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1 Introduction & discussions

The basic mathematical statement of gauge-string duality is an equivalence of the path

integral (or the partition function, in Euclidean signature) of the quantum field theory with

the path integral (or partition function) of supergravity, which is usually an Einstein-gravity

theory with various matter fields, typically having its origin in string theory. Schematically,

without worrying about a rigorous definition, the equivalence reads:

Zsugra = ZQFT , (1.1)

where ZQFT usually corresponds to a large Nc gauge theory, with only adjoint degrees of

freedom and Zsugra corresponds to a particular supergravity theory that can be obtained
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as the low energy limit of closed string theory. The statement in (1.1) is best understood

on-shell, e.g. when the l.h.s. is evaluated on a solution (and thus a saddle point of the

path integral) of supergravity. The fluctuation modes thereof will couple to the metric

corresponding to the saddle point and will yield the following path integral:

Zsugra+fluc = Zsugra Zfluc , (1.2)

Zfluc = exp

(∫
i

2
dφ ∧ ∗dφ− i

2
F ∧ ∗F − i

2
H ∧ ∗H + interactions

)
, (1.3)

where φ, F and H correspond to the scalar, vector and tensor perturbations, respectively.

Additionally, there will be interaction terms that we need not specify here. Clearly, the

Hodge star operation above is defined with respect to a metric, denoted by G henceforth,

that solves supergravity and defines a causal structure. Given this, in the context of

gauge-string duality, one can analyze the manifestation of the bulk causal structure on the

boundary theory correlator (observables in general). This has a long history, and has been

explored in details in e.g. [1–4].

So far the discussion is without any “quark”-like matter field. To add to it a matter

sector that transforms in the fundamental representation of the gauge group, one needs to

introduce the so-called “open string degrees of freedom”[5]. The first step is to consider a

“probe limit” in which the number of fundamental flavour, denoted by Nf , satisfies Nf �
Nc, and hence does not gravitationally back-react on the geometry. The dynamics of the

probe D-branes embedded appropriately in a given 10-dimensional supergravity background

is governed by the Dirac-Born-Infeld (DBI) action. The statement in (1.1) generalizes to:

Zsugra+DBI = ZAdj+Fund , (1.4)

where the symbols are self-explanatory. The idea here is, given a G that already solves

supergravity, to find a “saddle point” configuration of the DBI-theory. Now, once this

saddle point is obtained, one can analyze the fluctuation modes around it. Subsequently,

similar to the discussion above, there will be a symmetric rank 2 tensor that defines the

kinetic terms of the corresponding fluctuation modes (in this case, those can be scalar,

vector and spinor) [6]. This symmetric two tensor, denoted by S henceforth and will be

explained better in the subsequent section, therefore defines a causal structure obeyed by

the fluctuation modes on the probe brane. In this article we analyze properties of geodesics

(spacelike, null and timelike) in the geometry characterized by S. For an earlier discussion

on the emergence of an effective causal structure, see e.g. [7]. Note that, as discussed

in [7], the emergent causal structure from a Dirac-Born-Infeld theory does not allow the

corresponding fluctuations travel faster than the background gravitons.

In this article we consider a particular configuration on the probe brane such that the

corresponding open string metric (osm) develops an event horizon even when the original

(super)gravity background is horizon-less. This is simply obtained by exciting an electric

field on the probe worldvolume, which then sets the horizon of the corresponding osm

geometry. Now we begin briefly summarizing our results. The emergent horizon structure

of the osm is subtle if one wants to view it as a solution of Einstein-gravity sourced by a
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particular matter field. This would have to violate one of the energy conditions (e.g. Weak

Energy Condition or Null Energy Condition depending on the dimension)1 and thus we

can safely state that the resulting metric and therefore the causal structure is in principle

different from that obtained from Einstein-gravity. An equivalent statement would be:

the osm horizon is a kinematical property which emerges from a particular configuration,

rather than a dynamical one that extremises an action. However, what we find here is in

close qualitative similarity to usual AdS-BH geometries.

We analyze properties of geodesics, specially spacelike and null geodesics, to study the

corresponding causal structure. We reveal, among other things, numerous similarities to the

standard black hole geometries in an AdS-background, e.g. a spacelike geodesic anchored at

two points on the conformal boundary, in an osm-geometry, reaches arbitrarily close to the

horizon which is an unstable orbit itself. There are, however, technical differences of subtle

nature: the Penrose diagram for a BTZ geometry and the corresponding Penrose diagram

of an AdS3-osm geometry are identical, but the structure of the singularity is different.

In particular, for AdS3-osm geometry, two null rays emanating from the two sides of the

Kruskally-extended patch at T = 0, T being the Kruskal time, would fall into the singu-

larity2 before meeting each other. Furthermore, based on the causal structure, we explore

various observables that are defined in the bulk osm-geometry from a purely causal point of

view, and also observe similarities to an AdS-BH geometry. Most of our explicit calculations

are performed in AdS3-osm geometry that allows a lot of analytical control. We also provide

a top-down, D-brane model that would yield this osm that we have studied extensively.

The crucial difference is in the identification of the osm event-horizon area with a

physical quantity, despite the close resemblance of a purely thermal physics as observed in

e.g. [8, 9]. It is clear, based on the discussion on energy conditions, the area of the osm

event horizon would not necessarily have a monotonically increasing property, and in fact

examples exist where they have explicit non-monotonic behaviour [10]. On the other hand,

given the proposal for thermodynamic free energy in [11] and further explored in [12], it is

straightforward to obtain a covariant formula for thermal entropy. This would, however,

involve extrinsic curvatures and can readily be perceived to take complicated mathematical

form and thus we leave this for future work.

It is interesting to note that a qualitatively similar physics appears in the equation for

sound waves in liquid helium. When the flow velocity of the helium in some region is faster

than that of the sound, the region looks like a black hole for sound wave, which is known

as an analogue black hole [13–15]. The effective geometries of these analogue black holes

are never governed by the Einstein’s equation, however, a “Hawking radiation” of sound is

still expected.

1In practice, given the open string geometry, we will check whether the corresponding Ricci tensor

obeys such conditions. Ordinarily, the Ricci tensor is related to the energy-momentum tensor, and hence a

condition on the Ricci tensor translates, via Einstein’s equation, into an energy condition.
2Note that, by an osm singularity we mean the position where the osm Ricci-scalar diverges. Thus,

it should perhaps be better named as Ricci-scalar singularity. Since we are not dealing with an Einstein-

Hilbert action, it does not imply that any physical quantity actually diverges. For example, the probe

D-brane does not acquire any pathology. Our motivation behind calling it a singularity is the similarity of

the u=0 surface in the Penrose diagram of the emergent geometry with that of the known AdS black hole

spacetimes. However, we do not further focus on this singularity.
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This article is divided in the following sections: first we introduce the open string

metric in section 2 and discuss the context in which they appear, in details. Subsequently,

in section 3 we study the causal structure in details, by analyzing geodesics in the given osm-

background. Section 4 is devoted to a brief discussion on the various energy conditions in

the context of an osm, then we discuss causal observables in section 5. In the next section,

we discuss a stringy embedding of the AdS3-osm and finally, we have provided various

details of our calculations in five appendices.

2 The open string metric

It is well-known that the osm arises when one considers fluctuation modes on the world-

volume of a probe brane that is embedded in a background geometry.3 This geometry is

typically a solution of Type IIA/IIB or 11-dimensional supergravity that arises in the low

energy limit of closed string theory or M-theory. This background is dual to a large-N

(super)Yang-Mills, or a Chern-Simons matter theory. The probe brane corresponds to

introducing a fundamental (flavour) matter sector in this large-N gauge theory.

Let us begin by elaborating on the emergence of the open string metric in more details.

In order to do that, we will consider the simplest example: D3-D7 system. However, the

main conclusion does not depend on the details of the system and hence it is true in

general. We start with Nc coincident D3 branes in type IIB supergravity with the action

schematically written as:

Ssugra ≡ N2
c Ssugra [φ,G] , (2.1)

where G is the metric and φ is the collection of all other supergravity fields. Note that

we have written the factor of N2
c explicitly in action (2.1) for later convenience. The

supergravity partition function now can be written as:

Zsugra =

∫
D [φ]D [G] e−N

2
c Ssugra[φ,G] . (2.2)

In the limit Nc →∞, we can perform a saddle point approximation and the above partition

function can be replaced by a sum over semiclassical minima of the supergravity action

Ssugra, with appropriate boundary conditions. In the example we are discussing here, there

is a unique vacuum supergravity solution carrying D3 brane charge, namely, AdS5×S5 and

hence in the leading order in N2
c , we obtain:

Zsugra = e−N
2
c S

(0)
sugra , (2.3)

where S(0)
sugra is the on-shell classical supergravity action. There are two types of corrections

to the partition function (2.3): (i) string theory correction — in other words, the so-

called α′ corrections — to the supergravity action, and (ii) corrections from quantum loops

computed around the classical supergravity solution. We restrict to the case of ls/R→ 0,

3Note that here we work in the context of Gauge-gravity duality, but the notion of an open string

metric is more general. See e.g. [16] where an open string propagating in a non-commutative geometry gets

naturally equipped with the open string metric.
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where ls ∼
√
α′ is the string length and R is the AdS radius, for which we can safely

ignore the stringy corrections. We are more interested in the quantum correction to the

above saddle point approximation which is responsible for 1/N2
c correction. This will

schematically yield:

Zsugra =

∫
D[δφ]D[δG]e

−N2
c

(
S(0)sugra+S(2)sugra[δφ,δG]+...

)
, (2.4)

where S(2)
sugra[δφ, δG] is the quadratic action of the perturbations around the supergravity

solution.4 Perturbations δφ and δG see the background metric G and hence the causal

structure of the metric G determines how fast information can be sent through the bulk.

Let us now introduce Nf space-filling D7 branes embedded in the AdS5×S5 back-

ground. The dynamics of the D7 branes is determined by the Dirac-Born-Infeld (DBI)

action (supplemented by the Wess-Zumino term, when necessary) of the form:

SDBI = −Nfτ7

∫
d8ξe−Φ

√
−det (ϕ? [G+B] + (2πα′)F ) , (2.5)

where {Φ, G,B} are the supergravity data in the string-frame consisting of the dilaton,

the metric and the NS-NS 2-form, respectively. The RR-forms generally appear in the

Wess-Zumino part which we are not explicitly writing. For the case we are considering

φ ≡ {Φ, B} = 0 for the classical supergravity solution. On the other hand, dξ8 denotes

the integration over the probe worldvolume coordinates, ϕ? denotes the pull-back and F

denotes the U(1)-gauge field that lives on the worldvolume of the probe. The Nf D7 branes

wrap the full AdS5 along with a S3 ⊂ S5. For convenience, we will set 2πα′ = 1. Let us

now write the action (2.5) schematically in the following form:

SDBI = gsNfNc SDBI [G,φ;F, θa] , (2.6)

where, gs is the string coupling that will eventually set the ’t Hooft coupling, θa with

a = 1, 2 represents the profile of the D7 branes. So the full partition function now can be

written as:

Zsugra+DBI =

∫
D[φ]D[G]D[F ]D[θa]e

−N2
c Ssugra[φ,G]−gsNfNcSDBI[G,φ;F,θa] . (2.7)

In the limit, Nc → ∞, NcNf → ∞ and Nf/Nc → 0, we can again perform a saddle point

approximation

Zsugra+DBI = e−N
2
c S

(0)
sugra−gsNfNcS

(0)
DBI , (2.8)

where, S(0)
DBI is the on-shell DBI action obtained by solving the classical equations of motion

for θa. For simplicity, we will assume that

θ(0)
a = constant , a = 1, 2 (2.9)

minimizes the DBI action.5 Let us now consider fluctuations around the classical solution.

The full partition function can be approximated in the following way:

Zsugra+DBI = Zclassical Zfluc , (2.10)

4There is no linear term in (2.4) because we are expanding around the classical solution.
5For our present purpose, this is only a notational convenience, we are not loosing any physics due to this.

– 5 –



J
H
E
P
0
9
(
2
0
1
6
)
1
6
6

Zclassical is the classical part of the partition function (leading saddle point approximation):

Zclassical = e−N
2
c S

(0)
sugra−gsNfNcS

(0)
DBI−gsN

2
fS

(1)
back−reac+O(Nf/Nc) . (2.11)

The leading classical term comes from the supergravity action. The subleading term is

the contribution of the DBI action. The sub-subleading term N2
fS

(1)
back−reac comes from

the back-reaction of the D7 branes on the geometry. Note that the back-reaction of the

DBI action on the geometry in general can be ignored in the probe limit Nf/Nc � 1,

however, we have kept it in the above equation just to remind ourselves that the leading

back-reaction term can be large compare to the contributions of the fluctuations.

In the quadratic order the fluctuation part Zfluc can be decomposed into the super-

gravity part and DBI part:

Zfluc =

∫
D[δφ]D[δG]e−N

2
c S

(2)
sugra[δφ,δG]+...

∫
D[δF ]D[δθa]e

−gsNcNfS
(2)
DBI [δF,δθa]+... , (2.12)

where S(2)
sugra[δφ, δG] and gsNcNfS(2)

DBI[δF, δθa] are the quadratic actions of the perturbations

around the classical solution.6 The dots in equation (2.12) represent contributions that

are suppressed by factors of Nf/Nc. Also note that, in principle the DBI action contains

fluctuations of δφ and δG, however these contributions come with additional factors Nf/Nc

and hence we will ignore them.

Let us now look at the fluctuations of the DBI action in equation (2.12). It can be

decomposed into a scalar part and a vector part in the following way. The scalar fluctuations

are the transverse fluctuations of the D7 brane embedding:

θa = θ(0)
a + ϕa . (2.13)

The vector fluctuations correspond to the fluctuations of the classical gauge field on the

probe

Fab = F
(0)
ab + Fab , (2.14)

where F (0) is the classical gauge field on the D7 branes. Now one can study the dynamics

of fluctuations. In doing so, it becomes immediately clear that the kinetic term of the

corresponding fluctuation mode, irrespective of the type of fluctuation [6, 12, 17], takes the

following schematic form:

Sscalar = −κ
2

∫
dξ8

(
detG

detS

)1/4√
−detS Sab ∂aϕi ∂bϕi + . . . , (2.15)

Svector = −κ
4

∫
dξ8

(
detG

detS

)1/4√
−detS SabScdFacFbd + . . . . (2.16)

In (2.15)–(2.16), κ denotes an overall constant, the details of which is not relevant for

us. The fields ϕi, F represent the various fluctuation modes and the indices a, b represent

6Note that in equation (2.12), we do not need to include the corrections to the supergravity background

because of backreaction of the D7 branes since they are further suppressed by factors of Nf/Nc.
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the worldvolume coordinates on the probe.7 In (2.15)–(2.16), S is the open string metric,

defined as

S = ϕ?G−
(
F (ϕ?G)−1 F

)
. (2.18)

We have shown only the kinetic parts of the fluctuation Lagrangian; since other potential

terms will not affect our discussion for now. Before moving further, let us note the follow-

ing: the Lagrangian density corresponding to (2.15) and (2.16) can be written in a more

canonical form: √
−detS̃ S̃ab (∂aϕ) (∂bϕ) , and

√
−detS̃ S̃abS̃cdFacFbd , (2.19)

where S̃nc = ΩSnc , (2.20)

and Ω needs to be determined for each case, separately. Here S̃nc and Snc correspond to the

non-compact parts of the metric components. Note that, the conformal factor in e.g. (2.20)

will not affect the effective temperature that is obtained from the osm itself.

Let us now go back to the partition function (2.12). The equation (2.12) now we can

be rewritten as:

Zfluc =

∫
D[δφ]D[δG]e−N

2
c S

(2)
sugra[δφ,δG]+...

∫
D[δF ]D[δϕa]e

−gsNcNf (Sscalar[ϕa]+Svector[F ])+... .

(2.21)

By looking at the quadratic action, we can conclude the following: an observer can send

a signal through the bulk in two separate ways: (i) he/she can perturb the supergravity

fields (δG, δφ) to send a signal and propagation of this signal will be controlled by the bulk

metric G, (ii) he/she can also use the D7 brane fluctuations ϕ or Fab to send a signal,

however this signal propagates through the spacetime in accordance with a metric which

is conformal to the open string metric.8 Therefore, both the bulk metric G and the open

string metric S control the propagation of information through the spacetime and hence

the study of the causal structure of the open string metric is of importance. A reasonable

guess is that one would not be able to send signal faster by using the D7 brane fluctuations

ϕ or Fab because that will violate causality, and this is indeed the case, as argued in

e.g. [7]. We will also confirm this by performing some explicit computations. It is also well-

known by now [6, 17–19] that one induces an event horizon in this geometry by having a

classically non-vanishing electric field on the probe worldvolume, that subsequently induces

a Schwinger pair production [20]. This suggests that there are regions where one can send

signal by using the supergravity fields but not by using fluctuations ϕ or Fab.
Before we proceed, let us also note that from partition function (2.21), one can obtain

different correlation functions of the perturbations. For example, from the supergravity

7It is also possible to have spinor fluctuations come from a supersymmetric counter-part of the DBI

action, which schematically consists of a standard Volkov-Akulov type term

SVA = −Nfτp
∫
d8ξ

(
−det

[
ϕ? [G] +

(
2πα′

)
F + iψ̄γ∇ψ

])1/2
, (2.17)

where the γ matrices satisfy anti-commutation relation with respect to ϕ? [G]: {γa, γb} = 2ϕ? [G]ab.
8It’s conformal to the open string metric but not exactly the open string metric because of the presence

of the non-trivial factor in (2.15)–(2.16).
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part of the action we get 〈δGδG〉 ∼ 1/N2
c ; similarly from the DBI part of the action leads

to 〈ϕaϕa〉 ∼ 1/NfNc. Higher order terms in the action will contribute to quantum loop

corrections which are subleading in the limits Nc � 1, NcNf � 1.

So far we have not said anything about the AdS/CFT correspondence. The AdS/CFT

correspondence teaches us that our supergravity set up is dual to a (3 + 1)-dimensional

N = 4 supersymmetric SU(Nc) Yang-Mills theory with an additional Nf number of N = 2

supersymmetric hypermultiplets transforming in the fundamental representation of the

gauge group. This gauge theory can be well approximated by the supergravity set up we

described before in the limit Nc � 1, NcNf � 1, Nf/Nc � 1 and λ = g2
YMNc � 1. In

particular, we have

Zsugra+DBI = ZAdj+Fund , (2.22)

which is what we have introduced in (1.4).

One final remark: in this article we are concerned about the causal structure of the

open string metric for a specific configuration, in which an event horizon emerges to what

the open string degrees of freedom couple, it is not present in the supergravity background.

We will frequently consider the open string metric itself, and ignore the conformal factor

since the causal structure is not sensitive to the conformal factor.

3 Probing the geometry: causal structure

In gauge-gravity duality, the classical relativistic probes that correspond to various non-

local operators in the dual field theory, are extremal surfaces of various co-dimensions.

Examples include space-like geodesics. These yield the two-point correlation function of

operators with large dimensions [21]. More precisely, in the WKB approximaiton:

〈O(x)O(y)〉 = exp (−mLgeo[x, y]) , (3.1)

where m is the mass of bulk field, Lgeo[x, y] is the (renormalized) geodesic length and O
corresponds to the dual field theory operator.

There can certainly be extremal surfaces of other co-dimensions, e.g. Wilson-Maldacena

loops that are determined by extremal area string world sheets [22], or entanglement en-

tropy of a region A in the boundary that is determined by a co-dimension two extremal

area surface ending on ∂A [23]. Thus, the properties of extremal surfaces play a crucial

role in determining how the dual CFT-data is encoded in the geometry, see e.g. [4] for an

extensive study of extremal surfaces in asymptotically locally AdS-spaces. As we have de-

scribed in the previous section, an observer, living on a probe D-brane, can use open string

degrees of freedom on a D-brane to send signals through the spacetime. These fluctuations

propagate in accordance with a metric which is conformal to the open string metric and

hence an understanding of the causal structure of the open string metric is of importance

in supergravity. In this section, we will study the causal structure of the emerging open

string event horizon by analyzing relevant geodesics and Penrose diagrams.

In this article, the geometries that we consider, are indeed asymptotically AdS; how-

ever, they do not arise as solutions to Einstein-gravity. Thus, while the standard AdS/CFT-

dictionary of identifying extremal geodesics with dual field theory quantities is unclear in

– 8 –
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our case, it is certainly a well-posed question purely from a gravitational point of view

and hence, by virtue of the duality, should correspond to a well-defined observable in the

dual field theory. Thus, in this section, we will analyze features of geodesics in an open

string metric geometry, with the hope that it corresponds to physical properties for the

fundamental matter sector in the dual field theory, even though we will not make the

correspondence any more precise at this point.

Note that, in the approach of [24], for an asymptotically AdS-space, the field theory two

point correlation function of operators with large dimensions can be obtained by calculating

the corresponding spacelike geodesic in the bulk, in a WKB approximation. This argument

does not make any reference to the origin of the asymptotically AdS-space. In our case,

thus, it is natural to expect that a two point function within the fundamental sector will

be given by the corresponding geodesic propagating in the osm geometry. Moreover, we

will observe later, in section 3 where we calculate such geodesics explicitly, this putative

two-point function behaves similar to a thermal two-point function. Physically, this is

indicative of the fact that fluctuations in the fundamental sector exhibits a thermal nature.

3.1 Open string geometry of AdS3

We start with the AdS2+1 metric in the following form:

ds2 =
1

u2

(
−dt2 + dx2 + du2

)
, (3.2)

where AdS radius has been set to unity. The conformal boundary is located at u→ 0 and

the infrared of the geometry is located at u → ∞. In a BTZ geometry, the infrared will

contain a horizon that sets the temperature of the dual (1 + 1)-dimensional conformal field

theory. We will offer some comments regarding the dual field theory in a later section.

Now we will consider introducing “space-filling” probe branes in the AdS3-

background.9 Specifically to introduce an event horizon in the osm, we will excite the

following gauge potential:

Ax = −Et+ ax(u) with F = dA . (3.3)

The physics of this fundamental matter sector is rather intuitive: since we applied an

electric field, there will be pair-creation even in the absence of explicit charge density and

this will drive a flavour-current. The corresponding current, denoted by j ∼ (∂LDBI/∂a
′
x),

is essentially given by the first integral of motion for the field ax(u). See e.g. [25, 26] for

more details on a representative example of embedding D7-brane in AdS5×S5-background.

Now, using the definition in (2.18), for the background in (3.2) and the gauge field

in (3.3) the corresponding osm is calculated to be:

ds2
osm = − 1

u2

(
1− u4

u4
∗

)
dτ2 +

(
1

u2
+

1

u2
∗

)
dx2 +

1

u2

(
1

1− u2

u2∗

)
du2 , (3.4)

dτ = dt− Eju3√
(E2u4 − 1) (j2u2 − 1)

du , (3.5)

9We will make the assumption that such space-filling embedding exists. This, for the most part of our

purpose, is a simplifying assumption that does not necessarily loose any physical information.
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with

E =
1

u2
∗
, j =

1

u∗
=
√
E . (3.6)

With reference to (2.20), also note that

S̃ = ΩS , Ω =

(
1 +

u2

u2
∗

)−1

. (3.7)

Clearly, the osm in (3.4) inherits a structure similar to a black hole geometry, with an

effective Hawking temperature:

Teff =
E1/2

√
2π

. (3.8)

3.2 A comparative study of geodesics

We will begin with a comparative analysis of what is known in BTZ-background, which is

given by

ds2 = − 1

u2

(
1− u2

u2
H

)
dt2 +

1

u2
dx2 +

1

u2

 1

1− u2

u2H

 du2 , (3.9)

and what we get in AdS3-osm geometry given in (3.4). Towards that end, let us note the

temperature corresponding to (3.9) is: T = 1/ (2πuH), and let us set Teff = T to relate

the parameters uH with u∗ as: uH = u∗/
(√

2
)
. Thus, in the dual field theory, we are

comparing the fundamental matter sector at Teff with purely adjoint sector at T = Teff . In

the following section, we will review the results discussed in [1] for BTZ-background and

borrow their technique for analyzing the same with the osm-geometry.

3.2.1 Radial null geodesic

For completeness and convenience, we have summarized the geodesic equations in ap-

pendix D, and we will use the relevant formulae whenever necessary. We begin by discussing

properties of null geodesics. Geodesic paths can be found by extremizing the action

S =

∫
ds Sµν

dxµ

ds

dxν

ds
. (3.10)

where s is an affine parameter, Sµν are the metric coefficients, and xµ are the space-time

coordinates.

We will focus on x = constant-slices. A null geodesic on this slice in the BTZ-

background is described by

dt

du
=

1

1− u2

u2H

=⇒ t(u) = t0 +
uH

2
ln

(
uH + u

uH − u

)
, (3.11)
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which satisfies the boundary condition: t(u = 0) = t0. A null geodesic on a similar slice of

the AdS3-osm in (3.4) can be described by

dτ

du
=

(
1− u2

u2∗

)−1

√
1 + u2

u2∗

=⇒ τ(u) = τ0 +
u∗

2
√

2
ln

(√
u2 + u2

∗ + u
√

2√
u2 + u2

∗ − u
√

2

)
, (3.12)

alternatively, t(u)=τ0+u∗−
√
u2+u2

∗+
u∗√

2
ln

(√
2(u2+u2

∗)+u+u∗

(
√

2 + 1)(u∗ − u)

)
. (3.13)

The boundary condition is, evidently, τ(u = 0) = τ0. In the second line above, we have

used the relation in (3.5).

So far what we have discussed, should be interpreted as an analysis “outside the

horizon”, following the approach in [1]. To consider the “inside” of the black hole, let us

introduce the complexified time coordinate:

t = tL + itE , (3.14)

where tL and tE denote times on the Lorentzian and Euclidean slices respectively. In the

BTZ-background we obtain

t(u) = t0 +
uH

2
ln

(
u+ uH

u− uH

)
− iπuH

2
. (3.15)

The the last term is simply iβ/4, where T = 1/β = 1/(2πuH) is the Hawking temperature

of the BTZ black hole. The equation (3.15) implies that a null geodesic which starts at

the boundary at t0 = 0 reaches the singularity u = ∞ at t∞ = −iπuH2 , which is purely

imaginary. Hence the geodesic hits the singularity at the centre in the Penrose diagram

that can subsequently be drawn as a square.

Let us now look at the AdS3-osm. For null geodesics that cross the horizon of AdS3-osm

we get

τ(u) = τ0 +
u∗

2
√

2
ln

(√
u2 + u2

∗ + u
√

2√
u2 + u2

∗ − u
√

2

)
− i πu∗

2
√

2
, alternatively, (3.16)

t(u) = t0 + u∗ −
√
u2 + u2

∗ +
u∗√

2
ln

(√
2(u2 + u2

∗) + u+ u∗

(
√

2 + 1)(u− u∗)

)
− i πu∗

2
√

2
. (3.17)

The imaginary part is similarly iβeff/4, which is consistent with Teff = 1/(
√

2πu∗). From

the above equation we get that a null geodesic starting at the boundary at t0 = 0 reaches the

singularity u =∞ at t∞ = −∞− i πu∗
2
√

2
, which is not purely imaginary. This is equivalently

seen in the τ(u) coordinate, in which u→∞ yields τ → c0− i πu∗2
√

2
, where c0 is a finite, but

non-zero constant.

Thus, the global feature of the corresponding Penrose diagram will be different com-

pared to the BTZ-one. Specifically, the Penrose diagram will not be square-shaped, which

we will demonstrate later. It is also interesting to note that in order to reach the singu-

larity at Re[t(u→∞)] = 0, the null geodesic has to start at t0 =∞. The results of these

discussions are pictorially summarized in figures 1 and 2.
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0.2 0.4 0.6 0.8 1.0 1.2
u

0.5

1.0

1.5

2.0

t-t0

Figure 1. Null geodesics: t(u) − t0 along an ingoing radial null geodesic which starts from the

boundary u = 0 at t = t0 for AdS3-osm (solid black line), BTZ with uH = u∗/
√

2 (dashed blue

line), BTZ with uH = u∗ (dashed red line) and AdS3 (solid brown line). We have set u∗ = 1.

2 3 4 5
u

-4

-2

2

4

tL-t0

Figure 2. Null geodesics inside the horizon: Lorentzian time tL(u) − t0 along an ingoing radial

null geodesic which starts from the boundary u = 0 at t = t0 for AdS3-osm (dashed red lines) and

BTZ with uH = u∗ = 1 (dashed blue line). Euclidean time tE = − π√
2

for the AdS3-osm case and

tE = −π2 for the BTZ case.
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3.2.2 General geodesics

We will now study the behaviour of general geodesics, focussing on the space-like ones, in

the AdS3-osm background in (3.4). Towards that end, the general radial geodesic equation

can be written as:(
du

dλ

)2

+ Veff(u) = 0 , (3.18)

Veff(u) =
u2

R2

(
1− u2

u2
∗

)(
−κ+

L2u2

1 + u2

u2∗

− P 2u2

1− u4

u4∗

)
. (3.19)

Here Veff is the effective potential and λ denotes the affine parameter along the geodesic.

The parameter κ = 0,−1,+1 for null, time-like and space-like geodesics, respectively. P

and L are two constants of motion, corresponding to the two Killing vectors (∂/∂τ) and

(∂/∂x), respectively. We will thus associate an “energy” with P and a “momentum” with

L, henceforth. The effective potential at vanishing electric field is obtained by taking

u∗ →∞ limit, which yields:

V
(0)

eff (u) =
u2

R2

(
−κ+ L2u2 − P 2u2

)
. (3.20)

This is the result for pure-AdS background.

Let us make a few straightforward observations. Clearly, any geodesic enters the bulk,

provided limu→0 Veff < 0. This condition translates to L2 < P 2 for null geodesics, which

can occur. For time-like geodesics, one gets P 2 > ∞, which means time-like geodesics

never penetrate the bulk. Finally, for space-like geodesics, the condition is: P 2 > −∞,

which means space-like geodesics always penetrate the bulk. As a consistency check, one

obtains the same conclusions by analyzing V
(0)

eff , since AdS3-osm asymptotically approaches

AdS-geometry.

Let us now discuss the turning points of various geodesics, which we will denote by uc

and are given by solutions of Veff(uc) = 0. For null geodesics it is easy to check that no

turning point exists. Thus all null geodesics that penetrate the bulk, and subsequently fall

into the horizon.

For space-like geodesics, the possibilities are varied. Let us take the case when both

P = 0 = L. The solutions of Veff(uc) = 0 gives uc = 0, u∗, of which uc = 0 can certainly

not be counted as a turning point. One should, now, calculate the first derivative of the

potential at uc and check that it is indeed non-zero. A vanishing first derivative at uc would

imply an orbit, rather than a turning point. This is based on the intuition that in order for

the geodesic to turn back from uc, one needs a non-vanishing “force”. It is straightforward

to check that V ′eff(u∗) = 2u∗ > 0. Thus, the event horizon u∗ is also a turning point and

can be reached exactly by a geodesic. This is exactly similar to the BTZ-background.

Suppose now we assume L = 0, P 6= 0. The only real-valued solution is:

uc =
u∗√

2

√
u2
∗P

2 +
√

4 + u2
∗P

2 > u∗ , (3.21)

– 13 –



J
H
E
P
0
9
(
2
0
1
6
)
1
6
6

and hence lies inside the horizon. Thus, there is no turning point in this case; the space-like

geodesic falls inside the horizon and does not come back to the same boundary [4]. If we

instead set P = 0 and L 6= 0, then we get the following roots:

uc = u∗ ,
u∗√

u2
∗L

2 − 1
. (3.22)

Among the above, u∗ is an unstable orbit provided u∗L =
√

2 which obeys: V ′eff(u∗) = 0

and V ′′eff(u∗) < 0. On the other hand, uc = u∗/
√
u2
∗L

2 − 1 is a turning point for u∗L >
√

2.

For this root to be real and to lie outside the horizon one needs to impose u∗L >
√

2, which

also satisfies V ′eff(uc) > 0. Thus, in the regime u∗L >
√

2, there is only one true turning

point: uc = u∗/
√
u2
∗L

2 − 1. Note that, by taking the limit u∗L→
√

2, we immediately get

uc → u∗, and the two roots merge to become an unstable orbit. This is very similar to

what one observes in a BTZ-geometry, see e.g. [4].

Finally, we can discuss the case in which both P 6= 0, L 6= 0. Not surprisingly, for

P > L, there is no turning point. For P < L, there are two roots within 0 < uc < u∗.

The smaller of these two roots correspond to the physical turning point of the space-like

geodesic. As the ratio (P/L) is raised, the two roots come closer to each other and finally

coalesce at P/L ≈ O(1). Beyond this, the roots disappear altogether. To facilitate the

discussion, our results are summarized in figure 3.

Now, we want to study connected space-like geodesics at a fixed time-slice, which have

two points anchored at the boundary. A fixed time-slice sets P = 0. The separation

between the points at the boundary is:

l ≡ ∆x(u = 0) = 2

√
1

u2
c

+
1

u2
∗

∫ uc

0

udu√(
1− u4

u4∗

)(
1− u2

u2c

)
= 2u2

c

√
1

u2
c

+
1

u2
∗

3F2

(
1

2
,

1

2
, 1;

3

4
,

5

4
;
u4

c

u4
∗

)
. (3.23)

Here F denotes Apell function. The corresponding geodesic length is:

LE(l)− L0(l) ≡ 2

∫ uc

ε

√(
1 + u2

u2∗

)
du

u

√(
1− u2

u2∗

)(
1− u2

u2c

) − 2

∫ u0

ε

du

u

√(
1− u2

u20

) , (3.24)

where u0 = l/2. In the above expression, we have introduced a short-distance cut-off ε and

subtracted off the geodesic length at vanishing electric field to regularize the integral. The

resulting quantity is thus finite.

Following [27, 28], let us now consider two separate limits: (i) uc � u∗ and (ii) uc ∼ u∗.
Case (i), in which the geodesic stays mostly away from the infrared horizon, is equivalent

to taking l/u∗ = l
√
E � 1. In this limit, the equation (3.23) leads to:

uc =
l

2

(
1− l2

8u2
∗

+O
(
l4u4
∗
))

, (3.25)
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(a) Effective potential with L < P and L > P .
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(b) Effective potential with L ∼ P .

Figure 3. The top figure consists of a plot of the effective potential in (3.19) for spacelike geodesics

with L = 0 = P (blue), L = 0, P = 1 (green), L = 2, P = 0 (red) and L = 1, P = 0 (orange)

respectively. In the bottom left figure, the green and blue curves correspond to L < P and L > P ,

respectively. The latter evidently has a zero, but the former does not. The right figure depicts a

fine-tuned value of L ∼ P such that the root just disappears. We have set u∗ = 1 in all of them.

which gives:

LE(l)− L0(l) ≈ l2

2u2
∗

=
El2

2
= (Teff l)

2 π2 . (3.26)

On the other hand, when uc ∼ u∗, both l and LE(l) − L0(l) diverges. Nevertheless,

one can check that, as uc → u∗, the following quantity

LE(l)− L0(l)−
√

2l

u∗
=
[
c+ 2 ln

(u∗
l

)]
, (3.27)

remains finite, where

c =

∫ 1

0

(
2
√
x2 + 1

x(1− x2)
− 4x√

1− x4
√

1− x2
− 2

x

)
dx ≈ −0.376 . (3.28)
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Figure 4. Variation of 〈J (t, 0)J (t, l)〉c with Teff l = E1/2l√
2π

for ∆ = 1.

Hence we get

LE(l)− L0(l) =

√
2l

u∗
+
[
c+ 2 ln

(u∗
l

)]
=

(
2πTeff l + c+ 2 ln

(
1√

2πTeff l

))
. (3.29)

It is natural to interpret this quantity as an equal-time two-point function of quantum

fluctuations that live on the probe brane:

〈J (t, 0)J (t, l)〉c ≡ 1− e−∆(LE(l)−L0(l)) , (3.30)

where ∆ is a dimensionless constant.

Before concluding this section, let us offer some more comments, specially involving

the Gao-Wald result in [29]. Let us explicitly write the general geodesic equations using

the metric in (3.5). Using (D.5) and (D.6), one gets:

1

u2

(
1− u4

u4
∗

)
τ̇ = P ,

(
1

u2
+

1

u2
∗

)
ẋ = L , (3.31)

u̇2 + Veff = 0 , Veff = u2

(
1− u2

u2
∗

)[
−κ− P 2u2

1− u4

u4∗

+
L2u2

1 + u2

u2∗

]
. (3.32)

Suppose we want to focus on the geodesics whose end points are located at the conformal

boundary at u = 0. The temporal and the spatial distances between the two points of the

geodesic is given by

∆τ = 2ε

∫ 0

uc

u2du(
1− u4

u4∗

)√−Veff

, (3.33)

∆x = 2

∫ 0

uc

u2du(
1 + u2

u2∗

)√−Veff

, ε =
P

L
. (3.34)

By examining the integrands in the above expressions it trivially follows that, similar to

what was observed in [4], ∆τ ≥ ε−1∆x. This is in clear coherence with the Gao-Wald
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Figure 5. Variation of the renormalized geodesic length in the S̃-geometry, demonstrated with

respect to the boundary separation length l̃. The latter is measured in units of the effective tem-

perature.

inequality of [29], i.e. ∆τ ≥ ∆x, provided ε−1 > 1. The last inequality is needed for the

geodesic to have a turning point, and hence it is consistent. Let us also remark that, even

though we will discuss later issues with “energy conditions” associated with the osm, the

Gao-Wald result only relies on a null Ricci condition that nonetheless is preserved by the

osm.

So far, our discussion has been based on S, instead of S̃. A similar computation is

straightforward for S̃-background. We refrain from providing the details of this, except the

following ones:

l̃ = 2uc 3F2

(
1

2
,

1

2
, 1;

3

4
,

5

4
;
u4

c

u4
∗

)
, (3.35)

L̃ =

∫ uc

ε

du

u

2√(
1− u4

u4∗

)(
1− u2

u2c

) − ∫ uc

ε

du

u

2√(
1− u2

u2c

) , (3.36)

where l̃ and L̃ denote the boundary separation and the length of the geodesic in S̃-

geometry, respectively. Finally, we present the behaviour of the length of a spacelike

geodesic in figure 5. Qualitatively, this behaviour is similar to what is observed in the

pure osm-background. Similarly, the Gao-Wald conclusion also holds for the conformal

osm-geometry, which, as we will show momentarily, satisfies the null Ricci condition.
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3.2.3 General geodesics in higher dimensions

In this section, we will discuss features of the effective potential Veff in an AdS4 and an

AdS5-background. The corresponding open string metrics are given by:

ds2
(4) = −1− E2u4

u2
dτ2 +

du2

u2 (1− E2u4)
+

1

u2
d~x2 , (3.37)

ds2
(5) = −1− E2u4

u2
dτ2 +

du2

u2 (1− E3u6)

+
1 + Eu2

u2 + Eu4 + E2u6
dx2 +

1

u2
dx2
⊥ . (3.38)

We also define

S̃(4) = Ω(4)S(4) , S̃(5) = Ω(5)S(5) , (3.39)

Ω(4) = 1 , Ω(5) =

(
1 +

u2

u2
∗

+
u4

u4
∗

)1/3(
1 +

u2

u2
∗

)−1/3

. (3.40)

Note that, in AdS4, the isotropy in the {x, y}-plane is not broken by the electric field. In

AdS5, it is broken and we denote the directions perpendicular to the electric field by x⊥.

Thus, while considering spatial geodesics, in the later case one can consider two points

parallel or perpendicular to the electric field. As before we can write down the geodesic

equation with an effective potential. These effective potentials are respectively given by

V
(4)

eff = u2

(
1− u4

u4
∗

)[
−κ+ L2u2 − P 2u2

1− u4

u4∗

]
, L2 = L2

x + L2
y , (3.41)

V
(5)

eff(||) = u2

(
1− u6

u6
∗

)[
−κ+ L2

||
u2
(
u4 + u2

∗u
2 + u4

∗
)

u2
∗ (u2 + u2

∗)
− P 2u2

1− u4

u4∗

]
, (3.42)

V
(5)

eff(⊥) = u2

(
1− u6

u6
∗

)[
−κ+ L2

⊥u
2 − P 2u2

1− u4

u4∗

]
, L2

⊥ = L2
y + L2

z . (3.43)

with u∗ = E−1/2.

From (3.41), it is clear that spacelike geodesics will penetrate the geometry for any

given energy. The structure is exactly the same as the asymptotic AdS3-example for both

cases when P = 0 = L and L = 0, P 6= 0. In the case L 6= 0, P = 0 the two roots are:

uc = u∗ ,
1

L
. (3.44)

The above two roots are turning points provided u∗L < 1 and u∗L > 1, respectively. If

u∗L = 1, both roots become stable orbits. In the most general case, for P > L there is

no turning point, for P < L there are two roots and as the ratio (P/L) is increased they

coalesce at P/L ≈ O(1) and disappear after this. It is also straightforward to verify that

all qualitative features remain the same with the effective potentials in (3.42) and (3.43).
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(a) Penrose diagram for AdS3-osm geometry. (b) Penrose diagram for AdS4-osm geometry.

Figure 6. Penrose diagrams for osm-geometry. The black dot in both the diagrams correspond to

the bifurcation surface, i.e. the intersection point of the future and the past horizons. Both these

diagrams are qualitatively similar, up to a conformal transformation.

3.3 Kruskal extension and Penrose diagram

Given the geometry in (3.4) in asymptotically AdS3, or the geometry in (3.37) in asymp-

totically AdS4 background, we can work out the corresponding Kruskal extension of those,

and subsequently the Penrose diagrams. In this section we will discuss them, relegating the

details of the calculations — that mostly involves a chain of coordinate transformations —

to a couple of appendices: appendix A, in which the standard Kruskal extension of BTZ-

geometry is reviewed, then appendix B and C where we discuss the Kruskal extension of

the open string metric in asymptotically AdS3 and AdS4 backgrounds, respectively. The

resulting diagrams are shown in figure 6.

First, let us note the qualitative similarities to an eternal Schwarzschild black hole

which, in turn, are responsible for the effective “thermal” description of the system. There

is a technical difference though: it is known that for BTZ black hole, the corresponding

Penrose can be drawn as a perfect square, i.e. null rays originating at T = 0 (the Kruskal

time, see e.g. equation (A.5)) from the causally disconnected AdS-boundaries meet precisely

at the location of the singularity. In this case, however, either the singularity bends inwards

(while the conformal boundary is represented by a straight vertical line), or the conformal

boundary bends outwards (while the singularity is represented by a straight horizontal

line). This means that two null rays originating at the analogue of T = 0 from the two

different AdS-boundaries will encounter the singularity before they meet each other. This

feature is similar to the Penrose diagram of AdS-BH geometries in higher dimensions.

Finally, let us comment on the apparent distinction of the AdS3-osm and the AdS4-osm

Penrose diagrams. We emphasize here, as also discussed in appendix C, that by a conformal

transformation we can represent the conformal boundary as a straight vertical line, at the

cost of bowing the singularity inwards. Thus, qualitatively, both Penrose diagram for

AdS3-osm and AdS4-osm are similar.

Let us also note that, even though Kruskal extension seems a natural mathematical step

to follow, the physical origin of doing such is not as clear in the case of an osm-geometry. In
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a given geometry various Kruskal patches are related by local diffeomorphisms, and thus all

of them satisfy the same Einstein equations. A particular osm-geometry does not originate

from directly solving any equation. Thus, Kruskal extension of a given osm-geometry

should perhaps be practiced with some reservations.

In view of the above, one might wonder about the following: suppose we begin with

the Kruskally extended AdS3-BH geometry. Now, is there a probe brane configuration that

will produce the previously-obtained Kruskally-extended osm patch? The answer to this

question seems to be no. Thus, even though we point out the otherwise similarities of the

Kruskal patch and the subsequent Penrose diagram of the osm, we emphasize that this is

subtle.

4 A note on energy/Ricci conditions

Let us now discuss, supposing that the open string geometry could emerge from Einstein-

gravity sourced with appropriate matter field, the nature of the corresponding stress tensor.

As before, we will begin the discussion with asymptotically AdS3-background in (3.4), and

subsequently comment on the higher dimensional analogues in (3.37) and (3.38). To start

with, let us choose the notation: we use Gµν to denote the corresponding Einstein-tensor

evaluated from the given open string metric. The equation we pretend solving is the

following:

Gµν + Λgµν = Tµν , (4.1)

where Λ = −d(d−1)/2 is the cosmological constant in asymptotically AdSd+1-background,

Gµν is the open string metric and Tµν is the putative matter field. We will investigate the

following energy conditions:

(i) Null Energy Condition (NEC). This implies that for every future pointing null

vector, the matter density observed by the corresponding observer is non-negative. For a

given Tµν and any null vector nµ, the null energy condition imposes: Tµνnµnν ≥ 0.

(ii) Weak Energy Condition (WEC). It implies that for every future pointing time-

like vector, the matter density observed by the corresponding observer is non-negative. For

a given Tµν and any timelike vector tµ, the null energy condition imposes: Tµνtµtν ≥ 0.

(iii) Strong Energy Condition (SEC). This condition originally is imposed on the

Ricci tensor and makes a reference to the Einstein field equation to be recast in terms of

the stress-tensor. By virtue of Raychaudhuri equation, the timelike convergence condition

becomes: Rµνt
µtν ≥ 0.10 Using (4.1) this condition is equivalent to:[(
Tµν −

1

d− 1
GµνT

)
+GµνΛ

2

d− 1

]
tµtν ≥ 0 , Λ = −d(d− 1)

2
, (4.2)

for asymptotically AdSd+1-background.

10Note that, the Raychaudhuri equation, in the absence of shear and rotation, can be written as: Θ̇ +
1
3
Θ2 = −Rµνtµtν , where Θ is the expansion and tµ denotes a timelike unit vector field. For gravity to be

an attractive force, the r.h.s. of the equation should remain negative, and hence a condition on the Ricci

tensor follows.

– 20 –



J
H
E
P
0
9
(
2
0
1
6
)
1
6
6

To make the discussion self-contained, let us briefly remark when Tµν corresponds to

an ideal fluid in a (D + 1)-dimensional Minkowski background and is given by

Tµν = (ρ+ p)uµuν + p ηµν , (4.3)

where ρ is density and p is the pressure. In this case, Null Energy Condition implies ρ ≥ 0,

Weak Energy Condition implies ρ ≥ 0 and ρ+ p ≥ 0 and Strong Energy Condition implies

ρ+ p ≥ 0 and ρ+Dp ≥ 0.

Let us now discuss the backgrounds in (3.4), (3.37) and (3.38). For subsequent discus-

sions, let us pick the timelike and null vectors:

tµ =

(
1√
|Gττ |

, . . .

)
, nµ =

(
1√
|Gττ |

,
1√
Guu

. . .

)
. (4.4)

Evaluated with (3.4), the various components are:

Tττ =
2u2

(
u2
∗ − u2

)
u4
∗ (u2

∗ + u2)
, Tuu = − 2u4

∗

(u2
∗ − u2) (u2

∗ + u2)2 , (4.5)

Txx = −2u2
(
2u2
∗ + u2

)
u4
∗ (u2

∗ + u2)
. (4.6)

A straightforward calculation shows that

Tµνtµtν =
2u4

(u2
∗ + u2)2 ≥ 0 , (4.7)

and hence WEC is satisfied. Similarly, the SEC evaluates to: Rµνt
µtν = 2

(
1− u2

u2∗

)
≥ 0,

and is also satisfied. The NEC, on the other hand, yields:

Tµνnµnν = −2u2
(
u2
∗ − u2

)
(u2
∗ + u2)2 < 0 , (4.8)

and is violated. Note that in the limit u → 0, (4.8) approaches zero from negative; thus,

the pure AdS-limit is recovered. Summarizing, the AdS3-osm satisfies the WEC and SEC,

but violates NEC.11

Let us now move up one dimension. In AdS4-osm, with a similar choice for the

timelike and the null vector, it can be easily checked that the WEC evaluates to:

Tµνtµtν = −u4/u4
∗ < 0 and is thus violated. On the other hand, the NEC evaluates to

Tµνnµnν = 0 and the SEC yields: Rµνt
µtν = 3 − u4/u4

∗ > 0. Hence both NEC and SEC

are satisfied. Subsequently, it can also be shown that the Dominant Energy Condition and

the Null Dominant Energy Condition is satisfied. We will refrain from presenting further

details, but comment that a similar conclusion is reached for AdS5-osm background as well.

We summarize this section by stating that, either the WEC or the NEC is violated in these

osm-geometries, however, the other energy conditions may continue to hold.

11Although we do not explicitly discuss it in details, it can be checked that the Dominant Energy Condition

is satisfied in this case, while the Null Dominant Energy Condition is violated.

– 21 –



J
H
E
P
0
9
(
2
0
1
6
)
1
6
6

Let us end this section with a final remark. In the above we have assumed a trivial

profile for the probe embedding. A natural question is whether a probe with sufficient

bending may lead to an osm that can subsequently be viewed to satisfy all the energy

conditions. With a simple, instructive example we will demonstrate that this is not the case.

However, we will not be rigorous. Suppose we start in an asymptotically AdS4 geometry

and let us assume a representative brane embedding that spans {t, u, x1}-directions and

has a non-trivial profile, characterized by the function x2(u). Of course, we are shying away

from the full ten-dimensional details and that is part of the lack of rigour in our example.

With this, it can be checked that:

Tµνtµtν =
u4
∗s

2 + 2u2
∗s

2u2 +
(
2 + s2

)
u4

(1 + s2) (u2
∗ + u2)2 ≥ 0 , =⇒ WEC satisfied , (4.9)

Tµνnµnν = −2
u2
(
u2
∗ − u2

)
(1 + s2) (u2

∗ + u2)2 ≤ 0 , =⇒ NEC violated , (4.10)

SEC =⇒ 2

(
u2
∗ − u2

)
u2
∗ (1 + s2)

≥ 0 , hence satisfied , (4.11)

where s(u) =
dx2

du
. (4.12)

Thus, the resulting three-dimensional osm indeed behaves much like the AdS3-osm that we

have discussed above: it satisfies the WEC, but violates NEC.

The astute reader would notice that so far we have dealt with the open string metric. In

view of (2.19) and (2.20), one may ask of similar questions for the conformal metric S̃. Now

we comment on the results obtained for the corresponding “energy-momentum” tensor,

denoted by T̃ . With the help of (3.7), for asymptotically AdS3, it is easy to check that:

T̃µνtµtν = −u
4

u4
∗
< 0 =⇒ WEC violated , (4.13)

T̃µνnµnν =
u2

u4
∗

(
u2
∗ − u2

)
> 0 =⇒ NEC satisfied , (4.14)

SEC =⇒ 2 +
u2

u2
∗
> 0 , hence satisfied . (4.15)

For asymptotically AdS4, Ω = 1 and thus all conclusions remain same as in the

osm-background. Furthermore, using (3.40), it is straightforward to check that, for asymp-

totically AdS5-background, WEC is violated, while both NEC and SEC are satisfied,

corresponding to the conformal osm geometry. In brief, the conformal osm always violates

the WEC. This, perhaps, implies that one cannot establish an area-increasing theorem

for the osm horizon and subsequently should not identify the same as thermal entropy.

However, this needs to be checked for the DBI-action, which we leave for future work.

Also, we should be careful in placing physical importance on the energy conditions, e.g. it

is known that a single scalar field with a non-trivial potential, which would otherwise be

considered as innocuous, can violate SEC.

Finally we emphasize that, the above discussion on “Energy Conditions” is a matter

of taste. Since the resulting geometry is asymptotically AdS, we wanted to see if there
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exists some physical matter field that gives rise to such geometries. We conclude that,

the osm geometry can not be obtained by solving ordinary gravity with a physical matter

field. Therefore, there is no “equivalent” gravity description for the osm. Thus, despite the

similarities, it is inherently distinct. Alternatively, our analysis above can be re-interpreted

in terms of corresponding conditions on the Ricci tensor constructed from the osm, without

making any reference to an Einstein equation or an energy-momentum tensor.

5 Causal holographic observables

An interesting aspect of gauge-string duality is to understand how the bulk geometry can be

reconstructed from the boundary field theory data. In recent years, intriguing suggestions

have been made towards this and indicative connections to quantum information theory

established. The most popular of these is the entanglement entropy proposal in the context

of holography [23]. In our case, this proposal simply boils down to the computation of co-

dimension two extremal area (simply space-like geodesics for AdS3) surfaces. However, the

Ryu-Takayanagi formula is widely believed to hold for Einstein gravity, and not necessarily

for an effective or emergent geometry.

A more inherently geometric quantity is the Causal Holographic Information (CHI),

introduced and analyzed in [30]. As long as there is a well-defined causal structure, the CHI

is a well-defined concept. Moreover the quantity CHI does not depend on the origin of the

geometry and hence the CHI is an absolutely well defined quantity in the osm geometries

even though these geometries do not arise as solutions of Einstein-gravity. We will, in this

section, offer some comments on the CHI evaluated on the osm backgrounds. Following [30],

given a spacelike region A in the boundary, one naturally associates a domain of dependence

denoted by ♦A. The bulk causal wedge, denoted by �A, is then defined as the intersection

of causal past and causal future of ♦A itself. The past and future boundaries of the causal

wedge intersect at a co-dimension 2 surface, known as the causal information surface and

is denoted by ΞA.

Given an asymptotically AdS3-background, we can choose A to be an interval of width

2a. This, along with the subsequent choice of ♦A can then be written as:

A =
{

(τ, x)
∣∣τ = 0, |x| ≤ a

}
, (5.1)

♦A =
{

(τ, x)
∣∣|τ |+ x ≤ a, x ∈ [0, a]

}
∪
{

(τ, x)
∣∣|τ | − x ≤ a, x ∈ [−a, 0]

}
. (5.2)

To construct the bulk causal wedge, we need to analyze null geodesics in the corresponding

geometry.

With this in mind, we use the equations in (D.5) and (D.6) for null geodesics in the

background (3.4) we get

1

u2

(
1− u4

u4
∗

)
τ̇ = P ,

(
1

u2
+

1

u2
∗

)
ẋ = L , (5.3)

1

u2

(
1

1− u2

u2∗

)
u̇2 +

(
1

u2
+

1

u2
∗

)
ẋ2 − 1

u2

(
1− u4

u4
∗

)
τ̇2 = 0 . (5.4)
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∂ (AdS3)

ΞA

A

♦A

⌥A

Figure 7. The typical picture of the causal holographic information. This is very similar to what

one obtains in e.g. a BTZ-background.

Eliminating λ, we get

dx

du
= ± u2

∗√
u2 + u2

∗

1√
u2
∗ (ε2 − 1) + u2

, (5.5)

dτ

du
= ±εu

4
∗
√
u2 + u2

∗
(u4
∗ − u4)

1√
u2
∗ (ε2 − 1) + u2

, ε =
P

L
, (5.6)

with the boundary conditions that x(0) = x0 and τ(0) = τ0. The general solution of the

above equations is given by

τ(u)± = τ0 ±
εu∗√
1− ε2

Π

(
−1; i sinh−1

(
u

us

) ∣∣ 1

ε2 − 1

)
, (5.7)

x(u)± = x0 ±
u∗√

1− ε2
F

(
i sinh−1

(
u

us

) ∣∣ 1

ε2 − 1

)
, (5.8)

where F and Π are Elliptic functions of the first and the third kind, respectively. Here

{τ±(u), x±(u)} generate ∂± (�A). The corresponding CHI construction will lead to the

diagram schematically shown in figure 7.

For purely radial null geodesics, which is obtained from the above result by setting

ε→∞, sent from e.g. the future tip of ♦A we get:

τ− = a− u∗√
2

tanh−1

( √
2u√

u2 + u2
∗

)
. (5.9)
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Setting τ− = 0 yields the minimal radial extent of the bulk causal wedge. This is easily

obtained to be:

uΣ = u∗ tanh

(√
2a

u∗

)[
2− tanh2

(√
2a

u∗

)]−1/2

, (5.10)

which approaches u∗ exponentially in the limit (u∗/a) → 0, i.e. when aTeff � 1. In the

limit (u∗/a)→∞, i.e. when aTeff � 1, we get uΣ → a.

We can, given a boundary length-segment of width (2a), now compare the minimal

radial extent reached by the bulk causal wedge and a spacelike geodesic associated with

the length-segment. For this, we need to compare uΣ in (5.10) with uc in (3.23). It can be

checked numerically that for all values of a, uΣ < uc, i.e. in other words, the geodesic probes

deeper than the causal wedge. This in accord with general arguments provided in [30].

In light of [30, 31], we will now comment on the so called “entanglement wedge”,

following the notation and discussions of [32] closely. This has been conjectured to be the

most natural bulk region corresponding to the reduced density matrix of a region in the

boundary theory. We will only comment on the AdS3-osm case here, since many of the

computations are analytical. Even though we do not know whether the Ryu-Takayanagi

prescription for computing entanglement entropy is meaningful in the osm-background, in

the same spirit as computing spacelike geodesics that may correspond to the boundary

theory correlation function, we will proceed with the computation.

Suppose now, we begin with an interval A in the boundary. The corresponding co-

dimension two extremal area surface (in other words, the spacelike geodesic), denoted by

EA, along with A defines a co-dimension one surface Σ, such that ∂Σ = A∪EA. The entan-

glement wedge, subsequently denoted byWA, is defined as the causal development of Σ. We

will be brief in our discourse, see e.g. [32] for more details. To construct the causal devel-

opment, one can set up the light-sheets given the co-dimension two surface EA, that are de-

signed using null geodesics emanating from each point on EA and orthogonal to EA itself.12

Let us now define: A = {(τ, x)|τ = 0, x ∈ [−a, a]}. The co-dimension two surface

EA is then solved by setting τ = 0 in (D.6) (for κ = 1), which in turn implies P = 0 via

equation (D.5). The solution of the corresponding extremal surface (geodesic) is:

x±(u) = ± Lu2
∗√

L2u2
∗ − 2

F

(
i sinh−1

(
u∗

√
L2u2

∗ − 2

(1− L2u2
∗)u

2 + u2
∗

)
| L2u2

∗
L2u2

∗ − 2

)
+ x0 , (5.11)

where F is Elliptic function of the first kind and x0 is an integration constant that we

need not specify. For simplicity, we can work with x+(u) here onwards. First, observe that

x+(0) − x+(uc) = x+(0) = a, in which uc is the turning point of the geodesic, and thus

relates L with a.

We want to find null geodesics that are orthogonal to (5.11). Suppose now, the tangent

vector to (5.11) is denoted by Ξµ = {0,Ξx,Ξu} and the null normal byN µ = {N τ ,N x,N u};
12From each point on EA, four null rays emanate: two propagate towards the boundary, one past-directed

and the other future-directed, two others propagate towards the bulk. By constraining the expansion θ ≤ 0,

we pick out two sets of null rays that finally comprise the light-sheets associated with EA.
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then

ΞµNµ = 0 , N µNµ = 0 . (5.12)

We find Ξx/Ξu = dx+/du by using (5.11) to be:

Ξx

Ξu
= − Luu3

∗√
(u4
∗ − u4) (u2 (1− L2u2

∗) + u2
∗)
. (5.13)

Using the above and solving the orthogonality condition between Ξµ and N µ we get:

N x

N u
= −

(
u2 + u2

∗
)√

(u4
∗ − u4) (−L2u2u2

∗ + u2 + u2
∗)

Lu5u3
∗ (u2 − u2

∗)

∣∣∣∣∣
u=us

, (5.14)

where us is the point of intersection of the null geodesic and the spacelike geodesic. Note

that, in obtaining the above, we have also chosen the sign that corresponds to null rays

propagating towards the boundary. The null-ness condition yields:

N τ

N u
= ± P (u, u∗, a)|u=us

, (5.15)

where P is known analytically, the explicit form of which is not particularly illuminating.

In writing the above, we have traded L with a. Also note that the ± sign above corresponds

to null rays propagating towards boundary in the future and in the past, respectively.

Evidently, the null normal N is tangent to a null geodesic intersecting the spacelike

geodesic (5.11) at the radial position us. To construct a null ray that passes through this

point and continues towards the boundary, we need to solve for null geodesics in (5.3)

and (5.4). Equivalently one can solve the system (5.5) and (5.6) and obtain solutions of

the form written in (5.7) and (5.8), subject to the boundary condition that we clarify below.

First, we can evaluate the constant ε = P/L for a null geodesic that is tangent to (5.11)

at the radial location us. This can be achieved by first observing that, upon using the

equations of motion,
N x

N τ
=
ẋ

τ̇
=

1

ε

(
1− u2

u2
∗

)∣∣∣∣
u=us

. (5.16)

Alternatively, using (5.14) and (5.15), we can compute N x/N τ which is a function of

{us, u∗, a}. Combining this with (5.16), we can express ε (us, u∗, a). We do not explicitly

write down the expression here, since the functional forms are algebraically complicated

and not particularly illuminating. Furthermore, in order for the null geodesic to intersect

the spacelike geodesic in (5.11), we demand that at the radial location us, and τ = 0, we

have x = x+(us), where x+(us) is given by (5.11). In brief, the light-sheets are described

essentially by the solutions in (5.5) and (5.6) subject to the boundary conditions discussed

above, and they are qualitatively similar to the ones obtained in a BTZ-background.

6 Stringy embedding of AdS3

The standard way, in which bulk AdS3 emerges from a stringy construction is to consider

the D1-D5 bound state.13 The relevant part of the supergravity action, in string frame, is

13For review articles, see e.g. [33, 34]. Also note that, AdS3-geometry can arise from wrapping M5-branes

on a 4-cycle inside a six dimensional manifold, denoted by M6, which can be T 6, K3 × T 2 or Calabi-Yau

three fold. See e.g. [35] for more details.
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given by

Ssugra =
1

2κ2

∫
d10x
√
−Ge−2φ

(
R− 4 (∂φ)2 − 1

2
|G3|2

)
. (6.1)

The solution is given by

ds2 = (H1H5)−1/2 (−dt2 + dx2
)

+ (H1H5)1/2 ds2
R4 +

(
H1

H5

)1/2

ds2
M4

, (6.2)

H1,5 = 1 +
Q1,5

r2
, Q1 = (2π)4 gsN1

V4
α′3 , Q5 = gsN5α

′ , (6.3)

G3 = 2Q5ε3 + 2iQ1e
−2φ ∗6 ε3 , (6.4)

e−2φ =
H5

H1
. (6.5)

Here ε3 is the volume form on the 3-sphere, ∗6 is the Hodge dual in six dimensions and N1

and N5 are related to the number of D1 and D5-branes. Finally, M4 typically represents

T 4 or K3-manifold.

Correspondingly, the near-horizon limit yields, in which we also take gs → 0 with

gsN1 � 1 and gsN5 � 1,

ds2 =
r2

L2

(
−dt2 + dx2

)
+
L2

r2
dr2 + L2dΩ2

3 +

(
Q1

Q5

)1/2

ds2
M4

, (6.6)

G3 = 2Q5 (ε3 + i ∗6 ε3) , (6.7)

e−2φ =
Q5

Q1
, L2 = (Q1Q5)1/2 . (6.8)

The D1-branes span {t, x}-directions and the D5-branes wrap {t, x} and the M4. The

resulting gauge theory is a (1+1)-dim CFT with N = (4, 4) supersymmetry and the gauge

group U(N1) × U(N5). There are hypermultiplet fields transforming as the adjoints of

U(N1) and U(N5) separately and also as the bifundamentals of U(N1)×U(N5).

Now, one simple way to introduce flavours in this picture is to consider an additional

probe D5′-branes which extend along {t, x, r}-directions and wrap the entire 3-sphere,

where ′ denotes that these are different from the background D5-branes. Since this probe

sector extends along the radial direction, the gauge symmetry on the probe gets promoted

to a global symmetry. The corresponding (1, 5′)/(5′, 1) strings have 4 Neumann-Dirichlet

boundary conditions, and (5, 5′)/(5′, 5) strings have 8 Neumann-Dirichlet boundary condi-

tions.14 It is now straightforward to argue that the fundamental sector will be described

by a Dirac-Born-Infeld action, and there will be no Wess-Zumino term even when we turn

on the electric field to induce the steady-state.

A natural question is whether the probe, thus embedded in the background is a stable

one. We will now argue that it indeed is. The argument is by a straightforward computa-

tion. One can work with a generic embedding profile for the probe D5, parametrized by

z(t, r), where z-denotes a direction along theM4, which we can take to be T 4 for simplicity.

14As discussed in [33], one can be more precise about the details of the flavour degrees of freedom,

however, for our purposes these details do not matter and hence we will not discuss this further.
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The corresponding DBI-Lagrangian will take the following form

L ∼ r
(

1 + αr2z′2 − αż2

r2

)1/2

, (6.9)

where α is a constant (that depends on Q1 and Q5) which will not be relevant for our

discussions. Also, ′ ≡ ∂/∂r and ˙≡ ∂/∂t. The general equation of motion resulting from

this Lagrangian takes the form

d

dt

∂L
∂ż

+
d

dr

∂L
∂z′

= 0 . (6.10)

It is easy to check that static solutions of (6.10) are given by: z(0) = const. Suppose now,

we linearize around this classical solution using the following ansatz:

z = z(0) + δz(t, r) . (6.11)

The resulting linearized equation of motion allows one to perform a separation of variable,

such that δz(t, r) = Y (t)X(r), that obeys:

Ÿ = −k2Y , r3
(
3X ′ + rX ′′

)
+ k2X = 0 . (6.12)

The correct solution is given by

Y (t) ∼ e−ikt , X(r) ∼ 1

kr
H

(1)
1

(
k

r

)
, (6.13)

where H
(1)
1 is the Hankel function of the first kind. It is easy to check that this solution

has the desired ingoing boundary condition at the Poincaré horizon and normalizability at

the conformal boundary. Thus, the fluctuations around z(0) do not grow unbounded and

the corresponding classical profiles remain stable. This conclusion of stability, to the best

of our knowledge, is a new result.

Now, to read off the gauge theory coupling we can carry out the following exercise.

There are two sets of branes in the background, so we should be able to define two sets

of coupling constants. However, since the dual gauge theory is (1 + 1)-dimensional, it is

natural to define the gauge coupling in terms of the D1-branes. To that end, imagine

introducing a probe D1-brane along {t, x}-directions, which will have the following action

SD1 = −TD1

∫
e−φ
√
−GttGxx = −TD1

(
Q5

Q1

)1/2 1

L2

∫
. . .

= − 1

g2
YMα

′2

∫
. . . . (6.14)

This gives

g2
YM = (2πgs)α

′−1Q1 =
(2π)5

V4
g2
sα
′2N1 , (6.15)

where we have used the relation

TDp =
1

gs

1

(2π)p
1

α′(p+1)/2
. (6.16)
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On the other hand, if we used a D5-probe instead, we would get

g2
YM = (2π)5 gsα

′Q5 = (2π)5 g2
sα
′2N5 . (6.17)

Correspondingly, up to a numerical constant, we can define two ’t Hooft coupling:

λ1 = g2
YMN1 ∼ g2

sα
′2N2

1 , (6.18)

λ2 = g2
YMN5 ∼ g2

sα
′2N2

5 . (6.19)

There may be more ways to introduce flavours, and we may enlist those. But it is not

important for our discussions.
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A Kruskal extension of BTZ: a brief account

To compare the previous case with the more standard BTZ-background, we briefly review

the corresponding Kruskal extension. Let us start with the AdS3-BTZ background, written

as (suppressing the field theory spatial directions):

ds2 = −(r2 − r2
h)dt2 +

dr2

r2 − r2
h

. (A.1)

Now, the tortoise coordinate is:

r∗ = − 1

rh
tanh−1

(
r

rh

)
, ∀r ∈ [rh,∞] . (A.2)

r∗ = −1

r
− r2

h

3r3
+ . . . , r →∞ , (A.3)

r∗ =
1

2rh
log(r − rh) + . . . , r → rh . (A.4)

Now we can define

u = t− r∗ , v = t+ r∗ , U = −e−rhu = T −X , V = erhv = T +X , (A.5)

which yields

ds2 = −r
2 − r2

h

r2
h

e−2rhr∗(−dT 2 + dX2) = Ω(r)(−dT 2 + dX2) . (A.6)

Using the expansions in (A.4), it can be shown that Ω(rh) = 2rh, which is finite and has

an inverse. Thus we can now extend the patch to its original range of U < 0, V > 0 to

{U, V } ∈ (−∞,∞) with the constraint that 0 < r <∞.
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We can explicitly write down the coordinate transformations as:

T 2 −X2 = e2rhr∗ , tanh−1

(
T

X

)
= rh t . (A.7)

and also deduce that

e2rhr∗ =
r − rh

r + rh
. (A.8)

From these definitions it is clear that r → 0 corresponds to e2rhr∗ = −1 = −(T 2−X2) and

r →∞ corresponds to e2rhr∗ = 1 = −(T 2 −X2).

Let us now determine where the boundary and the singularity intersect the Kruskal

coordinates. Along the r = 0 curve (singularity), setting X = 0 gives Tsing = ±1. Along

the r = ∞ curve (boundary) setting T = 0 gives Xbound = ±1. Since |Tsing| = |Xbound|,
the resulting Penrose diagram will be a perfect square, — as is well-known.

B Kruskal extension of osm: a detailed account

Here we will provide the details of the coordinate transformations corresponding to the

Kruskal extension of osm. Let us take the AdS3-osm, represented by:

ds2 = − 1

u2

(
1− u4

u4
E

)
dτ2 +

(
1

u2
+

1

u2
E

)
dx2 +

1

u2

(
1− u2

u2
E

)−1

. (B.1)

The radius of curvature has been set to unity. Now define:

r =
u2

E

u
, rE = uE , t→ t

u2
E

, x→ x

u2
E

, (B.2)

to get

ds2 = −r2

(
1− r4

E

r4

)
dτ2 +

dr2

r2

(
1− r2

E

r2

)−1

+ (r2 + r2
E)dx2 . (B.3)

The tortoise coordinate is now defined as

r∗ =

∫
rdr

(r2 − r2
E)
√
r2 + r2

E

+ const , (B.4)

which yields

r∗ = −1

r
− r2

E

6r3
+ . . . , r →∞ , (B.5)

r∗ = − 1

2
√

2rE

log(r − rE) + . . . , r → rE , (B.6)

r∗ = − 1√
2rE

coth−1

 √
2rE√

r2 + r2
E

 , ∀r ∈ [rE,∞] . (B.7)

Alternatively r∗ = − 1

2
√

2rE

log


√
r2 + r2

E +
√

2rE√
r2 + r2

E −
√

2rE

 . (B.8)

So the corresponding range is: −∞ < r∗ < 0.
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Now define the incoming and outgoing null coordinates:

ũ = τ − r∗ , ṽ = τ + r∗ , (B.9)

which gives

ds2 = −F (r)dũdṽ , F (r) = r2

(
1− r4

E

r4

)
. (B.10)

We further define

U = −e−(
√

2rE)ũ , V = e(
√

2rE)ṽ , (B.11)

which yields

ds2 = − F

2r2
E

e−(2
√

2rE)r∗ dUdV = Ω(r) dUdV . (B.12)

Using (B.6), it can be checked that Ω(rE) = 4rE and is thus non-degenerate. This makes

the osm event-horizon a perfectly regular point and we can extend beyond this. Note that,

for −∞ < u, v <∞ we have −∞ < U < 0 and 0 < V <∞. Also

UV = −


√
r2 + r2

E +
√

2rE√
r2 + r2

E −
√

2rE

 . (B.13)

Let us now define the Kruskal coordinates as:

U = T −X , V = T +X , (B.14)

ds2 = Ω(T,X)(−dT 2 + dX2) , (B.15)

Using (B.9) and (B.11) we get:

−e(2
√

2rE)r∗ = T 2 −X2 , (B.16)
√

2rE t = tanh−1

(
T

X

)
. (B.17)

It is also straightforward to show, using the definition in (B.7), that

e(2
√

2rE)r∗ =

√
2rE −

√
r2 + r2

E

√
2rE +

√
r2 + r2

E

. (B.18)

The boundary is located at r =∞ and this corresponds to

e(2
√

2rE)r∗ = −1 =⇒ T 2 −X2 = −1 . (B.19)

The singularity is located at r = 0, which corresponds to

e(2
√

2rE)r∗ =

√
2− 1√
2 + 1

=⇒ T 2 −X2 =

√
2− 1√
2 + 1

. (B.20)

The singularity intersects the Kruskal coordinates at

X = 0 , Tsing = ±
(√

2− 1√
2 + 1

)1/2

. (B.21)
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The boundary intersects the Kruskal coordinates at

T = 0 , Xbound = ±1 . (B.22)

Since |Tsing| < |Xbound|, the singularity comes closer to the centre of the diagram than the

boundary; and hence the singularity, in the Penrose diagram, will bend inwards.

To draw the Penrose diagram, let us start from {ũ, ṽ} coordinates in (B.9) and define:

U ′ = tan−1 U , V ′ = tan−1 V . (B.23)

The corresponding time-like and space-like coordinates are defined as:

T ′ =
1

2

(
V ′ + U ′

)
, X ′ =

1

2

(
V ′ − U ′

)
. (B.24)

In order to draw the Penrose diagram, let us identify the following special regions of the

global space-time:

Horizon. This is located at r = rE, so equation (B.13) gives UV = 0. So, we either have

V > 0 with U = 0 or we have V = 0 with U < 0. These correspond to the Future Horizon,

denoted by H+, and the Past Horizon, denoted by H−, respectively. It is easy to check

that H+ is described by T ′ = X ′ and H− is described by T ′ = −X ′.

Space-like infinity. The conformal boundary is located at r → ∞, which yields UV =

−1. This is described by

X ′ =
1

2

(
V ′ − U ′

)
=

1

2
tan−1

(
V − U
1 + UV

)
=
π

4
. (B.25)

This corresponds to a vertical line in the Penrose diagram, and is denoted by i0.

Time-like infinity. The future time-like infinity is located at τ = +∞, which gives

ũ, ṽ = ∞. This, in turn, yields: V ′ = π
2 , U ′ = 0 and is denoted by i+. Similarly, the past

time-like infinity is located at τ = −∞, which gives: U ′ = −π
2 , V ′ = 0, and is denoted by i−.

Singularity. The singularity is located at r = 0, which is described by the following

equation:

UV =

√
2− 1√
2 + 1

. (B.26)

Given the explicit coordinate transformations, one can easily translate this equation in the

{T ′, X ′}-plane in which one observes that the singularity “bows in”, as compared to the

BTZ-black hole.

C Kruskal extension of higher dimensional osm

The AdS4-osm line element is

ds2 = − 1

u2

(
1− u4

u4
E

)
dτ2 +

1

u2

(
1− u4

u4
E

)−1

du2 +
1

u2
(dx2 + dy2) . (C.1)
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With u = 1
r , rE = 1

uE
the line element becomes

ds2 = −r2

(
1− r4

E

r4

)
dτ2 +

1

r2

(
1− r4

E

r4

)−1

dr2 + r2(dx2 + dy2) . (C.2)

We obtain the tortoise coordinate as before:

dτ = ±
(

1− r4
E

r4

)−1
dr

r2
= ±dr∗ , (C.3)

=⇒ r∗ =
1

4rE

[
2 tan−1

(
r

rE

)
+ log

(
r − rE

r + rE

)]
(C.4)

So for rE < r < ∞, −∞ < r∗ <
π

4rE
. Now we define the null coordinates: ũ = τ − r∗,

ṽ = τ + r∗. The range of the null coordinates are: ũ, ṽ ∈ [−∞,∞]. Subsequently, we

exponentiate the null coordinates to define:

U = −e−2rEũ and V = e2rEṽ . (C.5)

This yields: U ∈ [−∞, 0] and V ∈ [0,∞]. From the definition, we readily get

UV = −
(
r − rE

r + rE

)
exp

[
2 tan−1

(
r

rE

)]
. (C.6)

The compact null coordinates can be defined as: U ′ = tan−1 ũ, V ′ = tan−1 ṽ;

and subsequently the space-like and the time-like ones as: X ′ = (1/2) (V ′ − U ′),
T ′ = (1/2) (V ′ + U ′).

Horizon. The horizon is located at r = rE. From (C.6) we get: UV = 0. Thus, we have

either V > 0, U = 0 or V = 0, U < 0. These correspond to the future horizon H+ and the

past horizon H−, respectively. As before, H+ is described by T ′ = X ′ and H− is described

by T ′ = −X ′.

Singularity. The singularity is at r = 0, equivalently, UV = 1. This also yields:

T ′ =
1

2
(U ′ + V ′) =

1

2
tan−1

(
U + V

1− UV

)
=
π

4
. (C.7)

Thus, in the above coordinate system, the singularity is parallel to the space-like direction

X ′.

Timelike infinity(i±). The time-like infinities are located at τ = ±∞. The positive

sign corresponds to ũ = ∞ = ṽ that in turn yields: V ′ = π/2, U ′ = 0. The negative sign

corresponds to ũ = −∞ = ṽ that in turn yields: V ′ = 0, U ′ = −π/2.
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Boundary. Finally, the boundary is located at r = ∞, which translates to UV = eπ.

Since the r.h.s. is larger than unity, the boundary will “bow out” in this case. This is

an alternative manifestation of the singularity “bowing in” for the AdS3-background. To

observe the connection directly, let us simply define:

U ′′ = e−
π
2U , V ′′ = e−

π
2 V (C.8)

=⇒ U ′′V ′′
∣∣
boundary

= 1 , U ′′V ′′
∣∣
singularity

= e−π . (C.9)

Thus, expressed in terms of {U ′′, V ′′}, the boundary remains a straight vertical line, while

the singularity bows in.

D Geodesic equations

In this appendix we set up the equations for analyzing geodesics in a given background.

First, for generality, consider the following background:

ds2 = Gττdτ
2 +Guudu

2 +Gxxdx
2 +Gyyd~y

2
m , (D.1)

where {Gττ , Guu, Gxx, Gyy} are all functions of the radial coordinate u. The dual (m+ 2)-

dimensional field theory lives along the {τ, x, ~y}-directions. We have intentionally intro-

duced an anisotropy between the x-direction and the ~y-directions. The open string metric

that we have considered throughout the text is of the general form written in (D.1).

To write down the geodesic equations of motion, parametrized by Xµ(λ), we will

explicitly use the symmetries in the background. First, from definition:

Gµν
dXµ

dλ

dXν

dλ
= κ , (D.2)

where λ is an affine parameter and κ = −1, 0, 1 corresponding to timelike, null and spacelike

geodesics. The Killing fields, expressed in terms of the Killing vectors as: ξ = ξµ∂µ,

corresponding to (D.1) are given by

ξ(1) =
∂

∂τ
, ξ(2) =

∂

∂x
, ξ(3)i =

∂

∂yi
, i = 1, . . . ,m . (D.3)

Corresponding to each Killing vector, the first integral of motion is given by

Gµνξ
µdX

ν

dλ
= const . (D.4)

Explicitly written, the resulting conservation laws are:

Gττ
dτ

dλ
= −P , Gxx

dx

dλ
= Lx , Gyy

dyi
dλ

= Lyi . (D.5)

The equation of motion for the geodesic resulting from (D.2) is:

Gττ

(
dτ

dλ

)2

+Gxx

(
dx

dλ

)2

+Gyy

(
dyi
dλ

)2

+Guu

(
du

dλ

)2

= κ . (D.6)

Using (D.5), we can rewrite the above equation as:(
du

dλ

)2

+ Veff = 0 , Veff =
1

Guu

[
−κ− P 2

|Gττ |
+

L2
x

Gxx
+
L2
yi

Gyy

]
. (D.7)

We have used (D.7) in the main text.
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Figure 8. The expansion from the co-dimension two surface along the two null normal directions.

The blue and red curve corresponds to θ+ and θ−, respectively. We have set u∗ = 1 and further

L = 3.3. Corresponding to these choices, there exists an uc up to which θ± has been plotted.

E Expansion along null congruence

We will discuss only the asymptotically AdS3-case here, closely following [36]. For com-

pleteness, the metric is:

ds2 = − 1

u2

(
1− u4

u4
∗

)
dτ2 +

(
1

u2
+

1

u2
∗

)
dx2 +

1

u2

(
1− u2

u2
∗

)−1

du2 . (E.1)

Given a co-dimension two surface, described by

ϕ1 = τ − τ0 = 0 , ϕ2 = x− F (u) = 0 , (E.2)

which captures a typical profile of the extremal spacelike geodesic, one can construct the

corresponding light-sheet by considering null rays emanating from this geodesic. In princi-

ple, one can also consider a case in which τ0 is not a constant, but a function; furthermore

the data {ϕ1, ϕ2} may not even solve any equation of motion. However, here we will merely

comment on the case where (E.2) represents an extremal geodesic on a constant time-slice.

Generally though, given ϕi, i = 1, 2 one can immediately construct two null vectors

that are orthogonal to the co-dimension two surface:

Nµ
± ∼ Sµν (∇νϕ1 + B±∇νϕ2) , (E.3)

where B± are hitherto undetermined. One now imposes the following constraints:

Nµ
−N−µ = 0 = Nµ

+N+µ , Nµ
−N+µ = −1 . (E.4)

The constraints above determine B± and the overall normalization for the null vectors

uniquely.
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In the background (E.1), for an extremal geodesic, the two null normals are:

N± =

{
uu4
∗√

2 (u4 − u4
∗)
,± uu2

∗
Γ1 (u2 + u2

∗)
,±Lu

(
u2 − u2

∗
)

Γ2u2
∗

}
, (E.5)

Γ1 =

√√√√2 +
2L4(

1− u4

u4∗

)(
1
u2

+ 1
u2∗
− L2

) , (E.6)

Γ2 =

√
2

(
1− u4

u4
∗

)(
1

u2
+

1

u2
∗
− L2

)
+ 2L2 . (E.7)

To compute the expansion, denoted by θ±, from the co-dimension two surface propagated

along the null vectors we define the induced metric as:

hµν = Sµν +Nµ
+N

ν
− +Nµ

−N
ν
+ , (E.8)

and subsequently compute:

θ± = hµν∇µN±ν . (E.9)

A representative plot is shown in figure 8. It is easy to check that the behaviour in figure 8

is identical to the one in BTZ-background.
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