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Abstract: Recently, two groups have made distinct proposals for a de Sitter space that is

emergent from conformal field theory (CFT). The first proposal is that, for two-dimensional

holographic CFTs, the kinematic space of geodesics on a space-like slice of the asymptot-

ically anti-de Sitter bulk is two-dimensional de Sitter space (dS2), with a metric that can

be derived from the entanglement entropy of intervals in the CFT. In the second proposal,

de Sitter dynamics emerges naturally from the first law of entanglement entropy for per-

turbations around the vacuum state of CFTs. We provide support for the equivalence of

these two emergent spacetimes in the vacuum case and beyond. In particular, we study the

kinematic spaces of nontrivial solutions of 3d gravity, including the BTZ black string, BTZ

black hole, and conical singularities. We argue that the resulting spaces are generically

globally hyperbolic spacetimes that support dynamics given boundary conditions at future

infinity. For the BTZ black string, corresponding to a thermal state of the CFT, we show

that both prescriptions lead to an emergent hyperbolic patch of dS2. We offer a general

method for relating kinematic space and the auxiliary de Sitter space that is valid in the

vacuum and thermal cases.

Keywords: AdS-CFT Correspondence, Conformal Field Theory, Spacetime Singularities

ArXiv ePrint: 1604.02687

Open Access, c© The Authors.

Article funded by SCOAP3.
doi:10.1007/JHEP09(2016)154

mailto:ca2621@columbia.edu
mailto:nmc2159@columbia.edu
mailto:cez2103@columbia.edu
http://arxiv.org/abs/1604.02687
http://dx.doi.org/10.1007/JHEP09(2016)154


J
H
E
P
0
9
(
2
0
1
6
)
1
5
4

Contents

1 Introduction 1

2 Kinematic space 3

2.1 Global AdS3 5

2.2 Poincaré patch 7
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1 Introduction

The AdS/CFT correspondence provides a powerful equivalence between a theory of (quan-

tum) gravity in asymptotically anti-de Sitter space (AdS) and a conformal field theory

(CFT) in one lower dimension. In spite of great progress in our understanding of the dual-

ity over the last two decades, the fundamental question of how bulk geometry emerges from

the field theory has not been fully answered. Within the nascent “emergent spacetime from

entanglement” program, a key tool for addressing this has been the Ryu-Takayanagi for-

mula, which relates entanglement entropy in the CFT to the areas of boundary-anchored

bulk extremal surfaces [1–3]. The growing consensus is that at least outside “shadow”

regions blocked from Ryu-Takayanagi surfaces by barriers [4–6], boundary entanglement

entropy reconstructs the bulk spacetime and Einstein’s equations [1, 7–11].
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One unforeseen consequence of this program was the identification of an auxiliary

Lorentzian geometry from CFT entanglement data, distinct from the usual bulk AdS space.

In fact, there have recently been two distinct proposals for an emergent de Sitter space

from CFT.

The first approach is rooted in an attempt to obtain the discretized geometry of a space-

like slice of AdS from a boundary tensor network (ansatz for the ground state wavefunction)

known as the Multi-Scale Entanglement Renormalization Ansatz (MERA) [12, 13]. One

school of thought has pointed out several challenges to the consistency of AdS/MERA,

e.g., [14], and the authors of [15, 16] proposed that the MERA tensor network is actually

a discretization of a “kinematic space” of boundary-anchored geodesics contained within a

space-like slice of AdS3, rather than of the bulk slice itself. Importantly, unlike the two-

dimensional hyperbolic geometry (H2) of a constant time slice of AdS3, the geometry of

this emergent kinematic space is Lorentzian. Specifically, it is a two-dimensional de Sitter

space dS2. The prescription in [15, 16], which matches earlier results related to differential

entropy [17–19], calculates the kinematic space metric solely from boundary entanglement

entropy of intervals in the CFT (eq. (2.1)).

In a second construction that we refer to as the “auxiliary dS prescription” [20], a

de Sitter space propagator is recognized hidden within the expression for the modular

Hamiltonian of a d-dimensional CFT in the vacuum with a ball-shaped entangling region

(eq. (4.1)). By applying the entanglement first law for small perturbations around the

vacuum, the authors demonstrate that the entanglement perturbations satisfy a Klein-

Gordon equation in an auxiliary d-dimensional de Sitter space. Unlike the kinematic space

proposal, this construction is intrinsically dynamical. It applies in arbitrary dimensions,

and as the authors stress, it is independent of the standard AdS/CFT correspondence.

As a maximally symmetric solution to Einstein’s equation in the vacuum, it is perhaps

not surprising to see de Sitter appear in different arenas. A priori, the two constructions

need not be related beyond the vacuum case. It is thus a nontrivial check to see if the

kinematic space and auxiliary dS prescriptions agree for bulk 3d gravity solutions outside

of pure AdS.

Our results. We apply the kinematic space prescription to additional nontrivial solu-

tions of 3d gravity: the (1-sided) BTZ black string, its quotient, and the conical singularity

geometry. In the latter two cases, the results are non-universal and apply only to holo-

graphic CFTs, while in all other cases we consider they are universal. In the case of the

quotiented BTZ black hole, we find good agreement with the partial results of [16, 21]

for the two-sided case (see appendix C) and extend the analysis to include the effect of

phase transitions in the entanglement entropy, which we show result in defects in kine-

matic space. In the other cases, the results are entirely new. For the BTZ black string and

the conical singularities, we show that the resulting kinematic spaces are, respectively, the

hyperbolic patch and glued together “sub-de Sitter spaces” of de Sitter space, which are

depicted in figures 5 and 13. The geodesics in these spacetimes can be mapped by large

diffeomorphisms to parent geodesics in AdS, and for this reason their kinematic spaces are

all subregions of the original de Sitter space. What is less obvious is that these kinematic
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spaces are not just subregions, but are causally well-behaved spacetimes in their own right.

Indeed, we present arguments that they are globally hyperbolic spacetimes whose boundary

conditions can be set at future infinity.

The global hyperbolicity of these kinematic subregions suggests that the space of

geodesics can be interpreted as a background spacetime on which dynamical fields can

propagate. It provides an immediate consistency check for the matching with the auxil-

iary de Sitter proposal, which is defined intrinsically in terms of dynamics and propaga-

tion. Furthermore, the fact that the kinematic spaces always have a Cauchy surface close

to future infinity is consistent with the boundary conditions required for a boundary-to-

bulk propagator.

For the BTZ black string example, we construct an explicit nontrivial match between

the two emergent spacetimes. We demonstrate that in a direct extension of the result

of [20], the modular Hamiltonian associated with a thermal CFT2 interval is equal to the

integral of the energy density times a Klein-Gordon propagator on the hyperbolic patch

of dS2 (eq. (4.21)). This patch is precisely the kinematic space we obtain in section 2.3.

The matching informs our formulation of the equivalence in section 5.1. It also suggests a

refinement of the kinematic space prescription for a CFT on a cylinder from the entangle-

ment entropy Sent(u, v) of a CFT interval [u, v], with a length scale L explicitly reinstated

on the right hand side:

ds2
K of CFT on cylinder =

12

c
L2∂

2Sent(u, v)

∂u∂v
dudv with L = S/π. (1.1)

The length scale corresponds to the de Sitter radius L, which we fix to be the circumference

S of the cylinder’s compact dimension over π.

Outline. The paper is organized as follows. In section 2, we first review the kinematic

space prescription in the case of pure AdS. We use the prescription to derive the kinematic

space of the BTZ black string, black hole and the conical singularity, and discuss the causal

structure of the resulting spacetimes (section 3). (For a review of the 3d gravity solutions

and the embedding coordinates and Penrose transformations used, see appendices A and B,

and for the relation to existing work on the BTZ quotient see appendix C.) In section 4,

we review the auxiliary de Sitter construction and extend the construction to the thermal

state, providing a match with the results of section 2.3. In section 5, we summarize our

proposed refinement of the two constructions. We conclude with a discussion of our results

and areas for future work.

In the final stages of preparing this paper, we learned of other upcoming results [22, 23]

that overlap with our work.

2 Kinematic space

Kinematic space, as formulated in [15, 16], can be defined for any CFT in any state.

However, our main interest is in two-dimensional holographic CFTs which have an asymp-

totically AdS3 bulk spacetime, where the kinematic space has a geometric interpretation

as a space of boundary-anchored, oriented geodesics.

– 3 –
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Given any time-reflection symmetric asymptotically AdS3 spacetime, there is a time

coordinate t such that all space-like extremal curves that anchor on boundary points with

t = 0 are entirely confined to a space-like slice defined by the condition t = 0. This

follows directly from the reflection symmetry about t = 0 and includes, in particular, static

spacetimes, which would have this property at each t. A constant time slice of a locally

AdS3 bulk will have a 2-dimensional hyperbolic geometry H2, depicted in figures 18 and 19.

The Ryu-Takayanagi holographic entanglement entropy proposal states that the en-

tanglement entropy of an interval [u, v] in the CFT (at t = 0) is proportional to the length

of the (unique) boundary-anchored geodesic with minimal length that is homologous to

the interval [1, 3, 24]. We take kinematic space to refer to the set of these geodesics for all

intervals of the CFT.

By invoking results in integral geometry, [15] proposes a kinematic space prescription

for deriving a metric on kinematic space entirely from the entanglement entropy Sent(u, v)

of the boundary intervals:1

ds2 =
∂2Sent(u, v)

∂u∂v
dudv . (2.1)

This spacetime is Lorentzian due to a natural causal structure inherited from the con-

tainment relation of boundary intervals: two geodesics contained within one another are

time-like separated, otherwise they are space-like separated or, in the marginal case where

they share a left or right endpoint, null (see figure 1). The null coordinates in kinematic

space are the boundary endpoint coordinates u and v. The geodesics or equivalently their

boundary intervals can also be specified by the coordinates θ and α shown in figure 1, rep-

resenting the midpoint angle θ and the opening angle α of the geodesic. These are related

to the endpoint coordinates by

u = θ − α , (2.2)

v = θ + α . (2.3)

A comment about notation. We will use the (u, v) and (θ, α) coordinates of figure 1

to label a CFT interval, both when it is defined on a compact direction and when it is

not. In the case of a compact, circular direction, we will use the convention that [u, v],

with u ≤ v and u, v ∈ [0, 2π], signifies the interval going counterclockwise from the point

with angular coordinate u to the point with angular coordinate v. By [v, u], with v > u,

we mean the closure of the complement of [u, v]. Note that we stick to a single orientation

for intervals on the circle, while we will consider geodesics with both clockwise and coun-

terclockwise orientations. We will have non-compact directions in the discussions of the

Poincaré patch of AdS and the BTZ black string, in which cases the corresponding u, v, θ, α

coordinates are not angular but have dimensions of length. Throughout, the coordinates

u and v will be lightlike kinematic space coordinates, while α and θ will define time-like

and space-like coordinates, respectively. Their detailed specification depends on the CFT

state under consideration.

1We will in practice use the form given in (1.1).
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Figure 1. (a) A boundary-anchored geodesic on a constant time slice of AdS, with boundary

interval in thick purple. The interval or equivalently the geodesic anchored to its endpoints is

parametrized by the coordinates of its endpoints, u and v, or by its midpoint angle θ and opening

angle α. (b) These geodesics enjoy a natural causal structure based on the containment relations

of their boundary intervals (colored in thick purple and thicker green): geodesics are time-like

separated if they have embedded boundary intervals (top left), null separated if they share a left or

right endpoint (top right), and space-like separated if their boundary intervals are not embedded

(bottom two).

2.1 Global AdS3

We begin by reviewing the results of the prescription in the case of pure AdS3. The

dual is the vacuum state of a CFT on a cylinder with compact space-like dimension of

circumference Σ = 2πR (see appendix A for a review of the conformal boundary). The

boundary entanglement entropy of an interval of length L = R(v − u) is [25]

Sent =
c

3
log

Σ

επ
sin

πL

Σ
, (2.4)

where ε is the UV cutoff, and c is the central charge of the CFT, related to the AdS radius

` and 3-dimensional gravitational constant G3 through [26]

c =
3`

2G3
. (2.5)

We note that the formula (2.4) is universal, i.e., it only depends on the particular CFT

through the central charge.

From the prescription (1.1), we find

ds2 = L2 dudv

sin2
(
v−u

2

) (0 ≤ u, v ≤ 2π) . (2.6)

This is the metric of a 2-dimensional de Sitter space dS2 with radius L, in conformally

compactified null coordinates. In the coordinates defined in (2.2)–(2.3), it takes the form

ds2 =
L2

sin2 α
(−dα2 + dθ2) (0 ≤ α ≤ π, 0 ≤ θ ≤ 2π) . (2.7)

– 5 –
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Figure 2. Kinematic space defines an emergent dS2 on a CFT2 by associating a point p on de Sitter

to a given CFT interval [u, v], or equivalently, to the corresponding boundary-anchored H2 geodesic

[u, v]. (a) The CFT interval lies at the asymptotic future boundary of dS2, and can be identified

with a point p in de Sitter at the tip of the lightcone extending into the bulk. (b) In embedding

space, geodesics on H2 are intersections of origin-centered planes with the H2 hyperboloid (blue).

Each such plane specifies a point in the dS hyperboloid via its outward pointing normal.

In other words, the opening angle α of the geodesic is a natural time coordinate on the

space of geodesics.

To observe which portion of de Sitter is covered by these coordinates, we convert to

global coordinates by the transformation

t = − log tan
α

2
. (2.8)

The metric becomes

ds2 = L2
(
−dt2 + cosh2 t dθ2) (−∞ < t <∞, 0 ≤ θ ≤ 2π

)
. (2.9)

By the embedding (B.3), this covers the full de Sitter hyperboloid (B.1) shown in figure 3b.

The expanding and contracting portions are equivalent up to orientation: a geodesic (θ, α)

in the region above the waist α = π
2 corresponds to a geodesic below the waist with the

same bulk profile but opposite orientation, (θ+π, π−α). The two orientations correspond

to complementary boundary intervals [u, v] and [v, u], which in a pure state share the same

Ryu-Takayanagi curve and boundary entanglement entropy.

As presented in figure 2a, a boundary interval [u, v] is mapped to a point p in dS2 at

the tip of the lightcone that projects to the interval. Geodesics with zero opening angle

correspond to points on the boundary, hence the conformal boundary can be identified

with the asymptotic future I+ (t → ∞) of kinematic space, which is the topmost line in

the Penrose diagram shown in figure 3a. The mapping between geodesics on H2 and points

in dS2 is also intuitive from the embedding diagram, since geodesics on H2 are located at

its intersection with a plane centered at the origin. These map to two points in de Sitter

space via the two normal vectors of the plane: one on the expanding region (see figure 2)

and one on the contracting region of de Sitter. Such geodesics share the same radial profile

but have opposite orientation.

– 6 –
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Figure 3. The kinematic space for pure AdS3 is a 2-dimensional de Sitter space, represented (a) as

a Penrose diagram, using coordinates defined in eqs. (B.8) and (B.9), and (b) as a dS2 hyperboloid

embedded in flat space R1,2, with constant t lines (black) and constant θ lines (dashed). The dS2

waist at α = π/2 is highlighted in thick black to stress that kinematic space is the space of oriented

geodesics: the entire expanding portion of de Sitter (above the waist) maps to all H2 geodesics with

one orientation, while the contracting region (under the waist) maps to the same geodesics but with

opposite orientation. The geodesics cover the full constant time slice of AdS3, represented in (c) as

a Poincaré disk (cf. figure 18).

Because of the universality of the entropy formula in eq. (2.4), the kinematic space

we have rederived here is also universal for all CFTs, not just holographic ones where c is

related to parameters of a holographically dual bulk geometry by eq. (2.5).

2.2 Poincaré patch

If we consider the Poincaré patch of the bulk AdS, its conformal boundary will be a plane

instead of a cylinder. In that limit, Σ � L, the single-interval boundary entanglement

entropy (2.4) will reduce to

Sent =
c

3
log

L

ε
=
c

3
log

v − u
ε

, (2.10)

where u and v are again the interval endpoints, but now with a dimension of length. The

corresponding kinematic space metric is

ds2 = 4L2 du dv

(v − u)2
(−∞ < u, v <∞) (2.11)

or, in the coordinates of the midpoint θ and “radius” α of the interval,

ds2 =
L2

α2
(−dα2 + dθ2) (0 ≤ α <∞, −∞ < θ <∞) . (2.12)

This is the metric of a 2-dimensional de Sitter space with radius L in planar coordi-

nates (B.4), which cover the planar patch, see figure 4.2

2In all the cases we consider, we could equally well cover the patch connected to I− rather than I+ by

flipping the sign of the time coordinate. This would correspond to giving the geodesics an opposite orien-

tation.

– 7 –
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Figure 4. The kinematic space for the Poincaré patch of AdS3 is the planar patch of dS2, depicted

in red in (a) the Penrose diagram, using coordinates defined in eqs. (B.10) and (B.11), and (b) the

embedding diagram, with lines of constant time (solid) and constant θ coordinates (dashed). The

geodesics cover the full constant time slice of AdS3, represented in (c) as the half-plane (cf. figure 18).

2.3 BTZ black string

The BTZ metric,

ds2 = −
(
r2 − r2

+

`2

)
dt2 +

(
r2 − r2

+

`2

)−1

dr2 + r2dφ2 , (2.13)

is a nontrivial solution of 3d gravity, where ` is the AdS radius and r+ is the horizon radius,

related to its temperature via r+ = 2π`2/β [27, 28]. We refer to the geometry as the “BTZ

black string” in the unwrapped (covering space) case, when the φ coordinate ranges over

−∞ < φ < ∞, and as the “BTZ black hole” when considering the quotient space, which

restricts φ to −π ≤ φ ≤ π. We discuss the BTZ black hole in the next subsection.

The BTZ black string is dual to a CFT in a thermal state at temperature β−1, and so

effectively lives on a Euclidean-signature cylinder with an infinite space dimension and a

compact imaginary time dimension of length β. The formula for the entanglement entropy

of an interval [u, v] of length L = v − u is [25]

Sent =
c

3
log

(
β

επ
sinh

πL

β

)
=
c

3
log

(
β

επ
sinh

π(v − u)

β

)
(2.14)

and, similarly to eq. (2.4), it is universal.

We again apply eq. (1.1), but with u and v taken to be lengths rather than angles,

parameterizing the endpoints of the interval along the infinite spatial boundary. We find

that the metric on kinematic space is

ds2 =
4π2L2

β2

dudv

sinh2
(
π(v−u)

β

) (−∞ < u, v <∞) , (2.15)

or equivalently

ds2 =
4π2L2

β2

−dα2 + dθ2

sinh2
(

2πα
β

) (0 ≤ α <∞, −∞ < θ <∞) (2.16)

in the coordinates defined in (2.2)–(2.3).

– 8 –



J
H
E
P
0
9
(
2
0
1
6
)
1
5
4

Figure 5. The kinematic space for the 1-sided BTZ black string is the hyperbolic patch of de Sitter,

depicted in green in (a) the Penrose diagram, using coordinates defined in eqs. (B.12) and (B.13),

and (b) the embedding diagram with constant time lines (solid) and constant θ lines (dashed). (c)

The geodesics cover one half of the Poincaré disk, that is, one outside-horizon region (cf. figure 19).

We can convert to hyperbolic coordinates via the transformation

τ = − log tanh
πα

β
, χ =

2πθ

β
. (2.17)

Now, the metric takes the form

ds2 = L2(−dτ2 + sinh2 τdχ2) (0 ≤ τ <∞,−∞ < χ <∞) . (2.18)

By the embedding (B.5), these coordinates and ranges cover the hyperbolic patch of de

Sitter, depicted in figure 5. Note that this is only equal to the hyperbolic patch of the AdS3

kinematic space dS2 when the de Sitter radii L are the same, which is not necessarily the

case. Indeed, we will see in section 4 that L is temperature dependent in the BTZ case.

The geodesics corresponding to the hyperbolic patch cover the region outside the hori-

zon on the spatial BTZ slice and are homologous to CFT intervals on a single asymptotic

boundary. Due to the boundary being in a mixed state, complementary intervals no longer

correspond to geodesics with opposite orientation and indeed, such intervals are not in-

cluded in kinematic space once we restrict to a single boundary. Alternatively, the state

can be represented as a pure state (the thermofield double state) on two copies of the CFT,

which amounts to considering the 2-sided BTZ black string.

2.4 BTZ black hole

The BTZ black hole geometry can be obtained from the black string by quotienting by an

appropriate subgroup of the AdS3 isometry group [28, 29]. The boundary CFT effectively

lives on a torus with spatial radius R and a compact imaginary time direction of length

β = 2π`R/r+ (see appendix A). The quotient results in space-like geodesics with new

global characteristics, including some that wind an arbitrary number of times around the

circular horizon.

To parametrize these geodesics, we will again take the midpoint and opening angles

θ, α to be angular coordinates along the compact spatial circle, related to the lengths θ, α

– 9 –
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Figure 6. (a) Two example geodesics on the covering BTZ black string slice and (b) their coun-

terparts on the slice of the quotiented BTZ black hole geometry. The covering space consists of

an infinite number of copies of the fundamental domain −π ≤ φ < π, marked by black dashed

boundaries. The blue geodesic is non-winding (α < π) with maximal opening angle αc, defined in

eq. (2.21), and touches the entanglement shadow (in dashed red) defined in eq. (2.22). The green

geodesic with α > π winds around the singularity once and enters the entanglement shadow region.

(The plots were made for β/R = 2π and l = 1.).

of the BTZ string by a factor of the radius R. The profile of a space-like BTZ geodesic is

inherited from the associated minimal parent geodesic in the BTZ black string geometry,

and is given by

r (φ;α, θ) = r+

cosh 2παR
β√

cosh2 2παR
β − cosh2

(
2πφR
β − 2πθR

β

) (θ − α ≤ φ ≤ θ + α) . (2.19)

For a given geodesic with opening angle α, the maximal extent it can reach into the bulk

is rcrit(α) = r+ coth 2παR
β .

In terms of the spatial slice we are considering, the quotient amounts to identifying

the constant φ lines bounding the fundamental domain −π ≤ φ < π in the Poincaré

disk representation of the slice (see appendix A and figure 19). Depending on whether a

BTZ geodesic (θ, α) with −π ≤ θ ≤ π has a width less than the angular width π of a

fundamental domain, crosses over multiple identifications or coincides with the horizon,

the respective images of the geodesics in the quotient space will be non-winding, winding

or infinitely winding. The geodesic is non-winding when α ≤ π and n times winding when

nπ ≤ α < (n + 1)π (with 0 ≤ n < ∞). See figure 6 for some example geodesics in the

covering space and its quotient.

The geodesics that compute entanglement entropy are the minimal, homologous ones,

which we refer to as Ryu-Takayanagi geodesics. For sufficiently small intervals, the Ryu-

Takayanagi geodesics are the non-winding geodesics whose length is given by eq. (2.14).

However, there exists a critical size past which there is a new family of disconnected

geodesics that have smaller length than the connected homologous ones [24]. This can be

interpreted as a “phase transition” in the entanglement entropy — see [30–32] for recent

studies. The disconnected geodesics consist of the disjoint union of a horizon-wrapping

geodesic (obtained from eq. (2.19) in the α → ∞ limit) and the non-winding geodesic for

– 10 –
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Figure 7. Constant time slice with orange interval [u, v]. When the interval opening angle is

larger than the critical angle α > αc (with π/2 < αc < π), the homologous, connected, non-

winding geodesic in blue (with counterclockwise orientation) has larger length than the disconnected

geodesic in green. The latter is homologous to the orange interval if the horizon-wrapping geodesic

has counterclockwise orientation and the non-wrapping boundary-anchored geodesic runs from u

to v (counterclockwise). The boundary-anchored portion of this disconnected geodesic is equal to

the minimal boundary-anchored geodesic for the complementary interval [v, u] with opening angle

π − α but with the orientation reversed, so that together with the horizon-wrapping geodesic it is

homologous to the big orange interval instead.

the complementary interval, which has opening angle π−α and midpoint angle θ±π (i.e.,

interchanged endpoints u and v). This is illustrated in figure 7.

The lengths of these geodesics compute the entanglement entropy of intervals, which

is piecewise defined as

Sent =


c
3 log

(
β
επ sinh 2παR

β

)
α < αc ,

c
3

2π2R
β + c

3 log
(
β
επ sinh 2π(π−α)R

β

)
α > αc ,

(2.20)

with a discontinuity in the first derivative at αc, the critical angle for the phase transition

(see figure 8).3

The critical angle is obtained from equating the contributions from each branch:

αc =
β

4πR
log

(
1

2
+

1

2
exp

(
4π2R
β

))
, (2.21)

with π/2 < αc < π, which approaches π in the high-temperature limit R/β � 1/2π.

The geometry exhibits a temperature-dependent entanglement shadow, since apart

from the horizon r = r+ the Ryu-Takayanagi geodesics cannot probe below the radius

rmax = rcrit(αc) = r+ coth

{
1

2
log

(
1

2
+

1

2
exp

(
4π2R
β

))}
. (2.22)

The maximal entanglement shadow occurs for the lowest allowed temperature R/β =

1/2π (the Hawking-Page phase transition temperature), below which the bulk geometry

3Such discontinuities arise from considering classical gravity in the bulk, and will be smoothed out when

1/c corrections are taken into account [30].
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Figure 8. The entanglement entropy of boundary intervals for the BTZ black hole, as a function

of the opening angle α of the interval. At the critical angle αc, there is a phase transition and a

new family of disconnected Ryu-Takayanagi geodesics have minimal length. For very large interval

size, the entanglement entropy approaches the thermal entropy.

is thermal AdS rather than a BTZ black hole [33]. It is illustrated in figure 6. The

smallest allowed shadow region occurs in the high-temperature limit R/β � 1, when the

Ryu-Takayanagi geodesics can reach all the way to the horizon.

As kinematic space is by definition constructed out of entanglement entropy data

(see eq. (2.1)), it is not the space of all boundary-anchored, oriented geodesics in these

quotiented geometries, but specifically the Ryu-Takayanagi geodesics.4 The kinematic

space is given by:

ds2 =
4π2L2R2

β2
f(α)(−dα2 + dθ2) (0 < α < π, −π < θ < π) , (2.23)

where

f(α) =


csch2 2παR

β 0 ≤ α < αc
β
πR

(
tanh π2R

β + coth π2R
β

)
δ(α− αc) α = αc

csch2 2π(π−α)R
β αc < α ≤ π

. (2.24)

The delta function in the metric at α = αc results from the discontinuity in the derivative

of the entanglement entropy across the phase transition.5

The metric can be mapped to hyperbolic coordinates in the two finite regions, using

the redefinitions to hyperbolic time

τ = − log tanh
παR
β

α < αc , (2.25)

τ = log tanh
π (π − α)R

β
α > αc . (2.26)

4Here we take a different point of view than in [16, 21], where the non-minimal geodesics are included

in ‘kinematic space’. To compare to their notion of kinematic space, it suffices to consider the kinematic

space of the covering AdS, see figures 9 and 14.
5One can check that the presence of the delta function is crucial for correctly computing the lengths of

bulk curves via Crofton’s formula as a volume in kinematic space [15].
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Figure 9. (a) The Penrose diagram for the kinematic space of the covering BTZ black string,

color-coded to show the regions of geodesics that upon quotienting to the black hole geometry

either remain minimal (green and brown), become non-minimal (orange), or become infinitely

winding (dark blue). The innermost green region is the kinematic space of the BTZ black hole.

Its constant θ boundaries are identified in the quotient, along with each subsequent boundary of

(an infinite number of) fundamental domain copies θ ∼ θ + 2π (in brown). The constant-α lower

boundary at α = αc marks the maximum opening angle before minimal geodesics become non-

minimal. The non-minimal region contains both non-winding and (finitely) winding geodesics: a

different constant-α boundary at even larger α = π > αc (not drawn) would separate the non-

minimal non-winding geodesics from the winding ones. (b) An example geodesic for each region

depicted on the Poincaré disk.

combined with the angular redefinition

χ =
2πR
β

θ . (2.27)

This covers two disjoint portions of the two hyperbolic patches,

ds2 = L2(−dτ2 + sinh2 τ dχ2)

{
−∞ < τ < log tanh π(π−αc)R

β

− log tanh παcR
β < τ <∞

(2.28)

which, after a θ → θ+π rotation, are glued together along their constant α = αc boundaries,

with a defect along the identification corresponding to the delta function in eq. (2.23). The

resulting kinematic space is depicted as embedded in dS2 in figure 10.

The sign of the time coordinate τ in eqs. (2.25)–(2.26) is arbitrary as far as the metric

is concerned. It determines the orientation of the geodesics, or equivalently, which half of

the dS hyperboloid is covered. The minus sign is chosen to map future infinity τ = ∞ to

α = 0, or to cover part of the upper half of the dS hyperboloid (as for the BTZ string). This

portion of kinematic space, which consists of the non-winding connected Ryu-Takayanagi

curves, forms a subregion of the upper hyperbolic patch of dS2. In the second phase

α → π − α and θ → θ ± π, and the sign of τ is also reversed to undo the change in

orientation of the geodesic. This portion of kinematic space, consisting of the family of

disconnected Ryu-Takayanagi curves past the phase transition, is mapped to a subregion

of the hyperbolic patch in the lower back half of the hyperboloid.
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Figure 10. The kinematic space for the BTZ black hole, shown in (a) the Penrose diagram,

using coordinates defined in eqs. (B.12) and (B.13), and (b) the embedding diagram, with lines of

constant time (solid) and constant θ coordinates (dashed). (The arrow in the embedding diagram

indicates that the lower patch is actually located on the reverse side of the hyperboloid.) The space

consists of two distinct subportions of the upper and lower hyperbolic patches of dS2 corresponding

to the two phases of Ryu-Takayanagi geodesics, which after a θ → θ+π rotation are glued together

on their constant α = αc boundaries, with a defect along the identification. The portion of the

upper hyperbolic patch that is covered increases as a function of R/β, and in the high-temperature

limit R/β � 1/2π approaches the full upper hyperbolic patch that is the kinematic space of

the BTZ string, depicted in figure 5. The Ryu-Takayanagi geodesics cover a region outside the

entanglement shadow on (c) the covering BTZ black string slice and (d) the quotiented BTZ slice,

depicted here for the lowest allowed temperature R/β = 1/2π (and l = 1) which gives the maximal

entanglement shadow region for the BTZ geometry. The minimal entanglement shadow region

occurs in the high-temperature limit when the Ryu-Takayanagi geodesics can extend all the way

up to the horizon r = r+.

Additional regions in the full hyperbolic patch of dS2 that no longer belong to kinematic

space correspond to geodesics that become winding upon quotienting, as illustrated in

figure 9. For a comparison of our picture to existing work on the kinematic space of the

2-sided quotiented BTZ black hole [16], see appendix C.

2.5 Conical singularity

We can obtain a conical singularity geometry as a quotient AdS3/Zn, where Zn is a sub-

group of the spatial rotation group SO(2) with n an integer. Conical singularities with an

arbitrary deficit angle are also solutions of 3d gravity, but we only consider Zn singularities

in this paper. We follow in this section the notation of [34] and start from the metric
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Figure 11. (a) Two example geodesics on the covering AdS slice and (b) their counterparts on the

slice of the quotiented AdS/Zn geometry for n = 4. The covering space consists of n = 4 copies of

the fundamental domain (2.30), marked by black dashed boundaries. The red dashed circles are the

respective entanglement shadows Rcrit(α̃max = π/2n) and rcrit(αmax = π/2), defined in (2.38). The

blue geodesic has the maximum allowed opening angle, α = π/2, in order to be minimal. The green

geodesic with α > π winds around the singularity once and enters the entanglement shadow region.

of AdS3,

ds2 = −
(

1 +
R2

`2

)
dT 2 +

(
1 +

R2

`2

)−1

dR2 +R2dφ̃2 , (2.29)

where ` is the AdS radius, but covering only the restricted angular range

− π

n
≤ φ̃ ≤ π

n
, (2.30)

with the endpoints identified.

Alternatively, we can change coordinates to

φ = nφ̃ , (2.31)

r =
R

n
, (2.32)

t = nT . (2.33)

This gives the standard metric for the conical singularity [35, 36],

ds2 = −
(

1

n2
+
r2

`2

)
dt2 +

(
1

n2
+
r2

`2

)−1

dr2 + r2dφ2 (−π ≤ φ ≤ π) . (2.34)

The dual CFT lives on the conformal boundary of this metric, which we take to be the

cylinder C(2πR) with a compact space-like direction φ and an infinite time-like direction,

following the discussion in appendix A.

In this geometry, parent geodesics of AdS get mapped to geodesics that wind up to

(n−1) times around the singularity at the origin, depending on how many times they cross

the fundamental domain of the quotient: (k−1)-winding geodesics (θ, α) have −π ≤ θ ≤ π
and (k − 1)π ≤ α < kπ. See figure 11 for some example geodesics in the covering space

and its quotient.
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The quotiented geodesics descend from the solutions in pure AdS (with AdS radius `).

Given a midpoint angle θ and opening angle α in the conical singularity geometry (2.34),

the radial profile of a geodesic is

r(φ;α, θ) =
`

n

cos αn√
cos2 (φ−θ)

n − cos2 α
n

(θ − α ≤ φ ≤ θ + α) . (2.35)

For a given opening angle, the maximum radial extent of the geodesic is

rcrit(α) =
`

n
cot

α

n
. (2.36)

We will compute the entanglement entropy of a dual CFT interval from the length of

the corresponding geodesic, but first we need to carefully enforce the homology condition

of holographic entanglement entropy. We distinguish two cases:

Star. We can imagine replacing the singularity with a small star with negligible back-

reaction on the geodesics. The outside geometry is the same, with the key difference that

there is no boundary to spacetime at the origin. This allows complementary intervals to

share Ryu-Takayanagi curves while satisfying the homology condition. This corresponds

to considering a pure state on the boundary (any entropy carried by the star is taken to

be subleading in c).

Since geodesics can be effectively deformed through the origin, for a given interval [u, v]

there are now two homologous boundary-anchored geodesics. These consist of a geodesic

that does not wrap around the origin with respect to the interval, as well as the analogous

curve for its complement α→ π−α and θ → θ±π, but taken with the opposite orientation.

The Ryu-Takayanagi curve is the one with minimal length, which is always the curve that

does not wrap around the origin. There are two phases: for α < π/2 the Ryu-Takayanagi

curve is given by eq. (2.35), and for α > π/2 it is equal to the corresponding curve for the

complementary interval, with opposite orientation.

The entanglement entropies computed from these geodesics are given by (cf. eq. (2.4))

Sent =

{
c
3 log

(
2nR
ε sin α

n

)
α < π

2 ,
c
3 log

(
2nR
ε sin π−α

n

)
α > π

2 ,
(2.37)

shown in figure 12. The entanglement shadow is defined by the minimal radius probed by

Ryu-Takayanagi geodesics:

rcrit(αmax) =
`

n
cot

π

2n
. (2.38)

It is shown in figure 11 as a red dashed circle.

The kinematic space prescription in eq. (1.1) gives the metric

ds2 =
L2

n2
g(α)(−dα2 + dθ2) (0 ≤ α ≤ π, −π ≤ θ ≤ π) , (2.39)

where

g(α) =


csc2

(
α
n

)
0 ≤ α < π

2

2n cot
(
π
2n

)
δ
(
α− π

2

)
α = π/2

csc2
(
π−α
n

)
π
2 < α ≤ π

.
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Figure 12. The entanglement entropy of boundary intervals for the conical singularity, as a function

of the opening angle α of the interval. At the critical angle αc = π/2, there is a phase transition

and a second family of complementary Ryu-Takayanagi geodesics have minimal length.

In the finite regions, we can convert to global coordinates through the angular trans-

formation

θ̃ =
θ

n
, (2.40)

combined with the time redefinition{
t = − log tan α

2n (0 ≤ α ≤ π
2 )

t = log tan π−α
2n (π2 ≤ α ≤ π)

. (2.41)

The positive sign for the time coordinate has been chosen in the second phase to account for

taking the opposite orientation of the geodesic associated to the complementary interval,

since a flip in orientation maps to the opposite portion of the de Sitter hyperboloid.

The metric maps to two subregions of global de Sitter space:

ds2 = L2
(
−dt2 + cosh2 tdθ̃2

) {
−∞ ≤ t < log tan π

4n

− log tan π
4n < t <∞

, (2.42)

with −π
n ≤ θ̃ ≤

π
n in all cases.

From the embedding (B.3), the kinematic space covers the two different regions of the

global de Sitter depicted in figure 13, which we refer to as “sub-de Sitters”. The boundaries

θ̃ = −π
n ,

π
n correspond to geodesics that are identified by the quotient, and so the vertical

boundaries are identified in kinematic space. The subregion connected to past infinity

accounts for the geodesics past the phase transition, which are located on the bottom back

half of the hyperboloid due to their reversed orientation. After a θ → θ + π rotation, the

two sub-de Sitter regions corresponding to the two families of Ryu-Takayanagi geodesics

(before and after the phase transition) are glued together along their α = π/2 boundaries.

Along the identification, there is a defect corresponding to the delta function contribution

to the metric (2.39). The situation here is very similar to the effect of the phase transition

for the BTZ black hole, see section 2.4.

The regions in the full global dS2 that no longer belong to kinematic space correspond

to geodesics that become winding upon quotienting, illustrated in figure 14. Such winding
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Figure 13. The kinematic space for the conical singularity covers two “sub-de Sitter” patches,

depicted in purple for the case n = 4 in (a) the Penrose diagram, and (b) the embedding dia-

gram, with lines of constant time (black) and constant θ coordinates (dashed). (The arrow in the

embedding diagram indicates that the lower patch is actually located on the reverse side of the

hyperboloid.) For the star, geodesics can be deformed through the origin, and the Ryu-Takayanagi

geodesics satisfy α ≤ π. This results in two phases for the entanglement entropy and correspond-

ingly, two distinct portions of kinematic space that, after a θ → θ + π rotation, are glued together

on their constant α = π/2 boundaries, with a defect placed along the identification. For a given

n, the entire purple region takes up an nth fraction of the full de Sitter. In all cases the vertical

boundaries of these sub-de Sitter patches are identified. (c) The region of the spatial slice of the

covering AdS space covered by Ryu-Takayanagi geodesics. The maximum radial reach of these

geodesics (eq. (2.38)) delineates the entanglement shadow region around the origin (red dashed).

(d) The Ryu-Takayanagi geodesics cover the spatial slices of the conical singularity geometry up to

the entanglement shadow.

geodesics, with α > π, are conjectured in [34] to descend from a CFT concept called

‘entwinement’, associated with entanglement between internal (gauged) degrees of freedom,

rather than position space entanglement entropy.

True conical singularity. For a true conical singularity geometry, the singularity is part

of the boundary of spacetime, and the geodesics that compute the holographic entanglement

entropy of intervals approaching the entire circle would be required to wrap around the

singularity. In other words, the geodesics would have an opening angle in the range 0 ≤
α ≤ π. Since there is no horizon, it seems there would be no transition to a pair of

disconnected geodesics (of the kind we saw for the BTZ black hole). However, for several
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Figure 14. (a) The Penrose diagram for the kinematic space of the covering AdS space, color-

coded to show the regions of geodesics that upon quotienting to the conical singularity geometry

remain minimal (purple and brown) or become non-minimal, i.e., wrapping or winding (orange).

The innermost purple region is the kinematic space of the conical singularity geometry. Its constant

θ boundaries are identified in the quotient with each other, along with each subsequent boundary

of the n fundamental domain copies θ ∼ θ+ 2π (in brown). The constant-α lower boundary marks

the maximum opening angle before minimal geodesics become non-minimal ones. (b) An example

geodesic for each region depicted on the Poincaré disk.

reasons we are led to interpret this naked singularity as an unphysical idealization in the

context of AdS3/CFT2 that should either be replaced by a smooth geometry or dressed

in a possibly Planck-scale horizon. Either possibility results in the same behavior of the

single-interval entanglement entropy and the same kinematic space, to leading order in c,

that we discussed above for the star.

The first reason is that one generally expects the entanglement entropy of a subsystem

to decrease as the subsystem approaches the total system. This comes from subadditivity

applied to a system A and its complement Ā: Stot = SA∪Ā ≤ SA + SĀ. Since SĀ → 0

as A approaches the entire system, we expect that SA will approach Stot from above.

Assuming no transition in the geodesics, i.e., using the entanglement entropy from only

the first part of eq. (2.37) in the range 0 ≤ α ≤ π, leads to a monotically increasing

holographic entanglement entropy and one can check that this violates subadditivity for α

approaching π.

The second reason comes from CFT2. In a number of recent works, e.g., [37, 38],

asymptotically AdS3 conical singularity geometries have been identified as dual to CFT2

states excited by the insertion of a heavy primary operator. These CFT states are pure

states, by construction, and are interpreted as dual to a geometries whose singularities are

smoothed out by the presence of a star, as we studied above. One could construct a mixed

state by combining many such pure states, but the maximal von Neumann entropy of such

a mixed state is roughly log Ω, where Ω is the density of such states at a given conformal

weight. We expect that this degeneracy is bounded by the Cardy formula [39, 40]

Ω(L0, L̄0) ≈ exp

(
2π

√
c

6
L0 + 2π

√
c

6
L̄0

)
, (2.43)

where we are considering cases where the conformal weights L0 = L̄0 are large, correspond-
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Figure 15. Different possible shapes for the Penrose diagram for kinematic space, for the Poincaré

patch and BTZ black string (left), a conical singularity (center), and the BTZ black hole (right).

For the conical singularity and the BTZ black hole, the time-like and space-like lines are separately

identified. In all cases the resulting spacetimes are globally hyperbolic, with Cauchy surfaces whose

domain of dependence is the full spacetime depicted as curved red lines.

ing to heavy states. This would lead to a maximal entropy that goes like c1/2 in the large c

limit, which is subleading. Hence, as far as holographic entanglement entropy is concerned,

such states are effectively pure states.

Finally, recent work [41, 42] indicates that adding a quantum field to the geometry

and including backreaction dresses the singularity with a Planck-scale horizon. This picture

leads one to expect a transition in the holographic entanglement entropy very similar to that

discussed for the BTZ black hole, but where the horizon-wrapping geodesic is effectively

reduced to a point at r = 0 and has zero length. The resulting single-interval entanglement

entropy is then the same as we discussed above for the star geometry.

3 Causal structure

Up to this point, we have considered all the kinematic spaces we found as subsets of dS2.

In this section we want to consider these kinematic spaces as distinct spacetimes in their

own right. In the examples we have considered, these spacetimes share an important causal

property: they are globally hyperbolic and admit Cauchy surfaces at future infinity. To

see this, the Penrose diagrams for the various kinematic spaces as well as sample Cauchy

surfaces for each are schematically depicted in the case of the Poincaré patch, BTZ black

string, BTZ black hole, and conical singularity in figure 15.

For the quotiented BTZ black hole and conical singularity, the identification of

geodesics along a boundary is crucial for the causal structure of kinematic space. Indeed,

we have seen that the Penrose diagrams for these examples are unions of convex rectangular

regions (with curved boundaries in the case of the BTZ black hole) that are glued together

in the case of phase transitions. Without the identification of the vertical boundaries, a

light ray emanating from a point inside the subregion could end at these boundaries rather

than the Cauchy surface and the spacetimes would not be globally hyperbolic.

It is also important to note that as subsets of dS2, these regions may form a proper

subset of the domain of dependence of any Cauchy slice. They form globally hyperbolic

regions only once they are considered as distinct spacetimes with boundary.
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We will now argue that this feature is a quite general property of kinematic space.

We distinguish two cases, first for non-quotient space geometries (such as global AdS3, the

Poincaré patch, and the BTZ black string), and second for quotient space geometries (such

as the BTZ black hole or conical singularity).

Non-quotient space case. The various non-quotient space solutions of asymptotically

AdS3 gravity, restricted to a space-like slice, cover different regions of two-dimensional

hyperbolic space and may be depicted as regions of the Poincaré disk or upper half plane

(see appendix A). In all the cases we know of, these regions are either unbounded or are

unions of fundamental domains, which we may assume are bounded by geodesics.

The bulk regions will, in general, intersect the conformal boundary at a collection of

disjoint intervals, each corresponding to a disjoint region in kinematic space.6 For a given

connected boundary interval, all geodesics confined to anchor to this interval are in the

causal future of the maximal geodesic that connects the two endpoints of the interval. The

kinematic space boundaries are null, corresponding to geodesics that share a single end-

point of the boundary interval, and these boundaries intersect at the point corresponding

to the maximal geodesic. Thus, this portion maps to the filled-in forward light-cone in

kinematic space that intersects the space-like future infinity of the ambient de Sitter space

(see figure 16a). Such regions are manifestly globally hyperbolic, with the future boundary

as a Cauchy surface.

Examples of non-quotient space geometries include the Poincaré patch and the BTZ

black string, and both their kinematic spaces are future lightcones that intersect the future

boundary (see figures 4 and 5).

Quotient space case. Additional solutions can be obtained as quotients by a subgroup

of the AdS3 isometry group SO(2, 2). On the space-like slice, these subgroups descend to

subgroups of the Möbius transformations. If we consider only discrete subgroups, known

as Fuchsian groups, then the actions of the subgroups tesselate the hyperbolic disk or

plane into polygonal fundamental domains with geodesic boundaries. These fundamental

domains are identified under the quotient [29, 43–45].

In constructing kinematic space, a geodesic need not remain confined in a single

fundamental domain, since the part of the geodesic that exits will be identified with a

geodesic segment that is fully contained in the domain. The time-like domain boundaries

of kinematic space consist of geodesics with constant θ, i.e., geodesics whose midpoint is

aligned with either boundary endpoint of the fundamental domain in the covering space

(see figure 16b). The geodesics on either of these vertical domain boundaries of kinematic

space are exactly identified under the quotient. Any remaining boundary is a (space-like)

constant-α slice. For example, this could be I+ or I− or it could correspond to a maximum

opening angle.

The quotient also introduces an additional subtlety due the possibility of phase tran-

sitions, when the geodesic length may be minimized by different classes of geodesics in

6Since kinematic space is currently formulated for single intervals only, we disregard geodesics that con-

nect disjoint boundary regions, which would correspond to the entanglement entropy of multiple intervals.

It would be interesting to generalize the proposal to include these cases.
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Figure 16. (a) To the left, an arbitrary subregion of the space-like slice that is bounded by geodesics

(semi-circles and vertical lines in the hyperbolic plane) and intersects the boundary. Geodesics that

lie fully inside this region map to a forward lightcone that ends at the future boundary in kinematic

space (right). The kinematic boundaries are null because they correspond to geodesics that share

an endpoint, with the largest contained geodesic (dashed) corresponding to the point at the tip of

the lightcone. (b) If we instead consider a quotient whose fundamental domain is the shaded region

to the left, geodesics that exit the region may still be represented in kinematic space. The time-like

kinematic space domain boundaries consist of all geodesics with a midpoint at either endpoint of

the boundary interval (represented as dashed vertical lines). Due to the quotient, these geodesics

are identified. Any space-like boundary is a constant-α line, which for example could correspond

to a maximum opening angle.

different regions of parameter space. In this situation there is a critical α separating the

contributions of each distinct family of geodesics. This leads to different patches of kine-

matic space covered by each type of geodesic, which are glued together along a constant

time slice corresponding to this critical angle.

If the entanglement entropy or its derivative exhibits a kink across the phase transition,

the metric may blow up along the glued interface (see for instance the delta function

appearing in the metrics eqs. (2.23) and (2.39)). In the examples we considered, time-like

and space-like geodesics crossing this defect still have finite length and the behavior of

null geodesics indicates that the causal structure is not significantly affected. Additionally,

we expect that these kinks are an artifact of setting c = ∞ and any divergences should

be regulated when 1/c corrections are taken into account. Thus, we will assume that

propagation through this defect is possible and well-defined. In this case, due to the

identification of the constant θ lines in each region and the ability to propagate across the

interface, kinematic space will still be globally hyperbolic.

Examples of quotient space geometries include the conical singularity and BTZ black

hole,7 which exhibit phase transitions (see figure 15). In both cases the kinematic space

is topologically a cylinder which is globally hyperbolic with a Cauchy surface at the

future boundary.

7More topologically complex examples include the pair-of-pants wormholes considered in [45].
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The global hyperbolicity of these kinematic spaces implies that they are always causally

well behaved, i.e., they can admit dynamical fields with well-posed initial value formu-

lations [46]. Furthermore, the existence of Cauchy surfaces close to the future bound-

ary means that boundary conditions set there determine the entire propagation within

the interior.

4 Relation to auxiliary de Sitter

The “auxiliary de Sitter” proposal [20] provides a means for obtaining dynamics on an

emergent de Sitter space of arbitrary dimension from the entanglement entropy of a con-

formal field theory. While reminiscent of kinematic space in two dimensions, the approach

is less direct and not obviously equivalent: rather than deriving the metric for a static space-

time, the authors observe that a de Sitter boundary-to-bulk propagator for a Klein-Gordon

field is contained in the expression for the modular Hamiltonian, and that consequently

perturbations of the entanglement entropy satisfy the de Sitter wave equation.

We begin by reviewing the original discussion in [20] for a CFT in the vacuum on

a plane, then proceed to several generalizations. In each case we provide a match to

kinematic space.

4.1 Vacuum on a plane

Consider a spherical region A on a constant time slice in a d-dimensional CFT in flat space-

time R1,d−1 (with coordinates t, θ′1, · · · , θ′d−1). The ball A has radius α and center ~θ. Given

a density matrix ρtot for the full system, the reduced density matrix is ρ = trĀ ρtot. The

entanglement entropy with the rest of the system is Sent = − tr(ρ log ρ), and the modular

Hamiltonian Hmod is defined by ρA = e−Hmod/(tr e−Hmod). Given a CFT in its vacuum

state, the modular Hamiltonian for A can be derived by conformally mapping A to the

half-line, which has the Rindler wedge as its causal development region and consequently

has a modular Hamiltonian that is the generator of Rindler time translations [47]:

Hmod = 2π

∫
A
dd−1~θ′

α2 − (~θ′ − ~θ)2

2α
T00(~θ′) , (4.1)

where ~θ2 = θ2
1 + · · · θ2

d−1 and T00(~θ′) is the energy density operator.

It is observed in [20] that the fraction in the integrand of eq. (4.1) is a boundary-to-bulk

propagator

Pplanar =
α2 −

(
~θ′ − ~θ

)2

2α
(4.2)

of a scalar field of mass m2 = −d/L2 on a d-dimensional de Sitter space in planar coordi-

nates

ds2 =
L2

α2

(
−dα2 + d~θ2

)
, (4.3)

with the de Sitter time coordinate given by the radius of the sphere. If δSent is the dif-

ference between the entanglement entropy of a slightly excited state and the entanglement
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Figure 17. The mapping between points pi in auxiliary de Sitter dSd to spherical regions on the

boundary CFT. The conformal boundary is identified with the asymptotic future of dSd. A point

pi is at the tip of the lightcone that projects to the corresponding ball.

entropy of the reference vacuum state, the “first law of entanglement entropy” tells us that8

δSent = δ 〈Hmod〉. By eq. (4.1), combined with the first law of entanglement entropy, the

perturbation δSent(α, θ) is a scalar field that solves the de Sitter wave equation in planar

coordinates, with future (α→ 0) boundary conditions set by 〈T00(θ′)〉. That is,

(∇2 −m2)δSent = 0 , with m2 = − d

L2
. (4.4)

The authors argue for a visualization of the mapping between the CFT and the emer-

gent de Sitter space as follows. The constant time slice of the CFT is taken to be the future

asymptotic boundary I+ of dSd. Each point in de Sitter corresponds to a ball in this time

slice via the intersection of its future lightcone with I+ along the boundary of the ball

(see figure 17). The causal structure of dSd directly translates into containment relations

between spherical regions: a ball A contained in a ball B is said to be in the time-like

future of B. In 2 dimensions, the balls are intervals and this replicates the causal structure

of kinematic space discussed in section 2. Indeed, the mapping in figure 17 reduces to the

mapping in figure 2a.

Matching to kinematic space of the Poincaré patch of AdS. For a CFT in the

vacuum on a plane R1,1, the auxiliary dS metric (4.3) is the same as the kinematic space

metric for the Poincaré patch of AdS (2.12). The region of de Sitter that is covered is the

planar patch depicted in figure 4.

4.2 Vacuum on a cylinder

Consider now the case of a vacuum CFT on a cylinder R1×S1 with radius R. The spatial,

angular coordinate θ′ measures the distance along the periodic space-like dimension. We

consider an interval of angular extent 2α, or length L = 2Rα, centered around θ, on a

constant time slice.

8This can be derived from the relative entropy between an excited state and a reference state, defined as

S(ρexc|ρ) = tr(ρexc log ρexc)−tr(ρexc log ρ). Alternatively, the relative entropy can be written as S(ρexc|ρ) =

δ〈Hmod〉− δSent, with δ〈Hmod〉 = tr(ρexcHmod)− tr(ρHmod) and δSent = Sent(ρ
exc)−Sent(ρ) the differences

of the expectation value of the modular Hamiltonian and the entanglement entropy with respect to the

reference state. Relative entropy has the property that it is always positive, and in the limiting case of

infinitesimally small excitations, this leads to the first law of entanglement.
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The modular Hamiltonian for the interval can be obtained by applying a conformal

transformation to the planar result (4.1), and is given by [47, 48]

Hmod = 2πR2

∫ θ+α

θ−α
dθ′

cos(θ′ − θ)− cosα

sinα
T00(θ′) . (4.5)

We could again associate with this modular Hamiltonian an emergent auxiliary de

Sitter space if the fraction in the integrand of (4.5) can be recognized as a boundary-to-

bulk propagator. Motivated by the equivalence of the auxiliary de Sitter and kinematic

space for the Poincaré patch of AdS, we make the ansatz that the auxiliary de Sitter

associated with eq. (4.5) is the kinematic space of global AdS3, given in eq. (2.7):

ds2 =
L2

sin2 α
(−dα2 + dθ2) . (4.6)

To write down the expression for the boundary-to-bulk propagator on this global de

Sitter space, it is easiest to write the propagator on the planar patch (given by eq. (4.2))

in embedding coordinates first (using (B.4)),

P =
X − U

2
. (4.7)

This can be subsequently transformed to global coordinates (using (B.3) and (2.8)), which

results in

Pglobal =
L
2

cos(θ′ − θ)− cosα

sinα
. (4.8)

We can “normalize” the propagator Pglobal to have the same behavior as Pplanar near

the limits of the interval:

Pplanar = −(θ′ − θ − α) +O
(
(θ′ − θ − α)2

)
, θ′ → θ + α , (4.9)

Pglobal = −L
2

(θ′ − θ − α) +O
(
(θ′ − θ − α)2

)
, θ′ → θ + α , (4.10)

requiring us to set9

L = 2R . (4.11)

Matching to kinematic space of global AdS. From (4.5), (4.8) and (4.11) we see

that the modular Hamiltonian indeed takes the form

Hmod = 2π

∫
Pglobal T00 . (4.12)

This confirms our ansatz of identifying the auxiliary dS metric for a vacuum CFT on a

cylinder with the kinematic space of global AdS (2.7), covering the full dS2 depicted in

figure 3. The matching required fixing the de Sitter radius L to the circumference of the

cylinder over π in eq. (4.11).

9To see this, we refer to the comment on notation on page 4 to note that θ in (4.9) is a length while θ

in (4.10) is an angle.
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By the first law of entanglement, the perturbation δSent of the entanglement entropy

of the interval associated with small excitations with respect to the reference vacuum state

is given by

δSent = δ 〈Hmod〉 = 2πR2

∫ θ+α

θ−α
dθ′

cos(θ′ − θ)− cosα

sinα

〈
T00(θ′)− T vac,cyl

00

〉
, (4.13)

with 〈T vac,cyl
00 〉 = − c

24πR2 [49]. This δSent solves the de Sitter wave equation (4.4) in

global coordinates, and as such defines a local dynamic degree of freedom on the kinematic

space (2.7). The corresponding mass is now fixed, as a consequence of fixing the de Sitter

radius, to

m2 = − 2

L2
= − 1

2R2
=

12π

c
〈T vac,cyl

00 〉 . (4.14)

4.3 Thermal state

We consider in this section a CFT in a thermal state on a cylinder R1 × S1 with radius

β/π. That is, the imaginary-time-like dimension is compact with periodicity β, the inverse

temperature of the state. The spatial coordinate θ′ measures the distance along the space-

like dimension. We consider an interval of length L = 2α centered around θ, on a constant

time slice.

The modular Hamiltonian for the interval can be obtained by conformally mapping

the interval to the half-line, for which the modular Hamiltonian is just the boost generator

on the Rindler wedge, and is given by10 [50]

Hmod = 2β

∫ θ+α

θ−α
dθ′

sinh π(θ′−θ+α)
β sinh π(α−θ′+θ)

β

sinh 2πα
β

T00(θ′) . (4.15)

An equivalent expression that is more similar in form to eq. (4.5) is

Hmod = 2β

∫ θ+α

θ−α
dθ′

cosh 2πα
β − cosh 2π(θ′−θ)

β

2 sinh 2πα
β

T00(θ′) . (4.16)

We could again associate with this modular Hamiltonian an emergent auxiliary de

Sitter space if the fraction in the integrand of (4.16) can be recognized as a boundary-to-

bulk propagator. Motivated by the discussed equivalences of the auxiliary de Sitter spaces

and kinematic spaces for AdS, we make the ansatz that the auxiliary de Sitter associated

with eq. (4.16) is the kinematic space of the BTZ black string, given in eq. (2.16):

ds2 =
4π2L2

β2

−dα2 + dθ2

sinh2
(

2πα
β

) . (4.17)

This metric was identified in section 2.3 as the hyperbolic patch of dS2.

10The relation between our spatial coordinate θ′ and the spatial coordinate x in [50] is x = θ′ − θ + α =

θ′ − u.
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To write down the expression for the boundary-to-bulk propagator on the hyperbolic

patch of de Sitter, we use the expression (4.7) of the de Sitter propagator in embedding

coordinates and eqs. (B.5) and (2.17) to express it in hyperbolic coordinates:

Pthermal =
L
2

cosh 2πα
β − cosh 2π(θ′−θ)

β

sinh 2πα
β

. (4.18)

We can again “normalize” the propagator Pthermal by considering the limit close to the

boundary of the interval,

Pthermal = −Lπ
β

(θ′ − θ − α) +O
(
(θ′ − θ − α)2

)
, θ′ → θ + α , (4.19)

and comparing it to the behavior (4.9) of the planar propagator. For those to match, we

fix the kinematic space de Sitter radius to

L =
β

π
. (4.20)

Matching to kinematic space of the BTZ black string. From (4.15), (4.18)

and (4.20) we see that the modular Hamiltonian indeed takes the form

Hmod = 2π

∫
Pthermal T00 . (4.21)

This confirms our ansatz of identifying the auxiliary dS metric for a thermal CFT on a

cylinder with the kinematic space of the BTZ black string (2.16), covering the hyperbolic

patch of dS2 depicted in figure 5. The matching required fixing the de Sitter radius L to

the circumference of the cylinder over π in eq. (4.20).

By the first law of entanglement, the perturbation δSent of the entanglement entropy

of the interval associated with small excitations with respect to the reference thermal state

is given by

δSent = δ 〈Hmod〉 = 2β

∫ θ+α

θ−α
dθ′

cosh 2πα
β − cosh 2π(θ′−θ)

β

2 sinh 2πα
β

〈
T00(θ′)− T thermal

00

〉
, (4.22)

with 〈T thermal
00 〉 = πc

6β2 [49]. This δSent solves the de Sitter wave equation (4.4) in hyper-

bolic coordinates, and as such defines a local dynamic degree of freedom on the kinematic

space (2.16). The corresponding mass is again fixed, as a consequence of fixing the de

Sitter radius, to

m2 = − 2

L2
= −2π2

β2
= −12π

c
〈T thermal

00 〉 . (4.23)

5 Discussion and further directions

5.1 Refined prescriptions

We have shown that the two distinct prescriptions from [15, 16] and [20] for an emergent

de Sitter space give equivalent results in the case of a CFT on a plane, on a cylinder with
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a compact spatial direction or on a cylinder with a compact imaginary time direction. The

latter two cases are holographically dual to global AdS or the BTZ black string, respectively.

Based on these examples we (slightly) reformulate the prescriptions for the cylinder cases, so

that they lead to the same emergent dS geometry. In particular, we include a specification

of the de Sitter radius L that depends on the length of the compact direction in the CFT.

(For the CFT on a plane there is no length scale present. Correspondingly, Pplanar in (4.2)

does not depend on L.)

Consider a (1+1)-dimensional CFT on a cylindrical conformal boundary, dual to either

(2+1)-dimensional global AdS or the BTZ black string. Each interval A at a constant time

in the CFT has a reduced density operator ρA and a modular Hamiltonian Hmod, defined

by ρA = e−Hmod/(tr e−Hmod). As we have seen, the modular Hamiltonian can be written as

an integral, Hmod = 2π
∫
A P T00, and the integrand defines a boundary-to-bulk propagator

P of a scalar field with mass m2 = −2/L2 on an emergent de Sitter space with radius

L = S/π. Here S is the circumference of the cylinder’s compact dimension.11 We remark

that with this choice for L, the mass squared of the scalar is proportional to the energy

density of the CFT with proportionality factor equal to 12π
c , times −1 when the compact

coordinate is imaginary time.

The emergent de Sitter space associated with the conformal boundary can then be

identified with the kinematic space or space of Ryu-Takayanagi geodesics on the constant

time slice of the bulk geometry, obtained through the prescription in (1.1):

ds2
K of CFT on cylinder =

12

c
L2∂

2Sent(u, v)

∂u∂v
dudv with L = S/π . (5.1)

By equating these two emergent de Sitter geometries, we obtain a dynamical scalar

field moving on the kinematic space. The authors of [15, 16] have argued that the MERA

tensor network is a discretization of kinematic space. Our results thus offer a potentially

interesting new ingredient in the study of this MERA-kinematic space connection.

We can also reverse the argument: knowing the entanglement entropies of closed in-

tervals allows you to calculate the kinematic space of the constant time slice in the bulk.

The boundary-to-bulk propagator P of a scalar field with mass m2 ∼ T00 on the kinematic

space can then be used to write down an expression for the modular Hamiltonian:

Hmod = 2π

∫
A
P T00 . (5.2)

For global AdS or the BTZ black string, we were able to check this line of reasoning with

known results, but it would be interesting to go beyond this.

5.2 Beyond universality

The refined prescription in the previous subsection applies specifically to cases where the

CFT lives on a cylinder that was obtained from a conformal mapping of the plane with

11In some contexts, e.g. [23], the UV cutoff scale of the CFT can be considered a natural length scale for

the kinematic space, instead of S. However, this would not lead to the same matching between kinematic

spaces and modular Hamiltonians that we emphasize here.
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no operator insertions. The results in these cases depend only on the conformal symmetry

and so are universal for all CFTs. Does the equivalence extend beyond this?

The partition function of a CFT on a spacetime with a genus higher than zero is not

universal, i.e., it depends on the full spectrum of operators of the CFT and not just on its

central charge. Consequently, the entanglement entropies of intervals in states defined on

such spacetimes are also not universal (see, e.g., [51]). The same is true for the entanglement

entropies in generic excited states. We expect that the modular Hamiltonians of single

intervals are similarly non-universal in these cases, and they may be non-local as well. We

explore the two emergent de Sitter space prescriptions in two such cases below, and though

we do not find precise matches, as we did in the cases in section 4, we find some suggestive

results and avenues for further investigation.

In the realm of holographic two-dimensional CFTs, we can implicitly define a CFT

state (to leading order in c) by a bulk geometry. In section 2.5 we calculated the kinematic

space of a conical singularity spacetime and in section 2.4 the kinematic space of the BTZ

black hole. The latter is dual to a CFT on a spatial circle at finite temperature, which

corresponds to a spacetime with the topology of a torus. The conical singularity is dual

to a CFT on a spatial circle excited by the insertion of a heavy primary operator [38], or

perhaps a statistical mixture of such states.

The kinematic space we found for the conical singularity, with metric given by

eq. (2.39), suggests that for holographic CFTs the modular Hamiltonian of sufficiently

small intervals in such a state is of the form:

Hcon
mod = 2πnR2

∫ θ+α

θ−α
dθ′

cos θ
′−θ
n − cos αn
sin α

n

T con
00 , (5.3)

where the length of the interval is 2α, the radius of the spatial circle is R and θ, θ′ ∈ [−π, π],

and we are considering a quotient by a Zn subgroup of the spatial rotation group SO(2).

Because of the phase transition in the entanglement entropy, we would only expect this to

hold for intervals with α < π/2. The fraction in the integrand has the form of a boundary-

to-bulk propagator for a scalar field on the sub-de Sitter kinematic space (see figure 13).

If we take the mass of the field to obey m2 = −2/L2, as in [20], and if we normalize by

examining the behavior of the propagator near the end of the interval (θ′ → θ + α), in

analogy to eq. (4.9), we find L = 2nR and m2 = −1/2n2R2.

We do not know of a CFT calculation of the modular Hamiltonian of an interval in

a conical singularity state. However, the Rényi entropies for such states are known in

certain limits [37, 38]. It would be interesting to calculate the spectrum of eigenvalues of

the reduced density operator (the entanglement spectrum) from these results, using the

techniques of [52, 53], and use this to check or modify eq. (5.3).

Similarly, one could write down the boundary-to-bulk propagator on the kinematic

space of the BTZ black hole (2.23). This would suggest an expression for the modular

Hamiltonian of an interval on a spatial circle at finite temperature (of a holographic CFT).

For sufficiently small intervals, it is just given by eq. (4.16) with the angles replaced by R
times the angles. For larger intervals, we would have to determine the effects of the phase

transition in the Ryu-Takayanagi curves. As for the conical singularity case, we do not
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know of a CFT calculation of the modular Hamiltonians. However, the Rényi entropies

have been extensively studied and are known in a variety of limits [31, 32, 54–57], and one

could again check the consistency of the entanglement spectra.

How generally can one go from the kinematic space, which is relatively easy to calculate,

to the modular Hamiltonian? The general procedure would be to go from the boundary-

to-bulk propagator P of a scalar field on the kinematic space to the modular Hamiltonian

of some region A through the formula Hmod = 2π
∫
A P T00, where T00 is the 00 component

of the energy-momentum tensor operator in the given CFT state (this can be determined

from the asymptotic behavior of the bulk metric, in holographic cases). In this sense, the

modular Hamiltonian would be obtained from the entanglement entropy Sent through a

loop that includes the kinematic space K and the auxiliary de Sitter space:

Sent −→ Ky
Hmod ←− auxiliary dS

. (5.4)

This would be remarkable since the modular Hamiltonian of an interval is equivalent to its

density operator, which, a priori, has much more information than just the entanglement

entropy. In the cases considered in section 4, the modular Hamiltonians were already known

from CFT calculations, so the sketched loop served as a check rather than a prediction.

We expect this to work only for certain CFTs in certain states, but this might include

holographic CFTs in many states dual to classical bulk geometries. This is consistent with

recent work [58], which allows one to compute certain boundary modular Hamiltonians

from bulk data using relative entropy. This would be interesting to investigate further,

along with the relationship between kinematic space and the auxiliary de Sitter space in

higher dimensions and in time-dependent states.

A 3d gravity

AdS3 is defined as the locus

− U2 − V 2 +X2 + Y 2 = −`2 (A.1)

in the flat embedding space R2,2, with ` the AdS radius. The induced metric is

ds2 = −dU2 − dV 2 + dX2 + dY 2 . (A.2)

The locus (A.1) is left invariant by R2,2 Lorentz transformations SO(2, 2), the isometry

group of AdS. Classifying these isometries into orbits in space-like and time-like planes,

coordinate systems can be introduced that make different classes of isometries manifest.

The resulting AdS3 metrics correspond to different classes of solutions of classical, pure

AdS3 gravity. Indeed, (2 + 1)-dimensional classical gravity with a negative cosmological

constant (and no source terms) is trivial in the sense that the solutions have constant

negative curvature: all solutions are locally AdS3 everywhere. Globally distinct solutions

such as the BTZ black hole and the conical geometry are obtained as quotients of AdS3.
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Figure 18. Constant time slice H2 of AdS3, represented as a Poincaré disk on the left and the

half-plane on the right, showing constant r (in solid black) and constant φ lines (black dashed).

We can imagine mapping the boundary r → ∞ to a circle of radius R instead of the unit radius

Poincare disk, i.e. yi → Ryi in (A.12). The radius of the disk is then R, consistent with (A.11).

In ‘static AdS coordinates’
U

V

X

Y

 =


√
r2 + `2 cos(t/`)√
r2 + `2 sin(t/`)

r cosφ

r sinφ

 (A.3)

the metric (A.2) takes the pure AdS3 form:

ds2 = −
(
r2

`2
+ 1

)
dt2 +

(
r2

`2
+ 1

)−1

dr2 + r2dφ2 (AdS) , (A.4)

with AdS time t ∈ [−∞,∞] in the universal covering space, radius r > 0 and φ ∈ [0, 2π].

In ‘hyperbolic or Schwarzschild coordinates’ on the other hand,
U

V

X

Y

 =


r coshφ√

r2 − `2 sinh(t/`)

r sinhφ√
r2 − `2 cosh(t/`)

 , (A.5)

the metric becomes

ds2 = −
(
r2

`2
− 1

)
dt2 +

(
r2

`2
− 1

)−1

dr2 + r2dφ2 (A.6)

or, after the transformation

r → r
`

r+
, t→ t

r+

`
, φ→ φ

r+

`
, (A.7)

ds2 = −
(
r2 − r2

+

`2

)
dt2 +

(
r2 − r2

+

`2

)−1

dr2 + r2dφ2 (BTZ) , (A.8)
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where the range of the hyperbolic angle is −∞ < φ < ∞. When referring to this metric

as a BTZ black hole, it is generally assumed to be the quotient space, with coordinates

restricted to the fundamental domain: −π < φ < π . For an unwrapped angle (covering

space), −∞ < φ < ∞, we refer to the spacetime as the BTZ black string. The metric

covers the region outside the horizon r > r+, so this is the 1-sided BTZ black string (it has

one conformal boundary at r →∞).

Both (A.4) and (A.8) have the same behaviour near the boundary r →∞:

ds2 → r2

`2
(−dt2 + `2dφ2) (r →∞) (A.9)

=
r2

R2

(
−d
(
Rt
`

)2

+R2dφ2

)
, (A.10)

conformal to

ds2
conformal bdy = −d

(
Rt
`

)2

+R2dφ2 . (A.11)

The conformal factor that was dropped, r2/R2, is completely arbitrary from the boundary

CFT point of view, hence the introduction of the arbitrary length scale R.

The CFTs can then be said to live at the conformal boundaries of the bulks (A.4)

and (A.8) with rescaled time coordinates t → Rt/`. For AdS, the conformal boundary

takes the form of a cylinder C(2πR) with radius R. After Wick rotation to Euclidean

signature, the topology of the BTZ conformal boundary becomes either a cylinder C(β)

(for the BTZ string) or a torus T (2πR, β) (for the BTZ black hole), with β = 2π`R/r+

the inverse temperature of the black hole in the bulk. In the high-temperature limit

R/β � 1/2π the conformal boundary of the BTZ black hole approaches a cylinder rather

than a torus, which corresponds to considering a macroscopic black hole r+ � `. Below

the Hawking-Page temperature R/β < 1/2π the dominant saddle-point of the gravity path

integral is no longer the BTZ black hole but rather thermal AdS.

A constant time slice at t = 0 of the AdS and BTZ geometries (A.4) and (A.8) will

define an H2 slice −U2 + X2 + Y 2 = −`2. It can be represented as a Poincaré disk, with

Poincaré coordinates

y1 =
`X

`+ U
(t = 0), y2 =

`Y

`+ U
(t = 0) (A.12)

that map r → ∞ to the unit circle. More precisely, the metric of a constant time slice

ds2
H2

= 4`4

(−`2+y21+y22)2
(dy2

1 + dy2
2) is conformal to the Poincaré disk

ds2
conformal time slice = dy2

1 + dy2
2 . (A.13)

Another possible representation uses the half-plane coordinates

y1 =
`Y

X + U
(t = 0) , y2 =

`2

X + U
(t = 0) , (A.14)

in which the metric becomes ds2
H2

= `2

y22
(dy2

1 + dy2
2). Both representations are presented in

figures 18 and 19, for AdS and BTZ.
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Figure 19. Constant time slice H2 of BTZ, represented as a Poincaré disk on the left and the

half-plane on the right, showing constant r (solid black) and constant φ lines (dashed). The blue

region is the region outside the horizon r > r+, covered by the metric (A.8) of the 1-sided BTZ. The

maximally extended or 2-sided BTZ is obtained when the metric is continued beyond the horizon

to include the yellow region. We consider the unquotiented metric −∞ < φ <∞ in section 2.3 and

the quotiented metric −π < φ < π corresponding to a wormhole-like geometry in section 2.4.

B De Sitter embeddings and penrose transformations

Useful references for the various coordinates on de Sitter space include [59] and [60].

dS2 is defined as the locus

− U2 +X2 + Y 2 = L2 (B.1)

in the flat embedding space R1,2, with L the dS radius. The induced metric is

ds2 = −dU2 + dX2 + dY 2 . (B.2)

Global coordinates (t, θ) with ranges −∞ ≤ t ≤ ∞, 0 ≤ θ ≤ 2π cover the full de Sitter

hyperboloid (−∞ ≤ X,Y, U ≤ ∞):XY
U

 = L

cosh t cos θ

cosh t sin θ

sinh t

 . (B.3)

The metric (B.2) takes the form (2.9). Another time-like global coordinate α is introduced

in (2.8).

Planar coordinates (α, θ) with ranges α > 0,−∞ < θ < ∞ cover the planar patch

X + U ≥ 0 (illustrated in figure 4b):XY
U

 = L

 L2α + α2−θ2
2Lα

θ
α

L
2α −

α2−θ2
2Lα

 . (B.4)

The metric (B.2) takes the form (2.12).

Hyperbolic coordinates (τ, χ) with ranges 0 ≤ τ ≤ ∞,−∞ ≤ χ ≤ ∞ cover the region

X > L,−∞ ≤ Y ≤ ∞, U > 0, known as the hyperbolic patch (figure 5b):XY
U

 = L

 cosh τ

sinh τ sinhχ

sinh τ coshχ

 . (B.5)
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The metric (B.2) takes the form (2.18). Other hyperbolic coordinates α and θ are intro-

duced in (2.17).

The corresponding Penrose diagrams (figures 3 and 13 in global coordinates, figure 4

in planar coordinates, and figures 5 and 10 in hyperbolic coordinates) are obtained through

the Penrose transformations

tP = arctanU , (B.6)

θP = arctan
Y

X
, (B.7)

in the respective embedding coordinates. For completeness they are explicitly given below.

In global coordinates

tP = arctan(sinh t)
(2.8)
=

π

2
− α (for 0 < α < π) , (B.8)

θP = θ , (B.9)

the metric (2.9) becomes ds2 = (sec2 tP )(−dt2P + dθ2
P ), conformal to ds2 = −dt2P + dθ2

P .

Note that because of eqs. (B.8)–(B.9), the coordinates tP and α, and θP and θ are used

interchangeably when working in global coordinates, namely in the sections on the global

AdS and conical geometry kinematic spaces. The global dS2 Penrose diagram is rectangu-

lar, with θP the azimuthal angle in a range −π to π that gets identified.

In planar coordinates

tP = arctan
L2 + θ2 − α2

2α
, (B.10)

θP = arctan
2θ

L2 − θ2 + α2
. (B.11)

In hyperbolic coordinates

tP = arctan(sinh τ coshχ)
(2.17)

= arccot

(
sech

2πθ

β
sinh

2πα

β

)
, (B.12)

θP = arctan(tanh τ sinhχ)
(2.17)

= arctan

(
sech

2πα

β
sinh

2πθ

β

)
. (B.13)

C Two-sided BTZ black hole

Maximally extended, asymptotically AdS black holes have two asymptotic regions and

these can be identified with two boundary CFTs in an entangled, thermofield state [7, 61].12

The kinematic space associated with such a two-sided, asymptotically AdS3 black hole was

discussed in [16] and depicted in their figure 17. There, kinematic space is referred to as the

space of all constant time-slice geodesics, including the winding ones and a set of horizon-

crossing geodesics which have one endpoint on each of the two asymptotic regions, while we

take the term “kinematic space” to refer to the space of Ryu-Takayanagi geodesics only (in

12There is some debate about this picture, e.g., [62–64], but we will assume it is basically correct and

explore some implications, without taking a firm stance on the extent of its validity.
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Figure 20. The space of all constant time-slice geodesics of the two-sided BTZ black hole (left),

compared with the depiction of it in figure 17 in [16] (right). We have shown in thick black lines

(on the left) the boundary of the domain depicted in the figure on the right. The coordinates α and

θ on the right are the global de Sitter coordinates of the dS2 whose hyperbolic patch is identified

with the BTZ black string kinematic space. They are used only in this instance for comparison,

while in the rest of the BTZ discussions in the paper, α and θ refer to hyperbolic coordinates, see

eq. (2.17).

a one-to-one mapping between CFT intervals and bulk geodesics). When following their

terminology, all the colored regions in our figure 9 together have to be used to extend the

picture to the two-sided case and compare to the figure in [16]. This is done in figure 20.
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[28] M. Bañados, M. Henneaux, C. Teitelboim and J. Zanelli, Geometry of the (2+1) black hole,

Phys. Rev. D 48 (1993) 1506 [Erratum ibid. D 88 (2013) 069902] [gr-qc/9302012]

[INSPIRE].

[29] D. Brill, Black holes and wormholes in (2+1)-dimensions, gr-qc/9904083 [INSPIRE].

[30] V.E. Hubeny, H. Maxfield, M. Rangamani and E. Tonni, Holographic entanglement plateaux,

JHEP 08 (2013) 092 [arXiv:1306.4004] [INSPIRE].

[31] B. Chen and J.-q. Wu, Large interval limit of Rényi entropy at high temperature, Phys. Rev.
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[55] S. Datta and J.R. David, Rényi entropies of free bosons on the torus and holography, JHEP

04 (2014) 081 [arXiv:1311.1218] [INSPIRE].

[56] E. Perlmutter, Comments on Renyi entropy in AdS3/CFT2, JHEP 05 (2014) 052

[arXiv:1312.5740] [INSPIRE].

[57] B. Chen, J.-B. Wu and J.-j. Zhang, Short interval expansion of Rényi entropy on torus,
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