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1 Introduction

Recently, the Sachdev-Ye-Kitaev (SYK) model [5–12], which arose from Sachdev-Ye

model [1–4], has emerged as a useful laboratory to understand the origins of AdS/CFT du-

ality. Related models have been studied [13, 14] with extensions [15–25] and generalizations

in the form of tensor type models [26–32] . Interesting random matrix theory interpreta-

tions have been studied in [33–39]. The model is notable for several reasons. It features

an emergent reparametrization and conformal invariance in the IR. The out-of-time-order

correlators exhibit quantum chaos, with a Lypunov exponent characteristic of black holes,

thus providing an example of the butterfly effect [40–49].

Like vector models, the SYK model is solvable at large N . Vector models, in general,

at large N can be expressed in terms of bi-local fields, and it was proposed in [50] that

these bi-local fields in fact provide a bulk construction of the dual higher spin theory [51],

with the pair of coordinates in the bi-local combining to provide the coordinates of the

emergent AdS space-time.

The simplest proposal of [50] was implemented nontrivially in three dimensions giving

an understanding of bulk higher spin fields [52–54]. In the one dimensional SYK case [10, 11]

such bulk mapping is realized in its simplest form, with the bi-local times mapped to

AdS2 space-time, thus providing an elementary example (in addition to the c = 1 matrix

model [55]) of how a Large N quantum mechanical model grows an additional dimension.
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Nevertheless, and despite great interest, the precise bulk dual of the SYK model is

still ununderstood. It has been conjectured in [56–59] that the gravity sector of this model

is the Jackiw-Teitelboim model [60, 61] of dilaton-gravity with a negative cosmological

constant, studied in [62], while [63] provides strong evidence that it is actually Liouville

theory. (See also [64–69]) It is also known that the matter sector contains an infinite tower

of particles [8–10]. Recently, couplings of these particles have been computed by calculating

six point functions in the SYK model [70].

In this paper, we provide a three dimensional interpretation of the bulk theory. The

zero temperature SYK model corresponds to a background AdS2×I, where I = S1/Z2 is a

finite interval whose size needs to be suitably chosen. There is a single scalar field coupled to

gravity, whose mass is equal to the Breitenlohner-Freedman bound [71] of AdS2. The scalar

field satisfies Dirichlet boundary conditions at the ends and feels an external delta function

potential at the middle of the interval. Alternatively, one can consider half of the interval

with Dirichlet condition at one end, and a nontrivial boundary condition determining the

derivative of the field at the other end.1 The background can be thought of as coming from

the near-horizon geometry of an extremal charged black hole which reduces the gravity

sector to Jackiw-Teitelboim model with the metric in the third direction becoming the

dilaton of the latter model [57]. The strong coupling limit of the SYK model corresponds

to a trivial metric in the third direction, while at finite coupling this acquires a dependence

on the AdS2 spatial coordinate. With a suitable choice of the size of the interval L and

the strength of the delta function potential V we show that at strong coupling, (i) the

spectrum of the Kaluza-Klein (KK) modes of the scalar is precisely the spectrum of the

SYK model and (ii) the two point function2 with both points at the center of the interval

is in precise agreement with the strong coupling bi-local propagator, using the simplest

identification of the AdS coordinates proposed in [50]. For finite coupling, we adopt the

proposal of [57, 58], and show that to order 1/J , the poles of the propagator shift in a

manner consistent with the explicit results in [9].

In section 2, we review relevant aspects of the bilocal formulation of the model. In sec-

tion 3, we discuss the three dimensional interpretation. Section 4 contains some concluding

remarks.

2 Overview of SYK

In this section, we will give a brief review of the Large N formalism and results along [10,

11]. The Sachdev-Ye-Kitaev model [5] is a quantum mechanical many body system with

all-to-all interactions on fermionic N sites (N � 1), represented by the Hamiltonian

H =
1

4!

N∑
i,j,k,l=1

Jijkl χi χj χk χl , (2.1)

1We thank Edward Witten for a clarification on this point.
2Note that this two point function is not the same as the standard AdS2 propagator. We thank Juan

Maldacena for discussions about this point.
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where χi are Majorana fermions, which satisfy {χi, χj} = δij . The coupling constant Jijkl
are random with a Gaussian distribution with width J . The generalization to analogous

q-point interacting model is straightforward [5, 9]. After the disorder averaging for the

random coupling Jijkl, there is only one effective coupling J in the effective action. The

model is usually treated by replica method. One does not expect a spin glass state in this

model [7] so that we can restrict to the replica diagonal subspace [10]. The Large N theory

is simply represented through a (replica diagonal) bi-local collective field:

Ψ(t1, t2) ≡ 1

N

N∑
i=1

χi(t1)χi(t2) , (2.2)

where we have suppressed the replica index. The corresponding path-integral is

Z =

∫ ∏
t1,t2

DΨ(t1, t2) µ(Ψ) e−Scol[Ψ] , (2.3)

where Scol is the collective action:

Scol[Ψ] =
N

2

∫
dt
[
∂tΨ(t, t′)

]
t′=t

+
N

2
Tr log Ψ − J2N

2q

∫
dt1dt2 Ψq(t1, t2) . (2.4)

Here the trace term comes from a Jacobian factor due to the change of path-integral

variable, and the trace is taken over the bi-local time. One also has an appropriate order

O(N0) measure µ. This action being of order N gives a systematic G = 1/N expansion,

while the measure µ found as in [72] begins to contribute at one-loop level (in 1/N). Other

formulations can be employed using two bi-local fields. These can be seen to reduce to Scol

after elimination.

In the above action, the first linear term represents a conformal breaking term, while

the other terms respect conformal symmetry. In the IR limit with strong coupling |t|J � 1,

the collective action is reduced to the critical action

Sc[Ψ] =
N

2
Tr log Ψ − J2N

2q

∫
dt1dt2 Ψq(t1, t2) , (2.5)

which exhibits an emergent reparametrization symmetry

Ψ(t1, t2) → Ψf (t1, t2) =
∣∣∣f ′(t1)f ′(t2)

∣∣∣ 1q Ψ(f(t1), f(t2)) , (2.6)

with an arbitrary function f(t). This symmetry is responsible for the appearance of zero

modes in the strict IR critical theory. This problem was addressed in [10] with analog of the

quantization of extended systems with symmetry modes [73]. The above symmetry mode

representing time reparametrization can be elevated to a dynamical variable introduced

according to [74] through the Faddeev-Popov method, leading to a Schwarzian action for

this variable [11] proposed by Kitaev, and established first at quadratic level in [9]:

S[f ] = − Nα

24πJ

∫
dt

[
f ′′′(t)

f ′(t)
− 3

2

(
f ′′(t)

f ′(t)

)2
]
, (2.7)

– 3 –
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where the coefficient α = −12πB1γ, with B1 representing the strength of the first order

correction, established in numerical studies by Maldacena and Stanford [9]. The details of

the non-linear evaluation are give in [11].

For the rest of this paper we proceed with q = 4. Fluctuations around the critical IR

background can be studied by expanding the bi-local field as [10]

Ψ(t1, t2) = Ψ0(t1, t2) +

√
2

N
η(t1, t2) , (2.8)

where η is the fluctuation and the critical IR background solution is given by

Ψ0(t1, t2) =

(
1

4πJ2

) 1
4 sgn(t12)√

|t12|
, (2.9)

where we defined tij ≡ ti − tj . With a simple coordinate transformation

t =
1

2
(t1 + t2) , z =

1

2
(t1 − t2) , (2.10)

the bi-local field η(t1, t2)

η(t1, t2) ≡ Φ(t, z) , (2.11)

can be then considered as a field in two dimensions (t, z). Expand the fluctuation field as

Φ(t, z) =
∑
ν,ω

Φ̃ν,ωuν,ω(t, z) (2.12)

in a complete orthonormal basis

uν,ω(t, z) = sgn(z) eiωt Zν(|ωz|) , (2.13)

with Zν are a complete set of modes given in eq. (C.1), which diagonalizes the quadratic

kernel [8]. Then, the quadratic action can be written as

S(2) =
3J

32
√
π

∑
ν,ω

Nν Φ̃ν,ω

(
g̃(ν)− 1

)
Φ̃ν,ω , (2.14)

where the normalization factor Nν is

Nν =

(2ν)−1 for ν = 3/2 + 2n

2ν−1 sinπν for ν = ir ,
(2.15)

and the kernel is given by

g̃(ν) = − 2ν

3
cot
(πν

2

)
. (2.16)

After a field redefinition [10] the effective action can be written as

Seff
m =

1

2

3J

8
√
π

∫
dt

∫ ∞
0

dz

z
Φ(t, z)

[
g̃(
√
DB)− 1

]
Φ(t, z) , (2.17)
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featuring the Bessel operator

DB ≡ z2∂2
z + z∂z − z2∂2

t . (2.18)

The operator DB is in fact closely related to the laplacian on AdS2,

∇AdS2Φ =
√
zDB

(
1√
z

Φ

)
− 1

4
Φ (2.19)

where t and z in (2.10) are the Poincare coordinates in AdS2. This, therefore, realizes

the naive form of the proposal of [50]. However the action for Φ(t, z) is non-polynomial in

derivatives.

To understand the implications of this, consider the bi-local propagator, first evaluated

in [8]. From the above effective action, one has that the poles are determined as solutions

of g̃(ν) = 1, they represent a sequence denoted by pm as

2pm
3

= − tan
(πpm

2

)
, 2m+ 1 < pm < 2m+ 2 (m = 0, 1, 2, · · · ) (2.20)

Therefore, the bi-local propagator is written as residues of ν = pm poles as

D(t, z; t′, z′) = − 32π
3
2

3J

∫ ∞
−∞

dω e−iω(t−t′)
∞∑
m=1

R(pm)
Z−pm(|ω|z>)Jpm(|ω|z<)

Npm

, (2.21)

where z>(z<) is the greater (smaller) number among z and z′. The residue function is

defined by

R(pm) ≡ Res

(
1

g̃(ν)− 1

) ∣∣∣∣
ν=pm

=
3p2
m

[p2
m + (3/2)2][πpm − sin(πpm)]

. (2.22)

Since that pm are zeros of g̃(ν)− 1, near each pole pm, we can approximate as

g̃(ν)− 1 ≈
[
ν2 − (pm)2

]
fm , (2.23)

where fm can be determined from residue of 1/(g̃(ν)− 1) at ν = pm. Explicitly evaluating

these residues, the inverse kernel is written as an exact expansion

1

g̃(ν)− 1
=

∞∑
m=1

6 p3
m

[p2
m + (3/2)2][πpm − sin(πpm)]

(
1

ν2 − p2
m

)
. (2.24)

The effective action near a pole labelled by m is that of a scalar field with mass, M2
m =

p2
m − 1

4 , (m > 0) in AdS2:

Seff
m =

1

2

∫ √
−g d2x

[
−gµν∂µφm∂νφm −

(
p2
m −

1

4

)
φ2
m

]
, (2.25)

where the metric gµν is given by gµν = diag(−1/z2, 1/z2). It is clear from the above analysis

that a spectrum of a sequence of 2D scalars, with growing conformal dimensions is being

packed into a single bi-local field. In other words the bi-local representation effectively

packs an infinite product of AdS Laplacians with growing masses. An illustration of how

this can happen is given in the appendix A, relating to the scheme of Ostrogradsky. It

is this feature which leads to the suggestion that the theory should be represented by an

enlarged number of fields, or equivalently by an extra Kaluza-Klein dimension.

For finite coupling, the poles of the propagator is shifted. This has been calculated

by [9] in a 1/J expansion.
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3 3D interpretation

According to [57] and [58], the bulk dual of the SYK model involves Jackiw-Teitelboim

theory of two dimensional dilaton gravity, whose action is given by (upto usual bound-

ary terms)

SJT = − 1

16πG

∫ √
−g
[
φ(R+ 2)− 2φ0

]
, (3.1)

where φ0 is a constant, and φ is a dilaton field. The zero temperature background is given

by AdS2 with a metric

ds2 =
1

z2
[−dt2 + dz2] (3.2)

and a dilaton

φ(z) = φ0 +
a

z
(3.3)

where a is a parameter which scales as 1/J . In the following we will choose, without loss

of generality, φ0 = 1.

This action can be thought as arising from a higher dimensional system which has ex-

tremal black holes, and the AdS2 is the near horizon geometry [57]. The three dimensional

metric, with the dilaton being the third direction, is given by

ds2 =
1

z2

[
− dt2 + dz2

]
+
(

1 +
a

z

)2
dy2 . (3.4)

This is in fact the near-horizon geometry of a charged extremal BTZ black hole.

3.1 Kaluza-Klein decomposition

We will now show that the infinite sequence of poles in the previous section from the Kaluza-

Klein tower of a single scalar in a three dimensional metric (3.4) where the direction y is

an interval −L < y < L. The action of the scalar is

S =
1

2

∫
d3x
√
−g
[
− gµν ∂µΦ ∂νΦ − m2

0 Φ2 − V (y)Φ2
]
, (3.5)

where V (y) = V δ(y), with the constant V and the size L to be determined. This is

similar to Horava-Witten compactification on S1/Z2 [75] with an additional delta function

potential.3 The scalar satisfies Dirichlet boundary conditions at the ends of the interval.

We now proceed to decompose the 3D theory into 2 dimensional modes. Using Fourier

transform for the t coordinate:

Φ(t, z, y) =

∫
dω

2π
e−iωt χω(z, y) , (3.6)

one can rewrite the action (3.5) in the form of

S =
1

2

∫
dzdy

∫
dω

2π
χ−ω (D0 +D1)χω , (3.7)

3See also [76, 77]. We are grateful to Cheng Peng for bringing this to our attention.
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where D0 is the a-independent part and D1 is linear in a:

D0 = ∂2
z + ω2 − m2

0

z2
+

1

z2

(
∂2
y − V (y)

)
,

D1 =
a

z

[
∂2
z −

1

z
∂z + ω2 − m2

0

z2
− 1

z2

(
∂2
y + V (y)

)]
. (3.8)

Here, we neglected higher order contributions of a. The eigenfunctions of D0 can be clearly

written in the form

χω(z, y) = χω(z) fk(y) . (3.9)

Then fk(y) is an eigenfunction of the Schrödinger operator −∂2
y + V (y) with eigenvalue

k2. This is a well known Schrodinger problem: the eigenfunctions and the eigenvalues are

presented in detail in appendix B.

After solving this part, the kernels are reduced to

D0 = ∂2
z + ω2 −

(
m2

0 + p2
m

z2

)
, D1 =

a

z

[
∂2
z −

1

z
∂z + ω2 −

(
m2

0 − q2
m

z2

)]
, (3.10)

where pm are the solutions of

− (2/V )k = tan(kL) (3.11)

while qm are the expectation values of −∂2
y − V (y) operator respect to fpm . If we choose

V = 3 and L = π
2 the solutions of (3.11) agree precisely with the strong coupling spectrum

of the SYK model given by g̃(ν) = 1, as is clear from (2.14) and (2.16). This is our main

observation.

For these values of V , L, the propagator G is determined by the Green’s equation of

D. We now use the perturbation theory to evaluate it. This will then be compared with

the corresponding propagator of the bi-local SYK theory.

3.2 Evaluation of G(0)

We start by determining the leading, zero-th order G(0) propagator obeying

D0G
(0)
ω,ω′(z, y; z′, y′) = − δ(z − z′)δ(y − y′)δ(ω + ω′) . (3.12)

We first separate the scaling part of the propagator by G(0) =
√
z G̃(0) and multiplying z2.

Expanding in a basis of eigenfunctions fk(y),

G̃(0)(z, y, ω; z′, y′, ω′) =
∑
k,k′

fk(y)fk′(y
′)G̃

(0)
ω,k;ω′,k′(z; z′) (3.13)

The Green’s function G̃
(0)
ω,k;ω′,k′(z, z

′) is clearly proportional to δ(k − k′) and satisfies the

equation[
z2 ∂2

z + z ∂z + ω2 z2 − ν2
0

]
G̃

(0)
ω,k;ω′,k′(z; z′) = − z

3
2 δ(z − z′)δ(ω + ω′)δ(k − k′) . (3.14)

where we have defined

ν2
0 ≡ k2 +m2

0 + 1/4. (3.15)

– 7 –
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The operator which appears in (3.14) is the Bessel operator. Thus the Green’s function

can be expanded in the complete orthonormal basis. For this, we use the same basis form

Zν as in the SYK evaluation:4

G̃
(0)
ω,k;−ω,k(z; z′) =

∫
dν g̃(0)

ν (z′)Zν(|ωz|) . (3.16)

Then, substituting this expansion into the Green’s equation (3.12) and using eqs. (C.4)

and (C.2), one can fix the coefficient g̃
(0)
ν . Finally, the ν-integral form of the propagator is

given by

G
(0)
ω,k;−ω,k(z; z′) = − |zz′|

1
2

∫
dν

Nν

Z∗ν (|ωz|)Zν(|ωz′|)
ν2 − ν2

0

. (3.17)

We now note that if we choose m2
0 = −1/4, which is the BF bound of AdS2, we have

ν2
0 = p2

m, and the equation which determine pm, (3.11) is precisely the equation which

determines the spectrum of the SYK theory found in [8, 10]. With this choice, the real

space zeroth order propagator in three dimensions is

G(0)(t, z, y; t′, z′, y′) = −|zz′|
1
2

∞∑
m=0

fpm(y)fpm(y′)

∫
dω

2π
e−iω(t−t′)

∫
dν

Nν

Z∗ν (|ωz|)Zν(|ωz′|)
ν2 − p2

m

.

(3.18)

We now show that the above propagator with y = y′ = 0 is in exact agreement with

the bi-local propagator of the SYK model. The Green’s function with these end points is

G(0)(t, z, 0; t′, z′, 0) = − |zz′|
1
2

∞∑
m=0

C(pm)

∫
dω

2π
e−iω(t−t′)

∫
dν

Nν

Z∗ν (|ωz|)Zν(|ωz′|)
ν2 − p2

m

,

(3.19)

where we have defined

C(pm) ≡ fpm(0)fpm(0) = B2
m

p2
m

p2
m + (3/2)2

=
2p3
m

[p2
m + (3/2)2][πpm − sin(πpm)]

. (3.20)

Now we note that Kaluza-Klein wave function coefficient coincides in detail with the SYK

one, namely:

C(pm) =
2pm

3
R(pm) , (3.21)

where R(pm) was given in eq. (2.22).

As in eq. (C.4), the integration of ν is a short-hand notation which denotes a summation

of ν = 3/2 + 2n, (n = 0, 1, 2 · · · ) and an integral of ν = ir, (0 < r < ∞). The sum over

these discrete values of ν and the integral over the continuous values can be now performed

exactly as in the calculation of the SYK bi-local propagator [10]. Closing the contour for

the continuous integral in Re(ν)→ ∞, one finds that there are two types of poles inside

of this contour. (1): ν = 2n + 3/2, (n = 0, 1, 2, · · · ), and (2): ν = pm, (m = 0, 1, 2, · · · ).
The contributions of the former type of poles precisely cancel with the contribution from

the discrete sum over n. Details of the evaluation which explicitly shows the cancelation

4This represents a modified set of wavefunctions with boundary conditions at z →∞ in contrast to the

standard AdS wavefunctions.
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are presented in appendix D. Therefore, the final remaining contribution is just written as

residues of ν = pm poles as

G(0)(t, z, 0; t′, z′, 0) =
1

3
|zz′|

1
2

∞∑
m=0

∫ ∞
−∞

dω e−iω(t−t′)R(pm)
Z−pm(|ω|z>)Jpm(|ω|z<)

Npm

.

(3.22)

Altogether we have shown that y = 0 mode 3D propagator is in precise agreement with

the q = 4 SYK bi-local propagator at large J given in eq. (2.21). The propagator is a sum

of non-standard propagators in AdS2. While it vanishes on the boundary, the boundary

conditions at the horizon are different from that of the standard propagator in AdS.

3.3 First order eigenvalue shift

In this section, we study the first order eigenvalue shift due to D1 by treating this operator

as a perturbation onto the D0 operator. The result will confirm the duality a = 1/J , where

a is defined in the dilaton background (3.3) and J is the coupling constant in the SYK

model.

Since the t and y directions are trivial, let us start with the kernels already solved for

these two directions given in eq. (3.10). The eigenfunction of D0 operator is

|z|
1
2 Zν(|ωz|) , (3.23)

and using the orthogonality condition (C.3), its matrix element in the ν space is found as

Nν

[
ν2 − (m2

0 + p2
m + 1

4)
]
δν,ν′ . (3.24)

Now following the first order perturbation theory, we are going to determine the first

order eigenvalue shift. Using the Bessel equation, the action of D1 on the D0 eigenfunc-

tion (3.23) is found as

D1 |z|
1
2 Zν(|ωz|) =

a

|z|
1
2

[
∂z
z
−

(
m2

0 − q2
m + 3

4

z2

)]
Zν(|ωz|) . (3.25)

For the derivative term, we use the Bessel function identity (for example, see 8.472 of [78])

∂xJν(x) = ± Jν∓1(x) ∓ ν

x
Jν(x) , (3.26)

to obtain

∂z Zν(|ωz|) =
ν

|z|
Zν(|ωz|) − |ω|

[
Jν+1(|ωz|) − ξν J−ν−1(|ωz|)

]
. (3.27)

Therefore, now the matrix element is determined by integrals∫ ∞
0

dz |z|
1
2 Z∗ν′(|ωz|)D1 |z|

1
2 Zν(|ωz|)

= a

[
ν −

(
m2

0 − q2
m +

3

4

)]∫ ∞
0

dz
Z∗ν′(|ωz|)Zν(|ωz|)

z2

− a|ω|
∫ ∞

0
dz

Z∗ν′(|ωz|)
z

[
Jν+1(|ωz|) − ξν J−ν−1(|ωz|)

]
. (3.28)
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For the continuous mode (ν = ir), the integrals might be hard to evaluate. In the following,

we restrict ourself to the real discrete mode ν = 3/2 + 2n. In such case, ξν = 0. Therefore,

the linear combination of the Bessel function is reduced to a single Bessel function as

Zν(x) = Jν(x). Since

∫ ∞
0

dx
Jα(x)Jβ(x)

x
=

2

π

sin
[
π
2 (α− β)

]
α2 − β2

, [Re(α),Re(β) > 0]∫ ∞
0

dx
Jα(x)Jβ(x)

x2
=

4

π

sin
[
π
2 (α− β − 1)

][
(α+ β)2 − 1

][
(α− β)2 − 1

] , [Re(α),Re(β) > 1] (3.29)

we have now found the matrix element for the discrete mode is given by

2a|ω|
π

sin
[
π
2 (ν − ν ′ − 1)

]
(ν + 1)2 − ν ′2

[
2
[
ν − (m2

0 − q2
m + 3

4)
]

(ν − 1)2 − ν ′2
− 1

]
. (3.30)

Next, let us focus on the zero mode (ν = ν ′ = 3/2) eigenvalue. In the above formula,

taking the bare mass to the BF bound: m2
0 = −1/4 as before, the zero mode first order

eigenvalue shift is found as

a|ω|
2π

(2 + q2
0) . (3.31)

Now, we compare this result with the 1/J first order eigenvalue shift of the SYK model,

which is for the zero mode found in [9] as

k(2, ω) = 1 − αK |ω|
2πJ

+ · · · , (zero temperature) (3.32)

where αK ≈ 2.852 for q = 4. The ω-dependence of our result (3.31) thus agrees with that

of the SYK model. Furthermore, this comparison confirms the duality a = 1/J .

Finally, we can now complete our comparison by showing agreement for the m = 0

mode contribution to the propagator. We include the first O(a) order shift for the pole as

ν =
3

2
+
a|ω|
6π

(
2 + q2

0

)
+ O(a2) . (3.33)

For the zero mode part (m = 0) of the on-shell propagator in eq. (D.6), the leading order is

O(1/a). This contribution comes from the coefficient factor of the Bessel function, which

was responsible for the double pole at ν = 3/2. For other p0 setting them to 3/2, we obtain

the leading order contribution from the zero mode as

G
(0)
zero−mode(t, z, 0; t′, z′, 0) = − 9π

4a

B2
0

(2 + q2
0)
|zz′|

1
2

∫ ∞
−∞

dω

|ω|
e−iω(t−t′)J 3

2
(|ωz|)J 3

2
(|ωz′|) .

(3.34)

This agrees with the order O(J) contribution of the SYK bi-local propagator of Malda-

cena/Stanford [9].
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4 Conclusion

In this paper we have provided a three dimensional perspective of the bulk dual of the

SYK model. At strong coupling we showed that the spectrum and the propagator of the

bi-local field can be exactly reproduced by that of a scalar field living in AdS2 × S1/Z2

with a delta function potential at the center. The metric on the interval in the third

direction is the dilaton of Jackiw-Teitelboim theory, which is a constant at strong coupling.

We also calculated the leading 1/J correction to the propagator which comes from the

corresponding term in the metric in the third direction, and showed that form of the poles

of the propagator are consistent with the results of the SYK model [9].

We would like to emphasize that there are two aspects of this 3d perspective. The first

concerns the agreement of the strong coupling spectrum and the form of the leading finite

J correction. This agreement may very well follow from more general considerations [79].5

The second aspect is that the exact large-J propagator agrees, and the form of the leading

enhanced correction for large but finite J agrees as well. We believe that this second aspect

is rather non-trivial and intruiging and the implications are yet to be fully understood.

This three dimensional view is a good way of re-packaging the infinite tower of states

of the SYK model. Our analysis was done at the linearized level and the 3D gravity is

only used to fix the background, as we did not treat them dynamically.6 Demonstrating

full duality at the nonlinear level is an open problem. In particular it would be interesting

if the three point function of bi-locals [70] has a related 3d interpretation.
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A Actions non-polynomial in derivatives

To illustrate how an action which is non-polynomial in derivatives can arise let us start

with the example of N decoupled fields

L =

N∑
n=1

ϕnDnϕn . (A.1)

5We thank the referee for bringing this paper to our attention.
6We thank Juan Maldacena for a clarification regarding this point.
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One can then introduce fields

ϕ =
N∑
n=1

ϕn , and χn (n = 1, · · · , N − 1) , (A.2)

so that the Lagrangian is rearranged to

L = ϕ D̂ϕ +
N−1∑
n=1

χnD̂nϕn , (A.3)

where

D̂ =

∏N
n=1Dn∑N

n1<···<nN−1
Dn1 · · · DnN−1

,

D̂p =

∑p+1
n1<···<np

Dn1 · · · Dnp∑p
n1<···<np−1

Dn1 · · · Dnp−1

, (p = 1, · · · , N − 1) (A.4)

which represents a transformation preserving the determinant:

N∏
n=1

Dn = D̂ +

N−1∏
n=1

D̂n . (A.5)

Integrating χ’s out, one eventually ends up with the effective Lagrangian

Lϕ = ϕ

( ∏N
n=1Dn∑N

n1<···<nN−1
Dn1 · · · DnN−1

)
ϕ . (A.6)

Here all the poles are contained in the higher-order laplacian, as in eq. (2.16). The

opposite procedure of going from this effective action with the N -th order Laplacian to the

first one, requires introducing N − 1 extra fields, which would correspond to the scheme

introduced by Ostrogradsky.

B Schrodinger equation

In this appendix, we consider the equation of f(y), which is the Schrödinger equation:[
− ∂2

y + V δ(y)
]
f(y) = E f(y) , (B.1)

where E is an eigenvalue of the equation. Since we confined the field in −L < y < L,

we have boundary conditions: f(±L) = 0. The continuation conditions at y = 0 are

f(+0) = f(−0) and the other can be derived by integrating the Schrödinger equation (B.1)

over (−ε, ε) and taking limit ε→ 0 as

f ′(+0) − f ′(−0) = V f(0) . (B.2)

Since the potential of the Schrödinger equation is even function, the wave function is either

odd or even function of y.
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(i) Odd: for odd parity case, a solution satisfying the boundary conditions at y = ±L is

given by

f(y) =

{
A sin(k(y − L)) (0 < y < L)

A sin(k(y + L)) (−L < y < 0)
(B.3)

where k2 = E. For odd parity solution, to satisfy the boundary condition f(+0) =

f(−0), we need f(±0) = 0. This implies that

k =
πn

L
, (n = 1, 2, 3, · · · ) (B.4)

Then, the continuity condition (B.2) is automatically satisfied. The normalization

constant is fixed as A = 1/
√
L.

(ii) Even: for even parity case, a solution satisfying the boundary conditions at y = ±L
is given by

f(y) =

{
B sin(k(y − L)) (0 < y < L)

−B sin(k(y + L)) (−L < y < 0)
(B.5)

where k2 = E. The evenness of the parity guarantees f(−0) = f(+0). So, we only

need to impose the condition (B.2) on this solution. This condition gives an equation

− 2

V
k = tan(kL) . (B.6)

Now we set L = π/2 and V = 3, then we have −(2/3)k = tan(πk/2), which is

precisely the same transcendental equation determining poles of the q = 4 SYK bi-

local propagator (2.20). We denote the solutions of −(2/3)k = tan(πk/2) by pm,

(2m+ 1 < pm < 2m+ 2), (m = 0, 1, 2, · · · ). The normalization constant is fixed as

B =

√
2k

2kL− sin(2kL)
. (B.7)

Finally, let us prove the orthogonality of the parity even wave function (B.5):∫ L

−L
dy fm(y)fm′(y) = δm,m′ . (B.8)

Using the solution (B.5) and evaluating the integral in the left-hand side, one obtains

B2

[
sin(L(k − k′))

k − k′
− sin(L(k + k′))

k + k′

]
. (B.9)

Now let’s assume k 6= k′. Then, the integral result can be rearranged to the form of

B2

k2 − k′2
cos(Lk) cos(Lk′)

[
k′ tan(Lk) − k tan(Lk′)

]
= 0 , (B.10)
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where the final equality is due to the relation tan(Lk) = −2k/3. Next, we consider k = k′

case. In this case, due to the delta function identity, the result (B.9) is reduced to

B2

[
L − sin(2Lk)

2k

]
δk,k′ = δk,k′ , (B.11)

where for the equality we used eq. (B.7). Therefore, now we have proven the orthogonal-

ity (B.8).

C Completeness condition of Zν

In this appendix, we summarize some properties of the Bessel function Zν , which are used

to determine the zero-th order propagator (3.18). The linear combination of the Bessel

functions is defined by [8]

Zν(x) = Jν(x) + ξν J−ν(x) , ξν =
tan(πν/2) + 1

tan(πν/2)− 1
, (C.1)

which satisfies the Bessel equation[
z2 ∂2

z + z ∂z + ω2 z2
]
Zν(|ωz|) = ν2 Zν(|ωz|) . (C.2)

In [8], the orthogonality condition of the linear combination of the Bessel function

Zν (C.1) is given by ∫ ∞
0

dx

x
Z∗ν (x)Zν′(x) = Nν δ(ν − ν ′) , (C.3)

where Nν is defined in (2.15).

From this orthogonality condition, one can fix the normalization for the completeness

condition of Zν . Namely, dividing each Zν by
√
Nν , finally we find the completeness

condition as ∫
dν

Nν
Z∗ν (|x|)Zν(|x′|) = x δ(x− x′) . (C.4)

D Evaluation of the contour integral

In this appendix, we give a detail evaluation of the continuous and the discrete sums

appearing in eq. (3.19). As we defined before, the integral symbol dν is a short-hand

notation of a combination of summation over ν = 3/2+2n, (n = 0, 1, 2, · · · ) and integration

of ν = ir, (r > 0). Namely,∫
dν

Nν

Z∗ν (|ωz|)Zν(|ωz′|)
ν2 − p2

m

= I1 + I2 , (D.1)

with

I1 ≡
∞∑
n=0

2ν

ν2 − p2
m

Jν(|ωz|) Jν(|ωz′|)
∣∣∣
ν= 3

2
+2n

,

I2 ≡ −
∫ ∞

0

dr

2 sinh(πr)

r

r2 + p2
m

Z∗ir(|ωz|)Zir(|ωz′|) . (D.2)
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Let us evaluate the continuous sum I2 first. Using the symmetry of the integrand, one can

rewrite the integral as

I2 = − i

2

∫ i∞

−i∞

dν

sin(πν)

ν

ν2 − p2
m

[
J−ν(|ωz|) + ξ−ν Jν(|ωz|)

]
Jν(|ωz′|) . (D.3)

We evaluate this integral by a contour integral on the complex ν plane by closing the

contour in the Re(ν)> 0 half of the complex plane if z > z′. Inside of this contour, we

have two types of the poles. (i) at ν = pm coming from the coefficient factor. (ii) at

ν = 3/2+2n, (n = 0, 1, 2, · · · ) coming from ξ−ν , where ξ−ν =∞. After evaluating residues

at these poles, one obtains

I2 = − π

2 sin(πpm)

[
J−pm(|ωz|) + ξ−pm Jpm(|ωz|)

]
Jpm(|ωz′|)

−
∞∑
n=0

2ν

ν2 − p2
m

Jν(|ωz|) Jν(|ωz′|)
∣∣∣
ν= 3

2
+2n

. (D.4)

Now, one can notice that the second term exactly cancels with the contribution from I1.

One can also repeat the above discussion for z′ > z case. Therefore, combining these two

cases the total contribution is now

I1 + I2 = − π

2 sin(πpm)

[
J−pm(|ω|z>) +

(
pm + 3

2

pm − 3
2

)
Jpm(|ω|z>)

]
Jpm(|ω|z<) , (D.5)

where z>(z<) is the greater (smaller) number among z and z′. Then, the propagator is

reduced to

G(0)(t, z, 0; t′, z′, 0) =
1

4
|zz′|

1
2

∞∑
m=0

∫ ∞
−∞

dω e−iω(t−t′) B2
m

sin(πpm)

p2
m

p2
m + (3/2)2

×

[
J−pm(|ω|z>) +

(
pm + 3

2

pm − 3
2

)
Jpm(|ω|z>)

]
Jpm(|ω|z<) . (D.6)

This agrees with the result given in eq. (3.22).

Open Access. This article is distributed under the terms of the Creative Commons
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any medium, provided the original author(s) and source are credited.

References

[1] S. Sachdev and J. Ye, Gapless spin fluid ground state in a random, quantum Heisenberg

magnet, Phys. Rev. Lett. 70 (1993) 3339 [cond-mat/9212030] [INSPIRE].

[2] A. Georges, O. Parcollet and S. Sachdev, Mean field theory of a quantum Heisenberg spin

glass, Phys. Rev. Lett. 85 (2000) 840 [cond-mat/9909239].

[3] S. Sachdev, Holographic metals and the fractionalized Fermi liquid, Phys. Rev. Lett. 105

(2010) 151602 [arXiv:1006.3794] [INSPIRE].

– 15 –

https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1103/PhysRevLett.70.3339
https://arxiv.org/abs/cond-mat/9212030
https://inspirehep.net/search?p=find+EPRINT+cond-mat/9212030
https://doi.org/10.1103/PhysRevLett.85.840
https://arxiv.org/abs/cond-mat/9909239
https://doi.org/10.1103/PhysRevLett.105.151602
https://doi.org/10.1103/PhysRevLett.105.151602
https://arxiv.org/abs/1006.3794
https://inspirehep.net/search?p=find+EPRINT+arXiv:1006.3794


J
H
E
P
0
9
(
2
0
1
7
)
0
1
7

[4] S. Sachdev, Strange metals and the AdS/CFT correspondence, J. Stat. Mech. 1011 (2010)

P11022 [arXiv:1010.0682] [INSPIRE].

[5] A. Kitaev, A simple model of quantum holography, talk given at KITP strings seminar and

Entanglement 2015 program, February 12, April 7, and May 27, Santa Barbara, U.S.A.

(2015).

[6] A. Kitaev, Hidden correlations in the Hawking radiation and thermal noise, talk given at

Fundamental Physics Prize Symposium , November 10, Santa Barbara, U.S.A. (2014).

[7] S. Sachdev, Bekenstein-Hawking entropy and strange metals, Phys. Rev. X 5 (2015) 041025

[arXiv:1506.05111] [INSPIRE].

[8] J. Polchinski and V. Rosenhaus, The spectrum in the Sachdev-Ye-Kitaev model, JHEP 04

(2016) 001 [arXiv:1601.06768] [INSPIRE].

[9] J. Maldacena and D. Stanford, Remarks on the Sachdev-Ye-Kitaev model, Phys. Rev. D 94

(2016) 106002 [arXiv:1604.07818] [INSPIRE].

[10] A. Jevicki, K. Suzuki and J. Yoon, Bi-local holography in the SYK model, JHEP 07 (2016)

007 [arXiv:1603.06246] [INSPIRE].

[11] A. Jevicki and K. Suzuki, Bi-local holography in the SYK model: perturbations, JHEP 11

(2016) 046 [arXiv:1608.07567] [INSPIRE].

[12] R.A. Davison et al., Thermoelectric transport in disordered metals without quasiparticles:

The Sachdev-Ye-Kitaev models and holography, Phys. Rev. B 95 (2017) 155131

[arXiv:1612.00849] [INSPIRE].

[13] I. Danshita, M. Hanada and M. Tezuka, Creating and probing the Sachdev-Ye-Kitaev model

with ultracold gases: towards experimental studies of quantum gravity, arXiv:1606.02454

[INSPIRE].

[14] J. Erdmenger et al., Holographic impurities and Kondo effect, Fortsch. Phys. 64 (2016) 322

[arXiv:1511.09362] [INSPIRE].

[15] D.J. Gross and V. Rosenhaus, A Generalization of Sachdev-Ye-Kitaev, JHEP 02 (2017) 093

[arXiv:1610.01569] [INSPIRE].

[16] Y. Gu, X.-L. Qi and D. Stanford, Local criticality, diffusion and chaos in generalized

Sachdev-Ye-Kitaev models, JHEP 05 (2017) 125 [arXiv:1609.07832] [INSPIRE].

[17] M. Berkooz, P. Narayan, M. Rozali and J. Simón, Higher dimensional generalizations of the

SYK model, JHEP 01 (2017) 138 [arXiv:1610.02422] [INSPIRE].

[18] W. Fu, D. Gaiotto, J. Maldacena and S. Sachdev, Supersymmetric Sachdev-Ye-Kitaev

models, Phys. Rev. D 95 (2017) 026009 [arXiv:1610.08917] [INSPIRE].

[19] W. Fu and S. Sachdev, Numerical study of fermion and boson models with infinite-range

random interactions, Phys. Rev. B 94 (2016) 035135 [arXiv:1603.05246] [INSPIRE].
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