes a projection operator for some special

values of the transverse angular coordinates and can be used to pick out the free components

among ε±. This is interesting in a sense that the transverse position is determined by

insisting on the supersymmetry in the D-brane worldvolume theory without resort to the

equations of motion.11

After identifying the supersymmetry preserved on the D-brane worldvolume, we can

read off how the transformation δ acts on the remaining worldvolume fields. Let us denote

the worldvolume fields collectively as

Φ =
(
X̃f , Ai, θ

)
. (2.39)

11Strictly speaking, in some cases, we should also impose the non-degeneracy condition for the induced

worldvolume metric.
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Its transformation δΦ can be written as an expansion in terms of the power of Φ. If we con-

sider the terms up to linear order in Φ, then the transformation rules for the worldvolume

fields are

δX̃f = −iefâ θ̄Γ
â
(
η̂2 + β

(p)
− η̂1

)
+O

(
Φ2
)
,

δAi = ieâi θ̄Γâ

(
η̂2 + β

(p)
− η̂1

)
+O

(
Φ2
)
,

δθ = η̂2 − β(p)
− η̂1 +O

(
Φ2
)
, (2.40)

where η̂1,2 are η1,2 containing only the free components of ε± picked out from the world-

volume Killing spinor equation (2.37) and we have omitted the compensating worldvolume

reparametrization transformation because it begins with the terms quadratic order in Φ.

In these transformation rules, β
(p)
− is also expanded as

β
(p)
− = β

(p)
0 + β

(p)
1 +O

(
Φ2
)
, (2.41)

where β
(p)
0 is defined in (2.36) and β

(p)
1 is the collection of terms linear order in Φ.

In the process of calculation leading to (2.40), we will encounter many trigonometric

functions. Thus, for notational simplicity, we would like to define the following quantities

before moving on to the next section.

sα ≡ sinφα , cα ≡ cosφα ,

s̊α ≡ sinφα0 , c̊α ≡ cosφα0 , (2.42)

3 AdS branes

When the radial direction of the AdS space u is one of the worldvolume directions for

a given brane configuration, the brane is usually called the AdS brane since the induced

metric on the worldvolume contains the AdS space. If we take a look at the table 1 and

consider the Lorentzian branes in which the time x0 is always a worldvolume direction,

we see that there are six types of AdS brane configurations. In this section, for each of

them, following the procedure outlined in section 2.3, we investigate the supersymmetry

realized on the worldvolume and give the worldvolume supersymmetry transformation rules

for the worldvolume fields. We note that the following subsections and subsubsections are

self-contained and completely independent from each other.

3.1 D1

The D1-brane configuration (2,0) of table 1 leads us to take the static gauge as

x0(σ) = σ0 , u(σ) = σ1 , (3.1)

or (`0, `1) = (0, 4) in eq. (2.30), which corresponds to the AdS2 brane. The coordinates

transverse to this configuration are then

Xf =
{
x1, x2, x3, φ1, . . . , φ5

}
. (3.2)
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In order to identify which part of the spacetime supersymmetry is preserved on the

worldvolume of AdS2 brane, we should solve the worldvolume Killing spinor equation (2.35).

What is necessary to do this is β
(1)
± , which is read off from eqs. (2.26) and (2.28) as

β
(1)
± =

εi1i2

2
√
− det(Gij + Fij)

(
γi1i2 ±Fi1i2

)
. (3.3)

According to (2.36), we then see that this expression leads to

β
(1)
0 = −Γ04 (3.4)

in the static gauge (3.1). Now
(

Γ0123β
(1)
0

)2
= 1 obviously and thus 1 ± Γ0123β

(1)
0 in the

worldvolume Killing spinor equation (2.37) with p = 1 play the role of projection operators.

Having the projection operators, the next step described in section 2.3 is to send Γ0123β
(1)
0

to the right of S0(φ) in (2.37). If we denote the resulting expression as Γ̃, we get the

relation Γ0123β
(1)
0 S0(φ) = S0(φ)Γ̃. With the fact that Γ0123β

(1)
0 = −Γ1234, Γ̃ is evaluated

by repeated use of the identity (2.38) as follows:

−Γ̃ = S−1
0 (φ)Γ1234S0(φ)

= c̊1Γ1234 + s̊1c̊2Γ1235 + s̊1s̊2c̊3Γ1236 + s̊1s̊2s̊3c̊4Γ1237

+ s̊1s̊2s̊3s̊4c̊5Γ1238 + s̊1s̊2s̊3s̊4s̊5Γ1239 , (3.5)

where we have used the definitions of eq. (2.42). However, this shows clearly that 1 ± Γ̃

do not have the form of projection operators. At this stage, we are required to fix the

transverse angular position properly in such a way that makes them have the desired

form. Although there are various possibilities, we fix the angular position to be φα0 = π
2

(α = 1, . . . , 5) for simplicity, since all the points on S5 are equivalent and the AdS2 brane

is a point on S5. For this angular position, Γ̃ = −Γ1239. If we now split ε± according to

the eigenvalues of Γ1234 as

Γ1239ε+± = ±ε+± , Γ1239ε−± = ±ε−± , (3.6)

then the worldvolume Killing spinor equation (2.37) becomes

0 = −2u1/2Γ0123S0(φ)
(
ε++ − x0Γ0ε−+ − ~x0 · ~Γε−−

)
+ 2u−1/2Γ0123Γ4S0(φ)ε−+ , (3.7)

with

S0(φ) = S(φ)|φ1,...,φ5=π/2 . (3.8)

The solution of this equation is readily found to be

ε−+ = 0 , ε++ = ~x0 · ~Γε−− . (3.9)

Since other components except for those of (3.9) are undetermined, we conclude that the

supersymmetry preserved on the AdS2 brane is characterized by

ε+− , ε−− , (3.10)
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each of which has eight free components and we have sixteen supersymmetries (1/2-BPS)

in total.

Having identified the worldvolume supersymmetries (3.10), it is straightforward to ob-

tain the supersymmetry transformation rules for the worldvolume fields according to (2.40)

and (2.41). Firstly, the scalar fields corresponding to the transverse fluctuations are found

to transform as

δ~̃x = 2iu−1θ̄~ΓΓ0123 (η̂+ − η̂−) + . . . ,

δφ̃α = 2iθ̄Γα+4Γ0123 (η̂+ − η̂−) + . . . , (3.11)

where α = 1, . . . , 5 and

η̂+ = u1/2S0(φ)
(
ε+− − x0Γ0ε−−

)
,

η̂− = u−1/2Γ4S0(φ)ε−− . (3.12)

As for the worldvolume gauge field, the transformation rule is obtained as

δA0 = −2iuθ̄Γ0Γ0123 (η̂+ − η̂−) + . . . ,

δAu = −2iu−1θ̄Γ4Γ0123 (η̂+ − η̂−) + . . . . (3.13)

Finally, we get the transformation rule for the fermionic field as

δθ = −2u~̃x · ~ΓΓ01234η̂− + φ̃αΓα+4Γ01234 (η̂+ + η̂−)− β(1)
1 (η̂+ + η̂−) + . . . , (3.14)

where α = 1, . . . , 5 and

β
(1)
1 =

(
1

u
Γ0∂0X̃

f + uΓ4∂uX̃
f

)
eâfΓ04â + F0u . (3.15)

3.2 D3

The D3-brane configuration (3,1) of table 1 leads us to take the static gauge as

x0,1(σ) = σ0,1 , u(σ) = σ2 , φ5(σ) = σ3 , (3.16)

or (`0, `1, `2, `3) = (0, 1, 4, 9) in eq. (2.30), which corresponds to the AdS3×S1 brane. The

coordinates transverse to this configuration are then

Xf =
{
x2, x3, φ1, . . . , φ4

}
. (3.17)

In order to identify which part of the spacetime supersymmetry is preserved on the

worldvolume of AdS3×S1 brane, we should solve the worldvolume Killing spinor equa-

tion (2.35). What is necessary to do this is β
(3)
± , which is read off from eqs. (2.26)

and (2.28) as

β
(3)
± =

εi1···i4√
− det (Gij + Fij)

(
± 1

4!
γi1···i4 +

1

4
γi1i2Fi3i4 ±

1

8
Fi1i2Fi3i4

)
. (3.18)
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According to (2.36), we then see that this expression leads to

β
(3)
0 = Γ0149 (3.19)

in that static gauge (3.16). Now
(

Γ0123β
(3)
0

)2
= 1 obviously and thus 1 ± Γ0123β

(3)
0 in the

worldvolume Killing spinor equation (2.37) with p = 3 play the role of projection operators.

Having the projection operators, the next step described in section 2.3 is to send Γ0123β
(3)
0

to the right of S0(φ) in (2.37). If we denote the resulting expression as Γ̃, we get the

relation Γ0123β
(3)
0 S0(φ) = S0(φ)Γ̃. With the fact that Γ0123β

(3)
0 = Γ2349, Γ̃ is evaluated by

repeated use of the identity (2.38) as follows:

Γ̃ = S−1
0 (φ)Γ2349S0(φ)

= c̊1Γ2349 + s̊1c̊2Γ2359 + s̊1s̊2c̊3Γ2369 − s̊1s̊2s̊3c̊4s5Γ2378

+ s̊1s̊2s̊3c̊4c5Γ2379 + s̊1s̊2s̊3s̊4Γ2389 , (3.20)

where we have used the definitions of eq. (2.42). However, this shows clearly that 1 ± Γ̃

do not have the form of projection operators. One can make them have the desired form

by fixing the transverse angular position, and realize that there are four possible choices

which are (i) φ1
0 = 0, φ2,3,4

0 =arbitrary, (ii) φ1
0 = π

2 , φ2
0 = 0, φ3,4

0 =arbitrary, (iii) φ1,2
0 = π

2 ,

φ3
0 = 0, φ4

0 =arbitrary, (iv) φ1,2,3,4
0 = π

2 . Except for the last one, the first three choices lead

to the singular or degenerate induced worldvolume metric. Thus, if one wishes to have a

regular theory on the worldvolume, the last choice is quite natural and hence Γ̃ = Γ2389. If

we now split ε± according to the eigenvalues of Γ2389 as

Γ2389ε+± = ±ε+± , Γ2389ε−± = ±ε−± , (3.21)

then the worldvolume Killing spinor equation (2.37) becomes

0 = − 2u1/2Γ0123S0(φ)
[
ε+− −

(
x0Γ0 + x1Γ1

)
ε−− −

(
x2

0Γ2 + x3
0Γ3

)
ε−+

]
+ 2u−1/2Γ0123Γ4S0(φ)ε−− , (3.22)

with

S0(φ) = S(φ)|φ1,...,φ4=π/2 . (3.23)

The solution of this equation is readily found to be

ε−− = 0 , ε+− =
(
x2

0Γ2 + x3
0Γ3

)
ε−+ . (3.24)

Since other components except for those of (3.24) are undetermined, we conclude that the

supersymmetry preserved on the AdS3×S1 brane is characterized by

ε++ , ε−+ , (3.25)

each of which has eight free components and we have sixteen supersymmetries (1/2-BPS)

in total.

Having identified the worldvolume supersymmetries (3.25), it is straightforward to ob-

tain the supersymmetry transformation rules for the worldvolume fields according to (2.40)

– 13 –



J
H
E
P
0
9
(
2
0
1
7
)
0
2
2

and (2.41). Firstly, the scalar fields corresponding to the transverse fluctuations are found

to transform as

δx̃2,3 = 2iu−1θ̄Γ2,3Γ0123 (η̂+ − η̂−) + . . . ,

δφ̃1,2,3,4 = 2iθ̄Γ5,6,7,8Γ0123 (η̂+ − η̂−) + . . . , (3.26)

where

η̂+ = u1/2S0(φ)
[
ε++ −

(
x0Γ0 + x1Γ1

)
ε−+

]
,

η̂− = u−1/2Γ4S0(φ)ε−+ . (3.27)

As for the worldvolume gauge field, the transformation rule is obtained as

δA0,1 = −2iuθ̄Γ0,1Γ0123 (η̂+ − η̂−) + . . . ,

δAu = −2iu−1θ̄Γ4Γ0123 (η̂+ − η̂−) + . . . ,

δAφ5 = −2iθ̄Γ9Γ0123 (η̂+ − η̂−) + . . . , (3.28)

Finally, we get the transformation rule for the fermionic field as

δθ = −2u
(
x̃2Γ2 + x̃3Γ3

)
Γ01234η̂−+ φ̃αΓα+4Γ01234 (η̂+ + η̂−)−β(3)

1 (η̂+ + η̂−)+ . . . , (3.29)

where α = 1, 2, 3, 4 and

β
(3)
1 = −

(
1

u
Γ0∂0X̃

f +
1

u
Γ1∂1X̃

f + uΓ4∂uX̃
f + Γ9∂φ5X̃

f

)
eâfΓ0149â

− uΓ01Fuφ5 +
1

u
Γ04F1φ5 − Γ09F1u −

1

u
Γ14F0φ5 + Γ19F0u −

1

u2
Γ49F01 . (3.30)

One may wonder if the D-brane configuration considered above is stable since S1 in

S5 is not a topological cycle. The similar problem was worked out by [28]. The scalar

mode corresponding to slipping off the S1 in S5 satisfies Breitenlohner-Friedmann bound,

hence it does not lead to the instability. Also the above D-brane configuration satisfies the

so called generalized calibration, which is the condition for the supersymmetric cycle of

D-branes to satisfy on the general supergravity background with various fluxes. [9]. These

remarks hold as well for other D-brane configurations in subsequent subsections.

3.3 D5

In this subsection, we are led to consider two kinds of D5-brane configurations. The

common content for them is β
(5)
± appearing in the κ symmetry projection Γ(5), which is

read off from eqs. (2.26) and (2.28) as

β
(5)
± =

εi1···i6√
− det (Gij + Fij)

(
1

6!
γi1···i6 ±

1

48
γi1···i4Fi5i6 +

1

16
γi1i2Fi3i4Fi5i6

± 1

48
Fi1i2Fi3i4Fi5i6

)
. (3.31)
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3.3.1 (4, 2)-brane

The D5-brane configuration (4,2) of table 1 leads us to take the static gauge as

x0,1,2(σ) = σ0,1,2 , u(σ) = σ3 , φ4,5(σ) = σ4,5 , (3.32)

or (`0, `1, `2, `3, `4, `5) = (0, 1, 2, 4, 8, 9) in eq. (2.30), which corresponds to the AdS4×S2

brane. The coordinates transverse to this configuration are then

Xf =
{
x3, φ1, φ2, φ3

}
. (3.33)

In the static gauge (3.32), β
(5)
− of (3.31) becomes,

β
(5)
0 = −Γ012489 , (3.34)

according to (2.36). Now
(

Γ0123β
(5)
0

)2
= 1 obviously and thus 1±Γ0123β

(5)
0 in the worldvol-

ume Killing spinor equation (2.37) with p = 5 play the role of projection operators. Having

the projection operators, the next step described in section 2.3 is to send Γ0123β
(5)
0 to the

right of S0(φ) in (2.37). If we denote the resulting expression as Γ̃, we get the relation

Γ0123β
(5)
0 S0(φ) = S0(φ)Γ̃. With the fact that Γ0123β

(5)
0 = Γ3489, Γ̃ is evaluated by repeated

use of the identity (2.38) as follows:

Γ̃ = S−1
0 (φ)Γ3489S0(φ)

= c̊1c4Γ3489 + c̊1s4s5Γ3478 − c̊1s4c5Γ3479

+ s̊1c̊2c4Γ3589 + s̊1c̊2s4s5Γ3578 − s̊1c̊2s4c5Γ3579

+ s̊1s̊2c̊3c4Γ3689 + s̊1s̊2c̊3s4s5Γ3678 − s̊1s̊2c̊3s4c5Γ3679

+ s̊1s̊2s̊3Γ3789 , (3.35)

where we have used the definitions of eq. (2.42). This shows clearly that 1± Γ̃ do not have

the form of projection operators. One can make them have the desired form by fixing the

transverse angular position, and realize that there is a unique choice of φ1,2,3
0 = π

2 which

leads to Γ̃ = Γ3789. If we now split ε± according to the eigenvalues of Γ3789 as

Γ3789ε+± = ±ε+± , Γ3789ε−± = ±ε−± , (3.36)

then the worldvolume Killing spinor equation (2.37) becomes

0 =− 2u1/2Γ0123S0(φ)
[
ε+− −

(
x0Γ0 + x1Γ1 + x2Γ2

)
ε−− − x3

0Γ3ε−+

]
+ 2u−1/2Γ0123Γ4S0(φ)ε−− , (3.37)

with

S0(φ) = S(φ)|φ1,φ2,φ3=π/2 . (3.38)

The solution of this equation is readily found to be

ε−− = 0 , ε+− = x3
0Γ3ε−+ . (3.39)
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Since other components except for those of (3.39) are undetermined, we conclude that the

supersymmetry preserved on the AdS4×S2 brane is characterized by

ε++ , ε−+ , (3.40)

each of which has eight free components and we have sixteen supersymmetries (1/2-BPS)

in total.

Having identified the worldvolume supersymmetries (3.40), it is straightforward to ob-

tain the supersymmetry transformation rules for the worldvolume fields according to (2.40)

and (2.41). Firstly, the scalar fields corresponding to the transverse fluctuations are found

to transform as

δx̃3 = 2iu−1θ̄Γ3Γ0123 (η̂+ − η̂−) + . . . ,

δφ̃1,2,3 = 2iθ̄Γ5,6,7Γ0123 (η̂+ − η̂−) + . . . . (3.41)

where

η̂+ = u1/2S0(φ)
[
ε++ −

(
x0Γ0 + x1Γ1 + x2Γ2

)
ε−+

]
,

η̂− = u−1/2Γ4S0(φ)ε−+ . (3.42)

As for the worldvolume gauge field, we obtain

δA0,1,2 = −2iuθ̄Γ0,1,2Γ0123 (η̂+ − η̂−) + . . . ,

δAu = −2iu−1θ̄Γ4Γ0123 (η̂+ − η̂−) + . . . ,

δAφ4 = −2iθ̄Γ8Γ0123 (η̂+ − η̂−) + . . . .

δAφ5 = −2is4θ̄Γ9Γ0123 (η̂+ − η̂−) + . . . . (3.43)

Finally, we get the transformation rule for the fermionic field as

δθ = −2ux̃3Γ3Γ01234η̂− + φ̃αΓα+4Γ01234 (η̂+ + η̂−)− β(5)
1 (η̂+ + η̂−) + . . . (3.44)

where α = 1, 2, 3 and

β
(5)
1 =

(
1

u
Γ0∂0X̃

f +
1

u
Γ1∂1X̃

f +
1

u
Γ2∂2X̃

f + uΓ4∂uX̃
f

+ Γ8∂φ4X̃
f +

1

s4
Γ9∂φ5X̃

f

)
eâfΓ012489â

− 1

48u2s4
εi0···i3i4i5

(
eâ0`i0
· · · eâ3`i3

) ∣∣∣∣
φ1,φ2,φ3=π/2

Γâ0···â3Fi4i5 . (3.45)

3.3.2 (2, 4)-brane

The D5-brane configuration (2,4) of table 1 leads us to take the static gauge as

x0(σ) = σ0 , u(σ) = σ1 , φ2,3,4,5(σ) = σ2,3,4,5 , (3.46)
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or (`0, `1, `2, `3, `4, `5) = (0, 4, 6, 7, 8, 9) in eq. (2.30), which corresponds to the AdS2×S4

brane. The coordinates transverse to this configuration are then

Xf =
{
x1, x2, x3, φ1

}
(3.47)

In the static gauge (3.46), β
(5)
− of (3.31) becomes,

β
(5)
0 = −Γ046789 , (3.48)

according to (2.36). Now
(

Γ0123β
(5)
0

)2
= 1 obviously and thus 1±Γ0123β

(5)
0 in the worldvol-

ume Killing spinor equation (2.37) with p = 5 play the role of projection operators. Having

the projection operators, the next step described in section 2.3 is to send Γ0123β
(5)
0 to the

right of S0(φ) in (2.37). If we denote the resulting expression as Γ̃, we get the relation

Γ0123β
(5)
0 S0(φ) = S0(φ)Γ̃. With the fact that Γ0123β

(5)
0 = −Γ12346789 = −Γ05Γ11 where Γ11

of (A.6) has been used, Γ̃ is evaluated by repeated use of the identity (2.38) as follows:

Γ̃ = S−1
0 (φ)Γ05Γ11S0(φ)

=
(
− s̊1Γ04 + c̊1c2Γ05 + c̊1s2s3Γ06 + c̊1s2s3c4Γ07

+ c̊1s2s3s4c5Γ08 + c̊1s2s3s4s5Γ09
)

Γ11 , (3.49)

where we have used the definitions of eq. (2.42). This shows clearly that 1 ± Γ̃ do not

have the form of projection operators. One can make them have the desired form by fixing

the transverse angular position, and realize that there is a unique choice of φ1
0 = π

2 which

leads to Γ̃ = −Γ04Γ11. If we now use the chirality property of ε± in eq. (2.14) and split ε±
according to the eigenvalues of Γ04 as

Γ04ε+± = ±ε+± , Γ04ε−± = ±ε−± , (3.50)

then the worldvolume Killing spinor equation (2.37) becomes

0 = − 2u1/2Γ0123S0(φ)
(
ε+− − x0Γ0ε−+ − ~x0 · ~Γε−−

)
+ 2u−1/2Γ0123Γ4S0(φ)ε−+ , (3.51)

with

S0(φ) = S(φ)|φ1=π/2 . (3.52)

The solution of this equation is readily found to be

ε−+ = 0 , ε+− = ~x0 · ~Γε−− . (3.53)

Since other components except for those of (3.53) are undetermined, we conclude that the

supersymmetry preserved on the AdS2×S4 brane is characterized by

ε++ , ε−− , (3.54)
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each of which has eight free components and we have sixteen supersymmetries (1/2-BPS)

in total.

Having identified the worldvolume supersymmetries (3.54), it is straightforward to ob-

tain the supersymmetry transformation rules for the worldvolume fields according to (2.40)

and (2.41). Firstly, the scalar fields corresponding to the transverse fluctuations are found

to transform as

δ~̃x = 2iu−1θ̄~ΓΓ0123 (η̂+ − η̂−) + . . . ,

δφ̃1 = 2iθ̄Γ5Γ0123 (η̂+ − η̂−) + . . . . (3.55)

where

η̂+ = u1/2S0(φ)
(
ε++ − x0Γ0ε−−

)
,

η̂− = u−1/2Γ4S0(φ)ε−− . (3.56)

As for the worldvolume gauge field, we obtain

δA0 = −2iuθ̄Γ0Γ0123 (η̂+ − η̂−) + . . . ,

δAu = −2iu−1θ̄Γ4Γ0123 (η̂+ − η̂−) + . . . ,

δAφα = −2ieâφα θ̄ΓâΓ0123 (η̂+ − η̂−) + . . . . (3.57)

where α = 2, 3, 4, 5 and φ1 = π
2 should be imposed on eâφα . Finally, we get the transforma-

tion rule for the fermionic field as

δθ = −2u~̃x · ~ΓΓ01234η̂− + φ̃1Γ5Γ01234 (η̂+ + η̂−)− β(5)
1 (η̂+ + η̂−) + . . . , (3.58)

where

β
(5)
1 =

(
1

u
Γ0∂0X̃

f + uΓ4∂uX̃
f + Γ6∂φ2X̃

f +
1

s2
Γ7∂φ3X̃

f

+
1

s2s3
Γ8∂φ4X̃

f +
1

s2s3s4
Γ9∂φ5X̃

f

)
eâfΓ046789â

− 1

48s3
2s

2
3s4

εi0···i3i4i5
(
eâ0`i0
· · · eâ3`i3

) ∣∣∣∣
φ1=π/2

Γâ0···â3Fi4i5 . (3.59)

3.4 D7

In this subsection, we are led to consider two kinds of D7-brane configurations. The

common content for them is β
(7)
± appearing in the κ symmetry projection Γ(7), which is

read off from eqs. (2.26) and (2.28) as

β
(7)
± =

εi1···i8√
− det (Gij + Fij)

(
± 1

8!
γi1···i8 +

1

1440
γi1···i6Fi7i8 ±

1

192
γi1···i4Fi5i6Fi7i8

+
1

96
γi1i2Fi3i4Fi5i6Fi7i8 ±

1

384
Fi1i2Fi3i4Fi5i6Fi7i8

)
. (3.60)
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3.4.1 (5, 3)-brane

The D7-brane configuration (5,3) of table 1 leads us to take the static gauge as

x0,1,2,3(σ) = σ0,1,2,3 , u(σ) = σ4 , φ3,4,5(σ) = σ5,6,7 , (3.61)

or (`0, `1, `2, `3, `4, `5, `6, `7) = (0, 1, 2, 3, 4, 7, 8, 9) in eq. (2.30), which corresponds to the

AdS5×S3 brane. The coordinates transverse to this configuration are then

Xf = {φ1, φ2} . (3.62)

In the static gauge (3.61), β
(7)
− of (3.60) becomes,

β
(7)
0 = Γ01234789 , (3.63)

according to (2.36). Now
(

Γ0123β
(7)
0

)2
= 1 obviously and thus 1 ± Γ0123β

(7)
0 in the world-

volume Killing spinor equation (2.37) with p = 7 play the role of projection operators.

Having the projection operators, the next step described in section 2.3 is to send Γ0123β
(7)
0

to the right of S0(φ) in (2.37). If we denote the resulting expression as Γ̃, we get the

relation Γ0123β
(7)
0 S0(φ) = S0(φ)Γ̃. With the fact that Γ0123β

(7)
0 = −Γ4789, Γ̃ is evaluated

by repeated use of the identity (2.38) as follows:

−Γ̃ = S−1
0 (φ)Γ4789S0(φ)

= (̊c1Γ4 + s̊1c̊2Γ5 + s̊1s̊2c3Γ6 + s̊1s̊2s3c4Γ7 + s̊1s̊2s3s4c5Γ8 + s̊1s̊2s3s4s5Γ9)

× (c3Γ789 − s3c4Γ689 + s3s4c5Γ679 − s3s4s5Γ678) , (3.64)

where we have used the definitions of eq. (2.42). This shows clearly that 1± Γ̃ do not have

the form of projection operators. One can make them have the desired form by fixing the

transverse angular position, and realize that there is a unique choice of φ1,2
0 = π

2 which

leads to Γ̃ = −Γ6789. If we now split ε± according to the eigenvalues of Γ6789 as

Γ6789ε+± = ±ε+± , Γ6789ε−± = ±ε−± , (3.65)

then the worldvolume Killing spinor equation (2.37) becomes

0 = − 2u1/2Γ0123S0(φ) (ε++ − x · Γε−+)

+ 2u−1/2Γ0123Γ4S0(φ)ε−+ , (3.66)

with

S0(φ) = S(φ)|φ1,φ2=π/2 . (3.67)

The solution of this equation is readily found to be

ε−+ = 0 , ε++ = 0 . (3.68)

Since other components except for those of (3.68) are undetermined, we conclude that the

supersymmetry preserved on the AdS5×S3 brane is characterized by

ε+− , ε−− , (3.69)
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each of which has eight free components and we have sixteen supersymmetries (1/2-BPS)

in total.

Having identified the worldvolume supersymmetries (3.69), it is straightforward to ob-

tain the supersymmetry transformation rules for the worldvolume fields according to (2.40)

and (2.41). Firstly, the scalar fields corresponding to the transverse fluctuations are found

to transform as

δφ̃1,2 = 2iθ̄Γ5,6Γ0123 (η̂+ − η̂−) + . . . , (3.70)

where

η̂+ = u1/2S0(φ) (ε+− − x · Γε−−) ,

η̂− = u−1/2Γ4S0(φ)ε−− . (3.71)

As for the worldvolume gauge field, we obtain

δA0,1,2,3 = −2iuθ̄Γ0,1,2,3Γ0123 (η̂+ − η̂−) + . . . ,

δAu = −2iu−1θ̄Γ4Γ0123 (η̂+ − η̂−) + . . . ,

δAφα = −2ieâφα θ̄ΓâΓ0123 (η̂+ − η̂−) + . . . , (3.72)

where α = 3, 4, 5 and φ1,2 = π
2 should be imposed on eâφα . Finally, we get the transformation

rule for the fermionic field as

δθ = φ̃αΓα+4Γ01234 (η̂+ + η̂−)− β(7)
1 (η̂+ + η̂−) + . . . , (3.73)

where α = 1, 2 and

β
(7)
1 = −

(
1

u
Γ0∂0X̃

f +
1

u
Γ1∂1X̃

f +
1

u
Γ2∂2X̃

f +
1

u
Γ3∂3X̃

f + uΓ4∂uX̃
f

+ Γ7∂φ3X̃
f +

1

s3
Γ8∂φ4X̃

f +
1

s3s4
Γ9∂φ5X̃

f

)
eâfΓ01234789â

+
1

1440u3s2
3s4

εi0···i5i6i7
(
eâ0`i0
· · · eâ5`i5

) ∣∣∣∣
φ1,φ2=π/2

Γâ0···â5Fi6i7 . (3.74)

3.4.2 (3, 5)-brane

The D7-brane configuration (3,5) of table 1 leads us to take the static gauge as

x0,1(σ) = σ0,1 , u(σ) = σ2 , φ1,...,5(σ) = σ3,...,7 , (3.75)

or (`0, `1, `2, `3, `4, `5, `6, `7) = (0, 1, 4, 5, 6, 7, 8, 9) in eq. (2.30), which corresponds to the

AdS3×S5 brane. The coordinates transverse to this configuration are then

Xf = {x2, x3} . (3.76)

In the static gauge (3.75), β
(7)
− of (3.60) becomes,

β
(7)
0 = Γ01456789 , (3.77)
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according to (2.36). Now
(

Γ0123β
(7)
0

)2
= 1 obviously and thus 1±Γ0123β

(7)
0 in the worldvol-

ume Killing spinor equation (2.37) with p = 7 play the role of projection operators. Having

the projection operators, the next step described in section 2.3 is to send Γ0123β
(7)
0 to the

right of S0(φ) in (2.37). But this process is trivial because we see that Γ0123β
(7)
0 moves

freely to the right of S0(φ) by noticing Γ0123β
(7)
0 = Γ23...9 = Γ01Γ11 from the definition of

Γ11 given in (A.6). If we now split ε± according to the eigenvalues of Γ01 as

Γ01ε+± = ±ε+± , Γ01ε−± = ±ε−± , (3.78)

then the worldvolume Killing spinor equation (2.37) becomes

0 = − 2u1/2Γ0123S(φ)
[
ε+− −

(
x0Γ0 + x1Γ1

)
ε−+ −

(
x2

0Γ2 + x3
0Γ3

)
ε−−

]
+ 2u−1/2Γ0123Γ4S(φ)ε−+ , (3.79)

The solution of this equation is readily found to be

ε−+ = 0 , ε+− =
(
x2

0Γ2 + x3
0Γ3

)
ε−− . (3.80)

Since other components except for those of (3.80) are undetermined, we conclude that the

supersymmetry preserved on the AdS3×S5 brane is characterized by

ε++ , ε−− , (3.81)

each of which has eight free components and we have sixteen supersymmetries (1/2-BPS)

in total.

Having identified the worldvolume supersymmetries (3.81), it is straightforward to ob-

tain the supersymmetry transformation rules for the worldvolume fields according to (2.40)

and (2.41). Firstly, the scalar fields corresponding to the transverse fluctuations are found

to transform as

δx̃2,3 = 2iu−1θ̄Γ2,3Γ0123 (η̂+ − η̂−) + . . . , (3.82)

where

η̂+ = u1/2S(φ)
[
ε++ −

(
x0Γ0 + x1Γ1

)
ε−−

]
,

η̂− = u−1/2Γ4S(φ)ε−− (3.83)

As for the worldvolume gauge field, we obtain

δA0,1 = −2iuθ̄Γ0,1Γ0123 (η̂+ − η̂−) + . . . ,

δAu = −2iu−1θ̄Γ4Γ0123 (η̂+ − η̂−) + . . . ,

δAφα = −2ieâφα θ̄ΓâΓ0123 (η̂+ − η̂−) + . . . , (3.84)

where α = 1, . . . , 5. Finally, we get the transformation rule for the fermionic field as

δθ = −2u
(
x̃2Γ2 + x̃3Γ3

)
Γ01234η̂− − β(7)

1 (η̂+ + η̂−) + . . . , (3.85)
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where

β
(7)
1 = −

(
1

u
Γ0∂0X̃

f +
1

u
Γ1∂1X̃

f + uΓ4∂uX̃
f + Γ5∂φ1X̃

f +
1

s1
Γ6∂φ2X̃

f

+
1

s1s2
Γ7∂φ3X̃

f +
1

s1s2s3
Γ8∂φ4X̃

f +
1

s1s2s3s4
Γ9∂φ5X̃

f

)
eâfΓ01456789â

+
1

1440us4
1s

3
2s

2
3s4

εi0···i5i6i7eâ0`i0
· · · eâ5`i5Γâ0···â5Fi6i7 . (3.86)

3.5 Invariance of quadratic action

The transformation rules obtained in the previous subsections are explicit to the leading

linear order in the worldvolume fluctuating fields. This means that they can be used to

confirm the invariance of the quadratic action coming from the expansion of the gauge

fixed D-brane action in terms of the worldvolume fields. In this last subsection, we would

like to verify the transformation rules by showing the invariance of the quadratic action.

However, we will not consider all the six kinds of AdS branes but take one representative,

since the transformation rules have the same pattern.

We consider the (3,1) configuration of D3-brane of section 3.2, the AdS3×S1 brane,

as the representative. The D3-brane action is given in eq. (2.15) for p = 3 and the closed

five-form H5 in the WZ term [26] is

H5 = − i
6
Lâ ∧ Lb̂ ∧ Lĉ ∧ L̄I ∧ Γâb̂ĉτ IJ2 LJ − iF ∧ Lâ ∧ L̄I ∧ Γâτ IJ1 LJ

+
1

30

(
εa1...a5La1 ∧ · · · ∧ La5 + εa

′
1...a

′
5La

′
1 ∧ · · · ∧ La′5

)
. (3.87)

Then, in the static gauge of (3.16) and the covariant κ symmetry fixing condition (2.32),

the expansion of the action in terms of the fluctuating fields leads us to have the bosonic

(S
(2)
B ) and fermionic (S

(2)
F ) parts of the quadratic action as

S
(2)
B =

∫
d4σ
√
−g
[
− 1

2
u2gij∂ix̃

m∂j x̃
m − 2u2

(
x̃3∂φ5 x̃

2 − x̃2∂φ5 x̃
3
)

− 1

2
gij∂iφ̃

α∂jφ̃
α +

1

2

(
φ̃α
)2
− 1

4
gijgklFikFjl

]
,

S
(2)
F = i

∫
d4σ
√
−g
(
eiāθ̄Γ

ā∇iθ + θ̄Γ239θ
)
, (3.88)

where m = 2, 3, α = 1, 2, 3, 4, ā = 0, 1, 4, 9, and the terms linear in the derivative ∂φ5 and

the fermionic mass term originate from the WZ term. The metric gij is the induced one

on the worldvolume given by

gijdσ
idσj = −u2

(
dx0
)2

+ u2
(
dx1
)2

+
du2

u2
+
(
dφ5
)2
. (3.89)

This induced metric is also expressed as eāi e
b̄
jηāb̄, where eāi is defined by the worldvolume

field independent part of the pullback of zehnbein (2.23), that is, eāi ≡ ∂iX
µeāµ|X̃f=0. In

the covariant derivative for the spinor given by ∇i = ∂i + 1
4ω

āb̄
i Γāb̄, the spin connection
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is determined from eāi by using the Cartan structure equation or can be defined, like the

definition of eāi , as ωāb̄i ≡ ∂iX
µωāb̄µ |X̃f=0 from the spacetime spin connection ωāb̄µ . In the

present case, the nonvanishing components are ω04 = udx0 and ω14 = udx1.

We note that the Lagrangian density for x̃m in the quadratic action (3.88) is not of

the canonical form because of the overall u2 factor. In order to make it canonical, we take

the rescaling of x̃m as

x̃m −→ x̃m

u
, (3.90)

under which the Lagrangian density for the field x̃m becomes

− 1

2
gij∂ix̃

m∂j x̃
m − 3

2
(x̃m)2 − 2

(
x̃3∂φ5 x̃

2 − x̃2∂φ5 x̃
3
)
. (3.91)

There are also associated changes in the transformation rules of eqs. (3.26) and (3.29) as

δx̃m = 2iθ̄ΓmΓ0123 (η̂+ − η̂−) + . . . ,

δθ = −2x̃mΓmΓ01234η̂− + φ̃αΓα+4Γ01234 (η̂+ + η̂−)− β(3)
1 (η̂+ + η̂−) + . . . , (3.92)

where x̃m dependent part in β
(3)
1 of (3.30) becomes

− eiāΓā∂ix̃mΓ0149Γm + x̃mΓ019Γm . (3.93)

Bearing in mind the above rescaled expressions (3.91), (3.92) and (3.93), we are now

ready to consider the transformation of the quadratic action (3.88) by applying the trans-

formation rules (3.26), (3.28) and (3.29) with (3.27) and (3.30). The calculation itself is

less trivial but straightforward, and the final result is

δS
(2)
B + δS

(2)
F = 0 . (3.94)

This invariance of the quadratic action clearly shows that the transformation rules realize

the supersymmetry of the worldvolume theory.

4 Non-AdS branes

We turn to the non-AdS branes, in which the AdS radial direction u is transverse to the

D-brane configuration and acts as a worldvolume field. From table 1, it turns out that

there are six types of Lorentzian non-AdS D-brane configurations, which are supposed to

be supersymmetric. For these configurations, the brane embedding coordinates X`i chosen

by the static gauge condition (2.30) and the associated β
(p)
0 of (2.36) are listed in table 2.

As described in section 2.3, a given D-brane configuration is supersymmetric if the

eigenvalues of Γ0123β
(p)
0 are ±1, since 1 ± Γ0123β

(p)
0 appearing in the worldvolume Killing

spinor equation (2.37) are then projection operators and hence used to pick out preserved

supersymmetries from ε+ and ε−. For all the expressions of β
(p)
0 listed in table 2, however,(

Γ0123β
(p)
0

)2
= −1 which means that the eigenvalues of Γ0123β

(p)
0 are ±i. Therefore, we

conclude that the static non-AdS D-branes are not supersymmetric.

– 23 –



J
H
E
P
0
9
(
2
0
1
7
)
0
2
2

Dp (n,n′) X`i β
(p)
0

D1 (2,0) x0,1 −Γ01

D3
(3,1)

(1,3)

x0,1,2, φ5

x0, φ3,4,5

Γ0129

Γ0789

D5
(4,2)

(2,4)

x0,1,2,3, φ4,5

x0,1, φ2,3,4,5

−Γ012389

−Γ016789

D7 (3,5) x0,1,2, φ1,...,5 Γ01256789

Table 2. Configurations of Non-AdS branes.

The radial AdS coordinate in the worldvolume Killing spinor equation (2.37) should

be understood as u0, the AdS radial position of D-brane. One may argue that if a non-

AdS D-brane is placed at the origin of u, that is u0 = 0, then the solution of the Killing

spinor equation is ε− = 0 while leaving ε+ free and thus the non-AdS brane at such special

position is supersymmetric. The problem is that the induced worldvolume metric becomes

singular at u0 = 0. To avoid the singularity, one might consider a kind of regularization

by introducing a non-vanishing infinitesimal value of u0. However, he or she encounters

again the fact that 1 ± Γ0123β
(p)
0 are not projection operators. Thus the conclusion about

the supersymmetry of non-AdS branes does not change.

It should be noted that the conclusion in this section is only for the static configura-

tions. If the non-AdS brane takes a certain constant motion along a transverse direction

or has non-vanishing fluxes on its worldvolume, the situation may change completely. A

typical example is the giant graviton [29–31], one type of which is a (1,3) configuration of

D3 brane and takes a constant motion along a transverse angular direction. It is known to

be 1/2-BPS for some particular angular speed.

5 Discussion

Starting from the data in table 1, the classification of 1/2-BPS D-branes in the AdS5×S5

background obtained by the covariant open string description, we have considered all pos-

sible static D-brane configurations without worldvolume fluxes. We have identified which

part of the target spacetime supersymmetry is preserved on the D-brane worldvolume by

solving the worldvolume Killing spinor equation and showed that only the AdS type D-

branes where the AdS radial direction is a worldvolume coordinate are 1/2-BPS. As for

the supersymmetric configurations, we have obtained the associated worldvolume super-

symmetry transformation rules for the worldvolume fields.

One interesting point in the study of supersymmetric configuration is that the trans-

verse angular position has been determined without resort to the equations of motion.

The position is fixed only by requiring the worldvolume supersymmetry and sometimes the

non-degeneracy of induced worldvolume metric. For example, let us consider the AdS4×S2

embedding of D5-brane of section 3.3.1, which was also explored in ref. [5] related to the

holographic description of the defect conformal field theory [4]. As shown in [5], there are
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two solutions of the equations of motion for the transverse angular position and it turns out

that only one of them leads to the supersymmetric configuration which is the same with

the angular position determined in this paper as it should be. In fact, this kind of situation

seems to be natural. Usually, the solution of the Killing spinor equation satisfies also the

equations of motion. Thus the fact that the transverse angular position is determined in

the process of solving the Killing spinor equation may not be surprising.

As shown in section 4, all the static non-AdS branes without any worldvolume fluxes

are not supersymmetric. We emphasize again that this may change completely when there

are motions in transverse directions or the worldvolume fluxes are turned on, since we

already know at least one definite example, the giant graviton. Beyond the static case,

there will be lots of possibilities. Having said that, we expect that there will be a suitable

classification facilitating the study of them similar to the static D-brane configurations

classified as the AdS and non-AdS types.

Finally, we would like to comment on a specific brane configuration, which is the

D3-brane spanning the x0,1,2,3 directions. If we consider the static configuration

σµ = xµ , u = constant , φα = constant , (5.1)

where µ = 0, 1, 2, 3 and α = 1, . . . , 5, this satisfies the D3-brane equation of motion. As

discussed in [34], the corresponding D3 brane action vanishes so that it satisfies ‘no force’

condition. This is (4,0) brane in our notation. However as shown by [8], neither the usual

covariant gauge fixing nor Killing spinor gauge fixing works to obtain supersymmetric world

volume gauge theories. This configuration corresponds to D3 brane parallel to N D3 branes,

which are geometrized as we go to the near horizon limit. On the other hand, all brane

configurations we consider come from intersecting brane configurations, where the other D

brane further breaks the half of the supersymmetry of the D3 branes. Interestingly these

intersecting brane configurations precisely match the 1/2-BPS configurations classified by

covariant open string analysis [17–19]. For theses configurations, the usual covariant κ

gauge fixing has no problem.

In [34], the authors consider a different gauge to attack the κ gauge fixing problem of

the parallel D3 brane. With γ̄ = εIJΓ0123, they define

θ ≡ (1− γ̄) Θ , η ≡ (1 + γ̄) Θ (5.2)

where indices I, J of Θ being suppressed. Setting θ = 0 corresponds to the usual Killing

gauge, which does not work for the parallel D3 brane case. Instead they choose η = 0,

which was shown to lead to the sensible kappa-gauge fixing for the D3 brane action. Thus

the treatment of this parallel brane configuration should be rather different from the other

configurations considered in the current paper.

One possible way to obtain the four dimensional supersymmetric world volume theory

is to start from the (4, 2)-brane of table 1 and carry out the dimensional reduction. Let

us consider the non-AdS type D5-brane which spans x0,1,2,3 directions and wraps S2 inside

S5. If we take the limit of shrinking S2, we get an effective D3-brane. However, as shown

in the last section, such non-AdS type brane is not supersymmetric. In order to make the

configuration supersymemtric, it is thus natural to consider turning on some worldvolume
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flux. Since we would like to keep the Poincaré invariance along x0,1,2,3 directions, we turn

on flux on S2. Then we can check the supersymmetry of the configuration after taking

the limit of shrinking S2. Indeed, the resulting effective D3-brane has been shown to be

1/2-BPS for some particular value of flux [5]. In this way, we can have four dimensional

supersymmetric worldvolume theory. It would be very interesting to construct such theory

and compare its supersymmetry structure with that explored in [34].
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A Notation and convention

The notation for the supercoordinate we use is

ZM =
(
Xµ,ΘI

)
, (A.1)

where the spinor index for the fermionic coordinate Θ has been suppressed, µ is the ten-

dimensional curved space-time vector index, and I (= 1, 2) is introduced to distinguish

the two spinors with the same chirality (The chirality is taken to be positive). As for the

Lorentz frame or the tangent space, the vector index is denoted by

â = (a, a′) , a = 0, 1, 2, 3, 4 , a′ = 5, . . . , 9 , (A.2)

where a (a′) corresponds to the tangent space of AdS5 (S5), and the metric ηâb̂ follows the

most plus sign convention as ηâb̂ = diag(−,+,+, . . . ,+).

The matrices acting on the spinors indexed with I, J, . . . are denoted by

τ1 =

(
0 1

1 0

)
, τ2 =

(
0 1

−1 0

)
, τ3 =

(
1 0

0 −1

)
. (A.3)

The explicit expression for the vector (spinor) superfield or the Maurer-Cartan one-form

superfield Lâ = dZMLâM (LI = dZMLIM ) is given by [32, 33]

Lâ = eâ − 2i

15∑
n=0

1

(2n+ 2)!
Θ̄IΓâ

(
M2n

)IJ
DΘJ ,

LI =
16∑
n=0

1

(2n+ 1)!

(
M2n

)IJ
DΘJ , (A.4)

where Γâ is the 32× 32 Dirac gamma matrix, and M2 and the spinor covariant derivative

DΘI are, in the 32 component notation,

(M2)IJ = −εIKΓ∗Γ
âΘKΘ̄JΓâ +

1

2
τ2
KJ
(

ΓabΘIΘ̄KΓabΓ∗ − Γa
′b′ΘIΘ̄KΓa′b′Γ

′
∗

)
,

DΘI =

(
d+

1

4
ωâb̂Γâb̂

)
ΘI − i

2
τ2
IJeâΓ∗ΓâΘ

J . (A.5)
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Some definitions of gamma matrix products and their properties are as follows:

Γ∗ ≡ iΓ01234 , Γ′∗ ≡ −iΓ56789 , Γ2
∗ = 1 , Γ′2∗ = −1 ,

Γ11 = Γ01...9 = Γ∗Γ
′
∗ ,

(
Γ11
)2

= 1 . (A.6)
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