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Universidade Estadual Paulista,

São Paulo, Brazil
bDepartamento de F́ısica, Pontif́ıcia Universidade Católica de Rio de Janeiro,
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1 Introduction

It is by now established with a high degree of significance that the 125 GeV resonance

discovered at the LHC in July 2012 is an excitation of the broken electroweak vacuum.

This discovery sheds light on the nature of electroweak symmetry breaking (EWSB), and

is consistent with an elementary Higgs doublet as posed in the Standard Model of Particle

Physics (SM).

Now that it is clear that a scalar field is present at the TeV scale, it becomes more

urgent to understand why the scale of electroweak breaking is so small compared to ultra-

violet (UV) scales such as the Planck mass, MPl. A first approach to tackle this hierarchy

problem is to assume that new particles appear near the electroweak scale in order to cancel
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the huge O(M2
Pl) corrections that tend to destabilize the weak scale. A second possibility

is to assume that this scalar field exists only at low energies, as a bound state of more

fundamental constituents. At energies higher than the compositeness scale Λ, the EW

scalar would dissolve into constituents of spin higher than zero, which can be immune to

large quadratic corrections.

This second possibility, that interprets the Higgs boson as a composite object, is at

the center of our attention in this work. The fact that we have tested the Higgs boson

with energies comparable to its mass without revealing any obvious substructure, so that

the binding energy must be comparable to its rest mass, suggests that the bound state

arises from some underlying strong dynamics, as opposed to being a weakly bound state.

The generic scenario of strong dynamics leading to a composite scalar field is, however,

in tension with the observed properties of the Higgs boson. Indeed, one would generically

expect that such a composite field would feature a broad decay width, and be accompanied

by other, nearby resonances. However, the Higgs boson is observed to be narrow, and no

other light states (e.g. vectorlike fermions or additional spin-1 fields) have been observed

up to now at the LHC.

A class of scenarios that naturally reconciles strong coupling dynamics with the ob-

served Higgs boson is the one postulating that the EW scalar doublet is actually the

pseudo-Nambu-Goldstone boson (pNGB) of a global symmetry G spontaneously broken

to a subgroup G′ at an energy scale f̂ . A small explicit breaking of G would then be

at the origin of the EW scalar potential, perhaps allowing for a dynamical understanding

of EWSB itself. In this framework, a mass gap automatically splits the EW scalar from

heavier resonances, and its couplings are naturally weak so that the Higgs boson has a

narrow width. These scenarios are referred to as “pNGB composite Higgs” models (for a

recent review, see [1]). The magnitude of f̂ is bounded from below by LHC searches for

e.g vectorlike fermions, as well as from deviation from the expected SM Higgs couplings.

The magnitude of the compositeness scale Λ can also be bounded from below using Higgs

coupling measurements.

Although composite Higgs models usually assume an underlying strongly-coupled dy-

namics, their UV completion has received relatively little attention. Instead, most of the

literature focuses on the low-energy effective theory describing the Higgs boson properties

below the compositeness scale. More precisely, the standard way to proceed is to work

within the non-linear σ-model of the G/G′ coset. This effective description is fully appro-

priate at low energies, when the G′ vacuum remains unperturbed. In contrast, whenever

the G′ vacuum can be excited, the corresponding degrees of freedom must be included in

the σ-model. This implies that a particle with the quantum numbers of the vacuum, i.e.

a new neutral, CP-even scalar is potentially present in the effective field theory. We shall

refer to this scalar as the global Higgs throughout the rest of this paper, and denote it by φ.

The mass mφ of the global Higgs should be smaller than the cutoff of the effective theory,

but apart from that it is a free parameter.

In this paper, we will investigate the conditions under which the global Higgs can arise

and what are its properties. The possible presence of a global Higgs in the composite Higgs

framework seems rather intriguing, and to the best of our knowledge, has so far only been

– 2 –



J
H
E
P
0
9
(
2
0
1
6
)
1
5
8

studied in refs. [2, 3]. We will go beyond the simple models studied in [2, 3] by including

couplings to spin-1 resonances, and also study more general fermion sectors as well as

the possibility of embedding the global Higgs into non-minimal SO(5) representations.

Moreover, we formulate the theory entirely in terms of the nonlinear variables, allowing for

a more direct comparison to the usual literature on composite Higgs models.

In section 2, we establish a broad picture of the global Higgs properties based on

general arguments. Focusing on the SO(5)/SO(4) coset, we derive the bosonic couplings of

the global Higgs in section 3. We then define a set of benchmark scenarios for the fermionic

sector in section 4, and compute systematically the 1-loop effective couplings of the global

Higgs to SM gauge bosons in section 5. The renormalized couplings of the composite sector

are computed in section 6, and the decay widths and branching fractions are presented in

section 7. Section 8 contains our conclusions.

2 A global Higgs-like scalar in the composite Higgs paradigm

Composite Higgs models — where the EW symmetry is broken by the condensation of

pseudo-NGB’s arising from the spontaneous breaking of an approximate global symmetry

at a higher scale — are typically studied in the low energy regime, below the scale of

global symmetry breaking. As such, one needs only to parametrize the pNGB degrees

of freedom, thereby implementing the global symmetry non-linearly. Presumably, such a

low-energy description is obtained by integrating out heavy modes. These heavy states

include the global Higgs, scalar radial modes that, together with the pNGB’s, would enter

in a complete G multiplet (denoted by Φ) and would allow a linear implementation of the

full global symmetry (not just of the unbroken subgroup G′).

An interesting example is provided by the model considered in ref. [4]. In that case, the

breaking of the global symmetry is induced by 4-fermion interactions with a coefficient near

criticality. Indeed, allowing for a mild tuning of this coefficient so that it lies slightly above

a certain critical value, the symmetry breaking mechanism can be equivalently described

by the condensation of a (composite) scalar in a complete G-representation,1 such that

there is a hierarchy between the symmetry breaking scale, f̂ , and the cutoff Λ associated

with the non-renormalizable 4-fermion interactions. The global Higgs typically has a mass

mφ of the order of the symmetry breaking scale. Interestingly, some fermion resonances are

expected to have masses of order mφ or somewhat below.2 On the other hand, as explained

in [4], spin-1 resonances associated with the underlying strong dynamics are expected to

be heavier, with masses of order Λ.

1In the model studied in [4], the G-symmetry was SO(5), and the scalar was in the fundamental of SO(5).

After condensation, the symmetry is broken to G′ = SO(4), generating 4 (p)NGB’s plus one real scalar, the

global Higgs. In other non-minimal examples one can have both additional pNGB’s, as well as additional

massive scalar degrees of freedom. One such example is the breaking of SO(5) by the 14 representation,

which in addition to the massive SO(4) singlet “radial” mode, has an additional massive symmetric tensor

of SO(4) in its spectrum.
2As in models of top condensation [5, 6], there is a definite relation between the global Higgs mass and

the dynamical mass of the fermions that bind together to form the global Higgs.
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Thus, one can be in a situation where some of the fermionic resonances, in addition to

the global Higgs, may be more readily accessible than other higher spin excitations. The

collider phenomenology of such fermion states has been widely studied in the context of

general composite Higgs scenarios [7–13] and beyond [14–18]. Here our focus is rather on

the properties of the global Higgs.

We start by establishing a picture of the global Higgs properties in general terms,

leaving a more concrete presentation to the following section. First of all, since the global

Higgs is by definition an excitation of the G/G′ vacuum, it interacts with the pNGBs

that parameterize this vacuum. Due to the approximate shift symmetry, such interactions

involve covariant derivatives, and one expects tree-level couplings of the global Higgs to the

pNGB’s, i.e. to the SM Higgs boson and to the longitudinal components of the electroweak

gauge bosons. The global Higgs could also in principle couple to the vector resonances

of the strongly interacting sector. These couplings introduce another scale in the model,

which we call fρ, and will be discussed in the following section.

Importantly the global Higgs has couplings to the fermions in the spectrum and also,

via loop effects, to pairs of gluons and photons. In order to discuss such effects it will

be useful to summarize first the framework of partial compositeness [19], which allows

to elegantly accommodate the SM flavor structure within the composite Higgs paradigm.

One assumes here the presence of an elementary sector, in addition to the composite

sector giving rise to the Higgs and other resonances. The elementary sector contains three

families of chiral fermions q, u, d, l, e,3 and mimics exactly, in its SU(2)L×U(1)Y quantum

numbers, the fermion field content of the SM. The composite sector, on the other hand,

consists of vector-like states in complete G representations. Each SU(2)L multiplet in the

elementary sector is associated with a composite G-multiplet Q, U , D, L, E, which itself

contains some states with the corresponding SU(2)L×U(1)Y quantum numbers. This allows

bilinear mixing between the elementary and composite sectors, thereby breaking explicitly

the global symmetry G.4 In this framework, the light mass eigenstates are identified with

the SM fermions. They are accompanied by heavy vectorlike “partners”.

The vectorlike masses of the composite fermion sector will be denoted by MQ, MU ,

MD, ML and ME . The composite fermions also have interactions with the pNGB’s, which

will eventually give rise to the SM Yukawa couplings. One therefore often refers to the

Yukawa interactions between the composite states as “proto-Yukawa” interactions. Hav-

ing embedded the pNGBs into the G-multiplet Φ, proto-Yukawa interactions take the

schematic form5

Lproto−Y = −ξUOU (Φ)Q̄U − ξDOD(Φ)Q̄D − ξEOE(Φ)L̄E + h.c. , (2.1)

where the OX(Φ) are appropriate functions of Φ such that the above terms are G invariant.

The elementary-composite mixing terms take the form

Lmix = −∆qQ̄ · q −∆uŪ · u−∆dD̄ · d−∆lL̄ · l −∆eĒ · e+ h.c. , (2.2)

3Generation indices are not shown.
4Another source of explicit G-breaking is the gauging of SU(2)L ×U(1)Y itself.
5Note that we are being rather schematic since the precise contractions between the various fields depend

on the G-representations they belong to. For our present purposes this will be sufficient (specific examples

will be shown in the following section).
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where the dot denotes an appropriate projection of the states in the G-multiplets with

the correct SM quantum numbers. The physical SM states are linear combinations of

the elementary and composite states with mixing angles controlled by the mixing masses

∆q, . . . ,∆e. Only through the bilinear mixing above do the lightest mass eigenstates acquire

interactions with the pNGB’s contained in Φ, thus leading to Yukawa terms as in the SM.6

A scenario that has received much attention — commonly known as anarchy — as-

sumes that the proto-Yukawa couplings ξU,D,E are all of the same order (and of order one

to a few). The observed hierarchies in the SM fermion spectrum then arise from hierar-

chies in the mixing angles above: the lightest fermions are mostly elementary and hence

weakly coupled to the SM Higgs field (the pNGB states in Φ), while the heavy top has

a sizeable component in the composite sector (i.e. the mixing angle is large). A second,

perhaps less well-motivated, possibility is that the mixing angles are of the same order,

and instead the SM fermion mass hierarchies arise from hierarchies in the proto-Yukawa

couplings themselves. We will consider both possibilities.

Let us now turn to the couplings of the global Higgs to the fermion sector. First,

since the global Higgs is contained in Φ, it couples to composite fermion pairs as dictated

by the proto-Yukawa structures of eq. (2.1). We can thus expect a coupling of the global

Higgs to the heavy mass eigenstates, controlled by the SO(5) Yukawa couplings ξU,D,E .

The global Higgs can also couple to a SM fermion and one of its vectorlike partners. Such

couplings require the mixing terms of eq. (2.2). However, the proto-Yukawa interactions

induce couplings between the global Higgs and SM fermion pairs only after EWSB. The

reason is that the global Higgs is, by definition, a SM singlet and there are no fermion

bilinear singlets in the SM. The induced couplings will be seen to be proportional to the

SM fermion mass.

As already mentioned, there are loop-level induced interactions between the global

Higgs and gluons or photons. Although suppressed, these can play a central role in the

global Higgs phenomenology. These couplings are induced in complete analogy to the SM

case, through loops of colored or charged states whose masses get a contribution from the

breaking of the global symmetry. The importance of such effects depends on the size of

the proto-Yukawa couplings and therefore on whether we assume an anarchic scenario or

not.7 The point is that the composite fermion masses can receive both symmetry breaking

(∼ ξf̂) and symmetry preserving contributions. As is well known, whenever the vector-like

mass is small compared to the symmetry breaking contribution, the loop-induced coupling

of the global Higgs to two gauge bosons (through a triangle diagram) exhibits a non-

decoupling behavior that is already apparent when the Yukawa coupling ξ is of order one.

6The vectorlike masses, Yukawa couplings and mixing parameters need not be simultaneously diagonal

in flavor space but, for simplicity, this is not reflected in our notation above.
7Note that, since eq. (2.1) is G-symmetric, no such couplings between gluons/photons and the SM Higgs

are induced at this point, since here the SM Higgs is an exact NGB. Only the global Higgs enters into the

above discussion. When the mixing angles of eq. (2.2) are taken into account, couplings between the SM

Higgs and gluons/photons are induced. The contribution from the elementary sector is dominated by the

top quark, as in the SM. The contributions from the composite sector, on the other hand, are suppressed

by their large vector-like masses. The deviations from the SM couplings in such scenarios have been studied

elsewhere (see, e.g. [12]) and are not the focus of our study.
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This behavior remains qualitatively true when the vector-like mass is comparable to the

symmetry breaking one. Therefore, whenever the vector-like masses MQ, . . . ,ME are not

much larger than ξf̂ , each resonance gives a comparable contribution, and the net effect

can be encoded into an effective multiplicity factor. In the first scenario discussed above,

with order one to a few proto-Yukawa couplings and hierarchical mixing angles, one can

therefore expect that the heavy sector associated with each SM state can give a sizeable

effect. The details depend on the G-representations of the spin-1/2 resonances, which may

be different for the up-quark sector, the down-quark sector and the leptons. Also, if one

insists to remain in the perturbative regime at the scale of the global Higgs mass, a large

number of resonances can put an upper bound on the Yukawa couplings ξ, so that the

symmetry-breaking effects cannot be arbitrarily large compared to the vectorlike effects.

We defer further details to the next section. However, to get an idea of the size of the

multiplicity factors involved, one can consider what would have been the situation if the

SM Yukawa couplings were all of order one. In that case, for the gluon fusion process,

for instance, one would have obtained an amplitude about 6 times larger than the top

contribution, a factor that gets squared in the cross section. The multiplicity factors in the

global Higgs case can potentially be even larger since the global symmetry structure often

suggests the presence of relatively large representations, as we will see in the next section.

It is therefore important to analyze such enhancements in more detail.

On the opposite extreme, i.e. the case where the mixing angles are all of order one

but the proto-Yukawa couplings are hierarchical, one expects that only the resonances

associated with the top sector will be important. The resonances associated with the

lighter fermions will give contributions to the loop processes that are suppressed, much as

those of the light fermions in the SM Higgs case. Hence, this limit provides a “minimum”

contribution to the 1-loop amplitudes, and thus we will present it as one of the benchmarks

in our study, regardless of how likely it is to be realized in nature.

In summary, the picture that emerges is that the physical excitation of the global

symmetry breaking vacuum, the global Higgs, can be amongst the lightest states of a

strongly-coupled UV completion of composite Higgs scenarios. It should couple to the

Higgs and longitudinal electroweak gauge bosons at tree-level, and to the SM fermions

proportionally to their masses. In addition, the global Higgs interacts at 1-loop with the

SM gauge bosons via loops of the (possibly many) fermion resonances. This last feature

is dependent on the realization of the fermion sector. The production of the global Higgs

and its study may thus shed some light on the UV completion of composite Higgs models.

In the next sections we explore in more detail the expected properties of the global Higgs

in specific scenarios.

3 Bosonic couplings

We turn now to the detailed properties of the global Higgs, starting with its dominant

tree-level interactions to bosons, which are rather model independent. The fermion sector

will be discussed subsequently. To be definite we will focus on the case where G = SO(5)

– 6 –
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and G′ = SO(4) = SU(2)L × SU(2)R. Here, weak isospin is identified with SU(2)L, while

hypercharge is embedded as Y = T 3
R of SU(2)R.8

In order to describe the vacuum fluctuations of the SO(5)/SO(4) sigma-model, the

SO(5)/SO(4) NGBs need to be embedded into a SO(5) representation. We choose to

embed them into the fundamental 5 of SO(5),9 by defining a scalar Φ parametrized as

Φ = U5H , (3.1)

where U5 is the SO(5)/SO(4) NGB matrix and H the remaining “radial” degree of freedom.

The vev of H will be denoted by f̂ e5, where e5 denotes a unit vector in the radial direction.

The fluctuation φ of H around its vev, given by

H = (f̂ + φ)e5 , (3.2)

is the global Higgs.

3.1 Self-couplings

Having introduced the SO(4) singlet degree of freedom H, a non-trivial potential V (H) is

needed to stabilize it at the non-zero vev 〈H〉 = f̂ 6= 0 that breaks the global symmetry

down to SO(4). The potential for H is in principle arbitrary, the only requirements being
d
dH V (H)|H=f̂ = 0, d2

dH2 V (H)|H=f̂ > 0. As the global Higgs self-interactions are irrele-

vant for low-energy phenomenology, it is enough to consider the expansion of V (H) up to

quartic order,

V (H) =
1

4
λ
(
H2 − f̂2

)2
. (3.3)

With this parametrization, the λ parameter corresponds to the quartic coupling of the

global Higgs, and the global Higgs mass is given by

mφ =
√

2λf̂ . (3.4)

3.2 Couplings to the Goldstone bosons and vector resonances

Although we have argued above that the spin-1 resonances may be amongst the heaviest

new physics states (and are therefore not the focus of this work), their presence can still

leave an imprint in the properties of the global Higgs, which results in an additional free

parameter fρ. We therefore present the bosonic sector, that consists of H, the pNGB’s

in Φ (i.e. the SM Higgs doublet) and a complete spin-1 multiplet of SO(5) (in the adjoint

representation), in addition to the elementary gauge bosons that give rise to the SM gauge

boson sector.

Quite generically, the global Higgs couples to the pNGB states in Φ and to the various

spin-1 states. These couplings follow from the bosonic Lagrangian (see, e.g. [20])

Lbos =
1

2
(∇µH)2 − V (H) +

1

4
f2
ρ

(
AAµ − i[U

†
5DµU5]A

)2

− 1

4g2
ρ

(FAµν)2 − 1

4g2
0

(waµν)2 − 1

4g′20
(bµν)2 , (3.5)

8There is also a U(1)X factor, such that hypercharge is actually Y = T 3
R + X. Only fermions carry

non-zero X charge, see table 1.
9We present in appendix A the embedding into a symmetric traceless 14 of SO(5).
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where the covariant derivative Dµ contains the elementary gauge fields wµ and bµ only.

The heavy spin-1 resonances are denoted by AAµ , including both SO(4) (A = a) and

SO(5)/SO(4) (A = â) resonances. We have used the following definitions

U5 = exp

(√
2 i

f
hâT â

)
, ∇µH =

(
∂µ − iAâµ T â

)
H . (3.6)

In ref. [4] it was shown that this Lagrangian can be obtained from a theory of 4-fermion

interactions. As already pointed out there, Lbos is in fact more general, as it is recognized

to correspond to a 2-site model Lagrangian where the radial mode of the SO(5) → SO(4)

breaking of the second site is included. Therefore, the couplings of φ should be fairly general

and applicable to a wide class of UV completions of models considered in the literature.

Notice that when fρ → ∞, which sets AAµ = i[U †5DµU5]A, one can rewrite the theory

as a linear sigma model in terms of the fiveplet Φ = U5H. For finite fρ, the couplings

of H to the pNGB’s deviate from those of the linear sigma model due to the mixing with

the coset spin-1 resonances. In order to diagonalize this mixing, we focus on the terms

quadratic in the pNGB’s hâ and the coset resonances Aâ. We get

1

2
|∇H|2 +

1

4
f2
ρ

(
AAµ − i[U

†
5DµU5]A

)2

=
1

2
(∂µφ)2 +

1

4
(f̂ + φ)2(Aâµ)2 +

f2
ρ

4

(
Aâµ +

√
2

f
Dµh

â

)2

+ · · · (3.7)

To disentangle the Goldstones and the vector bosons, define the shifted field Bµ and choose

f according to

Aµ = Bµ −
√

2 f

f̂2
Dµh , f−2 = f̂−2 + f−2

ρ , (3.8)

which eliminates the cross term Dµh
âAâµ and renders the pNGB kinetic term canonical:

L =
1

2
(∂µφ)2 +

1

2
(Dµh

â)2 +
m2
a

2
(Bâµ)2 +

(
1

2
f̂φ+

1

4
φ2

)(
Bâµ −

√
2 f

f̂2
Dµh

â

)2

. (3.9)

The last term contains all the interactions. In particular one has the following interaction

linear in φ:

L ⊃ f2

f̂3
φ (Dµh

â)2 ≡ f−1
H OH , (3.10)

with OH = 1
2φ (Dµh

â)2 = φ |DµH|2, where H = 1√
2
(h2̂ + ih1̂, h4̂ − ih3̂)T is the SM Higgs

doublet. We therefore identify the induced coefficient for this dimension-5 interaction as

f−1
H = 2 rv f̂

−1, with

rv ≡
f2

f̂2
=

f2
ρ

f2
ρ + f̂2

=
m2
ρ

m2
a

≤ 1. (3.11)

Here we have identified the mass of the spin-1 SO(4) resonances Aaµ, given by m2
ρ = 1

2g
2
ρf

2
ρ ,

and of the SO(5)/SO(4) resonances Bâµ, given by m2
a = 1

2g
2
ρ(f

2
ρ + f̂2).
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The linear sigma model result f−1
H = 2 f̂−1 is indeed recovered in the limit fρ → ∞.

For finite fρ, however, the scale suppressing the interaction in eq. (3.10) can differ by order

one from both the naive decay constant f̂ which appears in other interactions (see the next

section), as well as from the Higgs decay constant, f , which controls the couplings of the

pNGB Higgs. As we can see, fH sets the coupling of a single global Higgs to both a pair

of SM Higgses, as well as to pairs of W’s and Z’s through their longitudinal polarizations,

i.e., couplings of the form m2
V f
−1
H φVµV

µ.

One notices that couplings of the global Higgs to transversely polarized SM gauge

bosons are absent at this level (they are suppressed by a loop factor or, after including

EWSB effects, by O(v2/f2
H)). However, they are crucial for phenomenological studies and

will be addressed later.

4 Fermionic couplings

The couplings of the global Higgs to the fermions in the theory are more model dependent.

First, one should notice that in the previous section we considered the simplest possibility

where there exists a single global Higgs that, together with the four pNGB’s that constitute

the SM Higgs doublet, falls into a 5 of SO(5). It may be possible, however, that the

pNGB’s arise from larger SO(5) representations. Connected to this, there is significant

model-building freedom to choose the G-multiplets for the fermionic resonances, the only

constraint being that they contain a subset of states with the appropriate SM quantum

numbers to allow mixing and the implementation of the partial compositeness paradigm.

We will therefore be content with describing some illustrative possibilities and settle on

a few representative benchmark scenarios, that could be used for further phenomenological

studies. In order to set up the framework, we will start by focusing on a simple top

sector. We will then comment on possible variations and on the corresponding constructions

necessary for the lighter generations (more precisely, the differences between the up-quark,

down-quark and lepton sectors).

4.1 A simple top sector

We are interested in the coupling of φ to fermion pairs which arises from the SO(5) sym-

metric Yukawa couplings, as in eq. (2.1). We will first consider a minimal top-sector,

consisting of vector-like top-partners F and S, which transform in the 52
3

and 12
3

of the

SO(5)×U(1)X group respectively. In addition, we include two elementary fields qelL and telR
with the usual SM quantum numbers. The SO(5) Higgs, Φ, will be assumed to transform

in the fundamental of SO(5), as in the previous subsection. We can therefore write the

Yukawa coupling [4]

Lξt = −ξt Φi
(
F̄ iLSR + h.c.

)
, (4.1)

where Φ = U5 (f̂ +φ) e5. One can immediately verify that the SO(4) four-plet arising from

F does not acquire Yukawa couplings to φ before EWSB. We can therefore focus on the

SU(2)L singlet sector which consists of two left-handed fields,
(
F 5
L , SL

)
as well as three

right-handed fields
(
F 5
R , SR, t

el
R

)
. Under the SM, these fields are SU(2) singlets with
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SO(5)×U(1)X SO(4)×U(1)X SU(2)L ×U(1)Y

1 2
3

1 2
3

1 2
3

5 2
3

1 2
3

+ 4 2
3

1 2
3

+ (2 1
6

+ 2 7
6
)

5− 1
3

1− 1
3

+ 4− 1
3

1− 1
3

+ (2− 5
6

+ 2 1
6
)

5−1 1−1 + 4−1 1−1 + (2− 3
2

+ 2 1
2
)

10 2
3

4 2
3

+ 6 2
3

(2 1
6

+ 2 7
6
) + (1− 1

3
+ 1 2

3
+ 1 5

3
+ 3 2

3
)

14 2
3

1 2
3

+ 4 2
3

+ 9 2
3

1 2
3

+ (2 1
6

+ 2 7
6
) + (3− 1

3
+ 3 2

3
+ 3 5

3
)

Table 1. Decomposition of the smallest SO(5) × U(1)X representations under both the custodial

SO(4) and the SM SU(2)L ×U(1)Y .

hypercharge 2
3 , i.e. they transform like the right handed top quark. There will thus be in

general one mixing angle in the left-handed sector and three in the right-handed one. We

will simplify the discussion by decoupling one vectorlike state [for instance
(
SL , t

el
R

)
or(

SL , F
5
R

)
], so that one is left with only one mixing angle stR = sinαtR , that rotates the

remaining two right-handed fields to the mass eigenbasis TR, tR. The Lagrangian of the

hypercharge 2
3 top states then reads

L1 2
3

= −mT T̄LTR − ξt φ
(
ctR T̄L TR + stR T̄L tR

)
+ h.c. (4.2)

with mT = ξtf̂/ctR and tR denotes the physical right-handed top quark. Note that ne-

glecting electroweak breaking, the physical top-quark does not possess Yukawa coupling to

φ, only a “mixed” one involving also the heavy top resonance.

After electroweak symmetry breaking, the physical top quark acquires also a Yukawa

coupling to φ, which is universally given by

Lφt̄t = −mt

f̂
φ t̄ t . (4.3)

In the following we will neglect EWSB effects, since they are a small perturbation for the

physics at f̂ .

4.2 Other embeddings and light quarks

The above choice of top partners is by no means unique. There exist many choices for the

representations of the top (and other fermion) partners. As already stated, the paradigm of

partial compositeness simply requires that all SM fermions appear in these representations

at least once (such that mixing with the elementary states can take place), and that

at least one of each kind appear in the SO(5)-invariant Yukawa couplings. The typical

representations considered in the literature (see, e.g. [12]) are the 1, 5, 10 or 14 of SO(5).

They will be denoted by S, F , A, B respectively. Their decompositions are detailed

in table 1.
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Instead of working out in detail other possible top sectors, we will move on to describe

various possibilities that can also be applied to the composite states that partner with the

light SM fermions. We start by noticing that not all combinations of fermion partners

allow for simple renormalizable Yukawa couplings with the SO(5) breaking field in the

fundamental. For instance, choosing two quark partners F and F ′, one either needs to

resort to a SO(5) breaking field in the 14, or to nonrenormalizable Yukawa couplings:

Ldim 4
ξ = −ξ F̄ iΨijF

′j , or Ldim 5
ξ = − ξ

f̂
F̄ iΦiF ′jΦj . (4.4)

In the case that the pNGB’s arise from a 14, we define the global Higgs as the mode in

the SO(4) singlet direction 1√
20

diag(1, 1, 1, 1,−4). The two choices above lead to different

couplings between φ and the various SO(4) representations. The possible SO(4) represen-

tations from the decompositions in table 1 are the 1, 4, 6, and 9 and are assumed to

be canonically normalized. We denote them by s, f , a and b, respectively. The SO(5)

symmetric proto-Yukawa couplings induce Yukawa interactions with the global Higgs, e.g.

F̄ΨF ′ =
2√
5
φ s̄s′ +

1

2
√

5
φ f̄f ′ . (4.5)

We denote these weight factors by wi, such that the SO(4) representation labeled by i

couples to the global Higgs with Yukawa coupling

ξU,i = wiξU , ξD,i = wiξD , ξE,i = wiξE . (4.6)

The various possible SO(5) and SO(4) symmetric Yukawa couplings for the above repre-

sentations and the respective factors wi are summarized in tables 2 and 3 (see appendix B

for further details). We see, in particular, that the number of fermion states that couple

to the global Higgs depends very much on the assumed representation of both the scalar

and the fermions.

We will assume all masses and couplings in the fermionic Lagrangian to be real for

definiteness.10 Notice that we can write two independent Yukawas of the type ΦQ̄U and

ΦQ̄γ5U . We find it more convenient to switch to the two operators ΦQ̄PRU and ΦQ̄PLU ,

whose coefficients we will generally denote by ξ and ξ′ respectively.

For the lighter up-type quarks one can mimic the construction described in more detail

for the top quark sector in subsection 4.1, which falls in the “F̄ΦS” category of table 2.

Alternatively, one can use the less minimal variant that replaces the 1 2
3

with the 14 2
3

of

SO(5)×U(1)X , corresponding to the “F̄BΦ” category. For the bottom sector (specifically

the bR) one can see from table 1 that the candidate representations are the 5− 1
3

and the

10 2
3
. The first case requires the introduction of an additional composite 5− 1

3
partner of

the (tL, bL) doublet, in order to be able to write down the F̄ΨF category of table 2 for

the bottom sector. This would be in addition to the composite 5 2
3

associated with the

top sector, which is also a composite partner of the (tL, bL) doublet. Thus, the choice of

10In realistic scenarios the phases are constrained by CP violation. Constructing a fully realistic flavor

sector is not the goal of this work.
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proto-Yukawa F̄ΦS′ F̄A′Φ F̄B′Φ F̄ΨF ′ S̄ tr ΨB′ tr ĀΨA′ tr B̄ΨB′ tr B̄ΨA′

φ s̄s′ 1 — 2√
5

2√
5

1 — 3
2
√

5
—

φ f̄f ′ — 1√
2

1√
2

1
2
√

5
— 3

4
√

5
3

4
√

5

√
5

4

φ āa′ — — — — — 1
2
√

5
— —

φ b̄b′ — — — — — — 1
2
√

5
—

Table 2. The SO(4) multiplets that couple to the global Higgs, for various choices of the dimension-

4 proto-Yukawa interactions (as specified in the first row). The entries give the weight factors wi
as defined in eq. (4.6). We use the notation S ↔ 1, F ↔ 5, A ↔ 10 and B ↔ 14 to indicate the

various fermionic SO(5) representations considered, as well as s ↔ 1, f ↔ 4, a ↔ 6 and b ↔ 9

for the SO(4) representations. Φ is understood as a fiveplet of SO(5), while the matrix Ψ is to be

interpreted as the 14 representation of SO(5).

proto-Yukawa F̄Φ Φ†F ′ S̄ Φ†B′Φ Φ†ĀA′Φ Φ†B̄B′Φ Φ†B̄A′Φ

φ s̄s′ 2 4√
5

— 8
5 —

φ f̄f ′ — — 1 1 1

Table 3. Same as table 2, but for the dimension-5 proto-Yukawa interactions.

a composite 5− 1
3

that partners with bR leads to a rather non-minimal scenario. If one

insists on dim-4 proto-Yukawa interactions, such that Ψ, which hosts the global Higgs,

would transform in the 14 of SO(5), one increases even more the level of complexity. The

second option is more minimal in comparison: with the bR composite partner transform-

ing in the 10 2
3

of SO(5) × U(1)X one can write a dim-4 proto-Yukawa interaction using

the global Higgs arising from a 5 (denoted by Φ before), and without enlarging the top

sector. We will therefore take this second case, replicated for all the down-type quarks as

a reference example.

4.3 Benchmark models

We now define a set of benchmark scenarios in order to illustrate the typical embeddings

of the global Higgs in composite Higgs models. In a forthcoming publication, a collider

analysis will be carried out for these scenarios [21].

Quark benchmarks.

• MCHM5,1,10: (Qi, Ui, Di) = (5 2
3
,1 2

3
,10 2

3
) , φ ⊂ 50 ,

• MCHM5,14,10: (Qi, Ui, Di) = (5 2
3
,14 2

3
,10 2

3
) , φ ⊂ 50 ,

• MCHM14,14,10: (Qi, Ui, Di) = (14 2
3
,14 2

3
,10 2

3
) , φ ⊂ 140 .

The first two models require the global Higgs to be embedded in the 5 representation,

while for the third one we chose the 14. The last model uses the “tr B̄ΨB” proto-Yukawa
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structure for the up sector, and the “tr B̄ΨA” proto-Yukawa structure for the down sector,

following the notation of table 2. These three benchmark models are understood to be

characterized by order one proto-Yukawa couplings (we will be more precise in section 6)

and hierarchical mixing angles (see the discussion after eqs. (2.1) and (2.2) in section 2).

As already mentioned in section 2 we will also consider the scenario with hierarchical

Yukawas and order one mixing angles, as a “most minimal” example where the global Higgs

properties are only sensitive to the top sector:

• MCHM5,1: (Q3, U3) = (5 2
3
,1 2

3
). The representations of the composite partners for

the SM fermions other than qL = (tL, bL) and tR need not be specified in this case

since they play a negligible role. The global Higgs is in a 50.

Lepton benchmarks. The lepton sector can potentially play a role in the coupling of

the global Higgs to two photons, and as for the case of quarks vis-à-vis the two-gluons

amplitude, they can introduce additional model-dependence. We therefore fix two bench-

mark scenarios in the leptonic sector, that apply for each of the four quark sector scenarios

defined above:

• A leptonic anarchic scenario with (Li, Ei) = (5−1,1−1), which falls in the “F̄ΦS”

category of table 2.

• A non-anarchic scenario analogous to the MCHM5,1 above, where all the composite

lepton proto-Yukawa couplings are small, and therefore the heavy leptonic states

have a minimal impact on the phenomenology of the global Higgs. In this case, the

representations of the composite partners of the SM leptons need not be specified.

As we will see, this will illustrate that the impact of the leptonic sector can be relatively

minor. Notice also that here we will remain agnostic about the composite states related to

the neutrino sector, and assume, conservatively, that they do not contribute.

5 Effective one-loop couplings to the SM gauge bosons

As mentioned before, the global Higgs couplings to massless gauge bosons such as the gluon

and the photon as well as the couplings to the transverse polarizations of the electroweak

gauge bosons are induced by one-loop processes which are sensitive to the details of the

particles running in the loop. These couplings are very important for phenomenological

studies and in this section we estimate them in the different benchmark models defined in

the previous section.

The effective one-loop coupling of the global Higgs to a gluon pair proceeds in com-

plete analogy to the SM calculation. The result can be encoded into the dimension-5

effective term

Leff
φgg = −

αsNφgg

12πf̂
φGaµνG

µν
a , (5.1)

where

Nφgg =
3

4
f̂
∑
i

M ′i
Mi

A1/2

(
m2
φ

4M2
i

)
, (5.2)
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and the sum runs over all the quark states of mass Mi that couple to the global Higgs φ

with Yukawa strength M ′i = ∂φMi(φ)|φ=0.11 The A1/2(τ) is the standard loop function,

which is given in appendix C. It saturates to 4/3 in the limit that the fermion is heavy

compared to mφ, and vanishes in the opposite limit.

The coupling of the global Higgs to the EW gauge bosons is similarly given by

− α

s2
W

NφWW

8πf̂
φW i

µνW
µν i − α

c2
W

NφBB

8πf̂
φBµνB

µν , (5.3)

where we can write NφWW = Nφγγ −NφBB with

Nφγγ =
m2
a −m2

ρ

m2
a

A1

(
m2
φ

4m2
a

)
+ f̂

∑
i

M ′i
Mi

NcQ
2
iA1/2

(
m2
φ

4M2
i

)
, (5.4)

NφBB = f̂
∑
i

M ′i
Mi

NcY
2
i A1/2

(
m2
φ

4M2
i

)
, (5.5)

and Nc = 3 (1) is the number of colors for quarks (leptons). One then gets the couplings

to γγ, ZZ, γZ and W+W−:

− α

8πf̂

(
Nφγγ φFµνF

µν +
NφZZ

s2
W c

2
W

φZµνZ
µν +

2NφZγ

sW cW
φFµνZ

µν +
2NφWW

s2
W

φW+
µνW

−µν
)
,

(5.6)

where

NφZZ = c4
WNφWW + s4

WNφBB , NφγZ = NφWW − s2
WNφγγ . (5.7)

The first term in eq. (5.4) corresponds to the charged pair of SO(5)/SO(4) gauge bosons

that receive a contribution
√
m2
a −m2

ρ to their mass from the breaking at f̂ . The well-

known loop function A1(τ) (see appendix C) reaches the asymptotic value −7 when the

spin-1 resonance is much heavier than the global Higgs. Notice that the spin-1 contribution

is completely parallel to the one from the charged W ’s in the SM Higgs case, with the pair

of heavy charged vector fields playing the role of the SM W±. Here, however, we expect

to be much closer to the saturation limit of the loop function, since the spin-1 resonances

are taken to be heavy (see the discussion in section 2). The second term in eq. (5.4), as

well as eq. (5.5), includes the contribution from all the fermions that couple to the global

Higgs, including quark and lepton fields.

In order to estimate the multiplicity factors NφXX with X = g, γ,B for each of the

benchmark scenarios defined in the previous subsection, we assume that the fermions have

a common vector-like mass, MQ = MU = MD = Mψ. If the vectorlike mass dominates over

the global symmetry breaking effects, and assuming also small mixing with the elementary

sector, the fermions are approximately degenerate in mass with Mi ∼Mψ.12 We can then

11For simplicity, and because it is a good approximation, we will neglect EWSB effects.
12As we will detail in the accompanying work [21], our analytic expressions for the loop processes can

be quite effectively used even when these assumptions are not fulfilled, by using eq. (5.8) to define an

effective mass scale Mψ (provided it does not vanish; see next footnote). The φγγ and φBB processes
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factor out a common loop function A 1
2
(m2

φ/4M
2
ψ) and compute the sum as13

∑
i

M ′i
Mi

=
d(detM)/df̂

detM
≈ −2

f̂

M2
ψ

(
N̄U
φgg tr ξ′Uξ

T
U + N̄D

φgg tr ξ′Dξ
T
D

)
, (5.8)

where the remaining traces are over the 3 generations, and the N̄U,D
φgg are the sums over the

SO(4) multiplicities Ni, weighted by the factors w2
i , where the wi are given in table 2. The

N̄U,D
φgg are summarized in table 4. Analogously, we can obtain

∑
i

M ′i
Mi

NcQ
2
i ≈ −2

f̂

M2
ψ

(
3N̄U

φγγ tr ξ′Uξ
T
U + 3N̄D

φγγ tr ξ′Dξ
T
D + N̄E

φγγ tr ξ′Eξ
T
E

)
, (5.9)

where N̄U,D,E
φγγ are the sums over the SO(4) multiplicities, weighted by the charges Q2

i and

the factors w2
i as before. The factors N̄U,D,E

φBB for the hypercharge are defined analogously.

The charges and hypercharges can be read off from table 1 for each benchmark model. It

should be noted that the tensor couplings of the electroweak gauge bosons are expected to

compete with the longitudinal couplings (arising from the operator OH at tree level) only

for large Yukawa couplings and multiplicities. Moreover, we point out that the tree and

loop level couplings have a different scaling with f̂ or equivalently, for fixed Global Higgs

mass, with the quartic coupling λ. The typical size of the Yukawa and quartic interactions

will be estimated in the next section.

One may wonder if higher order (finite effects) could give large corrections to the 1-loop

results, given the large multiplicities involved. One can see, however, that the higher order

corrections involving additional heavy fermion loops enter only at 3-loop order and would

not be expected to give a large effect. Rather, we expect the higher-order corrections to be

dominated by QCD, very much as in the SM. While a more precise treatment would include

the QCD K-factors, to be on the conservative side, we will not include any such corrections.

One should, however, keep in mind that they will give an additional enhancement to the

rates involving two gluons or two photons.

6 Running couplings in the composite sector

In the presence of large SO(5) matter representations such as 10 and 14 (in particular

when repeated for all 3 generations) the RG running of the Yukawa couplings and of the

global Higgs quartic coupling λ from the compositeness scale Λ down to the global Higgs

can similarly be used to define effective scales via eq. (5.9) and the analogous equation with hypercharge

weighting. However, in the bulk of the parameter space of each model, the three scales are quite similar

and, therefore, to a good approximation, one can reduce the model dependence to a single parameter, that

one can characterize as “the scale of spin-1/2 resonances”.
13Note that for this result to be non-vanishing both ξ and ξ′ must be non-zero. We recall that in the

presence of the “wrong-chirality” structure with coefficient ξ′, the SM Higgs potential may acquire a log

sensitivity to the compositeness scale Λ. This mild dependence is not necessarily a problem. If one has

a situation with a vanishing ξ′, the sum in eq. (5.8) is proportional to the elementary-composite mixing,

which we have ignored in the derivation.
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Benchmark N̄U
φgg N̄D

φgg N̄U
φγγ N̄D

φγγ N̄E
φγγ N̄U

φBB N̄D
φBB N̄E

φBB

MCHM5,1,10 1 2 4
9

17
9 1 4

9
25
18 1

MCHM5,14,10
14
5 2 101

45
17
9 1 157

90
25
18 1

MCHM14,14,10
27
20

5
4

57
40

85
72 1 81

80
125
144 1

MCHM5,1 1 — 4
9 — — 4

9 — —

Table 4. Fermionic multiplicity factors entering the effective couplings of the global Higgs to two

gluons or two EW gauge bosons, given in eqs.(5.8) and (5.9).

mass scale mφ has to be taken into account. We will see below that the beta function

of the Yukawa couplings is always positive because of loops of the global Higgs. This

implies that the Yukawa couplings develop a Landau pole at relatively low energies, and

thus that the strong dynamics develops at a scale Λ not far above the global Higgs mass.

We shall identify this strong coupling scale with the compositeness scale. Below the strong

coupling scale, couplings are expected to quickly decrease, so that the composite states can

be described as well-defined propagating states.14

We work at leading order in large multiplicities, and at 1-loop order. It turns out that

the running of the Yukawa couplings is dominated by the wave-function renormalization

of the global Higgs, and hence can be expressed in terms of15

ξ2
eff = 4Nc

(
NU

[
tr ξUξ

T
U + tr ξ′Uξ

′T
U

]
+ND

[
tr ξDξ

T
D + tr ξ′Dξ

′T
D

])
, (6.1)

where NU and ND are the multiplicities of the SO(4) representations, weighted by the

group-theoretical factors, and hence they coincide with the quantities encountered in the

loop expressions for the φgg coupling

NU = N̄U
φgg , ND = N̄D

φgg , (6.2)

which for our various scenarios were given in table 4. The RG equation for ξeff reads

µ
dξ2

eff

dµ
≈

ξ4
eff

16π2
, (6.3)

The term above arises from the global Higgs wavefunction renormalization, when neglecting

subdominant (i.e. not enhanced by multiplicities) terms coming from vertex and fermion

wavefunction renormalization.16 Similarly, we have neglected the effects of gauge couplings

14We must notice that the masses of vector resonances may in principle be higher than Λ, which means

they cannot be described consistently by the theory. However, the imprint of these resonances on the global

Higgs properties is only characterized by rv = f/f̂ , and thus does not depend on the resonance masses.

The kinetic terms of the vector resonances can be consistently sent to zero by taking gρ →∞. In this limit

the linear sigma model with gauge fields is strictly equivalent to a non-linear sigma model [20], in which no

physical particle is present above Λ.
15We include here only the quark states (which overwhelm the contribution from the lepton states).
16We have checked that accounting for such subleading effects the resulting corrections are indeed neg-

ligible for our purposes of estimating the Yukawa couplings at the scale mφ. The only exception is the

minimal model MCHM5,1, for which we have included the subleading terms to obtain our numbers (but

still neglecting the lepton sector).
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Benchmark ξ2/ξ2
eff ξ(µ = mφ) ε λmin λmax λ/ξ2|fix

MCHM5,1,10
1

216 0.6 (0.5) 1
162 0.24 2.6 1.17

MCHM5,14,10
5

1728 0.5 (0.4) 11
3456 0.12 2.5 1.02

MCHM14,14,10
5

936 0.6 (0.5) — — — —

MCHM5,1
1
24 1.6 (1.2) 1

12 2.3 3.9 1.11

Table 5. Yukawa couplings and scalar self-couplings in our various benchmark scenarios. See text

for details.

which would also induce a differential running between the different ξi. It is also worth

noting that, at 1-loop order, λ does not enter into the RG equation for ξeff .

We now assume that ξeff reaches a value of order 4π at the compositeness scale Λ ≈
3mφ. This hierarchy is somewhat arbitrarily chosen to indicate a gap between mφ and Λ

without taking it so large that an extreme tuning would be involved. With this boundary

condition, we find that at the scale mφ, the coupling ξeff is

ξeff(mφ) ≈ 8.7 . (6.4)

To continue further, we make the additional assumption that all the relevant Yukawa

couplings are similar. Setting them equal (ξ = ξU,D = ξ′U,D) we find at the scale mφ the

values reported in the third column of table 5. The number in parenthesis corresponds to

taking Λ ≈ 10mφ, and is included only for comparison. Under our simplifying assumptions,

these are the relevant couplings when computing finite effects, such as the loop induced

couplings which are dominated by momenta of order mφ.17

We now turn to the quartic interaction of the global Higgs. In order to estimate values

for λ at µ = mφ, we consider its 1-loop RGE, assuming our estimates for ξ in table 5. The

1-loop RG equation of the quartic is given by18

µ
dλ

dµ
≈ 1

16π2
(26λ2 + 2λξ2

eff − ε ξ4
eff) , (6.5)

where the value of ε is suppressed by the multiplicities and is reported in table 5. We

can see there are actually two distinct possibilities: if λ is sufficiently small, it is driven

to a negative value at Λ as a result of the renormalization by the Yukawa interactions.

Above a certain threshold, it is driven instead to a Landau pole at Λ. This is similar to

the well-known situation for the Higgs quartic coupling in the SM. These two limit cases

can be taken to define an upper and a lower bound for the value of λ at µ = mφ. Below

we denote these extreme values by λmin and λmax .

17We note that reproducing the top quark mass may require taking a slightly larger ξt. Since other

couplings may be slightly smaller, we regard our numerical estimates as representing an average that

characterizes the overall combined effect of the multiplicity of states.
18For MCHM14,14,10, we would have to consider the simultaneous running of two quartic couplings (see

appendix A).
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We find that for Λ = 3mφ, the quartic coupling is driven negative when λ ≈ 0.24

at µ = mφ in the MCHM5,1,10. For the MCHM5,1 this value is 2.3. It is larger because

multiplicities are smaller in this scenario. On the opposite end, the maximum value of

the quartic at µ = Λ is given by naive dimensional analysis and is λ = (4π)2/3!, where

ξeff ≡
√
Nξ ∼ 4π and N ≡

∑
i 4NcNi.

19 From these values at the strong coupling scale

one obtains λ(µ = mφ) = λmax ≈ 2.6 for the MCHM5,1,10. For the MCHM5,1, taking into

account subleading corrections, one has that λ(µ = mφ) = λmax ≈ 3.9. Thus, the values of

λ are in a even narrower range in that case. The ranges for λ are summarized in table 5.

In connection to this, we point out that the ratio λ/ξ2 displays a (quasi) IR fixed point

which is also shown in table 5, as discussed in [4].20 While for the MCHM5,1 the IR fixed

point is approached sufficiently fast, for the other models the running over three e-folds

is not sufficient to come close to the fixed point. As a result, we must accept an intrinsic

degree of uncertainty in the coupling λ at µ = mφ in the large multiplicity models, due to

the underlying strong dynamics. Based on the above considerations we will allow λ to take

values in the range [ξ2, λmax], where ξ2 (which is somewhat above λmin) and λmax can be

read from table 5.21 In most of this range, λ is driven to its strong coupling (NDA) value

near Λ = 3mφ. Only in the vicinity of the lower limit can λ stay perturbative when µ ∼ Λ.

Notice also that the quartic coupling at µ = mφ is always well below its strong coupling

value, as estimated by NDA.

These estimates of the couplings in the composite sector at the global Higgs mass scale

allows for more precise predictions of the global Higgs properties. In particular, they allow

one to estimate the one-loop effective couplings in a given scenario, and to tie the global

Higgs mass to the SO(5) breaking scale f̂ .

7 Decays

The decay width of the global Higgs into SM fermions is universally given by

Γφ→ff̄ = Nc

m2
f

8πf̂2
mφ , (7.1)

and is dominated by the top quark. The partial widths into Goldstone bosons are given by

Γφ→hh = Γφ→ZLZL =
1

2
Γφ→W+

LW
−
L

=
r2
v

32π

m3
φ

f̂2
, (7.2)

where we neglect EWSB effects. These are the dominant decay modes.

19The 3! is the combinatorial factor that we did not factor out in our definition of the quartic coupling

in eq. (3.3).
20These fixed point values can decrease somewhat after including the effects of the gauge interactions.
21Comparing the MCHM5,1,10 and MCHM5,14,10 the slightly different lower limits in the range for λ are

roughly consistent with the slightly different fixed point values. For the MCHM5,1, on the other hand, the

uncertainty in λ is narrower than the assumed range, since the IR fixed point is approached more quickly.
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The one-loop decays into SM gauge bosons via loops of vector-like fermions and

SO(5)/SO(4) composite vector bosons are given by

Γφ→gg = α2
s

N2
φgg

72π3

m3
φ

f̂2
, (7.3)

Γφ→γγ = α2
N2
φγγ

256π3

m3
φ

f̂2
, Γφ→ZTZT =

α2

s4
W c

4
W

N2
φZZ

256π3

m3
φ

f̂2
, (7.4)

Γφ→γZT =
α2

s2
W c

2
W

N2
γZ

128π3

m3
φ

f̂2
, Γφ→W+

T W
−
T

=
α2

s4
W

N2
φWW

128π3

m3
φ

f̂2
. (7.5)

The total width for loop-induced decays into transverse electroweak bosons can be

written as

Γφ→VTV ′T = α2
3s−4
W N2

φWW + c−4
W N2

φBB

256π3

m3
φ

f̂2
. (7.6)

Mixed decays into one SM fermion and one of its partners may also be possible. The

most important channels are typically the ones involving the right handed top, and to a

lesser extend the left handed top-bottom doublet, provided the corresponding partners are

not too heavy. Denoting the mixing angles by sR and sL respectively, one finds22

Γφ→t′ t̄ ,tt̄′ = Nc
|ξU,1|2s2

R

4π
mφ γ

2
ψ , Γφ→q′q̄ ,qq̄′ = Nc

|ξU,4|2s2
L

4π
mφ γ

2
ψ , (7.7)

where we have neglected EWSB effects (in particular we neglect the top and bottom squared

masses against those of t′, q′ and φ), and we have defined γψ = 1− M2
ψ

m2
φ

. The subindices 1

and 4 on ξU indicate the SO(4) representation of the top partners. They are related to the

SO(5) symmetric Yukawa ξU via the factors wi in table 2 and 3.

If the fermion resonances are sufficiently light, it is possible for the global Higgs to decay

into a heavy fermion pair. We will give the corresponding partial widths in a simplified

limit in subsection 7.2.

7.1 Case I: closed decay channels into fermion resonances

We assume first that the decays of the global Higgs into SM fermion partners are kine-

matically forbidden, e.g. Mi > mφ. This assumption also has implications for the loop

decays, which are controlled by the relative contribution to the fermion masses from global

symmetry breaking versus symmetry preserving effects, as described in section 5. This

relative importance is characterized by (ξf̂)2/M2
ψ = (ξ2/2λ)(mφ/Mψ)2 . ξ2/2λ, which can

be seen to be at most of order one in the lower end of the range for λ (see table 5), hence

the approximate formulas eqs. (5.8), (5.9) are valid. In most of the considered range for

λ, the (ξf̂)2/M2
ψ factor will in fact induce an important suppression for such decays, in

22Note that the mixed Yukawa interaction is L = −sRξU,1φQ̄LtR+h.c. The vectorlike masses split into

cRMψ (the U state) and Mψ (the Q state). For large mixing, Q and U are approximate mass eigenstates, and

the decay proceeds to t and t′ = Q. If the mixing is smaller, the mass eigenstates become approximately

degenerate again and are roughly equal mixtures of Q and U . The interaction is thus between QL =

(t′ + t′′)/
√

2 and tR, and the decay proceeds to two states t′ and t′′. The net effect is the same.
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addition to the 1-loop suppression. For illustration, we will use Mψ = mφ in eqs. (5.8)

and (5.9), and take the value A1/2(1/4) ≈ 1.42 for the fermion loop function (slightly above

the asymptotic value of 4/3).

We then have a rather predictive case, since the dominant features depend on only three

parameters, that can be taken as the global Higgs mass mφ, the quartic coupling λ, and the

Higgs decay constant f . The latter controls the deviations of the pNGB Higgs properties

from the SM limit, and can be constrained by Higgs measurements, which as illustrated

in [12], can be fairly model-dependent. For concreteness, we will take f = 800 GeV,

which should allow to satisfy comfortably the current Higgs constraints for a wide choice

of parameters in the fermionic sector. In addition, such a choice also allows for generic

consistency with EW precision measurements (see, for example, [22]). A more detailed

study of Higgs and EW precision constraints is beyond the scope of this work, and is not

expected to change our conclusions. Thus, fixing f allows us to focus on the properties

of the global Higgs, as controlled by the two remaining parameters, mφ and λ, which

barely affect the SM Higgs phenomenology.23 Note that eqs. (3.4) and (3.11) imply that

mφ ≥
√

2λf , so that for a given value of λ one obtains a minimum global Higgs mass. One

could also be worried about potential direct lower limits on mφ. Adapting the ATLAS

heavy Higgs search of ref. [23], we obtain that the global Higgs must be roughly heavier

than about 750 GeV [21].

An interesting feature of the global Higgs couplings to transverse electroweak gauge

bosons is that they are dominated by the loops of the spin-1 (coset) resonances for large

values of λ. In this case these couplings are mainly controlled by the rv parameter (the

spin-1 amplitude scales as 1 − rv, as can be seen from eq. (5.4)), up to small corrections

from the fermion loops, and thus depend only mildly on the fermion sector. On the other

hand the EW couplings at small λ, as well as the gluon coupling, are fully dependent on

the sector of fermion resonances.

The total width of the global Higgs is dominated by the decays into the SO(5)/SO(4)

Goldstone bosons and into pairs of top quarks. These contributions do not depend on the

details of the fermion sector, so that one has in general

Γtot

mφ
≈ r2

v

32π

m2
φ

f̂2
+

3m2
t

8πf̂2
, (7.8)

to a very good approximation. The total widths are shown in figure 1. We use the relation

m2
φ/f̂

2 = 2λ, together with the estimates of λ derived in section 6. It turns out that the

total width ranges from Γφ/mφ = O(10−3) to O(0.1). The global Higgs is thus always

narrow enough so that the “narrow width approximation” applies.

We also show in figure 2 the branching fractions for our benchmark scenarios, displayed

as a function of mφ. We do this for the two extreme estimates of the global Higgs quartic

coupling λ = ξ2 and λ = λmax, as determined in section 6. We observe that Γφ→γγ is smaller

than Γφ→W+W− and Γφ→ZZ by several orders of magnitude at mφ = 750 GeV. Due to the

LHC13 bounds on the diboson ZZ, WW channels from ATLAS [24] and CMS [25], the

23The low-energy effects of the global Higgs are described by loop-generated dimension-6 operators and

tree-level dimension-8 operators.
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Figure 1. Total width of the global Higgs in the case that the decays to fermion resonances are

forbidden. The plot shows curves for λ = ξ2 (dashed lines) and λ = λmax (continuous lines), as

given in table 5 for the different models. The minimum mφ is determined by f̂ ≥ f .

possibility of interpreting the 750 GeV diphoton excess [26, 27] as originating from the

resonant production of a narrow global Higgs with mφ = 750 GeV is excluded. It turns

out that the branching fractions into two gluons, two photons, and into the transverse

components of the weak gauge bosons become more important for a heavier global Higgs

(see figure 2). Such enhancement of the couplings to transverse gauge bosons is potentially

interesting for production of the global Higgs at the LHC and will be explored in more

detail in the accompanying ref. [21].

7.2 Case II: open decay channels into fermion resonances

Clearly, when decays into fermionic resonances (or mixed decays into a SM fermion and

one of its partners) are kinematically open, the branching fractions are sensitive to the

details of the new fermionic sector. For illustration, we consider the case where all the

fermion resonances are light compared to the global Higgs. In this case, all possible two-

body decay channels are open. Neglecting the small M2
ψ/m

2
φ terms, i.e. taking all γψ = 1

in eq. (7.7), and assuming universal SO(5) proto-Yukawa couplings ξ = ξU,D = ξ′U,D, the

fermion mixing angles appearing in eq. (7.7) simplify. The decays into heavy fermion pairs

then contribute to the total width as

Γφ→ψψ̄
mφ

=
27

4π
|ξ|2 ≈ 0.8 (MCHM5,1,10) , (7.9)

Γφ→ψψ̄
mφ

=
54

5π
|ξ|2 ≈ 0.9 (MCHM5,14,10) , (7.10)

Γφ→ψψ̄
mφ

=
117

20π
|ξ|2 ≈ 0.7 (MCHM14,14,10) , (7.11)

Γφ→ψψ̄
mφ

=
3

4π
|ξ|2 ≈ 0.6 (MCHM5,1) , (7.12)

where ξ (at µ = mφ) has been estimated in section 6 for each benchmark scenario. We

conclude that when several fermionic decays are open, the global Higgs is in general a

broad resonance, unless all such decays occur very near threshold and there is a further

kinematic suppression.
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Figure 2. Branching fractions of the global Higgs in the MCHM5,1,10, MCHM5,15,10, MCHM14,14,10,

MCHM5.1 scenarios, assuming that decays into fermion resonances are forbidden. Both extreme

values λ = {ξ2, λmax} of the global Higgs quartic coupling are shown, and we fix f = 800 GeV and

Mψ = mφ. Blue lines correspond to WLWL (solid), ZLZL (dashed), hh (dotted) final states. The

green line is tt̄. The red line is gg and orange lines correspond to WTWT (solid), ZTZT (dashed),

γγ (dotted), γZT (dash-dotted). The minimum mφ is determined by f̂ ≥ f .
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8 Conclusions

We investigated the properties of the physical excitations of the global symmetry breaking

vacuum in composite Higgs models. Such a global Higgs is expected to interact with the SM

Higgs and electroweak gauge bosons, with the SM fermions proportionally to their mass,

and with the heavy fermion and vector resonances of the theory. An effective coupling

to photons, gluons and transverse electroweak gauge bosons via loops of the resonances is

also expected.

We studied in detail the minimal SO(5)/SO(4) case through a general 2-sites model

Lagrangian, and found that the dominant interactions of the global Higgs with the SM

particles are controlled by two real-valued parameters and by a few group theoretical

factors. The couplings of the global Higgs to the SM fermions depend on the global Higgs

decay constant f̂ and on whether the proto-Yukawa structure is linear or bilinear in Φ,

the SO(5) multiplet containing the global Higgs. The couplings of the global Higgs to the

pNGBs depend on f̂ , on the usual NGB decay constant f , and on the global symmetry

group. In a large region of parameter space, the dominant decay modes of the global Higgs

are the tree-level decays to the SM Higgs, electroweak gauge bosons, and top quark.

The global Higgs also couples to the (possibly many) fermion resonances that partner

with the SM fermions. We analyzed various typical realizations of the SO(5) fermionic

sector, with a global Higgs arising either from the 5 or 14 of SO(5). We computed the

beta functions of the composite sector, i.e. the global Higgs quartic and the SO(5) Yukawa

couplings. Evolving these couplings from the strong coupling scale down to the global

Higgs mass scale provides a consistent picture of the composite sector, necessary for the

analysis of the global Higgs properties.

Loops of fermion and vector resonances of the coset induce an effective coupling of

the global Higgs to SM gauge bosons. This is similar to the case of the Higgs-photon

coupling induced by top quark and W loops, except that for the global Higgs the fermion

multiplicity can be much larger, enhancing the loop amplitude accordingly. We derived

compact formulas for these effective couplings in each realization of the fermion sector in

the benchmark models considered.

When several heavy fermion channels are open, the global Higgs is in general a broad

resonance. On the other hand, when the decay of the global Higgs into fermion resonances

is kinematically suppressed or forbidden, its decay width ranges from Γtot/mφ ∼ 10−3 to

∼ 0.1, depending on the global Higgs mass and quartic coupling. The global Higgs can

thus behave either as a narrow or a broad resonance. In this latter more predictive case,

we provided the branching fractions of the global Higgs for each benchmark model.

Although the present study is mostly theoretical, it turns out that the properties of

the global Higgs are such that it could in principle be detected at a collider like the LHC.

That is, the theoretical aspects of composite Higgs models we explored here may turn into a

new way of searching for Higgs compositeness at the LHC. A detailed study of the collider

implications of a global Higgs is presented in ref. [21]. As a motivation, we simply observe

that the coupling of the global Higgs to gluons, induced by the many fermion resonances

of the theory, may be sizeable enough to allow for the production of the global Higgs by

gluon fusion at the LHC with 300 fb−1 integrated luminosity.
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A The global Higgs in the 14 representation of SO(5)

In section 3 and below, we have assumed that the global Higgs is embedded in a fundamental

Φ = 5 of SO(5), i.e. it is identified with the SO(4) singlet in the decomposition

5→ (2,2) + (1,1) . (A.1)

We parametrized this decomposition by the NGB matrix U5 and the radial direction H as

Φ = U5H , (A.2)

and aligned H as

H = (f̂ + φ)e5 , e5 = (0, 0, 0, 0, 1)T . (A.3)

This is the most minimal scenario possible.

The next-to-minimal embedding is in the symmetric traceless Ψ = 14 representation.

Indeed, the decomposition into SO(4) also contains an SO(4) singlet:

14→ (3,3) + (2,2) + (1,1) (A.4)

which we will be parametrizing as follows:24

Ψ = U5 (H+H′)U †5 . (A.5)

Here H′ denotes the (3,3)

H′ =

(
φ′4×4

0

)
, (A.6)

with φ′ traceless symmetric, and leads to (non-NGB) heavy states. The singlet is

parametrized as

H = (f̂ + φ)e14 , e14 =

(
1

2
√

5
× 14×4

− 2√
5

)
. (A.7)

Notice that Tr e14 = 0 and Tr e2
14 = 1.

A first comment regards the scalar potential. There are now two independent quartic

couplings that are conveniently written as

V =
λ

4

(
tr Ψ2 − f̂2

)2
+
λ′

4

(
13

5
[tr Ψ2]2 − 4 tr Ψ4

)
. (A.8)

24Unlike the vacuum induced by a vev in the 5, which is unique, the breaking by the 14 can also lead

to other vacua such as SO(3) × SO(2). We assume here that there exists a potential that leads to the

SO(4) vacuum.
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This potential contains an SO(4) symmetric vacuum 〈φ′〉 = 0 for λ′ > 0, λ > 0 with

m2
1 = 2λf̂2 , m2

9 = 2λ′f̂2 . (A.9)

We will assume that λ′ is sufficiently large so as to decouple the nonet near the cutoff.

A second modification concerns the vector resonances. Eq. (3.5) is then still valid

provided we use the corresponding covariant derivative

∇H = ∂µH− iAâµ
[
T â , H

]
, (A.10)

such that eq. (3.7) gets modified according to

1

2
|∇H|2 +

1

4
f2
ρ

(
AAµ − i[U

†
5DµU5]A

)2

=
1

2
(∂µφ)2 +

5

8
(f̂ + φ)2(Aâµ)2 +

f2
ρ

4

(
Aâµ +

√
2

f
Dµh

â

)2

+ · · · (A.11)

Proceeding similarly to eq. (3.7) one obtains

L =
1

2
(∂µφ)2+

1

2
(Dµh

â)2+
f2
ρ f̂

2

4Zf2
(Bâµ)2+

1

Z

(
1

2
f̂φ+

1

4
φ2

)(
Bâµ −

√
2Z f

f̂2
Dµh

â

)2

, (A.12)

with Z = 2
5 and

f−2 = Zf̂−2 + f−2
ρ . (A.13)

We will define

rv ≡
m2
ρ

m2
a

=
Zf2

f̂2
≤ 1 , (A.14)

yielding

L =
1

2
(∂µφ)2 +

1

2
(Dµh

â)2 +
m2
a

2g2
ρ

(Bâµ)2 +

(
φ

f̂
+

1

2

φ2

f̂2

)
√
m2
a −m2

ρ

gρ
Bâµ −

√
rvDµh

â

2

,

(A.15)

as in the case of the 5 representation.

B Yukawa structures

In this appendix we setup the conventions necessary to derive the individual Yukawa cou-

plings, in particular the weights in tables 2 and 3. The SO(5) fields are parametrized as

(i = 1 . . . 4, j = 1 . . . 6, k = 1 . . . 9)

F = fi e
i
(4) + s e(1) ,

A = aj α
j
(6) + fi α

i
(4) , (B.1)

B = bk β
k
(9) + fi β

i
(4) + s β(1) ,
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where the e’s are unit vectors, and the α’s (β’s) are antisymmetric (symmetric traceless)

orthogonal matrices that are normalized as trα2 = 1 and tr β2 = 1. Here we only need the

explicit forms of:

(β(1))ab =
1

2
√

5
δab −

2√
5
δa5δb5 ,

(αi(4))ab =
1√
2

(δiaδb5 − δa5δib) , (B.2)

(βi(4))ab =
1√
2

(δiaδb5 + δa5δib) .

With these conventions, kinetic terms are canonically normalized when written as traces.

The SO(5) Yukawa couplings are normalized as

L = −ξΦi

(
F̄i PR S + F̄j PRBij + F̄j PRAij

)
− ξΨij

(
Bjk PRB

′
ki +Bjk PRAki

)
+ h.c.

(B.3)

The SO(4) Yukawas are normalized as

L = −ξ φ
(
b̄k PR b

′
k + āj PR a

′
j + f̄i PR f

′
i + s̄ PR s

′)+ h.c. (B.4)

By comparison, one obtains the weights given in table 2 and 3.

C Loop functions

For completeness, we collect here the well-known loop functions (see [28], for example)

that appear at 1-loop order when considering the couplings of a scalar to gauge bosons via

heavy fermion or spin-1 loops:

A1/2(τ) = 2[τ + (τ − 1)f(τ)]τ−2 , (C.1)

A1(τ) = −[2τ2 + 3τ + 3(2τ − 1)f(τ)]τ−2 , (C.2)

where

f(τ) =

 arcsin2√τ τ ≤ 1

−1
4

[
log 1+

√
1−τ−1

1−
√

1−τ−1
− iπ

]2
τ > 1

. (C.3)

In the limit that τ → 0, A1/2(τ)→ 4/3 and A1(τ)→ −7.
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