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1 Introduction

A radically new idea that attempts to address the electroweak hierarchy problem via a

dynamical relaxation mechanism [1] was recently proposed in ref. [2] (see also refs. [3–

20] for related work). A slowly rolling axion-like field, the relaxion, is used to neutralize

the mass-squared parameter in the Higgs potential during a prolonged de-Sitter phase of

the Universe. After the Higgs mass-squared parameter becomes negative and electroweak

symmetry is broken, the QCD quark condensate generates a new, stabilizing contribution to

the relaxion potential, which stops the relaxion at a value corresponding to a hierarchically

small Higgs potential minimum. By carefully choosing the slope of the relaxion potential,

the correct electroweak vacuum expectation value (VEV) can be obtained, thereby solving
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the hierarchy problem in a technically natural way. However since in the minimal model the

relaxion is identified with the QCD axion [21, 22] of the Peccei-Quinn mechanism [23, 24],

the QCD θ angle is no longer small. This can be avoided by adding ad hoc inflaton-relaxion

couplings which prevents a large θ angle. Alternatively one can decouple the strong CP

problem from the relaxion mechanism by introducing a separate technicolor sector with new

fermions that mimic the QCD quarks and generate the relaxion stopping potential. While

this does address the θ problem, the new strong dynamics must be near the electroweak

scale, leading to a coincidence problem.

A more appealing, though non-minimal scenario which addresses these issues was con-

sidered in ref. [6]. The main feature relies on generating a relaxion stopping potential that

does not require an additional source of electroweak symmetry breaking (such as, from

QCD in the minimal model). This allows the cutoff scale to be significantly increased be-

yond the TeV scale up to 109 GeV and since it does not rely on QCD dynamics, the axion

solution to the strong CP problem is preserved. This is accomplished by generating an

electroweak invariant coupling to the relaxion periodic potential. However this term also

generates a large potential barrier via quantum corrections that needs to be neutralized in

order to allow the relaxion field to roll. Hence besides the relaxion φ, a second field, an

“amplitudon” σ, must be introduced, which is responsible for neutralizing the amplitude of

the periodic potential, causing the relaxion field to move. The coupled dynamics between

φ and σ allows the relaxion to roll down, albeit discontinuously, eventually stopping at a

value with the correct electroweak VEV after the Higgs mass-squared parameter becomes

negative. This is again achieved by technically natural small parameters in the relaxion

potential. Furthermore a crucial feature of the two-field model is that the amplitudon, σ,

must couple to a periodic function of φ, without a direct coupling to the Higgs field.

While the relaxion mechanism provides an alternative solution to the hierarchy prob-

lem, it nonetheless may also play a crucial role in other solutions to the hierarchy problem,

such as supersymmetry (SUSY). Indeed a supersymmetric version of the original relaxion

model was constructed in ref. [12]. A nonzero value of the relaxion now breaks supersym-

metry and as the relaxion rolls down the potential, it scans the soft masses. When the

soft mass scale becomes of order the supersymmetric mass µ, the Higgs potential becomes

unstable. Non-perturbative QCD dynamics then triggers a back reaction on the relaxion

potential, causing the relaxion to stop rolling. While the Higgs field obtains its correct elec-

troweak VEV and the soft mass parameters are of order µ, there is no correlation between

these two mass scales as in usual supersymmetric models. This means that apparently

tuned versions of supersymmetry with heavy sfermions can be naturally realized, thereby

solving the little hierarchy problem in supersymmetric models. However, since the model

in ref. [12] is based on the original relaxion model, it also inherits the shortcomings of the

nonsupersymmetric model.

Instead in this paper we construct a supersymmetric realization of the two-field relaxion

model presented in ref. [6]. The relaxion is now part of a chiral superfield, S that has a

shift symmetry corresponding to a global symmetry under which the matter and Higgs

fields are charged. The second field, σ is the imaginary scalar component of a chiral

superfield, T that has a shift symmetry from a different global symmetry under which the
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matter and Higgs field are invariant. This then automatically forbids a coupling between

σ and the Higgs field at the renormalizable level, which was a crucial requirement in the

non-supersymmetric model. Moreover our supersymmetric model preserves the QCD axion

solution to the strong CP problem and eliminates any coincidences between the electroweak

scale and the scale of the non-perturbative dynamics. This is not unexpected because these

features are automatically inherited from the non-supersymmetric model [6].

The two real scalar fields in the relaxion sector undergo a classical, slow-roll evolution

during an inflationary phase of the Universe. Since the periodic potential for the relaxion

has a large amplitude, conditions must also be satisfied by the second field σ, in order to

neutralize the barrier height and allow the relaxion to roll. Eventually the relaxion must

stop at a minimum that corresponds to the correct electroweak Higgs VEV. Together these

constraints will restrict the parameters in our model, which include the shift-symmetry

breaking parameters, the strong dynamics and global symmetry breaking scales, and the

scale of supersymmetry breaking. In addition the inflationary sector must have a Hubble

scale, HI that is at least compatible with HI . v, where v is the Higgs VEV, but will

also be further restricted by the requirement of classical rolling. We find that for typical

values of our allowed parameters, sfermion mass scales up to 109 GeV can be accommodated

for a range 10−18 GeV . mS . 10−4 GeV, where mS is a shift-symmetry breaking mass

parameter. Since our model can tolerate much larger values of mS than that in ref. [12],

the minimum number of inflationary e-folds, Ne needed for the relaxion to complete its

cosmological evolution can be reduced. For mS ' 10−7 GeV and HI ' 1 GeV, we obtain

Ne & 1014. Furthermore, for some values of mS it is even possible for the relaxion to only

have sub-Planckian field excursions and therefore additional mechanisms for generating

super-Planckian field values are not needed. The constraints in our model are ameliorated

compared to the supersymmetric model considered in ref. [12], primarily due to the fact

that the mass scales in the strongly-coupled sector responsible for generating the relaxion

periodic potential are not tied to the electroweak scale.

The allowed sfermion mass scale, ranging up to 109 GeV, helps to explain the apparent

tuning in supersymmetric models arising from the little hierarchy between the electroweak

and superpartner mass scales. In the case when the mediation scale is of order the global

symmetry breaking scale, the soft mass parameters can be chosen to be of order the PeV

scale (106 GeV), while the gaugino mass parameters are one-loop (or possibly further)

suppressed. While this is similar to split-SUSY models [25–29], the A-terms are not nec-

essarily loop suppressed, and may allow for a lower sfermion mass scale. In addition for

super-Planckian field values of the relaxion, the relaxino (the fermionic superpartner of the

relaxion) is the lightest supersymmetric particle. This is due to the fact that supergravity

effects require an additional source of supersymmetry breaking that renders the gravitino

heavy, but keeps the relaxino light. In this case the relaxino is no longer the Goldstino

but could be a plausible dark matter candidate. Alternatively, if the mediation scale is

much higher than the global symmetry breaking scale then the soft mass parameters are

negligible at tree level and are instead induced radiatively from the gaugino masses. The

low energy spectrum is similar to that of gaugino mediation [30, 31], and with minimal

variations can accommodate soft masses at the TeV scale. Thus, we see that the two-
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field relaxion mechanism can remove the tuning and solve the little hierarchy problem in

a variety of supersymmetric models above the TeV scale.

Finally, a number of important issues in the relaxion mechanism can also be addressed

and incorporated into our supersymmetric model. For instance, there are regions of pa-

rameter space for which the relaxion idea relies on super-Planckian field values of the scalar

fields. Recently ideas [15, 16] using a large number of axion fields can be used to generate

an effective decay constant which can be arbitrarily larger than the Planck scale. In this

way our explicit shift-symmetry breaking parameters in the relaxion potential can be re-

lated to the underlying ultraviolet (UV) completion containing N axion fields. This allows

the relaxion to be realized as an axion, albeit one not related to the strong CP problem in

QCD. In addition the UV framework allows all symmetries to be gauged, which prevents

the expected violation of global symmetries from quantum gravity effects.

The outline of this paper is as follows. In section 2 we present a supersymmetric

extension of the two-field relaxion mechanism. The shift symmetries are introduced in

section 2.1, with the corresponding superpotential and Kähler potential terms. Supersym-

metry breaking effects and the sparticle spectrum are discussed in section 2.2, including the

mass spectrum of the relaxion sector. The condition for electroweak symmetry breaking is

discussed in section 2.3 and the generation of the relaxion periodic potential is presented

in section 2.4. The effects of supergravity are considered in section 2.5, which address the

cosmological constant and the role played by the relaxino, and the post-evolution relaxion-

sector mass spectrum is discussed in section 2.6. In section 3 we determine the conditions

required for the supersymmetric relaxion mechanism. The conditions on the dynamical

evolution of the two scalar fields is considered in section 3.1 and the constraints for ad-

dressing the little hierarchy problem are derived in section 3.2. Our concluding remarks

are given in section 4. In appendix A, we summarize the Lagrangian terms in our model

and present the detailed expressions for the supersymmetry breaking parameters. In ap-

pendix B, we present a UV completion of our effective low-energy model that provides an

origin for the parameters in the relaxion potential by introducing multi-axion fields.

2 A two-field supersymmetric relaxion model

We begin by constructing a supersymmetric extension of the two-field relaxion model given

in ref. [6], which contains two real scalar fields, the relaxion, φ and the amplitudon, σ.

The complete Lagrangian of our model is presented in appendix A. These two fields are

embedded into two Standard Model (SM) singlet chiral superfields, S and T :

S =
s+ iφ√

2
+
√

2 φ̃ θ + FSθθ , (2.1)

T =
τ + iσ√

2
+
√

2 σ̃ θ + FT θθ , (2.2)

where s, τ are real scalar fields, φ̃, σ̃ are the fermionic partners and FS,T are the auxiliary

fields. Specifically, the relaxion field φ is identified with the imaginary scalar field compo-

nent of S and the amplitudon, σ is identified with the imaginary scalar field component of

T . The φ, σ, fields will play a similar role to those considered in ref. [6].
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2.1 Shift symmetries and Supersymmetry

The φ and σ fields are assumed to transform under some global shift symmetry, which

appears at the supersymmetric level as a shift symmetry on the superfields, S and T ,

whereas the real scalar fields, s and τ will remain unchanged. The shift symmetry SS that

keeps φ massless has the following transformation properties:

SS : S → S + iαfφ ,

T → T ,

Qi → eiqiαQi ,

HuHd → eiqHαHuHd , (2.3)

with qH ≡ qHu + qHd , while the masslessness of σ is preserved by imposing another shift

symmetry, ST , with the fields transforming as:

ST : S → S ,

T → T + iβfσ ,

Qi → Qi ,

HuHd → HuHd , (2.4)

where α, β are arbitrary constants. The minimal supersymmetric Standard Model (MSSM)

matter superfields are denoted by Qi, while Hu and Hd denote the MSSM Higgs superfields.

As seen in appendix B, these symmetries may originate from U(1) symmetries in a UV

theory. In this case, the decay constants fφ and fσ are associated with the corresponding

global symmetry breaking scales for which φ and σ are respectively, the Nambu-Goldstone

bosons. Since we are only interested in the effects of the Nambu-Goldstone bosons, we will

only consider the effective theory below the scales fφ and fσ.

If the shift symmetries SS and ST were exact, then the potential for both φ and σ

would completely vanish. Since the relaxion mechanism relies on the cosmological evolution

of both of these fields, a nonzero potential is needed and the shift symmetry must be

broken. Therefore, we assume that the shift symmetries are softly broken by some small

parameter in the effective theory. The origin of this small breaking can be attributed to

monodromy [32–40], or an effectively large decay constant of a periodic potential [15, 16,

19]. Just like in ref. [12], we will simply parameterize the effects of the small shift-symmetry

breaking by the following superpotential terms:

WS,T =
1

2
mSS

2 +
1

2
mTT

2 , (2.5)

where mS,T are mass parameters. A UV model that generates these effective terms is

presented in appendix B.1

1As pointed out in ref. [11], if S and T are Nambu-Goldstone superfields, then the terms in eq. (2.5) are

incompatible with discrete gauge symmetries associated with these fields. This difficulty can be avoided if

one considers a periodic potential with an effectively large period as the source of these terms. A concrete

realization of this possibility is given in appendix B.
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In order for the relaxion mechanism to work, a potential which depends on the Higgs

field and stops the rolling relaxion field needs to be generated. This back-reaction can arise

from the dynamics of a strongly-coupled gauge theory. In the original relaxion model [2],

QCD dynamics played this role with the QCD axion identified as the relaxion. However

this leads to an excessively large θQCD, so we will instead assume that there is a new SU(N)

gauge interaction which becomes non-perturbative at a scale ΛN . This SU(N) gauge sector

contains a pair of SM singlet vector-like superfields, N and N̄ , which are in the fundamental

and anti-fundamental representations of SU(N), respectively. When the SU(N) interaction

becomes strong, these fields will confine and the condensation of the fermions generates a

periodic potential for the relaxion field.

The Kähler potential in our model is a function of S + S∗, T + T ∗, and the fields

Qi, Hu, Hd, N, N̄ , so that it remains invariant under the transformations SS and ST . An

immediate consequence of this symmetry is that although the superfield T can couple to

the MSSM Higgs fields in the Kähler potential, the imaginary part of its scalar component

σ, has no direct renormalizable coupling with Hu and Hd. This crucial feature in the

two-field relaxion model, which was simply assumed in [6], is naturally realized in our

supersymmetric model. On the other hand, the relaxion field φ can directly couple to the

MSSM Higgs fields in the Kähler potential via terms like U(S + S∗, T + T ∗)e
− qHS

fφ HuHd

where U is an arbitrary function of S + S∗ and T + T ∗.

As for the MSSM superpotential, the Yukawa terms are taken to be invariant under

the shift symmetries, while the µ-term is modified to

Wµ = µ0e
− qHS

fφ HuHd , (2.6)

so that it also preserves the shift symmetries. In our effective theory the mass scale µ0 must

satisfy µ0 . fφ, fσ. We also have the gauge kinetic terms for both the SM and additional

SU(N) gauge interactions, each with an anomalous coupling of S to the gauge fields

L ⊃
∫
d2θ

(
1

2g2
a

− i Θa

16π2
− caS

16π2fφ

)
Tr(WaWa) + h.c. (2.7)

where a sums over the appropriate groups of SM×SU(N), Θa is the θ-term and ca is a

constant which depends on the UV completion of the model.

As discussed in ref. [6], the two-field relaxion model requires that the amplitude of the

periodic potential of φ has a particular dependence on φ, σ, and the Higgs fields. This can

be realized in our supersymmetric model by including the following superpotential terms:

WN = mNNN̄ + igSSNN̄ + igTTNN̄ +
λ

ML
HuHdNN̄ , (2.8)

where mN is a supersymmetric mass parameter, gS,T are dimensionless couplings and ML

is a UV scale at which this higher-dimensional operator is generated. For example, if

we consider heavy vector-like lepton superfields which couple N and N̄ to Hd and Hu,

respectively, then ML will be of order the mass scale of the vector-like leptons.

Note also that the second and third terms in eq. (2.8) explicitly break the shift sym-

metries SS , ST ; thus, provided the couplings gS and gT are small, the naturalness of the
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model is not spoiled [41]. This is similar to the role of the parameters mS and mT in

eq. (2.5). An estimate of the size of the couplings gS , gT in eq. (2.8) can be obtained by

considering the higher-dimensional Kähler term, (S + S∗)NN̄ suppressed by a UV mass

scale, and similarly for T . The F -term of S (T ), FS ∼ mSφ (FT ∼ mTσ), generates a

coupling of order gS,T ∼ mS,T /fφ,σ if the higher-dimensional operator is induced at the

scale of fφ,σ. Note that such Kähler potential terms do not break the shift symmetry by

themselves; in this case all resulting shift-symmetry breaking arises from WS,T . However,

the generation of these operators is model dependent, and these couplings may be much

smaller, as occurs in the UV model considered in appendix B.

2.2 SUSY-breaking and the sparticle spectrum

2.2.1 The MSSM sector

During the cosmological evolution the background fields φ and σ will induce supersymmetry

breaking, although the σ contribution will disappear once σ reaches its minimum (σ = 0).

Interestingly, this will generate soft SUSY-breaking mass terms for the MSSM fields. The

fact that supersymmetry is broken can be seen by noting that the auxiliary fields, FS and

FT , have non-zero values when the background fields φ and σ are non-zero. These auxiliary

fields are given by linear combinations of mSφ and mTσ, depending on how they mix in the

Kähler potential. Since the values of φ and σ undergo large changes during their evolution,

the F -terms will change significantly as well. This causes a scanning of the soft masses as

the F -terms vary [12].

The soft SUSY-breaking parameters are readily obtained by expanding the Kähler po-

tential and superpotential in terms of these F -terms (see appendix A). This gives rise to

two types of soft-mass spectra depending on the “mediation” scale in the Kähler potential.

In the Kähler potential, S and T couple to matter fields through higher-dimensional op-

erators suppressed by a messenger scale M∗. If M∗ is of order the decay constants fφ and

fσ, then we expect that the soft masses, m̃i, the scalar bilinear, B and trilinear couplings,

Aijk, are O(F/M∗), where F ∼ FS,T . On the other hand gaugino masses, are suppressed by

a loop factor compared with the soft masses since they are generated from the anomalous

couplings of S to the SM gauge fields and from gauge-mediation-like effects of Hu and

Hd. Therefore, this case realizes a split-SUSY-like mass spectrum [25–29] as discussed in

refs. [12, 42]. Note, however, that the A-terms in this case are not suppressed by a loop

factor contrary to other split-SUSY models based on anomaly mediation [43, 44] (see, for

instance, refs. [45–53]). This difference can be phenomenologically important as sizable A-

terms may favor a lower SUSY-breaking scale for explaining the observed Higgs mass [54].

In figure 1, we show a typical example of the sparticle mass spectrum for the M∗ ∼ fφ,σ
case, where we take mSUSY = fφ,σ = 105 GeV.

Moreover, the gaugino mass spectrum in our model can be different from that of

anomaly mediation; the gaugino masses in our model depend on the coefficients ca in

eq. (2.7), while those generated by anomaly mediation are determined by the correspond-

ing gauge coupling beta functions. The bino and wino masses are also generated by the

Higgsino-Higgs loop diagram, similar to gauge mediation. Note that ca can vanish if
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Mass [GeV]

10−9

100

103

106

q̃, l̃, H̃u,d, s

φ

g̃, W̃ , B̃

t, h, Z, W

τ , σ, σ̃

G̃ = φ̃

Figure 1. A schematic diagram of an example mass spectrum in our model, where we have taken

mSUSY = 105 GeV, M∗ ∼ fφ,σ = 105 GeV, and MST = MP . The MSSM mass spectrum is discussed

in section 2.2, while the mass spectrum of the relaxion sector is discussed in sections 2.5 and 2.6.

qi = qH = 0. In this case, gaugino masses, Ma are induced by dimension-seven operators,

such as
∫
d4θ(S + S∗)2Tr(WaWa)/M

3
∗ [26], which yields, Ma = O(|F |2/M3

∗ ). This again

gives rise to a split spectrum. In contrast to the anomaly mediation [43, 44] and the axion

mediation [12, 42] scenarios, where the gluino mass is large as a consequence of the size of

the strong gauge coupling beta function and the requirements of the Peccei-Quinn mech-

anism, respectively, the gluino mass can be significantly suppressed. This situation may

give an interesting signature at the LHC; if the gluino is the lightest gaugino, it will decay

into a gravitino with a very long decay length. Such a gluino can be probed with displaced

vertex searches [55, 56] and R-hadron searches [57, 58].

The second possibility is that the messenger scale M∗ is much higher than the decay

constants fφ and fσ, such as the grand unification or Planck scale. In this case, m̃i and Aijk
are negligible at tree level but are induced radiatively from the gaugino masses, which are

not suppressed by large M∗. Therefore, the low-energy SUSY spectrum becomes similar

to that of gaugino mediation [30, 31, 59–63] or no-scale models [64, 65]. Furthermore,

S can be coupled to a vector-like pair of SM charged fields, e.g., a 5 and 5̄ of an SU(5)

grand unification, without breaking SS , as was done for the Higgs bosons.2 When the 5

2For the UV completion in appendix B, we can couple φ0, whose phase contains S, to this vector-like

pair of 5 and 5̄.
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and 5̄ are integrated out at the scale fφ, they will induce the coupling between S and

the gauge fields found in eq. (2.7), which generates the gaugino masses. As this is just

a variation of gauge mediation (see ref. [66] and references therein), it will also generate

sfermion masses of similar size. In this scenario, the leptonic part of the messengers can

mix with the up-type Higgs superfield.3 This mixing generates A-terms which enhance the

Higgs boson mass [67–73]. This then allows the soft masses to be pushed down to the TeV

scale. Although the tuning in this case is milder than in split-SUSY, it is still larger than

expected and can be explained by the relaxion mechanism.

2.2.2 The relaxion sector

As we have mentioned, σ does not couple to the MSSM Higgs fields in the SUSY-invariant

Lagrangian terms. This feature is, however, violated by higher dimensional operators in

the Kähler potential which communicate SUSY breaking to the Higgs fields. As discussed

in ref. [6], if the σ-Higgs couplings are sizable, then the late-time evolution of the σ field

will change the Higgs soft masses considerably, which makes it difficult to find a relaxion

model that solves the little hierarchy problem. A simple way to avoid this is to assume

mT � mS . In fact, if mT were exactly zero then all of the σ-Higgs couplings would vanish4

since they are generated via the F -terms of S and T , which always has σ multiplied by

mT . Alternatively, the Kähler terms relevant to these couplings can be suppressed by

some power of a large M∗. In this case, radiative effects of the gaugino masses, which

depend only on φ, become the dominant source for the soft mass parameters, and thus the

σ contribution to soft terms is negligible. Thus, in what follows we will assume that these

unwanted σ-Higgs couplings are sufficiently suppressed and the SUSY-breaking effects in

the visible sector dominantly arise from the relaxion field φ, rather than the amplitudon, σ.

Note that to determine the minimum of the potential with respect to s and τ , the fields

φ and σ can be regarded as background fields. Because φ and σ have very large field values

during their evolution, we need only consider the potential at leading order in φ and σ. The

coefficients of these leading order contributions are set by the components of the inverse

Kähler metric of s and τ , which is independent of φ and σ due to the shift symmetry.

If S and T mixing is present in the Kähler potential, the solutions to the minimization

conditions for s and τ will require a cancellation between terms with coefficients of σ2,

φ2 or σφ. Since σ continues to evolve long after φ has settled into its minimum, the

location of the minimum will keep moving after the relaxion is stabilized. This will lead

to shifts in s and τ of order fφ. Since the size of µ0 is exponentially dependent on s
fφ

for qH 6= 0, changes in s of this size will lead to order one changes in the Higgs VEV. To

prevent this from happening we must require that there is no mixing between S and T in

the Kähler potential. This mixing can actually be significantly suppressed as in the UV

model considered in appendix B. In this case, this mixing can be induced only by higher-

dimensional operators. If these operators are generated at a scale MST much higher than

3This mixing can be realized in the UV completion in appendix B through a superpotential term coupling

between the multi-axion fields φi, with Hu and the leptonic part of the 5̄.
4Even though mT = 0, the (soft) mass of σ can be induced at loop level via the coupling to N and N̄ .
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fφ,σ, then the off-diagonal components of the Kähler potential are much smaller than the

diagonal components, which results in negligible mixing between S and T .

The mass spectrum of the relaxion sector during the relaxation epoch is determined

by the Kähler and superpotential terms in this sector, and thus is quite similar for the two

SUSY-breaking scenarios discussed in section 2.2. The masses of s and τ are O(|FS |/fφ)

and O(|FT |/fσ) for both types of SUSY breaking, respectively, as the mixing between S

and T is negligible. Therefore, the mass of τ is much smaller than the mass of s when

|FT | � |FS |, which follows from the requirement that the Higgs–σ coupling be negligible.

Finally, we note that the N and N̄ scalar components, Ñ and ˜̄N , respectively, also

appear in the scalar potential of the relaxion sector via the superpotential couplings gSSNN̄

and gTTNN̄ . These fields are trapped at the origin during the evolution of φ and σ because

of the F -term contribution of N and N̄ to the scalar potential; this is assured as long as

the couplings gS and gT times the field values φ and σ are larger than mS and mT in

eq. (2.5), which can be easily realized thanks to the large values of φ and σ, as we will see

in section 3.2.2.

2.3 Electroweak symmetry breaking

Since we have determined the dependence of the SUSY parameters on φ and σ, we now

examine the relation between the electroweak symmetry breaking condition and the re-

laxion fields. This relation is a crucial part of the relaxion mechanism. As discussed in

section 2.2, the soft SUSY-breaking parameters are assumed to be dominantly generated

from φ and therefore the electroweak symmetry breaking conditions will be expressed in

terms of φ. The SUSY parameters relevant to the electroweak symmetry breaking condition

are parametrized as follows [12]:

m2
Hu = cu|mS |2φ2, m2

Hd
= cd|mS |2φ2,

µ = cµ0µ0 + cµm
∗
Sφ , Bµ = cB0µ0mSφ+ cB|mS |2φ2 , (2.9)

where the coefficients are model-dependent parameters.5 Note that cu and cd are real

parameters, while the other parameters can be complex in general. The order parameter

for electroweak symmetry breaking is the determinant of the Higgs mass matrix, which is

a function of φ:

D(φ) ≡
(
m2
Hu + |µ|2

) (
m2
Hd

+ |µ|2
)
− |Bµ|2 . (2.10)

We assume that initially φ has a very large field value and electroweak symmetry is pre-

served; namely,

D(φ) > 0 for φ→∞ . (2.11)

As φ rolls down its potential, D(φ) decreases. Eventually φ will reach a value for

which the determinant becomes negative, triggering the breaking of electroweak symmetry.

This critical value of φ is obtained by solving the equation, D(φ) = 0. Although there

5There is also a periodic Bµ term which causes a transition period during which the determinant D(φ)

oscillates between positive and negative values. For simplicity, we assume that this term is subdominant

with an amplitude . v2.
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are analytic solutions of this quartic equation, we do not show them here because they are

quite complicated. Instead, an order-of-magnitude estimate of the solution to D(φ) = 0

generically requires that

µ0 ∼
mSφ

fφ
, (2.12)

where µ0 is the supersymmetric Higgs mass parameter in the superpotential and we have

assumed that higher-dimensional terms which give rise to soft masses are suppressed by

M∗ ∼ fφ . Let φ∗ denote the largest solution of D(φ) = 0 (i.e., the value of φ at which

D(φ) = 0 is satisfied for the first time during the cosmological evolution). Soon after-

wards, φ stops rolling due to a Higgs-generated barrier in the periodic potential for φ (see

section 3). At this point, the soft masses and the µ parameter6 are given by

µ ∼ mSUSY , m2
Hu ∼ m

2
Hd
∼ Bµ ∼ m2

SUSY , (2.13)

where mSUSY is a typical soft mass scale given by

mSUSY ∼ µ0 ∼
mSφ∗
fφ

. (2.14)

Therefore, the relaxion mechanism causes the soft masses to be of order the µ parameter

scale, yielding a solution to the little hierarchy problem.

In addition from eq. (2.13), we find that φ∗ has a value:

φ∗ ∼ 1017 GeV ×
(
mSUSY

105 GeV

)(
fφ

105 GeV

)(
10−7 GeV

mS

)
. (2.15)

This shows that φ, and thus also σ, can have sub-Planckian field values during the cosmo-

logical evolution. 7 However note that super-Planckian values are also possible which can

lead to large effects from supergravity as we will discuss in section 2.5.

When M∗ � fφ, soft masses are induced by gaugino masses via renormalization group

effects. However, it turns out that the relations in (2.13) still hold in this case, while the

right-hand side of eqs. (2.12) and (2.14) are suppressed by a loop factor. This will lead

to more stringent constraints on the parameter space. In any case, the scale of the soft

masses is determined by the supersymmetric Higgs mass parameter, µ0. Even if µ0 is much

larger than the electroweak scale, the proper electroweak symmetry breaking conditions are

realized naturally thanks to the relaxion mechanism. Furthermore, note that in this model

the relaxion field φ scans the SUSY-breaking F -terms and not the Higgs mass parameter

directly. This feature is similar to the model discussed in ref. [12]. For definiteness, we

focus on the M∗ ' fφ case in what follows.

6The Higgsino mass parameter µ can be different from the parameter in the superpotential, µ0, since

there is also a SUSY-breaking contribution from the Kähler potential term U(S+S∗, T +T ∗)e
− qHS

fφ HuHd.
7In fact, this feature is also observed in the non-supersymmetric two-field relaxion model [6]. In this

case, the lower bounds on the field values are given by φ & Λ/g and σ & Λ/gσ, where these parameters are

defined in ref. [6]. It is found that in a part of the allowed parameter region the fields φ and σ can have

sub-Planckian values without conflicting with these bounds.
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As can be seen from eq. (2.6), φ appears in the argument of the µ-term in the super-

potential, and thus this framework generically predicts an O(1) complex phase in the µ

parameter. This phase can be probed by the measurements of electric dipole moments,

if the SUSY scale is O(1–10) TeV. For instance, if winos are around the TeV scale and

the Higgsino mass is not so heavy, the two-loop Barr-Zee diagrams [74] induce a sizable

electron electric dipole moment [75–77], which may be probed in future experiments.

In the case of interest when mSUSY is much higher than the electroweak scale, the

effective theory for the Higgs sector below the SUSY-breaking scale contains a SM-like

Higgs boson h with a potential:

VHiggs(h) =
1

2
m2

0h
2 +

1

4
λhh

4 , (2.16)

where m0 is a mass parameter and λh is the quartic coupling. Since D(φ) is the determinant

of the Higgs mass matrix, the mass scale m0 is related to the heavy Higgs mass mH by

m2
0 =
D(φ)

m2
H

, (2.17)

where mH = O(mSUSY). The matching condition for the quartic coupling λh is given at

the SUSY breaking scale by

λh =
1

8
(g2 + g′2) cos2 2β + δλ , (2.18)

where g′ and g are the U(1)Y and SU(2)L gauge coupling constants, respectively, tan β ≡
〈Hu〉/〈Hd〉, and δλ represents the threshold correction that dominantly arises from top-

stop loop diagrams. The value of the quartic coupling at the electroweak scale is obtained

by renormalization group running (see, for instance, refs. [78, 79]). If D(φ) < 0, then h

acquires a VEV

v(φ) =

√
−m

2
0

λh
=

√
− D(φ)

λhm
2
H

. (2.19)

After the Higgs obtains a VEV, a back reaction on the relaxion potential will be responsible

for stopping the rolling of the relaxion field.

2.4 Generation of the periodic potential

In order for the relaxion mechanism to work, a back-reaction on the evolution of the relaxion

field should occur immediately after electroweak symmetry breaking. In our model, the

back-reaction arises from a relaxion-Higgs coupling in a periodic potential generated by a

fermion condensate in a strongly-coupled SU(N) gauge theory. To determine the amplitude

of the periodic potential, we will first consider the Lagrangian for the fermionic components

of N and N̄ , denoted by ψN and ψ̄N respectively. These fermion terms arise from the
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superpotential WN in eq. (2.8):

LN =−mN ψ̄NψN −
i√
2
gS(s+ iφ)ψ̄NψN −

i√
2
gT (τ + iσ)ψ̄NψN

− λ

ML
HuHdψ̄NψN + h.c.

'
[(
−mN +

1√
2

(Re(gS)φ+ Re(gT )σ)− λ

ML
HuHd

)
+

i√
2

(Im(gS)φ+ Im(gT )σ)

]
ψ̄NψN + h.c. , (2.20)

where we have used two-component Weyl notation and taken λ to be real. The mass

parameter mN ≡ mN + i√
2
(gSs + gT τ) is an effective mass of ψ̄NψN generated during

the relaxation, and for simplicity we will assume this parameter to be real.8 Under the

transformation ψ̄NψN → e
i caφ√

2fφ ψ̄NψN the term proportional to the SU(N) ca in eq. (2.7)

disappears, generating a coupling between the fermion bilinear ψ̄NψN and the relaxion φ.

After confinement the fermionic bilinear acquires a VEV 〈ψ̄NψN 〉 ∼ Λ3
N , where ΛN is

the confinement scale of the SU(N) gauge interaction. Assuming that ΛN . fφ, fσ, this

then gives rise to the following periodic potential:9

Vperiod = A (φ, σ,HuHd) Λ3
N cos

(
caφ√
2fφ

)
, (2.21)

where the amplitude A (φ, σ,HuHd) is given by

A2 ≡
[
mN −

1√
2

(Re(gS)φ+ Re(gT )σ) +
λ

ML
HuHd

]2

+
1

2
[Im(gS)φ+ Im(gT )σ]2 . (2.22)

The periodic potential (2.21) provides a barrier to the evolution of φ and therefore the

amplitude A must vanish at some point during the cosmological evolution in order for

φ to roll down its potential. Since electroweak symmetry is preserved during this epoch

(Hu = Hd = 0) the condition, A = 0 implies

mN =
1√
2

(Re(gS)φ+ Re(gT )σ) and Im(gS)φ+ Im(gT )σ = 0 . (2.23)

These equations can be satisfied if both gS and gT are real,10 and therefore we will assume

this in what follows. After electroweak symmetry is broken the HuHd term in A will

become sizable and stop the relaxion field.

8The contribution of gSs+ gT τ is in fact negligible since we require that σ monotonically decreases (see

eq. (3.7)).
9This ignores the gaugino condensate that would form in a supersymmetric model. This would make

the amplitude A scale as mλ(mN/ΛN )1/N , which follows from an analysis of the ADS superpotential [80].

The constraints and results of our analysis are essentially the same in this case, unless N is very large.

Alternatively, one can imagine that SUSY-breaking (either from FS or another SUSY-breaking sector such

as that discussed in section 2.5) raises the gaugino masses above ΛN and eliminates the gaugino condensate.

Providing the necessary periodic potential with the gaugino condensate alone is an intriguing possibility,

but would require σ to control the gaugino mass; this is difficult to accomplish without giving σ an unwanted

periodic potential.
10Alternatively A = 0 can be realized if mN = 0 and gSg

∗
T is real. The latter condition follows from

Re(gS)Im(gT ) = Re(gT )Im(gS) and is equivalent to gS , gT having the same phase.
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2.5 Supergravity effects

As can be seen from eq. (2.15), depending on the choice of parameters, the relaxion, φ and

σ may undergo super-Planckian field excursions. In this case, one may rightly be worried

about supergravity effects dominating over the global SUSY framework discussed above.

For example, take the scalar potential in supergravity:

V = eK/M
2
P

(
DiW ∗DiW −

3|W |2

M2
P

)
, (2.24)

where MP is the reduced Planck mass. Considering the potential for σ, the first term will

give a positive contribution proportional to m2
Tσ

2, while the second gives a negative contri-

bution proportional to m2
Tσ

4/M2
P . Since σ is super-Planckian, the second term generically

dominates, regardless of the value of mT (or the vacuum expectation value of W ). This

gives a large negative contribution to the cosmological constant at late times.11 Therefore,

some additional source of SUSY-breaking is needed in order to have a nearly-vanishing cos-

mological constant at the present time; note that contributions coming from FS may not

be large enough if φ has super-Planckian excursions. This potential is also very worrying

due to its steepness; for a similar traversal of field values, the change in vacuum energy is

enhanced by a factor of (∆φ/MP )2, resulting in much more stringent constraints relating

to the required Hubble scale of inflation.

The simplest way to arrange a vanishing cosmological constant at late times is to have

(almost) no-scale SUSY breaking that is sequestered from the other sectors. The resulting

linear terms in the Kähler potential result in a cancellation of the |W |2 term in the scalar

potential, eliminating the problems mentioned in the previous paragraph. Explicitly, this

can be seen by expanding the scalar potential as:

V = eK/M
2
P

(
W ∗iWi +

1

M2
P

(W ∗iKiW + h.c.) + (KiKi − 3M2
P )
|W |2

M4
P

)
. (2.25)

Almost no-scale models feature KiKi ≈ 3M2
P and WX ≈ 0 for the no-scale field X,

so the latter two terms in eq. (2.25) are suppressed relative to the first, resulting in a

scalar potential almost identical to that of global SUSY.12 However the latter two terms

cannot generically be both eliminated altogether, since due to the SUSY-breaking in the

relaxion sector, it is impossible to simultaneously satisfy KiKi = 3M2
P and WX = 0, while

maintaining a vanishing vacuum energy. The resulting effects are suppressed by roughly

WS,T /(FMP ), with WS,T the relaxion superpotential, and F the overall SUSY-breaking

order parameter (including the almost no-scale effects). This is roughly equivalent to the

condition that
FS
F

.
MP

∆φ
. (2.26)

This condition is trivially satisfied, even without additional SUSY-breaking sectors, if the

field excursion of φ is sub-Planckian. Note also that even if this condition is violated,

11Presumably σ does have a minimum rather than a runaway direction; if one assumes the periodicity of

σ as in appendix B, this is automatically realized.
12The exponential prefactor does not have a relaxion contribution as long as the shift symmetries are not

broken in the Kähler potential.
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and the middle term in eq. (2.25) were to dominate, it would have minimal effect on the

relaxion mechanism itself, only rescaling a number of the constraints, as the overall relaxion

potential would still be quadratic.13

An almost no-scale structure, assuming it also existed while our relaxion fields were

rolling (with additional SUSY-breaking contributions to provide inflation), also has the

advantage of making the F -term of the conformal compensator (almost) vanish. This

ensures that the rolling of σ and the resulting change in W does not give sizable varying

anomaly-mediated contributions to the Higgs soft terms after φ has stopped rolling.

These supergravity considerations do give one irreducible phenomenological prediction.

When most of the SUSY-breaking in the universe does not come from FS , the relaxino φ̃

is not the Goldstino that is eaten by the gravitino in the super-Higgs mechanism. It is

instead a second Goldstino, in the manner of ref. [81]. In general, the gravitino mass m3/2

is given by

m3/2 =
F√
3MP

' 2×
(
F

FS

)(
mSUSY

105 GeV

)(
fφ

105 GeV

)
eV . (2.27)

If the field excursion of φ is sub-Planckian, then the additional SUSY-breaking contribution

is not required, i.e., F = FS is allowed. In this case, φ̃ is the Goldstino eaten by the

gravitino, as discussed in ref. [12]. As the additional SUSY-breaking effects increase, the

gravitino becomes heavier, and a larger part of the contribution to the helicity ±1
2 part of

the gravitino is provided by a Goldstino in the no-scale sector. Note that in this case, the

constraint of eq. (2.26) implies that m3/2 & mS(∆φ/MP )2.

The relaxino mass at tree level, on the other hand, takes on the value

m
φ̃

= −2m3/2
WX

FX
.

FS
MP

FS
FX

. mS , (2.28)

with X the no-scale field, as can be calculated using the methods of ref. [82]. If it is not too

light, the relaxino φ̃ may be in the correct mass range (keV to MeV) to be a plausible dark

matter candidate. As we take the relaxion sector to be the only source of SUSY-breaking,

the relaxino effectively behaves like a gravitino in the early universe, except that it is lighter

for a given coupling strength FS by at least a factor of FS/FX . This can help to ameliorate

the “relaxino problem” in the early universe.14

Note that eq. (2.28) is strictly the mass of the uneaten Goldstino, i .e. the field pro-

portional to FX φ̃ − FSX̃. In the sub-Planckian regime with FS � FX , this is the mass

of the now-unnecessary no-scale fermion X̃; the relaxino is eaten by the gravitino and has

mass m3/2. Note that in the sub-Planckian regime, the last inequality in (2.28) still holds,

as m3/2 ≈ mSφ∗/MP . mS . The relaxino can still be dark matter in this regime, but it

behaves as a conventional gravitino.

As an alternative, one can also envision scenarios in which the no-scale sector is not

strictly sequestered, and gives substantial contributions to MSSM and relaxion-sector soft

13With a judicious choice of phase difference between the no-scale and relaxion superpotentials, the middle

term can be made entirely imaginary in the relaxion sector and vanishes, providing another possible way

to avoid this constraint.
14Alternatively, an O(1) eV gravitino does not suffer from the gravitino problem.
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masses. These can substantially increase the relaxino mass due to loop corrections, as in

ref. [83]; these are enhanced by the small FS/F required to satisfy eq. (2.26). Such further

effects are beyond the scope of this work.

2.6 Post-evolution relaxion-sector mass spectrum

At the end of the cosmological evolution, the relaxion is trapped at a local minimum induced

by the periodic potential, while the σ field reaches its minimum at σ = 0. Since these fields

have settled in their minima, the corresponding F -terms no longer change. The mass of s is

still O(|FS |/fφ) ' O(mSUSY), while the mass of τ is given by higher-dimensional operators

that cause S–T mixing in the Kähler potential, such as
∫
d4θ(S + S∗)2(T + T ∗)2/M2

ST ,

and thus should be significantly suppressed: O(mSUSYfφ/MST ). Regardless of the value

of MST , the mass of τ is never below the supersymmetric mass mT , barring a fine-tuning.

The relaxion mass, mφ, is rather large because of the large amplitude of the periodic

potential when σ = 0. It is estimated as

m2
φ '

Λ3
N

f2
φ

A
(
φ∗, 0,

v2(φ∗)

4
sin 2β

)
'

Λ3
NgSφ∗
f2
φ

'
(
gSfφ
mS

)(
ΛN
fφ

)3(mSUSY

fφ

)
f2
φ . (2.29)

For example, if gSfφ/mS = 10−8, and mSUSY = ΛN = fφ = 105 GeV, then the relaxion

mass, mφ ' 10 GeV. On the other hand, the σ mass is simply the value of the supersym-

metric mass, mT ; any corrections from SUSY breaking are subleading.

The mass of the relaxino φ̃ was discussed in the previous section, but is always of

order mS or less. The mass of the amplitudino σ̃ will generically receive contributions

from Kähler potential terms such as
∫
d4θ(S + S∗)(T + T ∗)2/MST of order mSφ∗/MST .

These may or may not dominate over the supersymmetric mass mT . For φ∗ . MP and

MST ' MP , the Giudice-Masiero contributions are of the same order as the relaxino

mass and an amplitudino LSP is possible if mT /mS . φ∗/MP ; otherwise, the relaxino is

guaranteed to be the LSP.

A typical mass spectrum of the relaxion sector is shown in figure 1, where we have

assumed that MST ' MP and there is no additional SUSY breaking source. In this case,

the relaxino φ̃ is eaten by the gravitino, and the masses of τ , σ, and σ̃ are as large as the

gravitino mass.15

3 The supersymmetric relaxion mechanism

In order for the supersymmetric relaxion mechanism to solve the little hierarchy problem

and obtain the correct Higgs VEV, the model parameters must satisfy certain conditions

15Although our model has many light degrees of freedom, an extended period of inflation after the

relaxion has settled into its minimum will suppress all vacuum energy in these fields. Furthermore, the shift

symmetries of the relaxion and amplitudino will lead to suppressed decays to these fields and reheating will

in general produce very few of them.
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during the cosmological evolution. The relevant potential terms for the evolution of φ and

σ are:

Vφ,σ(φ, σ,HuHd) =
1

2
|mS |2φ2 +

1

2
|mT |2σ2 +A (φ, σ,HuHd) Λ3

N cos

(
φ

fφ

)
, (3.1)

where we have taken ca =
√

2 and

A (φ, σ,HuHd) = mN −
gS√

2
φ− gT√

2
σ +

λ

ML
HuHd . (3.2)

For simplicity, the Kähler potential for S and T is assumed to be nearly canonical, i.e.,

K ' 1
2(S + S∗)2 + 1

2(T + T ∗)2, however our results are not drastically changed for a more

generic Kähler potential provided the S − T mixing is small. Note that unlike the non-

supersymmetric model [6] there are no radiative corrections to the amplitude A. This

is due to the nonrenormalization of the superpotential mass parameter mN . The non-

renormalization of the superpotential can also suppress the generation of other potentially

dangerous terms like cos2(φ/fφ); since such terms can only come from higher-dimensional

Kähler type operators like
∫
d4θNNN̄N̄ , their effects should be suppressed by at least the

inverse-square of the mass scale at which the operators are generated, as well as by a loop

factor and a chiral-symmetry violating parameter like mN . Hence, our model can avoid

dangerous radiative corrections, contrary to the non-supersymmetric model.

3.1 Conditions on the φ, σ evolution

Consider the cosmological evolution of φ and σ which is driven by the potential (3.1) during

an inflationary phase of the Universe. Initially these fields are assumed to have very large

positive values, φ, σ � fφ, so that electroweak symmetry is preserved, Hu = Hd = 0. For

definiteness, we also assume mN , gS > 0, while gT < 0 with −gTσ > gSφ � mN so that

A > 0. Of course, there are several other possible combinations of signs which result in a

similar evolution of φ and σ. The sign of λ will be determined below.

Initially, the relaxion field φ is trapped in a local minimum with a large constant field

value because the last term in eq. (3.1) dominates the potential. This occurs when

|mS |2φ�
Λ3
N

fφ
|A(φ, σ, 0)| . (3.3)

As long as this condition is satisfied, φ remains fixed. However, σ is free to roll and therefore

during the σ evolution a cancellation between the φ and σ terms in the amplitude A can

remove the barrier and allow φ to roll. Just prior to φ rolling, the amplitude is roughly

given by A ∼ −gTσ ∼ gSφ, and thus the above condition becomes

|mS |2 � gS
Λ3
N

fφ
. (3.4)

Since there is no potential barrier for σ, it slow-rolls until it reaches its potential

minimum (σ = 0). Its time-dependence is therefore determined by the following equation:

dσ

dt
= − 1

3HI

∂Vφ,σ
∂σ

= − 1

3HI

[
|mT |2σ −

gT√
2

Λ3
N cos

(
φ

fφ

)]
, (3.5)
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where HI is the Hubble parameter during inflation, which is roughly constant. Note that

we must assume

|mT |2σ � |gT |Λ3
N , (3.6)

throughout the relaxation process so that the right-hand side of eq. (3.5) is negative-definite

and σ monotonically decreases. Around the time electroweak symmetry breaking occurs,

we have gSφ∗ ∼ −gTσ∗, as we will see below. Combining this relation with eq. (2.14), we

can rewrite the above condition as

g2
T

gS
�

mSUSYfφ
Λ3
N

|mT |2

|mS |
. (3.7)

As σ decreases, the amplitude A gets small. Eventually, the condition (3.3) is violated

and φ starts to evolve. For the relaxion, φ to roll, the condition

Λ3
N

fφ
|A(φ, σ, 0)| . |mS |2φ , (3.8)

should hold. Using (3.2) this becomes(
gS√

2
−
fφ|mS |2

Λ3
N

)
φ . mN −

gT√
2
σ .

(
gS√

2
+
fφ|mS |2

Λ3
N

)
φ , (3.9)

which must be satisfied until electroweak symmetry breaking occurs.

In addition, φ must move fast enough once eq. (3.9) is satisfied so that it can track the

σ evolution. If φ moves too slowly, A will eventually become large and negative, violating

the first condition in eq. (3.9). This will further slow the evolution of φ until it is eventually

trapped in a minimum with a value that is too large for electroweak symmetry breaking

to occur. Therefore, we require(
gS√

2
−
fφ|mS |2

Λ3
N

)
dφ

dt
< − gT√

2

dσ

dt
. (3.10)

There is no upper bound on the velocity of φ since this leads to a larger A which would

in turn slow its rolling so that σ could catch up. During this period of evolution where φ

tracks σ, the velocity of φ is determined by the usual slow-roll condition, as was done for

σ in eq. (3.5). Thus, the above inequality can be rewritten as follows:

gS |mS |2φ > −gT |mT |2σ , (3.11)

where we have used the condition in eq. (3.4) and dφ
dt = −m2

Sφ
3HI

. In particular, when

gSφ ∼ −gTσ, which follows from eq. (3.9) with mN � gSφ, |gTσ|, the above relation

reduces to

|mS | > |mT | . (3.12)

This constraint is consistent with our desired need to suppress the σ coupling to MSSM

fields which was discussed in section 2.2, and results in a Higgs soft mass that predominantly

depends on φ.
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As long as the above conditions are satisfied, the evolution of φ is determined by that

of σ, in order to maintain A ' 0. During the rolling of φ, the value of D(φ) in eq. (2.10)

changes unimpeded until it becomes zero for φ = φ∗. As φ continues to evolve past this

point electroweak symmetry is spontaneously broken. The Higgs VEV will then begin to

grow and the amplitude, A, changes due to the non-zero Higgs VEV, by an amount

∆A =
λ

4

v2(φ)

ML
sin 2β , (3.13)

where v(φ) is the Higgs VEV given in eq. (2.19). This contribution causes the evolution of

φ to stop tracking the σ evolution, with the relaxion field φ eventually becoming trapped

in a local minimum of the periodic potential. As σ continues to roll, the amplitude A
becomes larger and larger reaching a maximum value, when σ reaches the minimum of its

potential, i.e., σ = 0.

Let us determine the condition for φ to stop tracking σ after electroweak symmetry

breaking. When φ < φ∗ the condition in eq. (3.8), due to φ being trapped in a local

minimum of the potential, can be written

Λ3
N

fφ

∣∣∣∣A(φ, σ, v2(φ)

4
sin 2β

)∣∣∣∣ . |mS |2φ , (3.14)

which becomes(
gS√

2
−
fφ|mS |2

Λ3
N

)
φ+

λ sin(2β)D(φ)

4MLλhm
2
H

. mN −
gT√

2
σ .

(
gS√

2
+
fφ|mS |2

Λ3
N

)
φ+

λ sin(2β)D(φ)

4MLλhm
2
H

.

(3.15)

If we now require that this inequality is violated shortly after electroweak symmetry is

broken so that φ stops when v(φ) ' 246 GeV, then the left-hand side of eq. (3.15) should

change much slower than the term with σ, i.e.,[
gS√

2
−
fφ|mS |2

Λ3
N

+
λ sin 2β

4MLλhm
2
H

dD(φ)

dφ

]
dφ

dt
> − gT√

2

dσ

dt
. (3.16)

Using the slow-roll condition for σ and φ and the relation (3.4), this condition becomes

λ sin 2β

4MLλhm
2
H

φ
dD(φ)

dφ
< − 1√

2|mS |2
(
gS |mS |2φ+ gT |mT |2σ

)
. (3.17)

From eq. (3.11), we see that at least in the vicinity of φ = φ∗, the right-hand side of

eq. (3.17) is negative (since we have required that eq. (3.11) is valid up to φ = φ∗). As

dD(φ∗)/dφ∗ > 0, we thus find that λ should be negative.

3.2 Resolving the little hierarchy problem

In order for the above mechanism to actually resolve the little hierarchy problem, the

following conditions should also be satisfied. First of all, the relaxion field φ should be

trapped by the barrier generated by electroweak symmetry breaking. This requires

|mS |2φ∗ ' |∆A|
Λ3
N

fφ
. (3.18)
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By using eqs. (3.13) and (2.14), we obtain

|mS | '
|λ| sin 2β

4ML

v2Λ3
N

mSUSYf2
φ

, (3.19)

where v ' 246 GeV. By substituting this equation into eq. (3.17), and using16

mH ∼ mSUSY , φ
dD(φ)

dφ
∼ m4

SUSY , gSφ∗ ∼ −gTσ∗ , (3.20)

plus the fact that m2
h = λhv

2, we obtain the constraint

gS
m2
h

m2
SUSY

Λ3
N

fφ
.
|mS |2

1− |mT |
2

|mS |2
, (3.21)

where mh ' 125 GeV is the mass of the SM-like Higgs boson.

Second, the evolution of φ and σ should satisfy the slow-roll conditions. Given the

constraint (3.12), if φ satisfies the slow-roll condition, then so does σ. Thus, it is sufficient

to just consider the slow roll condition of φ, where the second time derivative d2φ
dt2

should

be much smaller than the Hubble friction term |3HI
dφ
dt | and the gradient of the potential

energy
∂Vφ,σ
∂φ . This leads to the constraint

|mS | � HI . (3.22)

3.2.1 Constraints from inflationary dynamics

In the relaxion mechanism, inflation is driven by a separate inflaton sector that is not

explicitly given in our model. This sector should dominate the vacuum energy and not

receive a back-reaction from the relaxion sector. In particular, the potential energy carried

by φ and σ should be much smaller than the inflaton energy:

1

2
|mS |2φ2 ,

1

2
|mT |2σ2 � 3H2

IM
2
P , (3.23)

which gives a lower bound on the Hubble parameter during inflation:

HI � mSUSY
fφ
MP

. (3.24)

The energy of inflation breaks SUSY, and its effects can be included into the F -term of

the inflaton chiral multiplet: ΦI = · · ·+HIMP θθ. This generically gives a gravity-mediated

contribution to the soft masses of order

δmSUSY ∼ HI . (3.25)

16The higher-dimensional operator in eq. (2.8) also contributes to the Bµ-term after the NN̄ confinement

occurs, which then gives a contribution to φ dD(φ)
dφ

. This contribution is a periodic function of φ with an

amplitude ∼ m4
SUSYf

2
φ/v

2, which is much larger than that in eq. (3.20). Such a large contribution makes it

easier to stop the relaxion, and thus can significantly relax the constraint shown in the blue shaded region

in figures 2–4. However, the significance of this effect depends on the phase in the Bµ-term. To obtain a

conservative limit, we therefore suppress this contribution in the following analysis and use eq. (3.20) for

the estimate of the variance in the determinant D(φ).
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In order that this contribution does not affect the scale of electroweak symmetry breaking,

we require

HI . v , (3.26)

so that when inflation ends, the Higgs VEV does not change significantly.17 As long as

ΛN � v, this condition also means HI � ΛN , which ensures that a periodic potential is

formed during inflation.

In order for the relaxion mechanism to work, the evolution of φ and σ should be

dominated by classical rolling, i.e., the effects of quantum fluctuations on the evolution

of these fields should be negligible. During a period of one Hubble time H−1
I , the field σ

changes by ∣∣∣∣dσdt H−1
I

∣∣∣∣ ∼ |mT |2σ
3H2

I

>
|mT |2σ∗

3H2
I

∼ |mT |2gSφ∗
3|gT |H2

I

. (3.27)

This should be larger than the typical size of quantum fluctuations of O(HI), which gives

an upper bound on HI :

H3
I �

gS
|gT |
|mT |2φ∗ ∼

gS |mT |2fφmSUSY

|gT ||mS |
. (3.28)

Finally, let us estimate the number of e-folds required in this setup. For the relaxion

field φ to naturally scan the critical value φ∗, its excursion range during inflation, ∆φ,

should be larger than φ∗:

∆φ > φ∗ ∼
fφmSUSY

|mS |
. (3.29)

The number of e-folds Ne is then given by

Ne '
HI∆φ∣∣∣dφdt ∣∣∣ '

3H2
I∆φ∣∣∣∂V∂φ ∣∣∣ &

H2
I

|mS |2
= 1014 ×

(
HI

1 GeV

)2(10−7 GeV

|mS |

)2

. (3.30)

This is a large number, although much smaller than those predicted in refs. [6, 12]. Note

also that (3.29) implies that φ can have super-Planckian field values for large mSUSY and

small mS . These field values can be explained by the UV description given in appendix B.

3.2.2 Summary of constraints

The various constraints on the two-field supersymmetric model can be shown graphically to

reveal the allowed regions of parameter space. In order to reduce the number of independent

parameters we assume the following

gS = ζ
mS

fφ
, gT = ζ

mT

fσ
, f ≡ fφ = fσ,

rTS ≡
mT

mS
, rΛ ≡

ΛN
f
, rSUSY ≡

mSUSY

f
, ML = mSUSY , (3.31)

17This bound assumes F -term inflation, whereas models of D-term inflation may be able to avoid this

bound [84].
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Higgs VEV too large

φ tracks σ after EWSB

Ñ
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Figure 2. The allowed parameter region in the mSUSY–mS plane, where ζ = 10−8, rTS = 0.1,

rΛ = 1, and rSUSY = 1.
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Figure 3. The allowed parameter region in the mSUSY–mS plane, where ζ = 10−8, rTS = 0.1,

rΛ = 10−4, and rSUSY = 10−4.

– 22 –



J
H
E
P
0
9
(
2
0
1
6
)
1
5
0

Higgs
VEV

too
large

φ tracks σ after EWSB

N
o
cl
as
si
ca
l r
ol
lin
g

Ñ
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Figure 4. The allowed parameter region in the mSUSY–mS plane, where ζ = 10−14, rTS = 0.1,

rΛ = 1, and rSUSY = 1.

where ζ is a dimensionless parameter. The constraints are plotted in the mSUSY–mS plane

for fixed values of ζ, rTS , rΛ, and rSUSY.

In figure 2, we show the allowed parameter region for ζ = 10−8, rTS = 0.1, rΛ = 1,

and rSUSY = 1. The light gray region is excluded since φ cannot be stopped by the

periodic potential after electroweak symmetry breaking with |λ| ≤ MLv
2

Λ3
N

, which follows

from the requirement that the contribution of the higher dimensional operator in eq. (2.8)

to the Bµ term should be smaller than v2. In the blue-shaded region, the two-field

relaxion mechanism does not work since φ keeps tracking σ even after electroweak symmetry

breaking (eq. (3.21)). The dash-dotted line corresponds to φ∗ = MP , which represents

the boundary between sub-Planckian and super-Planckian field values of φ (see eq. (2.15)).

Finally, the green region is disfavored as the potential may become unstable in the direction

of Ñ ˜̄N . Note that the maximum allowed value of mSUSY is ∼ 2× 106 GeV, corresponding

to mS ∼ 10−10 GeV.

The parameter values in figure 3 are the same as in figure 2 except that now rΛ =

rSUSY = 10−4. In particular this reduces the allowed values of mS and the dark gray region

is excluded since initially φ is not trapped at a potential minimum due to an insufficient

barrier height (eq. (3.4)). Notice that in this case mSUSY = O(1) PeV corresponds to

fφ = O(1010) GeV, which is right in the middle of the usual axion window. This may allow

the possibility to construct a model where both S and the QCD axion are generated by

the same dynamics at this energy scale. In figure 4 we have instead changed the value

of ζ to be ζ = 10−14 as compared to figure 2, which effectively reduces the values of gS
and gT . In this case the region for the allowed values of mS decreases since the constraint
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from φ not tracking σ (blue region) is not as severe and the maximum allowed value of

mSUSY increases to ∼ 109 GeV. The upper bound on mSUSY now arises from the fact

that the classical rolling condition (3.28) is inconsistent with the condition that inflation

dominates the vacuum energy — the corresponding excluded area is illustrated by the red

shaded region. Note that in all figures there is always an allowed region for mSUSY that

includes the PeV scale (106 GeV), which can be obtained for 10−17 GeV . mS . 10−9 GeV

depending on the range of the other parameters considered in the figures.

Finally, in the allowed region, we can always find a value of HI which satisfies the

constraints (3.22), (3.24), (3.26), and (3.28). The lower bound on HI is given by

HI > max

{
|mS |, 4× 10−9 GeV×

(
mSUSY

105 GeV

)2( 1

rSUSY

)}
, (3.32)

while the upper bound is

HI < min

{
v, 4.6 GeV ×

(
rTS
0.1

) 1
3
(

1

rSUSY

) 1
3
(

|mS |
10−7 GeV

) 1
3 ( mSUSY

105 GeV

) 2
3

}
. (3.33)

Therefore, HI can be larger than that predicted in ref. [12], where HI had to be smaller

than the QCD scale ∼ 300 MeV.

4 Conclusion

We have presented a supersymmetric relaxion mechanism that can provide a solution to

the little hierarchy problem in supersymmetric models. Our supersymmetric extension is

based upon the nonsupersymmetric two-field relaxion model of ref. [6]. Since the two-field

model assumes no new source of electroweak symmetry breaking beyond that due to the

Higgs field, the scale of strong dynamics can be arbitrarily large. This preserves the QCD

axion solution to the strong CP problem and allows the cutoff scale to be significantly

increased beyond the TeV scale. However, the periodic potential of the relaxion, φ, has a

large amplitude that must now be neutralized by a second field, σ which has no couplings

to the Higgs sector.

In the supersymmetric extension, the scalar fields φ, σ are identified with the imagi-

nary scalar field components of two chiral superfields S, T respectively, which transform

under shift symmetries each associated with a global symmetry. In particular the shift

symmetry associated with T prevents a σ-Higgs coupling at the renormalizable level, real-

izing a crucial feature of the nonsupersymmetric model. A nontrivial relaxion potential is

generated when the shift symmetries are explicitly broken and cause the two scalar fields to

dynamically evolve from their initially large field values. This induces large F -terms which

break supersymmetry and therefore as the relaxion rolls, it scans the soft supersymmetric

masses. Electroweak symmetry is broken when the soft supersymmetric mass scale is of

order the µ-term. In this way, an apparently tuned cancellation can be explained as the

result of a dynamical mechanism [12].
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The conditions for cosmological evolution of the scalar fields and the requirements of

obtaining a correct electroweak Higgs VEV, restrict the parameter space of our supersym-

metric two-field relaxion model. In particular the Hubble scale during inflation must at

least satisfy HI . v, where v is the electroweak VEV, a condition necessary to prevent

shifts from the inflation sector, although depending on parameter values the classical rolling

condition can give a more stringent upper bound on HI . The soft supersymmetric mass

scale plays the role of the cutoff and for typical values of the allowed couplings we find that

this scale can be as large as 109 GeV for a range 10−18 GeV . mS . 10−4 GeV, where mS

is an explicit shift-symmetry breaking parameter. When the mediation scale is of order the

global symmetry breaking scale the soft masses can be of order the PeV (106 GeV) scale,

while gaugino masses are suppressed by a loop factor. This is similar to a split-SUSY

spectrum, except for A-terms which are not loop suppressed as occurs in models based on

anomaly mediation. There is also the possibility for extra suppression if the matter and

Higgs fields do not transform under the shift symmetry. Furthermore, when the mediation

scale is much larger than the global symmetry breaking scale, the soft supersymmetric

masses are induced radiatively from gaugino masses, giving rise to a gaugino-mediation

type spectrum. With further modifications one can obtain soft masses to be near the TeV

scale. Thus, we see that the tuning is avoided in supersymmetric models, with a more

detailed survey of the sparticle spectrum left for future work.

The larger values of mS allow some of the cosmological constraints to be weakened

compared to the previous implementations of the relaxion mechanism. For instance we find

that the minimum number of e-folds required for the relaxion to complete its cosmological

evolution can be substantially smaller, & 1014 for mS ∼ 10−7 GeV and HI ∼ 1 GeV. In

fact for larger values of mS there are regions of the parameter space for which it is possible

to have sub-Planckian values during the evolution of the relaxion. This obviates the need

to explain how super-Planckian field excursions can arise in the effective field theory.

In the case when the scalar fields φ, σ have large field values, supergravity effects can

lead to potentially large contributions in the relaxion potential. To preserve the results

in the global supersymmetry limit, these supergravity effects need to be cancelled by an

additional source of supersymmetry breaking with an almost no-scale structure. Generi-

cally this causes the gravitino to be much heavier than the relaxino φ̃, and therefore the

relaxino is typically the lightest supersymmetric particle. Provided the relaxino is heavy

enough (& keV), this allows for the possibility that the relaxino is the dark matter candi-

date. Thus, together with the axion-like particles φ and σ, these are the only new states

at low energies.

Finally, our supersymmetric model is an effective description at low energies that in

some cases requires super-Planckian field values of the scalar fields. This is potentially

inconsistent with an axion interpretation, but using recent ideas of ref. [15, 16], a large

number of axion fields can be used to provide a UV description of our model. In particular

the explicit shift-symmetry breaking parameters (mS,T , gS,T ) can be derived from an axion-

like potential in the UV model. Thus, the fact that a consistent field theory description

exists for our effective model enhances the relaxion mechanism as a possible solution for

restoring naturalness in supersymmetric models.
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A Explicit formulae for the two-field supersymmetric relaxion model

In this section, we summarize the supersymmetric Lagrangian and present explicit formulae

for the supersymmetry-breaking parameters.

A.1 Lagrangian

First, we summarize the Lagrangian of our model. The most generic Kähler potential

invariant under the transformations SS , (2.3) and ST , (2.4) is given as follows:

K = κ(S + S∗, T + T ∗) + Zi(S + S∗, T + T ∗)Φ∗i e
2V Φi

+

[
U(S + S∗, T + T ∗)e

− qHS
fφ HuHd + h.c.

]
, (A.1)

where Φi = Qi, Hu, Hd, N, N̄ . The superpotential is, on the other hand, given by

W = Wgauge +WYukawa +Wµ +WS,T +WN , (A.2)

where

Wgauge =

(
1

2g2
a

− i Θa

16π2
− caS

16π2fφ

)
TrWaWa , (A.3)

WYukawa = yuQUHu + ydQDHd + yeLEHd , (A.4)

Wµ = µ0e
− qHS

fφ HuHd , (A.5)

WS,T =
1

2
mSS

2 +
1

2
mTT

2 , (A.6)

WN = mNNN̄ + igSSNN̄ + igTTNN̄ +
λ

ML
HuHdNN̄ . (A.7)

The index a sums over the appropriate groups of SM×SU(N), ga and Θa are the correspond-

ing gauge coupling constants and the vacuum angle, respectively, and ca is a constant which

depends on the UV completion of this model. The higher-dimensional operator in (A.7) is

assumed to be generated at a UV scale, ML.

A.2 Scalar potential

Next, we calculate the scalar potential in our model from the Kähler potential (A.1) and

the superpotential (A.2). The Lagrangian for S and T without derivatives is given by

L = F †K(s, τ)F +
(
m · F + ig · F Ñ ˜̄N + h.c.

)
, (A.8)
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where

K =
1

2

 ∂2κ
∂s2

∂2κ
∂s∂τ

∂2κ
∂s∂τ

∂2κ
∂τ2

 , F =

(
FS

FT

)
, g =

(
gS

gT

)
, m =

1√
2

(
mS(s+ iφ)

mT (τ + iσ)

)
. (A.9)

Note that we have set the MSSM scalar fields including Hu and Hd to zero to simplify

the expression for the scalar potential. Generically, detK 6= 0, and thus we can solve the

equation of motion for F as

F = −K−1
(
m+ igÑ ˜̄N)∗ . (A.10)

By substituting this expression into (A.8), we obtain the potential term containing the

relaxion field:

VS,T =
(
m+ igÑ ˜̄N)†K−1

(
m+ igÑ ˜̄N) . (A.11)

The F -terms of N and N̄ also contribute to the scalar potential which evaluates as

V F
N =

∣∣∣∣mN + igS

(
s+ iφ√

2

)
+ igT

(
τ + iσ√

2

)∣∣∣∣2( 1

ZN̄
|Ñ |2 +

1

ZN
| ˜̄N |2) . (A.12)

In addition, Ñ and ˜̄N have the D-term contribution coming from the SU(N) gauge

interaction:

V D
N =

g2
N

2

(
Ñ∗TAÑ + ˜̄NTA ˜̄N∗)2

, (A.13)

where TA denotes the SU(N) generators. These two contributions allow Ñ and ˜̄N to

remain at the origin, Ñ = ˜̄N = 0, as we discuss in section 2.2.2. Therefore, to study

the potential structure relevant to the relaxion mechanism, it is sufficient to consider the

following simplified potential, which is obtained by setting Ñ = ˜̄N = 0 in VS,T :

V = m†K−1m . (A.14)

This potential has a trivial minimum at m = 0, i.e., s = φ = τ = σ = 0. At this minimum,

V = 0, and thus SUSY is not broken. However the relaxion scenario assumes that at the

beginning of the cosmological evolution, φ and σ have very large field values, and thus are

far away from this minimum. This implies that SUSY is broken during the evolution of φ

and σ.

Assuming a fixed value of φ and σ, the potential minimum is determined by the

condition,
∂

∂s
K−1(s, τ) ' ∂

∂τ
K−1(s, τ) ' 0 , (A.15)

for |φ|, |σ| � s, τ . If κ is a generic function, then we expect that s/fφ and τ/fσ are O(1)

at this point. Note that the minimum does not depend on φ and σ as long as they have

very large values [12], since the above condition is independent of these values. Hence, we

can think of s and τ as constant during the relaxion process.
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A.3 Soft mass parameters

The non-zero field values of φ and σ effectively generate soft SUSY-breaking mass terms

in the MSSM sector. To compute these soft masses, we first expand the functions Zi, U ,

and e
− qHS

fφ in terms of the scalar component fields of S and T :

Zi(S + S∗, T + T ∗) = Zi(
√

2s,
√

2τ) + [Zi · F θθ + h.c.] + F †ZiF θθθθ , (A.16)

U(S + S∗, T + T ∗) = U · F ∗θθ + F †UF θθθθ , (A.17)

e
− qHS

fφ = e
− qH (s+iφ)√

2fφ

[
1− qH

fφ
FSθ

2

]
, (A.18)

where

X =
1√
2

(
∂X
∂s

∂X
∂τ

)
, X =

1

2

 ∂2X
∂s2

∂2X
∂s∂τ

∂2X
∂s∂τ

∂2X
∂τ2

 , (A.19)

for X = Zi, U .

To obtain the physical soft masses, we canonically normalize the fields Φi by re-scaling

them as

Φi → Z
− 1

2
i

[
1− Z−1

i Zi · F θθ
]

Φi . (A.20)

Then, the soft masses are evaluated as follows:

m̃2
i = − 1

Zi
F †ZiF +

1

Z2
i

|Zi · F |2 , (A.21)

Aijk = yijk

[
Zi
Zi

+
Zj
Zj

+
Zk
Zk

]
· F , (A.22)

µ =
1

(ZHuZHd)
1
2

e
− qH (s+iφ)√

2fφ [µ0 +U · F ∗] , (A.23)

Bµ = µ

[
qH
fφ
FS +

(
ZHu
ZHu

+
ZHd
ZHd

)
· F
]
− 1

(ZHuZHd)
1
2

e
− qH (s+iφ)√

2fφ F †UF , (A.24)

Ma =
g2
a

16π2

[
ca
FS
fφ
− 2

∑
i

T ia
Zi
Zi · F

]
+
g2
aB

8π2
f

(
µ2

m2
H

)
(δa1 + δa2) , (A.25)

where we have included the wave-function renormalization factors into the renormalized

Yukawa couplings yijk. The last term in eq. (A.25) comes from a gauge-mediation ef-

fect from Hu and Hd, where f(x) = (x lnx)/(x − 1) and mH is the heavy Higgs mass.

These expressions can then be used to obtain the sparticle mass spectrum discussed in

section 2.2.1.

B A UV completion of the two-field supersymmetric relaxion model

The two-field supersymmetric relaxion model is an effective theory which is only valid

below the energy scales fφ and fσ. Moreover, the non-compact nature of φ and σ is given
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explicitly by shift-symmetry breaking terms whose origin is not specified. However, as

discussed in ref. [11], the realization of such small shift-symmetry breaking effects in any

quantum field theory, especially for a field like φ which has a periodic potential, is highly

non-trivial.

In this appendix, we present a UV completion of the two-field supersymmetric relaxion

model given in section 2 which can explain the origin of the small shift-symmetry breaking

effects. We will use the ideas presented in ref. [16] (see also refs. [15, 19, 85–96]). Specifically

we will need to realize the shift-symmetry breaking term and the particular structure of

the periodic potential for the field S, which contains the relaxion field φ. A similar UV

completion may be considered for the field T , but this is not necessary because we do not

need a periodic potential for σ.

Consider a set of chiral superfields φi, φ̄i, Si (i = 0, . . . , N). These fields are assumed

to interact with each other through the following superpotential:

WUV =

N∑
i=0

λiSi
(
φiφ̄i − f2

i

)
+ ε

N−1∑
i=0

(
φ̄iφ

2
i+1 + φiφ̄

2
i+1

)
. (B.1)

The first term is symmetric under a U(1)N+1 global symmetry for which the Si are neutral,

QSi = 0, while φi and φ̄i have opposite charges, Qφi = −Qφ̄i . The second term explicitly

breaks the U(1)N+1 symmetry leaving only a single U(1) symmetry. The parameter ε

is assumed to be small, and thus the U(1)N+1 global symmetry remains an approximate

symmetry. This remaining symmetry corresponds to the charge assignment

QSi = 0, Qφi = −Qφ̄i =
1

2i
Qφ0 , (B.2)

where we normalize the charge assignment to Qφ0 = 1.

The first term in eq. (B.1) leads to spontaneous symmetry breaking of the approximate

global U(1)N+1. This breaking gives rise to N+1 approximately massless chiral superfields

and 2(N + 1) massive ones. Below the symmetry breaking scale, we can parametrize the

chiral superfields φi and φ̄i as

φi = fie
Πi
fi , φ̄i = fie

−Πi
fi . (B.3)

In this case, the effective superpotential below the symmetry-breaking scale is given by

Weff = 2ε
N−1∑
i=0

fif
2
i+1 cosh

[
Πi

fi
− 2Πi+1

fi+1

]
. (B.4)

Among these terms, let us focus on the quadratic terms:

Weff ⊃ ε
N−1∑
i=0

fif
2
i+1

[
Πi

fi
− 2Πi+1

fi+1

]2

≡
N∑

i,j=0

ΠiMijΠj . (B.5)

Since there remains a U(1) symmetry, the matrix M must have one zero eigenvalue. Up

to an overall normalization factor, the corresponding eigenvector is given by

Mijzj = 0 , zi =
fi

2if0
. (B.6)
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This massless mode will be identified as the chiral superfield S that contains the relax-

ion field:

S = cN

N∑
i=0

fi
2if0

Πi , (B.7)

where cN is a normalization factor. Notice that the ΠN component of S has an exponen-

tially suppressed (a factor of ∼ 2−N ) coefficient.

To reproduce the model discussed in section 2 we first identify the remnant U(1) sym-

metry as the shift symmetry of the S field, SS . If the field φ0 couples to superfields which

are chirally charged under the remnant U(1) and these chiral fields are charged under the

SU(N) gauge symmetry that confines at the scale ΛN , then when the chiral superfields are

integrated out they generate an axion-like coupling of S with the SU(N) gauge fields having

a decay constant fφ ∼ f0. This generates the relaxion potential ∝ cos(φ0/f0) = cos(φ/fφ).

Instead the soft (and very small) SS-symmetry breaking term is generated if φN couples

to a different set of multiplets which are chiral under the remnant U(1) and furthermore

are charged under an additional gauge interaction which confines at the scale Λ̃N . The

chiral anomaly of this additional gauge symmetry induces an axion-like potential for the

field φN . At low scales only the S part of φN survives. Below the confinement scale Λ̃N ,

this coupling generates a periodic potential for the relaxion field φ in S of the form

VN ∼ Λ̃4
N cos

(
φ

2Nf0

)
, (B.8)

where the 2N factor arises because φN is a very small component of S. When N is very

large, this potential mimics the soft symmetry breaking term in eq. (3.1) with

|mS |2 '
Λ̃4
N

4Nf2
φ

, (B.9)

where we have used fφ ∼ f0.

The coupling of S with N and N̄ can be generated through the following Kähler

potential terms:

i
κ

M̃2
N

∫
d4θNN̄Ξ∗Ξ̄∗ + h.c. , (B.10)

where κ is a constant and M̃N is a UV scale. Since this operator breaks the chiral symmetry

of N and N̄ , it might be additionally suppressed by a small factor such as mN . This effect

can be included in the constant κ. The chiral multiplets Ξ and Ξ̄ which are charged under

the new strong gauge interaction will confine at Λ̃N and the fermionic components, ξ and

ξ̄, respectively, condense with 〈ξ̄ξ〉 ' Λ̃3
N . Below the confinement scale, these terms induce

the ΠN–N–N̄ coupling, which then gives the S–N–N̄ coupling:18

i
κ

M̃2
N

∫
d2θ Λ̃3

Ne
ΠN
fN NN̄ + h.c. '

∫
d2θ

iκΛ̃3
N

fφ2NM̃2
N

SNN̄ + h.c. , (B.11)

18This also contributes to the mass term of NN̄ .
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and thus we obtain

gS '
κΛ̃3

N

2NfφM̃
2
N

' κ|mS |Λ̃N
M̃2
N

. (B.12)

Note in particular that gS can be substantially smaller than the naive estimate ∼ mS/fφ.

It is not necessary for the amplitudon, σ to be a Nambu-Goldstone field since it does

not have a periodic potential. For this reason we keep the same terms as those given in

section 2 for this field, although a similar set up as that considered for SS may be invoked

to explain the small shift-symmetry breaking of ST .

In summary, by using multi-axion-like fields we have shown that the relaxion potential

given in eqs. (3.1) and (3.2) can be derived from a UV model.
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