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Abstract: Applying the dispersion approach we compute perturbative QCD corrections

to the power suppressed soft contribution of B → γ`ν at leading twist. QCD factorization

for the B → γ∗ form factors is demonstrated explicitly for the hard-collinear transverse po-

larized photon at one loop, with the aid of the method of regions. While the one-loop hard

function is identical to the matching coefficient of the QCD weak current ūγµ⊥(1− γ5)b in

soft-collinear effective theory, the jet function from integrating out the hard-collinear fluctu-

ations differs from the corresponding one entering the factorization formula of B → γ`ν, due

to the appearance of an additional hard-collinear momentum mode. Furthermore, we eval-

uate the sub-leading power contribution to the B → γ form factors from the three-particle

B-meson distribution amplitudes (DAs) at tree level, with the dispersion approach. The

soft contribution to the B → γ form factors from the three-particle B-meson DAs is shown

to be of the same power compared with the corresponding hard correction, in contrast

to the two-particle counterparts. Numerically the next-to-leading-order QCD correction

to the soft two-particle contribution in B → γ form factors will induce an approximately

(10 ∼ 20)% shift to the tree-level contribution at λB(µ0) = 354 MeV. Albeit of power

suppression parametrically, the soft two-particle correction can decrease the leading power

predictions for the B → γ form factors by an amount of (10 ∼ 30)% with the same value

of λB(µ0). Employing the phenomenological model of the three-particle B-meson DAs

inspired by a QCD sum rule analysis, the three-particle contribution to the B → γ form

factors is predicted to be of O(1%), at leading order in αs, with the default theory in-

puts. Finally, we explore theory constraints on the inverse moment of the leading-twist

B-meson DA λB from the recent Belle measurements of the partial branching fractions

of B → γ`ν, taking into account the newly computed contributions to the B → γ form

factors at subleading power.
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1 Introduction

The radiative leptonic B → γ`ν decay serves as one of the benchmark channels to under-

stand the strong interaction dynamics of the B-meson system based upon the heavy quark

expansion. Factorization properties of the B → γ`ν amplitude at large photon energy Eγ
have been explored extensively in both QCD [1, 2] and soft-collinear effective theory [3, 4]

at leading power in Λ/Eγ . The particular feature of this channel lies in the strong sensi-

tivity of the branching faction BR(B → γ`ν) on the inverse moment λB of the B-meson

light-cone distribution amplitude (DA) φ+
B(ω, µ), which also enters the QCD factorization

formulae for hadronic B-meson decays. Improving the theory description of the radiative

leptonic B → γ`ν decay by taking into account the subleading power effects is therefore in

demand to achieve a better control over the inverse moment λB.

Subleading power corrections to B → γ`ν in the heavy quark expansion were inves-

tigated in QCD factorization at tree level [5] where a symmetry-conserving form factor

ξ(Eγ) was introduced to parameterize the non-local power correction. It remains unclear
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whether ξ(Eγ) can be computed straightforwardly in QCD factorization without encoun-

tering rapidity divergences. An alternative approach to evaluate the power suppressed

contributions in B → γ`ν was proposed in [6] by employing the dispersion relations and

quark-hadron duality, where the “soft” two-particle correction to the B → γ form factors

was computed at leading order in the perturbative expansion. The main purpose of this

paper is to extend the calculation performed in [6] by computing the subleading power con-

tributions to the B → γ`ν amplitude from the two-particle DA φ+
B(ω, µ) at one loop and

from the three-particle DAs at tree level, for the sake of understanding the factorization

properties of the higher power terms in the heavy quark expansion.

The basic idea of the dispersion approach is to first construct the sum rules for the

generalized form factors of B → γ∗ ` ν involving a spacelike hard-collinear photon with

momentum p, and to perform the analytical continuation to p2 = 0 to obtain the expressions

for the on-shell B → γ form factors due to absence of the massless vector resonances.

The primary task of evaluating the two-particle contribution to the above-mentioned sum

rules at next-to-leading order in αs is to demonstrate QCD factorization for the B → γ∗

form factors, which can be achieved with either the soft-collinear effective theory (SCET)

technique [7–9] or the diagrammatic approach based upon the method of regions [10]. We

will, following [11, 12], adopt the latter approach to establish the factorization formula for

the leading-twist contribution to A(B → γ∗`ν) at one loop and employ the renormalization-

group (RG) approach to resum large logarithms in the perturbative functions at next-

to-leading-logarithmic (NLL) accuracy. It is evident that the hard function entering the

factorization formula of A(B → γ∗`ν) with a (transversely polarized) hard-collinear photon

can be extracted directly from the perturbative matching coefficient of the QCD weak

current ūγµ⊥(1 − γ5)b in SCET, due to the absence of an additional hard-momentum

mode; and in the limit p2 = 0 the resulting hard-collinear function must reproduce the

jet function in the SCET factorization for the B → γ`ν decay amplitude. Applying the

light-cone expansion for the massless quark propagator in the background gluon field, we

will demonstrate that QCD factorization for the three-particle contribution to A(B →
γ`ν) is already violated at tree level due to the emergence of end-point divergences, and

the dispersion approach developed in [6] provides a coherent framework to calculate the

subleading power contributions from both the leading and higher Fock states of the B-

meson. Following the established power counting scheme, we further show that both the

“hard” and “soft” effects from the three-particle B-meson DAs contribute to the sum rules

at the same power in Λ/mb, in contrast to the observation for the leading twist contribution.

Yet another approach to address the subleading power contributions to the B → γ`ν

amplitude from the photon emission at large distance is to introduce the photon DAs

describing the strong interaction dynamics for the “hadronic” component of a collinear real

photon. Employing the vacuum-to-photon correlation function with the B-meson replaced

by a local pseudoscalar current, the leading-twist contribution of such long-distance photon

effect has been computed from QCD light-cone sum rules (LCSR) at tree level [13, 14]

and at one loop [15]. Interestingly, the higher-twist correction to the hadronic photon

contribution calculated in the same framework was found to violate the symmetry relation

for two B → γ form factors due to the helicity conservation in the heavy quark limit [15].
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Computing the hadronic photon effect in A(B → γ`ν) from QCD factorization with the

photon DAs would be of great interest to develop a better understanding towards the

pattern of the subleading power contributions from different dynamical sources. However,

it is quite conceivable that the convolution integral involving the B-meson and photon DAs

suffers from the end-point divergences, indicated from a direct calculation of the similar

effect on the π → γ form factor [16].

The presentation is structured as follows. In section 2 we will discuss some general

aspects of the B → γ`ν amplitude and summarize the main idea of computing the (soft)

end-point contributions to the B → γ form factors in the dispersion approach, by work-

ing out the tree-level sum rules for the power suppressed two-particle contribution. We

then demonstrate QCD factorization for the leading twist contribution to the general-

ized B → γ∗`ν form factors at O(αs) with the diagrammatical factorization approach

in section 3, where the sum rules for the two-particle subleading power contribution to

A(B → γ`ν) are also derived at NLL accuracy. We further compute the subleading power

three-particle contribution to the B → γ form factors from the dispersion approach at tree

level in section 4, which constitutes another new result of this paper. Phenomenological

implications of the newly computed contributions to the B → γ`ν amplitude are explored

in section 5, including the uncertainty estimates for our predictions from different dynam-

ical sources. Section 6 is reserved for a summary of main observations and concluding

discussions.

2 The radiative leptonic B → γ`ν decay in dispersion approach

2.1 General aspects of the B → γ`ν amplitude

We will follow closely the theory overview of B → γ`ν presented in [5] and the correspond-

ing decay amplitude can be written as

A(B−→ γ`ν) =
GFVub√

2
〈γ(p)`(p`)ν(pν)|

[
¯̀γµ(1−γ5)ν

][
ūγµ(1−γ5)b

]
|B−(p+ q)〉 , (2.1)

where p + q and p denote the momenta of the B-meson and photon, and the lepton-pair

momentum is given by q = p` + pν with p` and pν being the lepton and neutrino momenta,

respectively. We will work in the rest frame of the B-meson with the velocity vector

vµ = (pµ + qµ)/mB and introduce two light-cone vectors nµ and n̄µ by defining

pµ =
n · p

2
n̄µ ≡ Eγn̄µ , qµ =

n · q
2
n̄µ +

n̄ · q
2
nµ , vµ =

nµ + n̄µ
2

. (2.2)

Computing the amplitude A(B− → γ`ν) in (2.1) to the first order in the electromag-

netic interaction yields

A(B−→ γ`ν) =
GFVub√

2
(igemε

∗
ν)
{
T νµ(p, q)`γµ(1− γ5)ν +Q`fB`γ

ν(1− γ5)ν
}
, (2.3)

where the two terms in the bracket correspond to the photon emission from the partonic

constitutes of the B-meson and from the final-state lepton. The hadronic tensor T νµ(p, q)
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is defined by the following non-local matrix element

Tνµ(p, q) ≡
∫
d4x eip·x 〈0|T

{
jν,em(x),

[
ūγµ(1− γ5)b

]
(0)
}
|B−(p+ q)〉 , (2.4)

where we adopt the convention for the QCD and QED covariant derivative iDµ = i∂µ +

gemQfAµ,em + gsT
aAaµ with Qf = −1 for the lepton fields, and the electromagnetic current

is given by jν,em =
∑

q Qq q̄γνq + Q` ¯̀γν`. It is straightforward to write down the general

decomposition of this hadronic matrix element [17, 18]

Tνµ(p, q) = v · p
[
− iεµνρσnρvσFV (n · p) + gµνF̂A(n · p)

]
+ vνpµF1(n · p)

+ vµpνF2(n · p) + v · p vµvνF3(n · p) +
pµpν
v · p

F4(n · p) , (2.5)

with the convention ε0123 = +1. It is evident that the form factors F2(n · p) and F4(n · p)
will not contribute to the amplitude A(B−→ γ`ν) in virtue of ε∗ · p = 0. Employing the

Ward identity pνT
νµ(p, q) = −(Qb−Qu)fBp

µ
B due to the conservation of the vector current,

we can further obtain

F̂A(n · p) = −F1(n · p) , F3(n · p) = −(Qb −Qu)fBmB

(v · p)2
. (2.6)

Since the real photon is transversely polarized, the form factor F3(v · p) will play no role

in the B → γ`ν amplitude. Finally, one can redefine the axial form factor F̂A(v · p) [5]

Tνµ(p, q)→ − iv · pεµνρσnρvσFV (n · p) +
[
gµν v · p− vνpµ

] [
F̂A(n · p) +

Q`fB
v · p

]
︸ ︷︷ ︸

−Q`fBgµν , ≡ FA(n · p) (2.7)

where the last term cancels precisely the second term in the bracket of (2.3) due to the

photon radiation off the lepton. The differential decay rate of B → γ`ν in the B-meson

rest frame can be readily computed as

dΓ

dEγ
(B → γ`ν) =

α2
emG

2
F |Vub|2

6π2
mBE

3
γ

(
1− 2Eγ

mB

)[
F 2
V (n · p) + F 2

A(n · p)
]
. (2.8)

Evaluating the partial branching fractions of B → γ`ν with an energetic photon is then

traded to the QCD calculation of the two B → γ form factors.

2.2 Dispersion relations for the B → γ form factors

The aim of this subsection is to discuss the essential strategies for calculating the B → γ

form factors from the dispersion approach which is originally proposed in [19] for the

computation of the γ∗π → γ form factor with large momentum transfer (see also [16] for

an updated analysis including the higher-twist corrections). Following [6] we start with

construction of the correlation function

T̃νµ(p, q) ≡
∫
d4x eip·x 〈0|T

{
j⊥ν,em(x),

[
ūγµ⊥(1− γ5)b

]
(0)
}
|B−(p+ q)〉

∣∣
p2<0

,

= v · p
[
− iεµνρσnρvσFB→γ

∗

V (n · p, n̄ · p) + g⊥µνF̂
B→γ∗
A (n · p, n̄ · p)

]
, (2.9)
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Figure 1. Diagrammatical representation of the correlation function (2.9) at tree level. The

square boxes refer to insertions of the weak vertex “ūγµ⊥(1 − γ5)b” and the wavelines indicate

photon radiations off the partons inside the B-meson.

describing the B → γ∗`ν transition with a (transversely polarized) hard-collinear photon.

For definiteness, we work with the following power counting scheme

n · p ∼ O(mb) , |n̄ · p| ∼ O(Λ) . (2.10)

At tree level we need to evaluate the two diagrams displayed in figure 1 with (light-

cone) operator product expansion (OPE). It is apparent that photon emission off the heavy

b-quark will only induce the subleading power contribution based upon the power counting

analysis. The resulting local effect independent of the soft momentum n̄·p is identical to the

corresponding result presented in [5], however, the non-local subleading power correction at

tree level differs from the symmetry-conserving form factor ξ(Eγ) discussed in the context

of the B → γ`ν transition. In this paper we will take the Born result of the local subleading

power contribution to T̃νµ(p, q) from [5] directly

FLC
V,NLP(n · p) = −F̂LC

A,NLP(n · p) =
QufBmB

(n · p)2
+
QbfBmB

n · pmb
, (2.11)

and leave out the non-local power correction which could be expressed in terms of the

higher-twist B-meson DAs.

Computing the leading power contribution from photon radiation off the up anti-quark

at tree level yields

FB→γ
∗

V, 2P (n · p, n̄ · p) = F̂B→γ
∗

A, 2P (n · p, n̄ · p)

=
Quf̃B(µ)mB

n · p

∫ ∞
0

dω
φ+
B(ω, µ)

ω − n̄ · p− i0
+O(αs,Λ/mb) , (2.12)

where the B-meson DA φ+
B(ω, µ) is defined as [20–22]

if̃B(µ)mBφ
+
B(ω, µ) =

1

2π

∫ ∞
0

dt eiωt 〈0|(q̄sYs)(tn̄) 6 n̄γ5(Y †s bv)(0)|B̄(v)〉 , (2.13)

with the soft Wilson link

Ys(tn̄) = P

{
Exp

[
igs

∫ t

−∞
dx n̄ ·As(xn̄)

]}
. (2.14)
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At one loop, the HQET decay constat f̃B(µ) of the B-meson can be expressed in terms of

the QCD decay constant fB as follows

f̃B(µ) =

{
1 +

αs(µ)CF
4π

[
3 ln

mb

µ
− 2

]}−1

fB . (2.15)

Taking into account the fact that FB→γ
∗

V and F̂B→γ
∗

A are analytical functions in the

variable p2 (or n̄ · p equivalently), we can derive the following hadronic dispersion relations

FB→γ
∗

V (n · p, n̄ · p) =
2

3

fρmρ

m2
ρ − p2 − i0

2mB

mB +mρ
V (q2)

+
1

π

∫ ∞
ωs

dω′
Imω′F

B→γ∗, had
V (n · p, ω′)
ω′ − n̄ · p− i0

, (2.16)

F̂B→γ
∗

A (n · p, n̄ · p) =
2

3

fρmρ

m2
ρ − p2 − i0

2(mB +mρ)

n · p
A1(q2)

+
1

π

∫ ∞
ωs

dω′
Imω′F̂

B→γ∗, had
A (n · p, ω′)
ω′ − n̄ · p− i0

, (2.17)

where the ground-state contributions from ρ and ω are combined into one resonance term

with the narrow-width approximation and with the assumption mρ ' mω. The relevant

B → ρ form factors are defined as

√
2 〈ρ0(p)|ūγµ(1− γ5)b|B−(p+ q)〉 =

− εµνρσε∗νV qρpσ
2V (q2)

mB +mρ
− iε∗V µ(mB +mρ)A1(q2)

+ i(2p+ q)µ(ε∗V · q)
A2(q2)

mB +mρ
− iqµ(ε∗V · q)

2mρ

q2

[
A3(q2)−A0(q2)

]
, (2.18)

where εV is the polarization vector of the ρ meson. Applying the parton-hadron duality

approximation and performing the Borel transformation with respect to the variable n̄ · p
yields the sum rules for the B → ρ form factors V (q2) and A1(q2) [23]

2

3

fρmρ

n · p
Exp

[
−

m2
ρ

n · pωM

]
2mB

mB +mρ
V (q2) =

1

π

∫ ωs

0
dω′ e−ω

′/ωM Imω′F
B→γ∗
V (n · p, ω′) ,

(2.19)

2

3

fρmρ

n · p
Exp

[
−

m2
ρ

n · pωM

]
2(mB +mρ)

n · p
A1(q2) =

1

π

∫ ωs

0
dω′ e−ω

′/ωM Imω′F̂
B→γ∗
A (n · p, ω′) ,

(2.20)

where the QCD spectral functions at tree level can be readily extracted from (2.12)

1

π
Imω′F

B→γ∗
V (n · p, ω′) =

1

π
Imω′F̂

B→γ∗
A (n · p, ω′)

=
Quf̃B(µ)mB

n · p
φ+
B(ω′, µ) +O(αs,Λ/mb) . (2.21)
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Substituting the resulting LCSR (2.19) and (2.20) into the dispersion relations (2.16)

and (2.17) and setting n̄ · p → 0, we obtain the final expressions for the on-shell B → γ

form factors

FV (n · p) =
1

π

∫ ωs

0
dω′

n · p
m2
ρ

Exp

[
m2
ρ − ω′n · p
n · pωM

][
Imω′F

B→γ∗
V (n · p, ω′)

]
+

1

π

∫ ∞
ωs

dω′
1

ω′
[
Imω′F

B→γ∗
V (n · p, ω′)

]
, (2.22)

F̂A(n · p) =
1

π

∫ ωs

0
dω′

n · p
m2
ρ

Exp

[
m2
ρ − ω′n · p
n · pωM

][
Imω′F̂

B→γ∗
A (n · p, ω′)

]
+

1

π

∫ ∞
ωs

dω′
1

ω′
[
Imω′F̂

B→γ∗
A (n · p, ω′)

]
, (2.23)

where two nonperturbative parameters ωs and mρ are introduced, as compared to the

direct QCD calculation, to avoid the evaluation of the “hadronic” photon contribution.

To develop a better understanding of the master formulae (2.22) and (2.23) for the form

factors FV (n · p) and F̂A(n · p), one can rewrite these expressions as follows

FV (n · p) =
1

π

∫ ∞
0
dω′

1

ω′
[
Imω′F

B→γ∗
V (n · p, ω′)

]
+

1

π

∫ ωs

0
dω′
{
n · p
m2
ρ

Exp

[
m2
ρ − ω′n · p
n · pωM

]
− 1

ω′

}[
Imω′F

B→γ∗
V (n · p, ω′)

]
, (2.24)

F̂A(n · p) =
1

π

∫ ∞
0
dω′

1

ω′
[
Imω′F̂

B→γ∗
A (n · p, ω′)

]
+

1

π

∫ ωs

0
dω′

{
n · p
m2
ρ

Exp

[
m2
ρ − ω′ n · p
n · pωM

]
− 1

ω′

}[
Imω′F̂

B→γ∗
A (n · p, ω′)

]
. (2.25)

It is evident that the first term on the right-hand side of (2.24) and (2.25) is precisely

the expression obtained from the QCD factorization approach, provided that the convolu-

tion integrals of the B-meson DAs with the perturbatively calculable functions are free of

rapidity divergences. In accordance with the power counting rule

ωs ∼ ωM ∼ O(Λ2/mb) , (2.26)

we observe that the second term on the right-hand side of (2.24) and (2.25) can be identified

as the nonperturbative modification of the spectral function in the end-point region. Ex-

ploring the canonical behaviour of the B-meson DA φ+
B(ω, µ) and employing the tree-level

expressions of the QCD spectral functions (2.12) one can readily verify that the end-point

contributions to the B → γ form factors are indeed suppressed by a factor of Λ/mb com-

pared to the effects computed from the direct QCD approach.

3 Two-particle subleading power contribution at O(αs)

The objective of this section is to compute the one-loop corrections to the perturbative

hard and jet functions entering the factorization formulae of the generalized form factors

– 7 –
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(a) (b) (c) (d)

Figure 2. QCD corrections to the correlation function (2.9) at one loop. Same conventions as in

figure 1.

for the B → γ∗`ν transition

FB→γ
∗

V (n·p, n̄·p) = F̂B→γ
∗

A (n·p, n̄·p)

=
Quf̃B(µ)mB

n·p
C⊥(n·p, µ)

∫ ∞
0
dω

φ+
B(ω, µ)

ω − n̄·p− i0
J⊥(n·p, n̄·p, ω, µ) + . . . ,

(3.1)

at leading power in Λ/mb, where the ellipses represent the subleading power terms. As

mentioned in the Introduction, we will extract the hard coefficient function (C⊥) and the

jet function J⊥ simultaneously by performing the perturbative matching at the diagram-

matic level with the aid of the method of regions, and demonstrate the factorization-scale

independence of the form factors FB→γ
∗

V and F̂B→γ
∗

A explicitly at one loop by exploiting

the RG equations of both the short-distance functions and the B-meson DA φ+
B(ω, µ). It

is evident that the perturbative matching coefficients C⊥ and J⊥ are independent of the

external partonic state in the OPE calculation to validate the factorization formula (3.1)

and we will take the initial state to be |b(p + q − k)ū(k)〉 in the perturbative determina-

tion for the practical convenience (see [2] for more discussions on the independence of the

hard-scattering kernel on the initial state). The light-cone DA φ+
B(ω, µ) entering the factor-

ization formula (3.1) is defined by a non-local matrix element with a hadronic state |B̄(v)〉
instead of a partonic state as presented in (2.13). Now we will, following the presentation

of [11] closely (see [24, 25] for an alternative formulation in SCET), evaluate the one-loop

QCD diagrams for the correlation function (2.9) displayed figure 2 in detail.

3.1 Weak vertex diagram

The one-loop correction to the weak vertex diagram displayed in figure 2(a) can be readily

computed as

T̃
(1)
νµ,weak(p, q) =

Qug
2
sCF

n̄ · p− ω

∫
dDl

(2π)D
1

[(p− k + l)2 + i0][(mbv + l)2 −m2
b + i0][l2 + i0]

×
{
n · l

[
(D − 2)n̄ · l + 2mb

]
+ (D − 4)l2⊥ + 2n · p (n̄ · l +mb)

}
× ū(k)γν⊥

6 n̄
2
γµ⊥(1− γ5)b(v) , (3.2)
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where we adopt the following conventions

l2⊥ ≡ g
µν
⊥ lµlν , gµν⊥ ≡ g

µν − nµn̄ν

2
− nν n̄µ

2
. (3.3)

Applying the power counting rule for the external momenta

n · p ∼ O(mb) , n̄ · p ∼ O(Λ) , kµ ∼ O(Λ) , (3.4)

it is straightforward to identify that the leading-power contributions of T̃
(1)
νµ,weak arise from

the hard, hard-collinear and soft regions of the loop momentum.

Evaluating the leading power hard contribution from the weak vertex diagram with

the method of regions yields

T̃
(1), h
νµ,weak(p, q) = − ig2

sCF

∫
dDl

(2π)D
T̃

(0)
νµ (p, q)

[l2 + n · p n̄ · l + i0][l2 + 2mb v · l + i0][l2 + i0]

×
{
n · l

[
(D − 2)n̄ · l + 2mb

]
+ (D − 4)l2⊥ + 2n · p (n̄ · l +mb)

}
≡ C⊥,weak(n · p)T̃ (0)

νµ (p, q) , (3.5)

where T̃
(0)
νµ (p, q) is the leading order contribution to the correlation function (2.9)

T̃ (0)
νµ (p, q) =

iQu
n̄ · p− ω

ū(k)γν⊥
6 n̄
2
γµ⊥(1− γ5)b(v) , (3.6)

and the resulting hard function C⊥,weak(n · p, µ) is given by

C⊥,weak(n · p, µ) = −αsCF
4π

[
1

ε2
+

1

ε

(
2 ln

µ

n · p
+ 1

)
+ 2 ln2 µ

n · p
+ 2 ln

µ

mb

− 2 Li2

(
1− 1

r

)
− ln2 r +

3r − 2

1− r
ln r +

π2

12
+ 4

]
, (3.7)

with r = n · p/mb. It is evident that C⊥,weak(n · p) is precisely the same as the hard

contribution to the weak vertex diagram for the vacuum-to-Λb-baryon correlation function

at one loop [12].

Proceeding in a similar manner, we can extract the hard-collinear correction from

figure 2(a) by expanding (3.2) in the hard-collinear region

T̃
(1),hc
νµ,weak(p, q) = − ig2

sCF

∫
dDl

(2π)D
2mb n · (p+ l)T̃

(0)
νµ (p, q)

[n · (p+ l) n̄ · (p− k + l) + l2⊥ + i0][mb n · l + i0][l2 + i0]

≡ J⊥,weak(n · p, n̄ · p, ω)T̃ (0)
νµ (p, q) , (3.8)

where the perturbative jet function J⊥,weak(n · p, n̄ · p, ω) at O(αs) reads

J⊥,weak(n · p, n̄ · p, ω, µ) =
αsCF

4π

[
2

ε2
+

2

ε

(
ln

µ2

n · p(ω − n̄ · p)
+ 1

)
+ ln2 µ2

n · p(ω − n̄ · p)

+ 2 ln
µ2

n · p(ω − n̄ · p)
− π2

6
+ 4

]
, (3.9)
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in agreement with [11]. Setting n̄·p→ 0, our result of J⊥,weak reproduces the hard-collinear

contribution to the weak vertex diagram in the B → γ`ν decay (see (69) in [2]).

Furthermore, expanding the full QCD amplitude of T̃
(1)
νµ,weak(p, q) in the soft region at

leading power leads to the soft contribution

T̃
(1), s
νµ,weak(p, q) = − ig2

sCF

∫
dDl

(2π)D
1

[n̄ · (p− k + l) + i0][v · l + i0][l2 + i0]
T̃ (0)
νµ (p, q) , (3.10)

which cancels precisely the soft subtraction term defined by the convolution integral of the

two-particle B-meson DA φ+
B(ω, µ) at O(αs) with the tree-level hard scattering kernel. One

then concludes that soft dynamics of the weak vertex diagram in figure 2(a) can indeed be

parametrized by the B-meson DAs in the framework of perturbative QCD.

3.2 Electromagnetic vertex diagram

We proceed to compute the one-loop correction to the electromagnetic vertex diagram

shown in figure 2(b)

T̃ (1)
νµ,em(p, q) =

Qug
2
sCF

n · p (ω − n̄ · p)

∫
dDl

(2π)D
1

[l2 + i0][(p− l)2 + i0][(l − k)2 + i0]

ū(k)γρ 6 lγ⊥ν ( 6p−6 l)γρ( 6p−6 k)γ⊥µ (1− γ5)b(v) . (3.11)

Employing the power counting rule (3.4) one can verify that only the hard-collinear and soft

regions in (3.11) can give rise to the leading power contributions. Following the arguments

of computing the pion vertex diagram for the vacuum-to-B-meson correlation function [11],

it is more transparent to compute the loop integrals in (3.11) directly instead of employing

the method of regions, and then to expand the resulting expression to the leading power

in Λ/mb. Evaluating the loop integral with the expressions collected in appendix A of [11]

yields

T̃ (1)
νµ,em(p, q) =

αsCF
4π

{
1

ε

[
2

η
ln(1 + η)− 1

]
+

ln(1 + η)

η

[
2 ln

µ2

−p2
− ln(1 + η) + 3

]
− ln

µ2

n · p (ω − n̄ · p)
− 4

}
T̃ (0)
νµ (p, q)

≡ J⊥,em(n · p, n̄ · p, ω, µ)T̃ (0)
νµ (p, q) , (3.12)

with η = −ω/n̄ ·p. It is straightforward to confirm that the obtained jet function J⊥,em can

reproduce the hard-collinear correction to the electromagnetic vertex diagram in B → γ`ν

(see (33) in [2] and (A.5) in [3]) in the limit n̄ · p → 0, taking into account the fact that

the soft contribution to T̃
(1)
νµ,em(p, q) vanishes in dimensional regularization. Following [11]

one can further verify that the soft contribution from the electromagnetic vertex diagram

cancels precisely the corresponding soft subtraction term, independent of the regularization

scheme.
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3.3 Wave function renormalization

The contribution from the wave function renormalization of the immediate quark propa-

gator in figure 2(c) can be readily computed as

T̃
(1)
νµ,wfc(p, q) = −αsCF

4π

[
1

ε
+ ln

µ2

n · p (ω − n̄ · p)
+ 1

]
T̃ (0)
νµ (p, q)

≡ J⊥,wfc(n · p, n̄ · p, ω, µ)T̃ (0)
νµ (p, q) , (3.13)

which is apparently free of soft and collinear divergences. Evaluating the perturbative

matching coefficients from the wave function renormalization of the external quark fields

yields

T̃
(1)
νµ,bwf(p, q)− Φ

(1)
bū,bwf ⊗ T̃

(0)
νµ (p, q) = −αsCF

8π

[
3

ε
+ 3 ln

µ2

m2
b

+ 4

]
T̃ (0)
νµ (p, q)

≡ C⊥,bwf(n · p, µ)T̃ (0)
νµ (p, q) , (3.14)

T̃
(1)
νµ,uwf (p, q)− Φ

(1)
bū,bwf ⊗ T̃

(0)
νµ (p, q) = 0 , (3.15)

where Φbū is the partonic DA of the B-meson defined in (12) of [11].

3.4 Box diagram

Now we turn to compute the one-loop contribution to T̃
(1)
νµ (p, q) from the box diagram

shown in figure 2(d)

Π
(1)
µ,box = −Qug2

sCF

∫
dDl

(2π)D
1

[(mbv + l)2 −m2
b + i0][(p− k + l)2 + i0][(k − l)2 + i0][l2 + i0]

ū(k)γρ( 6k−6 l)γν⊥( 6p−6k+6 l)γµ⊥(1− γ5)(mb 6v+6 l +mb)γ
ρb(v) .

(3.16)

As discussed in [2], this is the only one-loop diagram with no hard-collinear propagator

outside of the loop, therefore the 1/(ω− n̄ ·p) enhancement factor observed in the tree-level

result (2.12) must come from singular regions of phase space in the loop integral. Based

upon the power counting analysis, one can identify that the hard-collinear contribution to

the following four-point scalar integral

Ibox =

∫
dDl

(2π)D
1

[(mbv + l)2 −m2
b + i0][(p− k + l)2 + i0][(k − l)2 + i0][l2 + i0]

(3.17)

scales as λ−1 with the expansion parameter λ = Λ/mb. The one-loop box diagram would

then generate non-vanishing contribution to the jet function J⊥(n · p, n̄ · p, ω, µ) entering

the factorization formula (2.1), provided that no additional suppression factor of λ can be

induced from the Dirac algebra in (3.16). Inspecting the Dirac structure in the numerator

of (3.16)

(6 k−6 l)γν⊥(6 p−6 k+6 l)

shows that one cannot pick up the leading contributions of two hard-collinear propagators

simultaneously in contrast to the case of the vacuum-to-B-meson correlation function as

– 11 –
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considered in [11]. Hence, one can conclude that no hard-collinear contribution can arise

from the box diagram at one loop displayed in figure 2(d), confirming the observation made

in [2].

Along the same vein, one can verify that the soft contribution to the scalar inte-

gral (3.17) scales as λ−2 and the Dirac algebra in (3.16) will again give rise to a suppression

factor of λ in the soft region. It is then evident that the leading-power contribution to the

box diagram comes only from the soft region at one loop, and following [11], such soft

contribution will be cancelled precisely by the corresponding infrared substraction term

from the standard perturbative matching procedure.

3.5 Factorization of the two-particle contribution at O(αs)

Collecting everything together, we can readily derive the renormalized hard and jet func-

tions entering the factorization formula (3.1) for the generalized B → γ∗ form factors at

one loop

C⊥ = 1 + C⊥,weak + C⊥,bwf

= 1− αsCF
4π

[
2 ln2 µ

n · p
+ 5 ln

µ

mb
− 2 Li2

(
1− 1

r

)
− ln2 r +

3r − 2

1− r
ln r +

π2

12
+ 6

]
,

(3.18)

J⊥ = 1 + J⊥,weak + J⊥,em + J⊥,wfc

= 1 +
αsCF

4π

{
ln2 µ2

n · p (ω − n̄ · p)
− π2

6
− 1

− n̄ · p
ω

ln
n̄ · p− ω
n̄ · p

[
ln

µ2

−p2
+ ln

µ2

n · p (ω − n̄ · p)
+ 3

]}
. (3.19)

It is straightforward to verify that the hard function C⊥ coincides with the perturbative

matching coefficient of the QCD weak current ūγµ⊥(1− γ5)b in SCET [26, 27]

ūγµ⊥(1− γ5)b→ C3(µ)ξ̄n̄Whcγµ⊥(1− γ5)Y †s bv + . . . , (3.20)

where Whc refers to the hard-collinear Wilson line and the ellipses represent the subleading

power contributions.

We are now in a position to demonstrate the factorization-scale independence of the

factorization formulae for FB→γ
∗

V and F̂B→γ
∗

V explicitly at one loop. With the expressions

for the hard and jet functions in (3.18) and (3.19), we obtain

d

d lnµ
FB→γ

∗

V =
d

d lnµ
F̂B→γ

∗

V

=
Quf̃B(µ)mB

n · p

{∫ ∞
0
dω

φ+
B(ω, µ)

ω − n̄ · p− i0
αsCF

4π

[
−
(

4 ln
µ

n · p
+ 5

)
+ 4

(
ln

µ2

n · p (ω − n̄ · p)
− n̄ · p

ω
ln
n̄ · p− ω
n̄ · p

)
+ 3

]
+

∫ ∞
0
dω

1

ω − n̄ · p− i0
d

d lnµ
φ+
B(ω, µ)

}
, (3.21)
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where the three terms in the square bracket appeared on the right-handed side of (3.21)

correspond to the contributions from the scale evolutions of the hard and jet functions as

well as the HQET decay constant of the B-meson, respectively. Employing the one-loop

evolution equation of φ+
B(ω, µ) [28, 29]

dφ+
B(ω, µ)

d lnµ
= −

[
Γcusp(αs) ln

µ

ω
+ γ+(αs)

]
φ+
B(ω, µ)− ω

∫ ∞
0
dω′ Γ+(ω, ω′, µ)φ+

B(ω′, µ)

(3.22)

with the anomalous dimensions

Γcusp(αs) =
∑
n=0

(
αs
4π

)n+1

Γ(n)
cusp, Γ(0)

cusp = 4CF ,

γ+(αs) =
∑
n=0

(
αs
4π

)n+1

γ
(n)
+ , γ

(0)
+ = −2CF ,

Γ+(ω, ω′, µ) = −αs
4π

Γ(0)
cusp

[
θ(ω′ − ω)

ω′(ω′ − ω)
+
θ(ω − ω′)
ω(ω − ω′)

]
⊕

+O(α2
s) , (3.23)

the last term in the bracket of (3.21) can be further computed as∫ ∞
0

dω
1

ω − n̄ · p− i0
d

d lnµ
φ+
B(ω, µ) =

αsCF
4π

∫ ∞
0

dω
φ+
B(ω, µ)

ω − n̄ · p− i0

[
4

(
− ln

µ

ω − n̄ · p
+
n̄ · p
ω

ln
n̄ · p− ω
n̄ · p

)
+ 2

]
. (3.24)

Here, the “⊕”-function is defined in a standard way∫ ∞
0

dω
[
f(ω, ω′)

]
⊕g(ω) =

∫ ∞
0

dω f(ω, ω′)
[
g(ω)− g(ω′)

]
. (3.25)

Substituting (3.24) into (3.21) leads us to conclude that the factorization-scale dependence

indeed cancels out in the factorization formulae for the B → γ∗ form factors at one loop, i.e.,

d

d lnµ
FB→γ

∗

V =
d

d lnµ
F̂B→γ

∗

A = O(α2
s) . (3.26)

Now we turn to sum the parametrically large logarithms in perturbative matching

coefficients to all orders at NLL by employing the standard RG approach in momentum

space. Since the hard-collinear scale µhc '
√

Λmb is comparable to the soft scale µ0

entering the initial condition of the B-meson DA φ+
B(ω, µ0) for the actual value of the

b-quark mass, we will not sum logarithms of µhc/µ0 from the RG evolution of φ+
B(ω, µ)

when the factorization scale µ is taken as a hard-collinear scale as argued in [5]. Solving

the evolution equations for the hard function C⊥ and the HQET decay constant f̃B

dC⊥(n · p, µ)

d lnµ
=

[
− Γcusp(αs) ln

µ

n · p
+ γ(αs)

]
C⊥(n · p, µ) ,

df̃B(µ)

d lnµ
= γ̃(αs)f̃B(µ) , (3.27)

– 13 –
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with the cusp anomalous dimension Γcusp(αs) expanded up to three loops and the remaining

anomalous dimensions γ(αs) and γ̃(αs) expanded up to the two-loop order, we then obtain

the NLL resummation improved expressions for C⊥ and f̃B

C⊥(n · p, µ) = U1(n · p, µh1, µ)C⊥(n · p, µh1) ,

f̃B(µ) = U2(n · p, µh2, µ)f̃B(µh2) . (3.28)

The manifest expression of U1(n · p, µh1, µ) can be deduced from U1(Eγ , µh1, µ) in [5] by

replacing Eγ → n · p/2 and U2(n · p, µh2, µ) can be read from U1(Eγ , µh1, µ) by setting the

cusp anomalous dimension to zero and by replacing γ(n) → γ̃(n).

Finally we present the factorization formulae for the form factors FB→γ
∗

V and F̂B→γ
∗

A

with RG improvement at NLL accuracy

FB→γ
∗

V (n · p, n̄ · p) = F̂B→γ
∗

A (n · p, n̄ · p)

=
QumB

n · p
[
U2(n · p, µh2, µ)f̃B(µh2)

][
U1(n · p, µh1, µ)C⊥(n · p, µh1)

]
×
∫ ∞

0
dω

φ+
B(ω, µ)

ω − n̄ · p− i0
J⊥(n · p, n̄ · p, ω, µ) + . . . , (3.29)

where the factorization scale needs to be chosen as a hard-collinear scale of order
√

Λmb,

and µh1 and µh2 are the hard scales of order mb.

3.6 Dispersion relation for the two-particle contribution at O(αs)

It is now a straightforward task to derive the NLL resummation improved dispersion re-

lations for the on-shell B → γ form factors. Employing the spectral representations of

various convolution integrals displayed in appendix A yields

FV,2P (n · p) = F̂A,2P (n · p)

=
QumB

n · p
[
U2(n · p, µh2, µ)f̃B(µh2)

][
U1(n · p, µh1, µ)C⊥(n · p, µh1)

]
×

{∫ ∞
0

dω
φ+
B(ω, µ)

ω
J⊥(n · p, 0, ω, µ)

+

∫ ωs

0
dω′

[
n · p
m2
ρ

Exp

[
m2
ρ − ω′ n · p
n · pωM

]
− 1

ω′

]
φ+
B,eff(ω′, µ)

}
≡ FLP

V,2P (n · p) + FNLP
V,2P (n · p) , (3.30)

– 14 –



J
H
E
P
0
9
(
2
0
1
6
)
1
5
9

where FLP
V,2P and FNLP

V,2P are defined by keeping only the first and the second terms in the

bracket, respectively. In addition, the effective “distribution amplitude” φ+
B,eff(ω′, µ)

φ+
B,eff(ω′, µ) =

φ+
B(ω′, µ) +

αs(µ)CF
4π

{∫ ω′

0
dω

[
2

ω − ω′
ln

µ2

n · p (ω′ − ω)

]
⊕
φ+
B(ω, µ)

− ω′
∫ ω′

0
dω

[
1

ω − ω′
ln
ω′ − ω
ω

]
⊕

φ+
B(ω′, µ)

ω

+
ω′

2

∫ ∞
0
dω

[
ln2

∣∣∣∣ω − ω′ω′

∣∣∣∣] ddω φ+
B(ω, µ)

ω

−
∫ ∞
ω′
dω

[
ln

µ2

n · pω′
− π2

2
− 1

]
d

dω
φ+
B(ω, µ)

+ ω′
∫ ∞
ω′
dω

[
ln

µ2

n · pω′
ln
ω − ω′

ω′
− 1

2
ln2 µ2

n · p (ω − ω′)

+
1

2
ln2 µ2

n · pω′
+ 3 ln

ω − ω′

ω′
− 2π2

3

]
d

dω

φ+
B(ω, µ)

ω

}
(3.31)

is introduced to absorb the next-to-leading-order (NLO) hard-collinear correction to the

general B → γ∗ transition form factors. It is evident that FLP
V,2P corresponds to the leading-

power contribution to the on-shell B → γ form factors computed from QCD factorization

and the corresponding convolution integral can be expressed in terms of the moments of

the B-meson DA as [5]:∫ ∞
0

dω
φ+
B(ω, µ)

ω
J⊥(n · p, 0, ω, µ) =

λ−1
B (µ)

{
1 +

αs(µ)CF
4π

[
σ2(µ) + 2 ln

µ2

n · p µ0
σ1(µ) + ln2 µ2

n · p µ0
− π2

6
− 1

]}
. (3.32)

Here, a hadronic reference scale µ0 = 1 GeV is introduced in the definition of the inverse-

logarithmic moments, in contrast to [29], to avoid the appearance of a parametrically large

logarithm due to the scale evolution of σn(µ) [5].

Several comments on the nonperturbative modification of the spectral function shown

in the second term in the bracket of (3.30) are in order.

• In light of the power counting rule (2.26) and the scaling ω ∼ Λ due to the canonical

behaviour of the B-meson DA φ+
B(ω, µ), one can readily identify that the logarith-

mic terms ln2
∣∣ω−ω′
ω′

∣∣ and ln
(
ω−ω′
ω′

)
involved in (3.31) need to be counted as ln2

(n·p
Λ

)
and ln

(n·p
Λ

)
in the heavy quark limit. The appearance of such large logarithms

can be traced back to the continuum subtraction in the construction of QCD sum

rules for the end-point contribution to the B → γ form factors, with the aid of

the parton-hadron duality approximation. This observation appears to indicate that

the “hadronic” photon contribution to the B → γ`ν amplitude suffers from rapid-

ity divergences in QCD factorization, which are regularized by the nonperturbative

parameter ωM in the sum rule approach.
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Figure 3. Higher-twist contribution to the correlation function (2.9) from the three-particle DAs

of the B-meson at tree level. Same conventions as in figure 1.

• In the absence of a detailed analysis of the subleading form factor ξ(Eγ) in QCD [5],

the precise relation between the end-point contribution computed from the hadronic

dispersion relations and ξ(Eγ) cannot be established in a model-independent way. It

is rather plausible that adding up the symmetry-conserving form factor ξ(Eγ) and

the soft two-particle correction together would yield double counting of quark-gluon

and hadron degrees of freedom.

4 Three-particle subleading power contribution

The purpose of this section is to compute the higher twist contributions to the on-shell

B → γ transition form factors from the three-particle B-meson DAs at tree level. Following

the main idea of the dispersion approach discussed in section 2, we need to establish

the factorization formula for the three-particle contribution to the generalized B → γ∗

form factors at leading order in αs. This amounts to evaluating the subleading power

contribution (compared with the two-particle contribution shown in (3.29)) induced by the

partonic diagram displayed in figure 3.

Applying the light-cone expansion of the light-quark propagator in the background

gluon field [30] and keeping the one-gluon part without the covariant derivative of the

Gµν terms

〈0|T{q(x) , q̄(0)}|0〉|G ⊃ −
i

16π2

1

x2

∫ 1

0
du
[
6xσαβ − 4iuxαγβ

]
Gαβ(ux) , (4.1)

one can readily obtain the factorization formula for the three-particle contribution to the

form factors FB→γ
∗

V and F̂B→γ
∗

A at tree level

FB→γ
∗

V, 3P (n · p, n̄ · p)

= F̂B→γ
∗

A, 3P (n · p, n̄ · p)

= −Quf̃B(µ)mB

(n · p)2

∫ ∞
0

dω

∫ ∞
0

dξ

∫ 1

0
du

{
ρ

(2)
3P (u, ω, ξ)

[n̄ · p− ω − uξ]2
+

ρ
(3)
3P (u, ω, ξ)

[n̄ · p− ω − uξ]3

}
,

(4.2)
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by employing the following Fourier integral in Minkowski space∫
d4x eiq·x

xµ
x2

=
8π2

q4
qµ . (4.3)

The explicit expressions for ρ
(i)
3P (i = 2, 3) are given by

ρ
(2)
3P (u, ω, ξ) = ΨV (ω, ξ) + (1 + 2u)ΨA(ω, ξ) , ρ

(3)
3P (u, ω, ξ) = −2(1 + 2u)X̄A(ω, ξ) ,

X̄A(ω, ξ) =

∫ ω

0
dη XA(η, ξ) , ȲA(ω, ξ) =

∫ ω

0
dη YA(η, ξ) , (4.4)

where the relevant three-particle DAs of the B-meson are defined by the following light-cone

matrix element [31, 32]

〈0|ūα(x)Gλρ(ux)bvβ(0)|B−(v)〉
∣∣
x2=0

=

f̃B(µ)mB

4

∫ ∞
0
dω

∫ ∞
0
dξ e−i(ω+u ξ)v·x

[
(1+6v)

{
(vλγρ − vργλ)

[
ΨA(ω, ξ)−ΨV (ω, ξ)

]
− iσλρΨV (ω, ξ)− xλvρ−xρvλ

v · x
XA(ω, ξ) +

xλγρ−xργλ
v · x

YA(ω, ξ)

}
γ5

]
βα

,

(4.5)

with the soft Wilson lines on the left-hand side omitted for brevity. The three-particle

DAs ΨV , ΨA, XA and YA depend on two light-cone variables ω = n̄ · k1 and ξ = n̄ · k2,

where k1 and k2 are the light-quark and gluon momenta inside the B-meson. In contrast to

the two-particle B-meson DAs, model-independent properties of the three-particle DAs in

QCD, including the RG evolution equations and the asymptotic behaviours for ω, ξ � Λ,

are poorly explored at present (see [33] for an exception).

The tree-level factorization formula for the three-particle contribution to the on-shell

B → γ form factors can be readily constructed by setting n̄ · p→ 0 in (4.2):

FB→γV, 3P (n · p) = F̂B→γA, 3P (n · p)

= −Quf̃B(µ)mB

(n · p)2

∫ ∞
0

dω

∫ ∞
0

dξ

∫ 1

0
du

{
ρ

(2)
3P (u, ω, ξ)

[ω + uξ]2
−
ρ

(3)
3P (u, ω, ξ)

[ω + uξ]3

}
= −Quf̃B(µ)mB

(n · p)2

∫ ∞
0

dω

∫ ∞
0

dξ

{
1

ω(ω + ξ)
ΨV (ω, ξ)

+

[
1

ω(ω + ξ)
− 2

ξ(ω + ξ)
+

2

ξ2
ln
ω+ξ

ω

]
ΨA(ω, ξ)+

4ω + ξ

ω2(ω + ξ)2
X̄A(ω, ξ)

}
.

(4.6)

In light of the end-point behaviours of the three-particle B-meson DAs at ω, ξ → 0 from a

QCD sum rule analysis [34]

ΨV (ω, ξ) ∼ ΨA(ω, ξ) ∼ ξ2, XA(ω, ξ) ∼ ξ(2ω − ξ) , YA(ω, ξ) ∼ ξ , (4.7)

it is straightforward to verify that the convolution integral of the short-distance function

with the B-meson DAs in (4.6) suffers from rapidity divergences as speculated in [6]. We
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therefore conclude that decomposing the three-particle contribution of the on-shell B → γ

form factors into the factorizable effect computed from light-cone OPE and the nonpertur-

bative modification as displayed in (2.24) and (2.25) cannot be justified, and instead one

needs to employ the original dispersion expressions presented in (2.22) and (2.23).

Extracting the spectral function of (4.2) in the variable n̄ · p and substituting it

into (2.22) and (2.23) give rise to the desired three-particle contribution to the B → γ

form factors

FV, 3P (n · p) = F̂A, 3P (n · p)

= −Quf̃B(µ)mB

(n · p)2

{
n · p
m2
ρ

Exp

[
m2
ρ

n · pωM

]
II

3P (ωs, ωM ) + III
3P (ωs, ωM )

}
, (4.8)

where the coefficient functions entering (4.8) are

II
3P (ωs, ωM ) =∫ ωs

0
dω

∫ ∞
ωs−ω

dξ

ξ
e−ωs/ωM

[
ρ

(2)
3P (u, ω, ξ)− 1

2

d

dω
ρ

(3)
3P (u, ω, ξ)−

ρ
(3)
3P (u, ω, ξ)

2ωM

]∣∣∣∣
u=ωs−ω

ξ

+

∫ ωs

0
dω′

∫ ω′

0
dω

∫ ∞
ω′−ω

dξ

ξ
e−ω

′/ωM
1

ωM

[
ρ

(2)
3P (u, ω, ξ)−

ρ
(3)
3P (u, ω, ξ)

2ωM

]∣∣∣∣
u=ω′−ω

ξ

, (4.9)

III
3P (ωs, ωM ) =

−
∫ ωs

0
dω

∫ ∞
ωs−ω

dξ

ξ

1

ωs

[
ρ

(2)
3P (u, ω, ξ)− 1

2

d

dω
ρ

(3)
3P (u, ω, ξ)−

ρ
(3)
3P (u, ω, ξ)

2ωM

]∣∣∣∣
u=ωs−ω

ξ

+

∫ ∞
ωs

dω′
∫ ω′

0
dω

∫ ∞
ω′−ω

dξ

ξ

1

(ω′)2

[
ρ

(2)
3P (u, ω, ξ)−

ρ
(3)
3P (u, ω, ξ)

2ωM

]∣∣∣∣
u=ω′−ω

ξ

. (4.10)

Employing the canonical behaviours of the three-particle B-meson DAs and the power

counting rule (2.26) for the sum rule parameters leads to

II
3P (ωs, ωM ) ∼ O(Λ2/mb) , III

3P (ωs, ωM ) ∼ O(1) , (4.11)

which implies that both the “hard” and “soft” contributions to the B → γ form factors from

the three-particle B-meson DAs scale as (Λ/mb)
3/2 in the heavy quark limit, in contrast to

the two-particle “hard” and “soft” contributions discussed before. Such observation can be

also inferred from the violation of QCD factorization for the three-particle contribution to

the form factors FV (n ·p) and F̂A(n ·p), due to the rapidity divergences, indicating that the

intuitive correspondence between the power expansion and the dynamical twist expansion

can be spoiled by the soft corrections [16].

Adding up different pieces together, we obtain the final expressions for the on-shell

B → γ form factors in the dispersion approach

FV (n · p) = FV,2P (n · p) + FV,3P (n · p) + FLC
V,NLP(n · p) , (4.12)

F̂A(n · p) = F̂A,2P (n · p) + F̂A,3P (n · p) + F̂LC
A,NLP(n · p) , (4.13)
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where the manifest expressions of individual terms on the right-hand side of (4.12) and (4.13)

are given by (3.30), (4.8) and (2.11), respectively. The following comments on the structures

of the form factors FV (n · p) and F̂A(n · p) displayed in (4.12) and (4.13) can be made.

• The symmetry-violating contribution to the on-shell B → γ form factors comes solely

from the local subleading power corrections as indicated by FLC
V,NLP and F̂LC

A,NLP.

The non-local subleading power contributions from the end-point region preserve the

symmetry relation of FV and F̂A due to the helicity conservation, in support of a

similar observation made in [5] applying the QCD factorization approach.

• Despite of the fact that the leading-power contribution to the generalized B → γ∗

form factors originates from the two-particle B-meson DA φ+
B(ω, µ), the end-point

(“soft”) contributions to the on-shell B → γ form factors from both the two-particle

and three-particle DAs contribute at the same power in the heavy-quark expansion

and are suppressed by one power of Λ/mb. Following the arguments in [16], yet

higher-twist corrections from the four-particle B-meson DAs would also generate the

subleading power contribution suppressed by one power of Λ/mb, when compared

with the leading-twist contribution. This pattern can be understood from the fact

that the correspondence between power expansion and twist counting is lost for the

soft contributions. We will leave a transparent demonstration of this interesting

pattern for a future work, by including the two-gluon field strength terms and the

covariant derivative of the Gµν terms in the light-cone expansion of the massless-

quark propagator in the background gluon field.

5 Numerical analysis

We are now in a position to explore the phenomenological consequence of the subleading

power corrections to the B → γ form factors computed from the dispersion approach. In

order to perform the numerical analysis of the newly derived expressions for FV (n · p) and

F̂A(n · p) in (4.12) and (4.13), we will proceed by specifying the nonperturbative mod-

els for the two-particle and three-particle DAs of the B-meson, determining the sum rule

parameters and setting the hard and hard-collinear scales. Taking advantage of the new

measurements of the partial branching fractions of B → γ`ν from the Belle Collabora-

tion [35], theory constraints of the inverse moment of the leading-twist DA φ+
B(ω, µ) will

be further addressed with the updated predictions for the B → γ form factors presented

above.

5.1 Theory input parameters

Following [6], we will consider two models of the two-particle B-meson DA φ+
B(ω, µ0) mo-

tivated from the QCD sum rule analysis at tree level [20] and at NLO [29]

φ+
B,I(ω, µ0) =

ω

ω2
0

e−ω/ω0 , (5.1)

φ+
B,II(ω, µ0) =

1

4πω0

k

k2 + 1

[
1

k2 + 1
−

2
(
σ1(µ0)− 1

)
π2

ln k

]
, k =

ω

1 GeV
, (5.2)
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where the shape parameter ω0 = λB(µ0). As emphasized in [11], the above models can

only serve as a reasonable description of φ+
B(ω, µ0) at small ω and they could not reproduce

the model-independent behaviour at large ω predicted from perturbative QCD. Since the

dominant contributions to the B → γ form factors come from the small ω region according

to the power counting analysis, we will not improve the above models for the B-meson DA

φ+
B(ω, µ0) by implementing the perturbative constraints as discussed in [36]. In particular,

the leading power contribution to the on-shell B → γ form factors is insensitive to precise

shape of φ+
B(ω, µ0) at small ω, and only depends on the inverse-logarithmic moments as

shown in (3.32). Applying the one-loop evolution equation of φ+
B(ω, µ) in (3.22) leads to [5]

λB(µ0)

λB(µ)
= 1 +

αs(µ0)CF
4π

ln
µ

µ0

[
2− 2 ln

µ

µ0
− 4σ1(µ0)

]
+O(α2

s) . (5.3)

For the inverse-logarithmic moments σ1 and σ2, we will take σ1(µ0) = 1.5±1 and σ2(µ0) =

3 ± 2 from [5], and the scale evolution effect of these parameters is not needed for the

evaluation of the leading power contribution to the B → γ form factors at NLL.

For the three-particle B-meson DAs, we adopt an exponential model in consistent with

the small ω, ξ behaviour from the tree-level QCD sum rule analysis [34]

ΨV (ω, ξ, µ0) = ΨA(ω, ξ, µ0) =
λ2
E

6ω4
0

ξ2e−(ω+ξ)/ω0 ,

XA(ω, ξ, µ0) =
λ2
E

6ω4
0

ξ(2ω − ξ) e−(ω+ξ)/ω0 ,

YA(ω, ξ, µ0) = −
λ2
E

24ω4
0

ξ(7ω0 − 13ω + 3ξ) e−(ω+ξ)/ω0 , (5.4)

where the normalization parameter computed from QCD sum rules including the higher-

order perturbative and nonperturbative effects is determined to be λ2
E(µ0) = (0.03 ±

0.02) GeV2 [37]. It needs to point out that we neglect the small correction due to the

difference (ΨA − ΨV ) ∼ (λ2
E − λ2

H)ωξ2 which can be extracted from the NLO QCD cor-

rection to the sum rules for the three-particle DAs derived in [34], and the normalization

coefficients in front of the DAs XA and YA can also differ from λ2
E in general.

Now we turn to the determination of the Borel parameter ωM and the duality-threshold

parameter ωs entering the expressions for FV,2P and FV,3P . The general procedure to choose

the sum rule parameters satisfying with the power counting rule (2.26) has been discussed

in [11], and repeating the same strategies gives rise to the following intervals

M2 ≡ n · pωM = (1.25± 0.25) GeV2, s0 ≡ n · pωs = (1.50± 0.20) GeV2, (5.5)

in agreement with the values used for the LCSR for the γ∗ → πγ form factor [16]. Note that

the effective threshold ωs in the dispersion expressions for the B → γ form factors should

be compared to that adopted in the two-point sum rules for the ρ-meson channel [34].

The HQET decay constant of the B-meson f̃B(µ) will be traded into the QCD decay

constant fB with the matching equation (2.15), which will be computed from the two-

point QCD sum rules including O(αs) corrections to the perturbative contribution and the

– 20 –



J
H
E
P
0
9
(
2
0
1
6
)
1
5
9

quark-gluon condensate operator contributions up to dimension-6 [38]. We will take the

same intervals of the Borel mass and the threshold parameter

M
2

= (5.0± 1.0) GeV2, s̄0 = (35.6+2.1
−0.9) GeV2 (5.6)

as adopted in [11, 38]. For the hard scales involved in the hard matching coefficients,

we will choose mb/2 ≤ µh1 = µh2 ≤ 2mb with the default value µh1 = µh2 = mb. The

factorization scale µ will be varied in the interval 1 GeV ≤ µ ≤ 2 GeV around the central

value 1.5 GeV. Furthermore, we will use the values of the bottom-quark mass in the MS

scheme mb(mb) = (4.193+0.022
−0.035) GeV determined from non-relativistic sum rules [39].

5.2 Predictions for the B → γ form factors

Now we are ready to investigate the numerical impact of the subleading power contribu-

tions from the two-particle and three-particle B-meson DAs on the B → γ form factors.

To develop a transparent understanding of the newly calculated corrections in this work,

we display the photon-energy dependence of the leading power two-particle contribution,

the subleading power two-particle and three-particle corrections as well as the power sup-

pressed local contribution in figure 4, where we take φ+
B,I(ω, µ0) as a default model with

λB(µ0) = 354+38
−30 MeV determined from [11]. One can readily find that, with the adopted

value of λB(µ0), the subleading power two particle contribution FNLP,NLL
V,2P (n · p) including

the NLL resummation effect can decrease the leading-power prediction for the form factor

FV (n·p) by approximately (10 ∼ 30)% in the kinematic region n·p ∈ [2 GeV,mB]; while the

power suppressed correction from the three-particle B-meson DAs at tree level only induce a

minor impact on the theory prediction of FV (n·p) and numericallyO(1%). We also find that

perturbative QCD corrections to the “soft” two-particle contribution can shift the tree-level

prediction FNLP,LL
V,2P by an amount of (10 ∼ 20)% with the default theory inputs. We are

therefore led to conclude that the power suppressed non-local corrections to the B → γ form

factors are dominated by the soft two-particle contribution at tree level with the default

model of B-meson DAs. In addition, the power suppressed local correction FLC
V,NLP(n · p)

turns out to be comparable to the subleading power two-particle contribution FNLP
V,2P (n · p)

with the inverse moment λB(µ0) = 354 MeV numerically. Since the subleading power local

contribution is independent of the precise shape of the B-meson DA φ+
B(ω, µ) and is com-

pletely determined by the B-meson decay constant fB which can be computed from the

two-point QCD sum rules with an accuracy at percent level, it does not constitute an im-

portant source of theory uncertainty in the evaluation of the B → γ form factors at present.

Keeping in mind that we aim at deriving the theory bound for the inverse moment

λB(µ0) of the B-meson DA φ+
B(ω, µ0) with the experimental data of the partial branching

fractions of B → γ`ν, it is of interest to investigate the λB dependence of the subleading

power corrections to the B → γ form factors. As can be observed from figure 5, the power

suppressed two-particle contribution FNLP,NLL
V,2P decreases rapidly for λB ≤ 150 MeV and it

leads to a rather sizeable correction to the leading power prediction of the vector B → γ

form factor FLP,NLL
V,2P for a reference value λB(µ0) = 100 MeV: O(45%) at n · p = mB and

O(100%) at n ·p = 2 GeV. Also, we find that the NLL resummation improved perturbative
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Figure 4. The photon-energy dependence of various contributions to the form factor FV (2Eγ),

with the exponential model of φ+B(ω, µ0) and the inverse moment λB(µ0) = 354 MeV determined

in [11]. The separate contributions correspond to the leading power two-particle effect at leading

logarithmic (LL) accuracy (FLP,LL
V,2P , dashed black), at NLO (FLP,NLO

V,2P , dotted black), and at NLL

(FLP,NLL
V,2P , solid black); the subleading power two-particle correction at LL (FNLP,LL

V,2P , dashed blue),

and at NLL (FNLP,NLL
V,2P , solid blue); the subleading power three-particle correction at LO (FLO

V,3P ,

solid yellow); and the power suppressed local effect at tree level (FLC
V,NLP, solid green).

correction to the soft two-particle contribution becomes more important numerically with

the decrease of λB(µ0): approximately (20 ∼ 40)% for n · p ∈ [2 GeV,mB] with λB(µ0) =

100 MeV. We can readily conclude the “soft” two-particle contribution to the on-shell

B → γ form factors is not effectively suppressed numerically at small λB(µ0) as expected

from the power counting analysis in the heavy quark limit. Moreover, we observe that the

subleading power three-particle correction to the B → γ form factors is still insignificant

even at λB(µ0) = 100 MeV, approximately O(1%), compared with the factorizable two-

particle contribution.

To understand such “anomalous” feature of the subleading power two-particle correc-

tion, we first recall that the power counting scheme established above makes use of the

canonical behaviour of the B-meson DA φ+
B(ω, µ0) [40]

φ+
B(ω, µ0) ∼

{
1/Λ ; ω ∼ Λ

0 ; ω � Λ ,
(5.7)
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Figure 5. Dependence of the leading and subleading power two-particle contributions to the form

factor FV (n · p) on the inverse moment λB(µ0) at zero momentum transfer (left panel) and at

n · p = 2 GeV (right panel). The final predictions for FV (n · p) including both the leading power

contribution and the subleading power local and nonlocal corrections are indicated by the red

curves. Same conventions as in figure 4.

which implies that the inverse moment λB(µ0) scales as Λ in consistent with the generic

scaling of the light-quark momentum in the B-meson. However, it would be more appropri-

ate to count the scaling of the inverse moment as λB(µ0) ∼ Λ2/mb for λB(µ0) ≤ 100 MeV

in the heavy quark limit. Applying this new power counting scheme leads to

FLP
V,2P ∼ FNLP

V,2P ∼
(
mb

Λ

)1/2

, for λB(µ0) ∼ Λ2/mb , (5.8)

which indicates that the “soft” two-particle contribution to the B → γ form factors is of

the same power in the heavy quark expansion as the factorizable effect computed from

the QCD factorization approach. To validate the leading-power factorization formula for

the generalized B → γ∗ form factors (3.29), we will therefore only focus on the inverse

moment region λB(µ0) ≥ 200 MeV in accordance with the power counting λB(µ0) ∼ Λ

in the following analysis, which implies the desired power counting rule for the “soft”

two-particle correction

FLP
V,2P ∼

(
Λ

mb

)1/2

, FNLP
V,2P ∼

(
Λ

mb

)3/2

, for λB(µ0) ∼ Λ . (5.9)

We turn to investigate phenomenological impacts of the model dependence of φ+
B(ω, µ)

on the theoretical predictions of the B → γ form factors. It is evident from figure 6

that the form factors FV and FA are insensitive to the specific model of the B-meson DA

φ+
B(ω, µ) for a large value of λB(µ0). This can be readily understood from the fact that

the leading power contribution to the B → γ form factors is determined by the inverse-

logarithmic moments completely and the subleading power two-particle and three-particle

corrections are both parametrically and numerically suppressed compared with the leading
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Figure 6. Dependence of the form factors FV (n · p) and FA(n · p) on the specific model for the

B-meson DA φ+B(ω, µ) at n · p = mB (left panel) and at n · p = 2 GeV (right panel). The solid and

dashed blue (green) curves indicate the theory predictions of FV (FA) from the first and second

models of φ+B displayed in (5.1) and (5.2), respectively.

power effect at large λB(µ0). The distinct predictions of the B → γ form factors from

different nonperturbative models of φ+
B(ω, µ) at small λB(µ0), displayed in figure 6, imply

that soft (end-point) contributions to the form factors FV and FA are both numerically

sizable and heavily dependent on the precise shape of the φ+
B(ω, µ) at small ω, in agreement

with a similar observation for the B → π form factors [11]. In particular, the resulting

discrepancies for the form factor predictions due to different parameterizations of φ+
B(ω, µ)

will be further enhanced at n · p = 2 GeV due to the raise of power suppressed corrections.

Now we proceed to perform a numerical comparison of the power suppressed two-

particle and three-particle corrections to the B → γ form factors FNLP,NLL
V,2P + FLO

V,3P , com-

puted from the dispersion approach, and the subleading power symmetry-conserving form

factor ξ(2Eγ) introduced in [5]. In the absence of a detailed analysis of ξ(2Eγ), a simple

model in compatible with the power counting analysis in the heavy quark limit

ξ(2Eγ) = c
fB

2Eγ
(5.10)

was proposed in [5], assuming the same Eγ dependence as the leading power contribution

FLP
V,2P (2Eγ). One can readily conclude from figure 7 that the nonperturbative parameter c

needs to be significantly larger than one at Eγ ' 1 GeV so that ξ(2Eγ) can match the non-

local subleading power contributions to the B → γ form factors numerically, confirming

the observation made in [6]. In addition, we observe that the photon-energy dependence

of the soft contribution FNLP
V,2P +FV,3P cannot be well described by the simple model (5.10)

particularly for Eγ ≤ 1.5 GeV.

We further present the main theory predictions for the photon-energy dependence

of the B → γ form factors in figure 8, taking into account the newly computed power
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Figure 7. The non-local effect due to photon radiation off the up anti-quark parameterized by

the subleading power form factor ξ(2Eγ) (pink band) [5], with c = ±1, compared with the sum of

the power suppressed two-particle and three-particle corrections FNLP,NLL
V,2P +FLO

V,3P computed from

the dispersion approach (green band) with λB(µ0) = 354 MeV determined in [11]. The blue curve

refers to the LL prediction for the soft two-particle contribution with the default choices of theory

inputs.

suppressed two-particle and three-particle contributions FNLP
V,2P + FV,3P . Several comments

on the numerical results obtained above are in order.

• The dominant theory uncertainties arise from the factorization scale µ, the inverse-

logarithmic moments λB(µ0), σ1(µ0) and σ2(µ0), as well as the model dependence of

the B-meson DA φ+
B(ω, µ0). The strong sensitivity of the soft two-particle contribu-

tion to the precise shape of φ+
B(ω, µ0) at small ω is not unexpected by inspecting the

analytical expression of FNLP
V,2P (n · p) in (3.30).

• Since the subleading power two-particle and three-particle corrections to the B →
γ form factors preserve the symmetry relation for the leading power contributions

due to helicity conservation, the symmetry-breaking effect still originates from the

subleading power local corrections with the current accuracy [5]

FA(n · p)− FV (n · p) =
2fB
n · p

[
Q` −

QumB

n · p
− QbmB

mb

]
+O(αs) , (5.11)

dependent only on the B-meson decay constant fB. This also explains why the form

factor difference only suffers from a very small uncertainty as displayed in figure 8,

albeit with the large theory uncertainty for the individual form factor.

• Since the photon-energy dependence of the form factors FV and FA is controlled by

the nearest poles in the vector and axial-vector (bū) channels, the vector form factor

– 25 –



J
H
E
P
0
9
(
2
0
1
6
)
1
5
9

Figure 8. The photon-energy dependence of the form factors FV (2Eγ) and FA(2Eγ) as well as

their difference with λB(µ0) = 354 MeV. The theory uncertainties from variations of different input

parameters are added in quadrature.

FV grows faster than FA with the increase of q2 (i.e., with the decrease of Eγ) in

compatible with the prediction presented in figure 8.

Having at our disposal the theory predictions for the B → γ form factors, we turn to

explore the theory constraint on λB(µ0) from the partial branching fractions of B → γ`ν.

Since the factorization formula for the decay amplitude A(B− → γ`ν) was established with

the power counting scheme n ·p ≡ 2Eγ ∼ O(mb), the phase-space cut on the photon energy

needs to be introduced in the definition of the integrated decay rate

∆BR(Ecut) = τB

∫ mB/2

Ecut

dEγ
dΓ

dEγ
(B → γ`ν) , (5.12)

in order to facilitate the comparison of the experimental measurements from the Belle Col-

laboration [35] and the theoretical predictions displayed in figure 9. The main observations

can be summarized as follows.

• Employing the upper limit of the partial branching fraction with Ecut = 1 GeV from

the Belle experiment ∆BR(1 GeV) < 3.5×10−6, we find that no interesting bound on

λB(µ0) for the Grozin-Neubert model (5.1) can be deduced from the weak experiment

limit, when the subleading power two-particle and three-particle corrections to the

B → γ form factors are taken into account in the theory predictions. In contrast,

applying the formulae for the transition form factors FV and FA computed from

QCD factorization [5] directly yields a meaningful bound λB(µ0) > 217 MeV. The

discrepancy can be traced back to the rapidly growing soft two-particle contribution

with the reduction of λB(µ0) as presented in figure 5, which can induce a strong

cancellation between the leading power contributions and the power suppressed effects
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Figure 9. The inverse-moment λB(µ0) dependence of the partial branching fractions of BR(B →
γ`ν,Eγ ≥ Ecut) for Ecut = 1 GeV (blue band) and Ecut = 1.7 GeV (green band) with the

model φ+B,I(ω, µ0) based upon the Grozin-Neubert parametrization (left panel) and with the model

φ+B,II(ω, µ0) based upon the Braun-Ivanov-Korchemsky parametrization (right panel).

at small λB(µ0). We are therefore led to conclude that the power suppressed two-

particle and three-particle contributions computed in this work are indispensable to

the extraction of the inverse moment λB(µ0) from the radiative leptonic B → γ`ν

decay.

• Due to the apparent larger branching fractions of B → γ`ν predicted from the model

φ+
B,II(ω, µ0) in (5.2) at small λB(µ0), the above-mentioned Belle limit yields a loose

bound λB(µ0) > 214 MeV. The strong sensitivity of the extracted bound of λB(µ0)

on the parametrization of the leading-twist B-meson DA can be understood from

the model-dependence of φ+
B(ω, µ) on predicting the B → γ form factors displayed

in figure 6. Such model dependence in the evaluation of the B → γ form factors

will be significantly reduced only for λB(µ0) ≥ 500 MeV where the leading power

contribution to the form factors FV and FA computed from QCD factorization ap-

proach also turns out to be numerically dominant. Precision measurements of the

binned distribution of B → γ`ν from the forthcoming Belle II experiment at KEK

are expected to shed light on the information of φ+
B(ω, µ) at small ω.

6 Conclusion and outlook

Applying the dispersion approach developed in the context of the pion-photon transition

form factor, we computed perturbative QCD corrections to the subleading power soft two-

particle contribution of the B → γ transition form factors, which cannot be addressed

directly with the QCD factorization approach due to the breakdown of light-cone OPE

in the end-point region. To achieve this goal, we first demonstrated QCD factorization

for the generalized B → γ∗ form factors with a hard-collinear photon at leading power in

Λ/mb using the diagrammatic factorization approach. Both the hard coefficient and jet
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function entering the factorization formulae for the B → γ∗ form factors were determined

at one loop explicitly based upon the method of regions. We further verified that the

hard function C⊥ is consistent with the perturbative matching coefficient of the QCD

weak current ūγµ⊥(1 − γ5)b in SCET, and the hard-collinear function J⊥ reproduces the

jet function involved in the factorization formulae for the on-shell B → γ form factors

when setting n̄ · p → 0. Employing the RG evolution equations in the momentum space,

we obtained the NLL resummation improved factorization formulae for the generalized

B → γ∗ form factors at leading power in Λ/mb, which allows one to derive the expression

for the soft two-particle correction to the B → γ form factors straightforwardly with the

standard dispersion relation in the variable p2. We also mention in passing that the above-

mentioned factorization formulae for the B → γ∗ form factors can be also employed to

construct the NLL sum rules for the B → ρ form factors at large recoil.

Along the same vein, we also constructed the factorization formula for the three-particle

contribution to the generalized B → γ∗ form factors at tree level. In accordance with the

end-point behaviours of the three-particle B-meson DAs, we showed that QCD factorization

for the three-particle contribution to the on-shell B → γ form factors is violated due to the

rapidity divergences in the corresponding convolution integrals. Moreover, both the “soft”

and “hard” three-particle corrections to the B → γ form factors were shown to contribute

at the same power in Λ/mb with the aid of the dispersion approach, in contrast to the two-

particle counterparts. In particular, the newly computed subleading power two-particle

and three-particle corrections turn out to preserve the symmetry relation of the leading

power contribution to FV and FA as a consequence of the helicity conservation.

Having at hand the dispersion expressions for the B → γ form factors, we proceeded

to explore the phenomenological impacts of the power suppressed two-particle and three-

particle contributions in detail. Employing the nonperturbative models of the B-meson

DA φ+
B(ω, µ0) motivated from the tree-level and the NLO QCD sum rule computations,

we found that perturbative QCD corrections to the soft two-particle contribution can give

rise to (10 ∼ 20)% shift to the tree-level prediction at λB(µ0) = 354 MeV, and the three-

particle correction to the B → γ form factors at leading order in αs was found to be of

O(1%) numerically with the exponential model of the three-particle DAs and with the

same value of the inverse moment. However, the soft two-particle correction to the B → γ

form factors can be significantly enhanced for λB(µ0) ≤ 150 MeV and it yields a strong

cancellation against the leading power contributions computed in QCD factorization. We

further argued that the “anomalous” soft two-particle contribution at small λB(µ0) can

be understood from the power counting analysis of the analytical expression (3.30) with

an appropriate scaling λB ∼ Λ2/mb in this regard. Numerically the subleading power

two-particle and three-particle contributions to the B → γ form factors were evaluated

to be considerably greater than the power suppressed symmetry-conserving form factor

ξ(2Eγ), estimated from the simple phenomenological model (5.10), at Eγ ' 1 GeV. Our

main theory predictions for the form factors FV and FA including the subleading power

contributions from the two-particle DA φ+
B at NLL and from the three-particle DAs at tree

level were presented in figure 8. With the theory predictions for the B → γ form factors at

hand, we proceeded with computing the integrated branching fractions of B → γ`ν with
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the phase-space cut on the photon energy Eγ ≥ Ecut. The theory constraint of the inverse

moment λB derived from the recent Belle data on BR(B → γ`ν) was found to be sensitive to

the specific model of φ+
B adopted in the evaluation of the form factors FV and FA, since the

subleading power soft two-particle correction is not sufficiently suppressed numerically at

small λB and dependent on the precise shape of φ+
B at small ω. Remarkably, no interesting

bound on the inverse moment λB can be derived, with the model φ+
B,I(ω, µ0) in (5.1), from

the inconclusive Belle measurement ∆BR(1 GeV) < 3.5×10−6, when the subleading power

two-particle and three-particle corrections are taken into account. In contrast, employing

an alternative model based on the Braun-Ivanov-Korchemsky parametrization (5.2) would

yield a weak bound λB(µ0) > 214 MeV from the Belle data, due to the substantially

enhanced predictions for the branching fractions of B → γ`ν at small λB(µ0).

Exploring the strong interaction dynamics of the radiative leptonic B → γ`ν decay

beyond this work can be pursued in different directions. First, it would be of interest to

investigate the factorization property of the subleading power form factor ξ(2Eγ) in QCD,

and then to build up the relation between the non-local subleading power corrections

computed from the dispersion approach and ξ(2Eγ) expressed in terms of the higher-twist

B-meson DAs. Second, calculating the yet higher-twist corrections to the B → γ form

factors from the four-particle B-meson DAs in the framework of the dispersion approach

will be helpful to clarify whether they are indeed suppressed by one power of Λ/mb due

to the mismatch between the twist expansion and the power expansion, and to verify

whether the non-local higher-twist contributions generate the symmetry-breaking effect

between FV and FA as observed from the sum rule approach with the photon DAs. Third,

extending the current analysis by computing perturbative corrections to the three-particle

contributions of the generalized B → γ∗ form factors will deepen our understanding towards

QCD factorization for the subleading power contributions in exclusive B-meson decays, and

more important, such computations will be essential to construct the NLL sum rules for

B → ρ form factors even at leading power in Λ/mb. To summarize, we believe that precision

QCD calculations of the radiative B → γ`ν decay are sufficiently interesting on both the

conceptual and phenomenological aspects.
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A Spectral representations

Here we collect the dispersion representations of various convolution integrals involved in

the factorization formulae for the generalized B → γ∗ form factors presented in (3.29). In

particular, we confirm the following spectral representations by verifying the corresponding

– 29 –



J
H
E
P
0
9
(
2
0
1
6
)
1
5
9

dispersion integrals manifestly.

1

π
Imω′

∫ ∞
0

dω

ω − ω′ − i0
ln2 µ2

n · p (ω − ω′)
φ+
B(ω, µ)

=

∫ ∞
0

dω

[
2θ(ω′ − ω)

ω − ω′
ln

µ2

n · p (ω′ − ω)

]
⊕
φ+
B(ω, µ) +

[
ln

µ2

n · pω′
− π2

3

]
φ+
B(ω′, µ) ,

(A.1)

1

π
Imω′

∫ ∞
0

dω

ω − ω′ − i0
ω′

ω
ln
ω′ − ω
ω′

ln
µ2

−n · pω′
φ+
B(ω, µ)

= −ω
′

2

{∫ ∞
0

dω ln2

∣∣∣∣ω − ω′ω′

∣∣∣∣ ddω φ+
B(ω′, µ)

ω

+

∫ ∞
ω′

dω

[
2 ln

µ2

n · pω′
ln
ω − ω′

ω′
− π2

]
d

dω

φ+
B(ω′, µ)

ω

}
, (A.2)

1

π
Imω′

∫ ∞
0

dω

ω − ω′ − i0
ω′

ω
ln
ω′ − ω
ω′

ln
µ2

n · p (ω − ω′)
φ+
B(ω, µ)

= ω′
{∫ ∞

0
dω

[
θ(ω′ − ω)

ω − ω′
ln
ω′ − ω
ω′

]
⊕

φ+
B(ω′, µ)

ω

+
1

2

∫ ∞
ω′

dω

[
ln2 µ2

n · p (ω − ω′)
− ln2 µ2

n · pω′
+
π2

3

]
d

dω

φ+
B(ω′, µ)

ω

}
, (A.3)

1

π
Imω′

∫ ∞
0

dω

ω − ω′ − i0
ω′

ω
ln
ω′ − ω
ω′

φ+
B(ω, µ)

= −ω′
∫ ∞
ω′

dω ln
ω − ω′

ω′
d

dω

φ+
B(ω, µ)

ω
. (A.4)
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