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1 Introduction

In a series of remarkable papers [2–5], Cachazo et al. have proposed a formula for tree-

level scattering amplitudes involving massless particles in any dimension. By means of

a beautiful observation that the kinematic space of scattering data involving n particles

(namely Mandelstam type variables) can be mapped onto moduli space of n-punctured

Riemann sphere, they mapped the complicated problem of expressing tree-level scattering

amplitude in terms of (an exponentially large number of) Feynman graphs into evaluating

some relatively simple integrals over the moduli space. This formulation is likely to have

serious ramifications for our understanding of quantum field theory and their dependence

on space-time.
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One of the elegant corollaries for understanding tree level amplitude in this light has

been a new class of factorization theorems called the double soft theorems. In [1] the

authors showed that, given a CHY formula for scattering amplitude one can look at limits

in which two of the particles (gauge bosons or gravitons) become soft. Precisely as in

the case of soft theorems like Weinberg’s soft theorems where one of the massless gauge

bosons becomes soft, CHY’s analysis shows that the even in the double soft limit, the

scattering amplitude factorizes. Cachazo et al. derived such double soft theorems for a

host of theories. However unlike in single soft case, double soft factors are more involved

functions of momenta and polarization. As such it is not immediately clear which of the

Feynman diagrams contribute to the soft factor.

What is more significant is the fact that as the CHY formulation of gravitational

scattering amplitude does not explicitly refer to any Lagrangian, it is a non-trivial check

for the formula, if indeed the double soft theorem, which would probe three and four point

vertices of Einstein Hilbert action can be understood precisely via Feynman diagrammatic.

In this paper, we apply the seminal ideas of [1] to CHY formula for scattering amplitudes

in perturbative gravity, thereby obtaining a double soft theorem for gravity scattering

amplitude. The formula looks rather formidable, but as we show, it precisely corresponds

to the double soft limit of scattering amplitude obtained from EH action. The remarkable

thing about the CHY formula is that, not only does it account for the two gravitons going

soft at the same rate, it also has a contribution from Feynman diagrams, where one graviton

becomes soft at a faster rate than the second one.

Recently double soft limits of scattering amplitudes have been explored for large variety

of theories. In [6] double soft theorems for Yang Mills, supersymmetric gauge theories and

open superstring theory have been studied. Single and consecutive double soft limits of

gluon and graviton amplitudes have been analyzed in [7]. Double soft theorems have also

been studied in supergravity theories in [8, 9]. Studies of soft theorems are useful in

uncovering the hidden symmetries of quantum field theories. In [10] connection between

Weinberg’s soft theorem and Ward identities of BMS symmetries at null infinity was shown.

In [11] it was shown that double soft theorems in nonlinear sigma model follow from a shift

symmetry. It will be interesting to investigate the symmetries, if they exist, in relation to

the double soft limit of gravity. This motivates us to look for a compact expression for

gravity scattering amplitude in the double soft limit. As we will see double soft factor is

not just product of two single soft factors but it also contains complicated factors at the

sub-leading order.

The paper is organized as follows. In section 2 we summarize the general philosophy of

CHY formula of scattering amplitude and how to get single soft limit in it. In section 3 we

discuss the double soft formula in general. In section 4 we simplify the double soft formula

for Einstein Maxwell theory given in [12]. As a warm up exercise for calculating gravity

amplitude from Feynman diagrams we do the same for Einstein-Maxwell which matches

exactly with the CHY result. In section 5 we present the result for double soft graviton.

In section 6 we compute the Feynman diagrams for linearized gravity.The result matches

with the previous one. All the details of the calculations are presented in the appendix.

– 2 –
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2 A brief review of CHY formula and Weinberg soft theorem

In this section we review the CHY formula for tree level scattering amplitude of gravity.

Details of the general formalism involving massless particles can be found in [2–5, 13]. The

essential feature of the formalism is to map the singularities of the scattering amplitude in

the kinematic space of say, n massless particles to the singularity structure of an auxiliary

space which is better understood. In this case Cachazo et al. consider the moduli space of

all n-punctured Riemann sphere, CP1. Let {kµ1 , k
µ
2 , . . . k

µ
n} are the momenta of n massless

particles in D dimension and {σ1, σ2, . . . σn} are holomorphic variables which parametrize

the moduli space. The holomorphic variables specify the locations of points on the Riemann

sphere. The mapping of the singularities is given by [14]

kµa =
1

2π

∮
|z−σa|=ε

dz
fµ(z)

n∏
b=1

(z − σb)
, ∀a ∈ {1, 2, . . . n} (2.1)

where fµ(z) is a D degree n− 2 polynomials.

Using momentum conservation,
n∑
a=1

kµa = 0 and the fact that k2a = 0 a set of n equations,

called scattering equations, can be derived

n∑
b=1
b 6=a

ka.kb
σa − σb

= 0, ∀a ∈ {1, 2, . . . n}. (2.2)

However because of the invariance of the equations under the SL(2,C) transformation

σ → ασ + β

γσ + δ
, α, β, γ, δ ∈ C, αδ − βγ = 1 (2.3)

n− 3 equations are independent and we can fix the values of σ1 →∞, σ2 → 0 and σ3 → 1.

2.1 Scattering amplitude

CHY formula proposes an integral representation of the scattering amplitude of massless

particles at tree level using the scattering equations on the complex Riemann sphere. For

scattering of n particles it is given by

Mn =

∫
dnσ

volSL(2C)

∏′

a

δ

∑
b 6=a

ka.kb
σa − σb

 In({k, ε, σ}) (2.4)

where volSL(2,C) is given by dσadσbdσc
(σa−σb)(σb−σc)(σc−σa) for any a, b, c. The primed product is

defined as

∏′

a

δ

∑
b 6=a

ka.kb
σa − σb

 := (σi − σj)(σj − σk)(σk − σi)
∏

a 6=i,j,k
δ

∑
b 6=a

ka.kb
σa − σb

 (2.5)

for any i, j, k. Under the SL(2,C) transformation it can be checked that eq. (2.4) remains

invariant.

– 3 –
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In case of gravity the integrand is expressed as a function called the reduced Pfaffian of

an antisymmetric matrix which contains information about the momenta and polarization

tensors of the particles. The antisymmetric matrix is defined as

Ψn =

(
A −CT

CT B

)
(2.6)

where each of A,B and C is 2n× 2n matrix and the components are:

Aab =

{
ka.kb
σa−σb , a 6= b

0, a = b
Bab =

{
εa.εb
σa−σb , a 6= b

0, a = b
Cab =


εa.kb
σa−σb , a 6= b

−
∑
c 6=a

εa.kc
σa−σc , a = b.

(2.7)

The Pfaffian of Ψn vanishes because it has a nontrivial kernel of dimension two, spanned

by the vectors:

(1, 1, . . . , 1; 0, 0, . . . , 0)T and (σ1, σ2, . . . , σn; 0, 0, . . . , 0)T . (2.8)

Hence a new quantity, called the reduced Pfaffian, is used:

Pf ′Ψn =
(−1)i+j

(σi − σj)
Pf(Ψn)ijij , for any i, j ∈ {1, 2, . . . n}. (2.9)

(Ψn)ijij means the matrix obtained by deleting i and j th rows and columns from Ψn. This

quantity is independent of the choice of i and j. In terms of the reduced Pfaffian, integrand

for gravity scattering amplitude proposed by CHY is

In =
(
Pf ′Ψn({k, ε, σ})

)2
(2.10)

and using eq. (2.4) the tree level scattering amplitude for gravity in CHY formula becomes

Mn =

∫
dnσ

volSL(2C)

∏′

a

δ

∑
b 6=a

ka.kb
σa − σb

 (Pf ′ΨN ({k, ε, σ}))2. (2.11)

In the soft limit where energy of one of the scattered gravitons tends to zero Mn can be

factorized as a product of soft factor and scattering amplitude of remaining n−1 particles,

precisely giving Weinberg’s soft graviton theorem [15].

2.2 Single soft limit

Here we explore what happens when energy of one of the scattered particles goes to zero.

Details of the calculation can be found in [5, 13, 16–18]. Let us assume momentum of the

nth particle scales as τp in the limit τ → 0. Then the scattering equation (2.2) for the nth

particle

fn = τ

n−1∑
b=1

p.kb
σn − σb

(2.12)

trivially tends to zero and we are left with n−1 equations out of which n−4 are independent.

Thus σn corresponding to the soft particle has no solution and the delta function supported

– 4 –
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at the nth scattering equation is used to deform the σn integral to a contour integration

where the contour wraps the solutions to the scattering equations∫
dσnδ

(
τ
n−1∑
b=1

p.kb
σn − σb

)
→
∮

dσn
2πi

τ−1

n−1∑
b=1

p.kb
σn−σb

. (2.13)

Using a Taylor series expansion for other delta functions we get

∏′

a 6=n
δ

∑
b 6=a

ka.kb
σa − σb

 =
∏′

a 6=n

δ
∑
b 6=a,n

ka.kb
σa − σb

+ τδ′
(

ka.p

σa − σn

)
+O(τ2)

 . (2.14)

We use the Pfaffian expansion (A.2) to write

Pf ′(Ψn) = Pf ′(Ψn−1)

n−1∑
b=1

εn.kb
σn − σb

+O(τ). (2.15)

Now substituting equations (2.13), (2.14) and (2.15) in eq. (2.11) and performing the

contour integration the scattering amplitude for gravity in the single soft limit can be

expressed as

Mn =

(
1

τ

n−1∑
b=1

(εn.kb)
2

p.kb

)
Mn−1 +O(1) (2.16)

which is precisely the expression given by Weinberg [15]. Here we use the convention that

all the momenta are outgoing. The Feynman diagram for linearized gravity corresponding

to the amplitude (2.16) is given below:

n∑
a=1

ρσ

ka+τp−−−−→ ka−→

↘ τp

µν

αβ

. .
.

. . .

...

...

. . .

. .
.

3 Double soft limit of CHY formula

In this section we briefly summarize the analysis for the double soft limit of the CHY

scattering amplitude as formulated by Cachazo et al. [1, 12]. Let us consider a scattering

process of massless particles with N = n + 2 external legs, out of which momenta of two

of the particles labeled by n + 1 and n + 2 are taken to be soft. The soft momenta are

denoted by

kn+1 = τp, kn+2 = τq (3.1)

– 5 –
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with the limit τ → 0. The variables σn+1 and σn+2 corresponding to the soft particles

parametrized by new variables as

σn+1 = ρ− ξ

2
, σn+2 = ρ+

ξ

2
. (3.2)

In terms of the new variables the scattering equations (2.2) now become

fa =



n∑
b=1
b 6=a

(
ka.kb
σa−σb + τka.p

σa−ρ+ ξ
2

+ τka.q

σa−ρ− ξ2

)
, a 6= n+ 1, n+ 2

n∑
b=1

(
τkb.p

ρ− ξ
2
−σb
− τ2p.q

ξ

)
, a = n+ 1

n∑
b=1

(
τkb.p

ρ+ ξ
2
−σb

+ τ2p.q
ξ

)
, a = n+ 2.

(3.3)

Expanding ξ perturbatively in τ as1

ξ = τξ1 + τ2ξ2 +O(τ3) (3.4)

and using the last two scattering equations we get

1

ξ1
=

1

p.q

n∑
b=1

kb.p

ρ− σb
= − 1

p.q

n∑
b=1

kb.q

ρ− σb
. (3.5)

With the change of variables in (3.2) the σn+1 and σn+2 integrals can be transformed as

follows:∫
dσn+1dσn+2δ(fn+1)δ(fn+2) (3.6)

→−2

∫
dρdξδ(fn+1 + fn+2)δ(fn+1 − fn+2)

→−2

∮
dρ

2πi

∑
ξ solutions

∫
dξ

1

(fn+1 + fn+2)

1
∂
∂ξ (fn+1 − fn+2)

→−2

∮
dρ

2πi

∑
ξ solutions

∫
dξ

1
n∑
a=1

τ

(
ka.p

ρ− ξ
2
−σa

+ ka.q

ρ+ ξ
2
−σa

) 2
n∑
b=1

τ

(
kb.p

(ρ− ξ
2
−σb)2

+ kb.q

(ρ+ ξ
2
−σb)2

)
+ 4 τ2 p.q

ξ2

where the first delta constraint is expressed as a contour integral for ρ wrapping around

the solutions to the scattering equations and the second delta constraint localizes the ξ

variable. It is evident that the scaling of the expression (3.6) goes as 1
τ if ξ ∼ τ and it is

1
τ2

if ξ ∼ τ0.
For finite ρ contour the CHY expression for the scattering amplitude at tree level in

the double soft limit as an expansion in the order of τ is given by [12]

MN = −1

τ

∮
dρ

2πi

∫
dµn

ξ21

p.q
n∑
b=1

kb.(p+q)
ρ−σb

1− τξ1
2

n∑
b=1

kb.(p+q)
(ρ−σb)2

n∑
b=1

kb.(p+q)
ρ−σb

+ 3τ
ξ2
ξ1

+O(τ2)

 IN . (3.7)

1We do not consider the non-degenerate solutions (ξ ∼ τ0) because they contribute at sub leading order

of τ compared to the degenerate solutions (ξ ∼ τ) for most of the theories of interest [1]. For gravity we

show this argument explicitly in section 5.

– 6 –
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Here we use the notation dµn ≡ dnσ
volSL(2C)

∏′

a

δ
( ∑
b 6=a

ka.kb
σa−σb

)
. If the integrand can be written

as a product like

IN (k, σ, ρ, ξ) = F (k, σ, ρ, ξ)In(k, σ) + (sub-leading order) (3.8)

then the previous expression at leading order simplifies to

MN =

[
− 1

τ

∮
dρ

2πi

ξ21

p.q
n∑
b=1

kb.(p+q)
ρ−σb

F (k, σ, ρ, τξ1)

]
Mn. (3.9)

The term in the square bracket gives the leading order double soft factor S∗(0).

There is an additional contribution to MN coming from the pole at ρ =∞. Deforming

the contour around the pole at infinity, the leading order expression can be derived to be

(MN )∞ =

∮
dρ

2πi

∫
dµn

−2ρ−3

3τ4(p.q)2
(IN |ξ=2iρ + IN |ξ=−2iρ) . (3.10)

4 Double soft limit for Einstein Maxwell theory

Now we will like show how the double soft theorem follows from Feynman diagrams. As

an example we consider Einstein Maxwell theory. In [12] the authors have investigated

scattering amplitudes in Born Infeld and Einstein Maxwell theories in the double soft limit

with two soft photons. The integrand for this class of theories is given by

IN = (PfXN )−m(Pf ′AN )2+mPf ′ΨN (4.1)

where m = 0,−1 denote BI and EM respectively. The result for EM theory with two soft

photon emission is

S∗(0) =
1

τ

n∑
b=1

1

kb.(p+ q)

[
p.q εn+1.εn+2 − εn+2.p εn+1.q

4(p.q)2
{
kb.(p− q)

}2 − εn+1.p
⊥
b εn+2.q

⊥
b

]
(4.2)

which can be further simplified to2

S∗(0)=
1

τ

n∑
b=1

1

kb.(p+ q)
(4.3)

×
[
εn+1.q εn+2.kb p.kb + εn+1.kb εn+2.p q.kb − εn+1.εn+2 p.kb q.kb

p.q
− εn+1.kb εn+2.kb

]
.

2Here we have used
n∑
b=1

{kb.(p−q)}2
kb.(p+q)

= −4
n∑
b=1

kb.p kb.q
kb.(p+q)

+O(τ).

– 7 –
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In the following subsection we show that from Feynman diagrams we can reproduce

the above expression modulo an overall constant factor.

4.1 Feynman diagrams

The Einstein Maxwell action in four dimension is given by

SEM =

∫
d4x

(
−1

4

√
−ggµρgνσFµνFρσ +

2

κ2
√
−gR

)
(4.4)

where Fµν = ∂µAν − ∂νAµ and R is the Ricci scalar given by R = gµν
(

Γλµλ ,ν − Γλµν ,λ+

ΓσµλΓλσν − ΓσµνΓλσλ

)
.

In the linearized perturbative theory of gravity a small deviation hµν around flat

Minkowski spacetime is considered such as

gµν = ηµν + κhµν . (4.5)

The Feynman rules for EM are given in section B.1. At leading order two soft photons

can be emitted from either an external graviton leg through an internal graviton propagator

or from an external photon leg through a graviton propagator. Both the processes involve

two three-point AAg vertices. These give terms of O
(
κ2

τ

)
. There also exists a four-point

AAgg vertex through which two soft photons can come from an external graviton leg. This

vertex comes from a term in Lagrangian of the form ∼ hh∂A∂A and thus lead to the order

of O(τ) in the scattering amplitude. Therefore for our purpose of interest it suffices to

compute the following Feynman diagrams:

• photons emitted from an external graviton

n∑
a=1 ρσ

ka+τ p+τ q−−−−−−−→ ka−→
δγ

↓ τp+ τq

τp↙ ↘ τq

µ ν

. .
.

. . .

...

...

. . .

. .
.

– 8 –
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• photons emitted from an external photon

n∑
a=1 ρσ

ka+τ p+τ q−−−−−−−→ ka−→
δ

↓ τp+ τq

τp↙ ↘ τq

µ ν

. .
.

. . .

...

...

. . .

. .
.

Both of these diagrams give exactly the same soft factor as in eq. (4.3). The above

analysis demonstrates the correspondence between the CHY integrand (4.1) with m = −1

and the Lagrangian description of EM theory (4.4) in the double soft limit. This motivates

us to look for similar kind of relation between CHY gravity proposal and Einstein gravity,

which we explore in the next section.

5 Double soft limit in gravity amplitude

In this section we derive the double soft factor for gravity from CHY method. Details of the

calculations are presented in sections A.1, A.2, A.3. For pure gravity amplitude integrand

is given by

In+2 = (Pf ′Ψn+2)
2. (5.1)

In the double soft limit for the degenerate solution (ξ ∼ τ), the measure goes as dµn+2 ∼
τ−1 and the integrand goes as In+2 ∼ τ0. So the overall scaling of the soft factor is 1

τ . For

the non-degenerate solution (ξ ∼ τ0) the integrand will be In+2 ∼ τ4 whereas, as argued

following eq. (3.6), the measure will scale as dµn+2 ∼ τ−2. So the leading order of the

double soft factor in case of non-degenerate solution of ξ will be of O(τ2). Hence like other

theories [1] (sGal, DBI, EMS, NLSM, YMS) for EH gravity too the degenerate solution

contributes at the leading order in the double soft factor.

Through out the rest of the discussion we will consider the degenerate solution of ξ

and restrict to only the leading order term. In this case the integrand takes the form

In+2 =

εn+1.q εn+2.p− εn+1.εn+2 p.q

ξ21
+

n∑
i,j=1

εn+1.p
⊥
i εn+2.q

⊥
j

(ρ− σi)(ρ− σj)

2

(Pf ′Ψn)2 +O(τ). (5.2)

– 9 –
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At leading order the double soft factor for gravity follows3 from eq. (3.9) and is given by

S∗(0) =−1

τ

n∑
a=1

[
1

ka.(p+ q) p.q

{
− (εn+1.εn+2)

2 ka.p ka.q

+2 εn+1.εn+2

(
εn+1.q εn+2.ka ka.p+ εn+1.ka εn+2.p ka.q

)
−2 εn+1.q εn+2.p εn+1.ka εn+2.ka + (εn+1.q)

2 (εn+2.ka)
2 + (εn+1.ka)

2 (εn+2.p)
2
}

− 1

p.q

{
(εn+1.q)

2 (εn+2.p)
2

ka.q
+

(εn+1.ka)
2 (εn+2.p)

2

ka.p

}
+

1

ka.(p+ q)

{
−2 εn+1.εn+2 εn+1.ka εn+2.ka

+2 εn+1.ka εn+2.ka

(
εn+1.q εn+2.ka

ka.q
+
εn+1.ka εn+2.p

ka.p

)
−(εn+1.ka)

2 (εn+2.ka)
2 p.q

ka.p ka.q

}]
(5.3)

Remarks on the double soft factor: we notice the following significant features about

this soft factor:

• It is interesting to see that like single soft factor (2.16), the double soft factor (5.3)

too appears at O
(
1
τ

)
and not at O

(
1
τ2

)
as one might have expected. Although we will

see later that Feynman diagrammatic give terms of O
(

1
τ2

)
which are not contained

in the CHY formula.

• It contains only summation over single variables. This is precisely due to the fact that

when we do contour integration only simple poles at each of the scattering solutions

of σa, for a ∈ {1, 2, 3 . . . n} contribute. From the perspective of Feynman diagrams

this implies that CHY formula is capturing only those local processes where two soft

gravitons are emitted from the same external leg. In general soft gravitons can be

scattered from different external legs, in that case summation over all such external

legs have to be carried on. Absence of these terms implies that CHY formula in the

double soft limit describes scattering processes which are local.

• The gauge invariance of the expression (5.3) can be checked by using the transfor-

mation

δεµνn+1 = pµΛν + pνΛµ or δεµνn+2 = qµΛν + qνΛµ. (5.4)

Unlike single soft case where momentum conservation is required to prove gauge

invariance, no such consideration is needed for double soft case. The terms in (5.3)

simply cancel among themselves after the substitution of (5.4).

In the next section we investigate the above features in details by calculating the Feyn-

man diagrams for linearized perturbative Einstein gravity. We will find that CHY expres-

sion (5.3) of the double soft factor is actually the sub-leading order term at tree level.

3There is another piece to this amplitude coming from eq. (3.10). We show in section A.3 that contri-

bution from pole at infinity is subleading to that of finite contour integral. Hence eq. (3.9) is the leading

order term.

– 10 –



J
H
E
P
0
9
(
2
0
1
6
)
1
6
5

Unlike the leading order term, the sub-leading term does not appear as product of two sin-

gle soft factors. Moreover this sub-leading term not only comes from two gravitons going

soft at the same rate but also receives contribution from the processes where one graviton

is taken to be soft at a faster rate than the other. Similar analyses also appear in [6, 7]

where particles are taken soft in succession.

6 Double soft limit from Feynman diagrams for gravity

Here we compute the double soft limit of gravity from the Feynman diagrams. The action

for Einstein Hilbert gravity in four dimension is

SEH =
2

κ2

∫
d4x
√
−gR. (6.1)

The Feynman rules for linearized gravity (4.5) are given in [19] where the conventions of [20]

are used. Every three-point vertex is of O(κ) and four-point vertex is of O(κ2). When

looking for scattering amplitude in the double soft limit it is sufficient for our purpose to

consider only three and four point vertices because they are the ones to contribute at the

leading order. Given n external legs there can not be any higher than four-point vertex

in each leg from where two soft gravitons can be emitted because in that case number of

hard particles will exceed n. In the perturbative linearized gravity in the double soft limit

there are two parameters, coupling constant, κ and energy scale of soft gravitons, τ and

the dominating term, as we will see below, is of O
(
κ2

τ

)
.

Following are the relevant Feynman diagrams (momenta at all external legs are out-

going):

• 4 point vertex

n∑
a=1 ρσ

ka+τp+τq−−−−−−→ ka−→
δγ

↗ τp

↘ τq

µα

νβ

. .
.

. . .

...

...

. . .

. .
.

≈ −4
κ2

τ

n∑
a=1

εn+1.εn+2 εn+1.ka εn+2.ka
ka.(p+ q)

(Mn)ρσε
ρσ
a + κ2O(1) (6.2)

– 11 –
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• 3 point vertex (I)

n∑
a=1 ρσ

ka+τp+τq−−−−−−→ ka−→
δγ

↓ τ(p+ q)

τp↙ ↘ τq

µα νβ

. .
.

. . .

...

...

. . .

. .
.

≈ κ2

τ

n∑
a=1

1

p.q ka.(p+ q)

[
− (εn+1.εn+2)

2ka.p ka.q + (εn+1.q)
2(εn+2.ka)

2

+(εn+1.ka)
2(εn+2.p)

2 − 2εn+1.εn+2

{
εn+1.ka εn+2.p ka.p+ εn+1.q εn+2.ka ka.q

}
−2 εn+1.q εn+2.p εn+1.ka εn+2.ka

]
(Mn)ρσε

ρσ
a

+ 2
κ2

τ

n∑
a=1

εn+1.εn+2 εn+1.ka εn+2.ka
ka.(p+ q)

(Mn)ρσε
ρσ
a + κ2O(1) (6.3)

• 3 point vertex (II)

n∑
a=1 ρσ

ka+τp+τq−−−−−−→ ka+τq−−−−→ ka−→
δγ

µα

νβ

↗ τp

↘ τq

+ (sym p↔ q)

. .
.

. . .

...

...

. . .

. .
.

≈ κ2

τ

n∑
a=1

1

ka.(p+ q)

[
2 εn+1.q εn+1.ka(εn+2.ka)

2

ka.q
+

2 (εn+1.ka)
2 εn+2.p εn+2.ka
ka.p

−(εn+1.ka)
2(εn+2.ka)

2p.q

ka.p ka.q

]
(Mn)ρσε

ρσ
a + κ2O(1) (6.4)
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The last term comes from the expansion of the propagator in the denominator

1

(ka + τp+ τq)2
≈ 1

τ ka.(p+ q)

[
1− τ p.q

ka.(p+ q)
+O(τ2)

]
. (6.5)

Comments: there is a subtlety with the above diagram. Strictly speaking the

leading order term corresponding to this diagram is of O
(
κ2

τ2

)
, given by

κ2

τ2

n∑
a=1

(εn+1.ka)
2(εn+2.ka)

2

ka.p ka.q
(Mn)ρσε

ρσ
a , (6.6)

which is product of two single soft factors where the soft gravitons are emitted from

the same external leg. It is interesting to note that this term by itself is not gauge

invariant, hence can not occur alone in the scattering amplitude. So to preserve gauge

invariance we need to add terms coming from the following Feynman diagram:

n∑
a,b=1
a 6=b

δγ

ka + τp↗

ka ↗

ρσ

kb + τq ↘

kb ↘

τp−→

τq−→. .
.

. . .

...

...

. . .

This diagram together with expression (6.6) gives

κ2

τ2

n∑
a,b=1
a 6=b

(εn+1.ka)
2(εn+2.kb)

2

ka.p kb.q
Mn (6.7)

which is precisely the product of two single soft factors and therefore gauge invariant.

Interestingly this scattering is not a local process, as mentioned towards the end of

section 5, in the sense that two soft gravitons are coming from different external legs.

Therefore the term (6.6) is actually a part of this nonlocal process. Due to this reason

we do not find this term appearing in the CHY expression (5.3).

• 3 point vertex (III)

After summing over all the above diagrams we can account for almost all the terms of

CHY expression in eq. (5.3) except one, which is of the form ∼ 1
τ p.q

{
(εn+1.q)2 (εn+2.p)2

ka.q
+

(εn+1.ka)2 (εn+2.p)2

ka.p

}
. Also this term is required for preserving gauge invariance. This

motivates us to look for the following diagram:4

4We thank Alok Laddha for his suggestion to look into this process.
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n∑
a=1 ρσ

ka+τ ′p+τq−−−−−−−→ ka−→
δγ

↓ τ ′p+ τq

τ ′p↙ ↘ τq

µα νβ

+ (sym p↔ q)

. .
.

. . .

...

...

. . .

. .
.

These describe the process where one of the soft gravitons is more softer than the

other and the softer one is being emitted from the relatively harder one. Let the

momentum of the (n + 1)th particle goes as τ ′p and that of (n + 2)th goes as τq,

where τ ′ > τ in the limit both τ ′, τ → 0. Then the overall scaling of the amplitude

will go as 1
τ . Upon symmetrizing between p and q we get

− κ2

τ p.q

n∑
a=1

{
(εn+1.q)

2 (εn+2.p)
2

ka.q
+

(εn+1.ka)
2 (εn+2.p)

2

ka.p

}
(Mn)ρσε

ρσ
a + κ2O(1) (6.8)

which is precisely the term we are looking for.

Adding together the expressions (6.2), (6.3), (6.4) and (6.8) we recover the CHY ex-

pression for the double soft factor (5.3) exactly. This matching of the results is significant

in the sense that it helps to clarify the correspondence between the gravity integrand (2.10)

of CHY formula and the Einstein Hilbert action (6.1). Moreover we emphasize on the fact

that in pure gravity due to the presence of ggg vertices we see nonlocal processes as de-

scribed earlier, because of which CHY graviton scattering amplitude in the double soft

limit corresponds to a subset of possible Feynman diagrams. Unlike gravity this peculiar-

ity is not encountered for soft photon emissions in Einstein Maxwell theory where two soft

photons are always emitted from single external leg through AAg vertices.

7 Discussion and conclusion

Cachazo et al. have pioneered an innovative method for calculating tree level scattering

amplitude, for a wide variety of theories including gravity, without pertaining to the ex-

plicit computation of Feynman diagrams which grow enormously large in number and are

cumbersome for higher point amplitudes. A remarkable aspect of CHY formalism is one

can get the soft limits of these scattering amplitudes much more conveniently than can

be done from Feynman diagrammatic. The prescriptions for taking single and double soft

limits have been given by Cachazo and his collaborators. In this paper we have applied

– 14 –
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their prescription to derive the double soft limit of the gravity scattering amplitude. Like

the case of single soft limit, here too, the result we get is of O
(
1
τ

)
and not O

(
1
τ2

)
as

one might have guessed. Also, CHY expression for double soft limit implies the two soft

gravitons should necessarily come from single external graviton leg. In case of gravity there

are scattering processes where soft gravitons are emitted from different external legs, and

these are not included in CHY formula.

Computing the relevant Feynman diagrams from linearized perturbative Einstein grav-

ity some interesting features stand out:

• There are some diagrams which contribute at O
(

1
τ2

)
. But these correspond to the

processes where soft gravitons are coming from different external legs and hence CHY

expression does not contain these terms.

• At O
(
1
τ

)
we found a particular process where the scaling of energies of the soft

gravitons are different; one particle goes softer than the other one. This diagram is

necessary to make the scattering amplitude gauge invariant and also turns out that

this term is included in the CHY answer.

Finally the fact that considering Feynman diagrams coming from Einstein Hilbert

action, the double soft factor of the scattering amplitude matches precisely with that of

CHY answer helps us to clarify the correspondence between the gravity integrand proposed

by Cachazo et al. and the Einstein gravity.

Loop corrections to single soft theorems have been studied for gluon and gravity ampli-

tudes in [21–23]. From their analyses it is evident that leading soft theorems are protected

from loop corrections but sub-leading ones require corrections at loop level. One-loop cor-

rections in CHY formalism have been studied in [24, 25] for bi-adjoint scalars and gluon

amplitudes. It will be interesting to study how loop corrections can be incorporated in

the present context and this will be helpful to learn about the universality of double soft

theorem presented here.

In [10, 26–31] the equivalence between Weinberg’s soft graviton theorem and BMS

supertranslation Ward identity of S matrix at asymptotic null infinity is established. It will

be extremely interesting to see if the double soft theorems are related to Ward identities

associated to certain symmetries. As double soft theorems are “non-local” function in

conformal S2 at null infinity, such symmetries can perhaps leave a very intricate structure

distinct from BMS.
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A Calculations of gravity amplitude

A.1 Derivation of eq. (5.2)

At leading order in τ the structure of matrix Ψn+2 is [12]

Ψn+2 ≈



(An)ab
τ ka.p
σa−ρ

τ ka.q
σa−ρ (−CTn )ab

−εn+1.kb
ρ−σb

−εn+2.kb
ρ−σb

τ p.kb
ρ−σb 0 −τ p.q

ξ1
−τ εa.p
σa−ρ −Cn+1,n+1

−εn+2.p
ξ1

τ q.kb
ρ−σb

τ p.q
ξ1

0 −τ εa.q
σa−ρ

εn+1.q
ξ1

−Cn+2,n+2

(Cn)ab
τ εa.p
σa−ρ

τ εa.q
σa−ρ (Bn)ab

εa.εn+1

σa−ρ
εa.εn+2

σa−ρ

εn+1.kb
ρ−σb Cn+1,n+1

−εn+1.q
ξ1

εn+1.εb
ρ−σb 0 εn+1.εn+2

−τ ξ1

εn+2.kb
ρ−σb

εn+2.p
ξ1

Cn+2,n+2
εn+2.εb
ρ−σb

εn+1.εn+2

τ ξ1
0



(A.1)

Now we use the identity for Pfaffian on any 2m× 2m matrix E

Pf(E) =
2m∑
q=1

(−1)qepqPf(Epqpq ), (A.2)

where epq is the element of the matrix E at the pth row and qth column. First we make

an expansion of the Pfaffian of Ψn+2 along the (n+ 2)th row to get upto leading order in τ

Pf ′Ψn+2 =
τ p.q

ξ1
Pf ′(Ψn+2)

n+2,n+1
n+2,n+1−

εn+1.q

ξ1
Pf ′(Ψn+2)

n+2,n+3
n+2,n+3−Cn+2,n+2Pf ′(Ψn+2)

n+2,2n+4
n+2,2n+4.

(A.3)

Again each of the reduced Pfaffians can be further expanded as

Pf ′(Ψn+2)
n+2,n+1
n+2,n+1 = −εn+1.εn+2

τ ξ1
Pf ′Ψn +O(1)

Pf ′(Ψn+2)
n+2,2n+3
n+2,2n+3 = −εn+2.p

ξ1
Pf ′Ψn +O(τ)

Pf ′(Ψn+2)
n+2,2n+4
n+2,2n+4 = −Cn+1,n+1Pf ′Ψn +O(τ). (A.4)

The two diagonal terms of the matrix Cn+2 can be approximated as

Cn+1,n+1 = −
n∑
i=1

εn+1.p
⊥
i

ρ− σb

Cn+2,n+2 = −
n∑
i=1

εn+2.q
⊥
i

ρ− σb
(A.5)

where p⊥i = ki− p.ki
p.q q and q⊥i = ki− q.ki

p.q p. Putting together all these expressions in eq. (A.2)

we get eq. (5.2).
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A.2 Derivation of double soft factor

Using eq. (3.9) and eq. (5.2) we get

S∗(0)=−1

τ

∮
dρ

2πi

ξ21
p.q

n∑
a=1

ka.(p+ q)

ρ− σa

[
εn+1.q εn+2.p− εn+1.εn+2 p.q

ξ21
+

n∑
i,j=1

εn+1.p
⊥
i εn+2.q

⊥
j

(ρ− σi)(ρ− σj)

]2
(A.6)

There are no contributions from higher order poles in the contour integral, only simple

poles at ρ = σa contribute. Substituting the solutions of ξ1 from eq. (3.5) and using their

product for ξ21 we get

S∗(0) = −1

τ

n∑
a=1

1

ka.(p+ q)

[
−(εn+1.q εn+2.p− εn+1.εn+2 p.q)

2 ka.p ka.q

(p.q)3

+ 2
(εn+1.q εn+2.p− εn+1.εn+2 p.q) εn+1.p

⊥
a εn+2.q

⊥
a

p.q

−
(
εn+1.p

⊥
a εn+2.q

⊥
a

)2
p.q

ka.p ka.q

]
(A.7)

After simplification the above expression reduces to eq. (5.3).

A.3 Soft factor from pole at infinity

In case of gravity there exists a simple pole at ρ =∞. The equation fn+1− fn+2 = 0 leads

to ξ = ±2iρ+O(1). Then the Pfaffian of Ψn+2 can be expanded as

Pf ′(Ψn+2) =
τ2 p.q εn+1.εn+2

4ρ2
Pf ′(Ψn) +O

(
1

ρ4

)
. (A.8)

Then from eq. (3.10) we get

(Mn+2)∞ = −1

3
(εn+1.εn+2)

2Mn (A.9)

which is clearly subleading in order τ as compared to eq. (5.3).

B Feynman rules

B.1 Feynman rules for EM

The Feynman rules for Yang-Mills theory coupled to gravity have been derived in [32].

In the same way Feynman rules for Einstein Maxwell theory coupled to gravity can be

derived.

k−→
µ ν − i ηµν

k2+iε
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↖ k1 ↗ k2

↓ k3

µ ν

αβ

− i κ
[
(ηµαηνβ + ηµβηνα − ηµνηαβ)k1.k2 + ηµν(k1αk2β + k1βk2α)

− k1νk2µηαβ − k1ν(ηµαk2β + ηµβk2α)− k2µ(ηναk1β + ηνβk1α)
]

B.2 Feynman rules for gravity

The Feynman rules for three and four point vertices are given in [19]. Using eq. (4.5) we

can write

gµν = ηµν − κ hµν + κ2hµαh ν
α +O(κ3) (B.1)

and
√
−g = 1 +

κ

2
h+

κ2

8

(
h2 − 2 hαβhαβ

)
+O(κ3) (B.2)

where h = hαα. The Ricci scalar can be expanded as

R = κ (�h− ∂µ∂νhµν)

+κ2
(

1

4
∂µh∂

µh− ∂µhµν∂νh+ ∂µh
µν∂ρhνρ −

3

4
∂µhνρ∂

µhνρ

+
1

2
∂µhνρ∂

νhµρ + 2 hµν∂µ∂
ρhρν − hµν�hµν

)
+O(κ3). (B.3)

We work in harmonic (de Donder) gauge, where

hαµ,α −
1

2
h,µ = 0. (B.4)

Then the resulting graviton propagator, three and four point vertices are:

k−→
αβ γδ − i

2
ηαγηβδ+ηαδηβγ−ηαβηγδ

k2−iε

↖ k1 ↗ k2

↓ k3

µα νβ

σγ

sym

[
− 1

2
P3(k1.k2 ηµαηνβησγ)− 1

2
P6(k1νk1βηµαησγ)

+
1

2
P3(k1.k2 ηµνηαβησγ)

+ P6(k1.k2 ηµαηνσηβγ) + 2P3(k1νk1γηµαηβσ)− P3(k1βk2µηανησγ)

+ P3(k1σk2γηµνηαβ) + P6(k1σk1γηµνηαβ) + 2P6(k1νk2γηβµηασ)

+ 2P3(k1νk2µηβσηγα)− 2P3(k1.k2 ηανηβσηγµ)

]
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↖ k1 ↗ k2

↙ k3 ↘ k4

µα νβ

σγ ρλ

sym

[
−1

4
P6(k1.k2 ηµαηνβησγηρλ)− 1

4
P12(k1νk1βηµαησγηρλ)− 1

2
P6(k1νk2µηαβησγηρλ)

+
1

4
P6(k1.k2 ηµνηαβησγηρλ) +

1

2
P6(k1.k2 ηµαηνβησρηγλ) +

1

2
P12(k1νk2βηµαησρηγλ)

+ P6(k1νk2µηαβησρηγλ)− 1

2
P6(k1.k2 ηµνηαβησρηγλ) +

1

2
P24(k1.k2 ηµαηνσηβγηρλ)

+
1

2
P24(k1νk1βηµσηαγηρλ) +

1

2
P12(k1σk2γηµνηαβηρλ) + P24(k1νk2σηβµηαγηρλ)

− P12(k1.k2 ηανηβσηγµηρλ) + P12(k1νk2µηβσηγαηρλ) + P12(k1νk1σηβγηµαηρλ)

− P24(k1.k2 ηµαηβσηγρηλν)− 2P12(k1νk1βηασηγρηλµ)− 2P12(k1σk2γηαρηλνηβµ)

− 2P24(k1νk2σηβρηλµηαγ)− 2P12(k1σk2ρηγνηβµηαλ) + 2P6(k1.k2 ηασηγνηβρηλµ)

− 2P12(k1νk1σηµαηβρηλγ)− P12(k1.k2 ηµσηαγηνρηβλ)− 2P12(k1νk1σηβγηµρηαλ)

− P12(k1σk2ρηγληµνηαβ)− 2P24(k1νk2σηβµηαρηλγ)− 2P12(k1νk2µηβσηγρηλα)

+ 4P6(k1.k2 ηανηβσηγρηλµ)]

where “sym” stands for symmetrization between (µ, α); (ν, β); (σ, γ); (ρ, λ) and the symbol

Pm denotes m number of distinct permutations between the indices (k1, µ, α) ; (k2, ν, β) ;

(k3, σ, γ) ; (k4, ρ, λ).
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