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1 Introduction

The superstring theory is regarded as a candidate for the unified theory of fundamental
interactions including gravity. The theory contains strings/branes, which can describe
gravity, gauge fields and matter ones in the low energy limit. For stable branes to describe
our universe, anti-symmetric tensor fields are coupled to their preserved charges because
they are extended objects. Further, unstable tachyons are avoided in the presence of the
supersymmetry (SUSY). As a consequence, one may take supergravity (SUGRA), in which
there exist such tensor fields on top of gravity, as a plausible low energy effective theory of
the superstring theory.

Four-dimensional (4D) effective action is obtained through a compactification of extra
dimensions. Hence, 4D A/ = 1 SUGRA with tensor fields is a possible starting point to
construct the effective description of the superstring theory, because N' = 1 SUGRA is a
chiral theory, which has to contain the Standard Model of particle physics.

For these reasons, our interest is to construct the effective models of the superstring
including p-form gauge fields within 4D A" =1 SUGRA [1-5]. For the effective description
of the superstring theory, we need to respect the structure of ten-dimensional antisymmetric
tensors. In 4D effective theory, such antisymmetric tensors and their gauge transformations
are described by the 4D form fields, whose transformations inevitably contain form fields
with different ranks. Such a structure is called a tensor hierarchy [6-9], and is related to
the anomaly cancellation conditions in the string theory. Therefore, the construction of a
tensor hierarchy in 4D N =1 SUGRA is desirable in the context of string models.

In this paper, we consider the tensor hierarchy in 4D A/ = 1 SUGRA. In particular,
we focus on the construction which is inspired by structures of the geometries of extra
dimensions. Becker et al. did such a construction in 4D N = 1 global SUSY [8]. Our 4D
SUGRA description can be applicable to discuss the roles of antisymmetric tensors, e.g. in
cosmology [10-15] and SUSY breaking [16-18].

We will use the conformal superspace formalism [19], which is a superspace formal-
ism of conformal supergravity. It has larger gauge symmetries than the superconformal
tensor calculus [20-28] and Poincaré superspace [29, 30]. The symmetries will be useful
to construct the SUGRA system coupled to the tensors and matters. We can straightfor-
wardly reproduce the corresponding system in terms of the Poincaré superspace and also
the superconformal tensor calculus due to their correspondences [19, 31].

We will adopt the so-called covariant approach [4, 29, 30, 32, 33]. In this approach, we
regard bosonic tensors as components of differential superforms in superspace. This makes
the local SUSY properties of the tensors manifest. In particular, it is straightforward to
obtain gauge invariant superfields including bosonic field strengths.

This paper is organized as follows. In section 2, we review 4D N = 1 conformal super-
space briefly. Then, Abelian tensor hierarchy is introduced to the conformal superspace.
Section 3 is devoted to impose constraints on field strength, and to show the solutions to
the Bianchi identities. In section 4, we present the component formalism, which is written
by superconformal tensor calculus. We give a summary of this paper and briefly discuss
remaining issues in section 5. In appendix A, our notations are summarized. We present



the explicit derivations of the solutions of Bianchi identities in appendix B. We show the
explicit forms of bosonic field strengths in appendix C. Throughout this paper, the terms
“form”, “gauge field” and “field strength” are used to refer “superform”, “gauge superfield”
and “field strength superfield”, respectively. We use the conventions of ref. [31] for confor-
mal superspace except the notation of torsion. We use Top® to refer the torsion, which
is equal to R(P)cp? in ref. [31]. We also use the convention of ref. [30] for superforms,
exterior derivatives and interior products.

2 Abelian tensor hierarchy in conformal superspace

In this section, we introduce the Abelian tensor hierarchy into conformal superspace. We
begin with a brief review of conformal superspace. Abelian tensor hierarchy is then intro-
duced into conformal superspace.

2.1 Conformal superspace

Conformal SUGRA is one of the most convenient formulation of SUGRA thanks to its
larger gauge symmetries. Conformal superspace is a superspace approach to formulate
conformal SUGRA. In the conformal superspace, we can formulate conformal SUGRA in
a geometrical manner.

Conformal SUGRA is constructed as the gauge theory of superconformal group. We
formulate conformal SUGRA in a superspace [19]. Superspace is a space where the coordi-
nates are spanned by ordinary bosonic spacetime coordinates ™ and fermionic coordinates
(OH, 5,1). Here, m,n, ... are used for curved vector indices, u, v, ... for undotted spinor in-
dices, and i, 7, ... for dotted spinor indices. In the superspace, we can deal with bosonic
translations and SUSY transformations at the same time, since SUSY transformations are
understood as fermionic translations. Thus, we denote both bosonic and fermionic coor-
dinates as zM = (:cm,ﬂ“,@ﬂ), where capital Roman letters M, N, ... express the sets of
curved vector and spinor indices.

Conformal superspace is a superspace where gauge fields of the superconformal sym-
metry are introduced. The generators of the superconformal group are the following el-
ements: spacetime translations F,, SUSY transformations (),, Lorentz transformations
My, dilatation D, chiral rotation A, conformal boosts K, and conformal SUSY transfor-
mations S,. Here, Roman letters a,b, ... denote flat vector indices, Greek letters o, 3, . ..
and ¢, B ;... express undotted and dotted flat spinor indices, respectively. «, 3, ... denote
both spinor indices a = (e, &). In the superspace, we can deal with bosonic translations
and SUSY transformations at the same time. Therefore, we simply write P4 and K4 as
Py = (P,,Qu, Q%) and K4 = (Kg, S,, SY), respectively. Here, we use Roman capital in-
dices A, B, ... for the sets of Lorentz vectors and spinors A = (a, «, &). All the generators
of superconformal group are denoted X 4 = (Pa, My, D, A, K4), where the calligraphic
letters A, B, ... are used to refer the indices of the generators of the superconformal group.

The gauge fields of the superconformal symmetry are defined as

1
ha* X4 = Ey Py + §¢Mabea + BuD + Ay A+ fuKa, (2.1)



where Ej? is the vielbein, ¢y is the spin connection, By, Ay and fas4 are the gauge
fields corresponding to D, A and K4, respectively. We assume that Ejp;4 are invertible,
and their inverses are denoted as F4M:

EvAEAN =6y, EANENB =645, (2.2)
Using a differential form [30], the gauge fields are expressed as
At = dzMhy A (2.3)

The gauged superconformal transformations are generated by 5g(§AX A). Here, A are
real parameter superfields, and £é4X 4 denotes

1
4X 4= 6(P) Pat S6(M)*" Mya + §(D)D + §(A)A + §(K) K. (2:4)
The gauge fields hy* receive the superconformal transformations 5g(§A/X Ar) as
8¢ (€% Xp ) har = 0m€B o5 + har€P fac?, (2.5)

where primed calligraphic indices A’, B’, ... mean all the superconformal generators except
for PA: XA/ = (Mab, D, A, KA).

We shall define SUSY transformations and spacetime translations. In the superspace
approach, we can deal with SUSY transformations and spacetime translations at the same
time, namely P4-transformations. We relate Ps-transformations to the general coordinate

transformation dgc by using field-independent parameter superfields ¢4 as
66(6"Pa) = bac (€M) = da(eMhur® X)), (2.6)

where £(P)4 are abbreviated to ¢4, and €M are defined by &M := ¢AE4M. The Px-
transformations acting on a superfield ® with no curved index define the superconformally
covariant derivatives V4 as

5 (EAPA)D = £4P4® = £V 10 = MV @ = M (0p — hay™ X p0)®. (2.7)

Let us consider the curvatures associated with the superconformal symmetry, which appear
in the Bianchi identities. They are defined by

Ryn™ = Oyhn™ — Onhr™ — (ExChat® — Ey©hn®) fec™ — hn® haf® fee?. (2.8)

Here, we use the convention of “implicit grading” [19]. Using differential forms, they are
expressed as

1 f 1 ’ /
RA = SdsM A d=N Ryar = di = P AR fors® — S AN fos, (2.9)

where E4 = dzMEy 4. In particular, the curvatures associated with P4 are the torsion

two-forms 7. The torsions are given by explicitly

: 1
T4 = dE* — EC ARE fro? = 5EB AN ECTeop?, (2.10)



which appear in the Bianchi identities for p-form gauge fields discussed later. The curva-
tures are expressed also in terms of the (anti-)commutation relations of the superconfor-
mally covariant derivatives

[Va,Vg| = —RABCX(;. (2.11)

The curvatures are constrained so that (anti-)commutation relations of the covariant deriva-
tives are given by

{VQ,VB} =0, {vd,?a} =0, {Va,66} = —QiVQB, (2.12)

[Va, Vs3] = —2ieagWs, Var V] = —2icg5Wy,

! (2.13)
[Vaa Vgl = €45{Via Wa)k + €as{Vias Wy}

where

1 1/
Wa = (") Wogy Moy + (V1) 85 - 5 (VPWaa?) Koy,
1

& (=be \YBTI G _ =
W = (67€)""W* 5. Mgy 5

2 . (2.14)
o wie ) 58 _ L (viBw. 98 i .
(V5w74) 87— 5 (VW) Ky,

and the parentheses for indices mean symmetrizations of spinor indices: ¥, Xg) = %(wa Xg+
1Y8Xa). Wapy are chiral primary superfields with Weyl weight 3/2 and chiral weight 1, and
their indices are totally symmetric. Here, a primary superfield is a superfield that is
invariant under the K s-transformations: K4Wog, = 0. In particular, T, BC are given by

TaBC = 22‘(0'6)0{5', (215)
which is used to solve Bianchi identities in appendix B.

2.2 Abelian tensor hierarchy in conformal superspace

We introduce antisymmetric tensor gauge fields into conformal superspace. Antisymmetric
tensor gauge fields are expressed in terms of p-form gauge fields. p-form gauge fields are
transformed under Abelian internal gauge transformations using (p — 1)-form parameter
superfields. In addition, p-form gauge fields are shifted using p-form parameter superfields.
This structure of gauge transformation of the tensors is called an Abelian tensor hierarchy.
We explain the hierarchy concretely. The p-form (p > —1) gauge fields C’éﬁ are de-
fined by!
Ci = pl!dle N ndEOY = pl!EAl N NBERCY (2.16)
Here, the indices I,, denote the indices of internal space of p-form V,,, which are assumed
to be real vector spaces. I, run over 1,...,dimV,. We denote infinitesimal internal gauge
transformations of p-forms as dp(A), where A is a set of real p-form parameter superfields

AE;’]“: A= (A[IS], ey A[I:j’*]). The gauge transformation laws of C[Zj are given by
I I
or(A)Cyh = dA)_ + (q® - AT, (2.17)

L(=1)-forms are defined to be zero as in the ordinary differential geometry.



where ¢(P) are matrices which map Vo1 to V). (q(p) . A[p])lp are given by explicitly
( (p) . A[ })Ip — ( (P)) A[ ]Ip+1 (2.18)
We define the X 4 transformation laws of C’[;’] as
c’ 1 —
56 Xe)Cly ar, = 0. (2.19)
Field strengths of p-form gauge fields are defined by

I
[p+1] = dC[p] (4" - Cpp)™

1 Ip
— ZdeMl A A dZMp A dZNgNCMpli (220)
1
- (p+ 1)!alz:M1 Ao ANdz p“( ®) 'CMp+1-~~M1)Ip‘

They are transformed under the internal gauge transformations
or(Ap)) F| [,,+1] —(q"®) g A (2.21)
The invariances of the field strengths require that
gP=D . ¢ = . (2.22)

The SUSY transformations and spacetime translations are redefined with respect to dp
transformations of Céf]. The redefinitions are the same as the case that the tensor hierarchy
does not exist [30]. P4-transformations are redefined by

6c(6*Pa) = bac (€M) = (€ ha™ Xar) — 5r(A(€)). (2.23)
Here, A(&) is defined by
A(g) = (LgC[l], . L50[4]) (2.24)
and t¢ is a interior product
1 I
€O = gy A AR O (2.25)
In particular, the Ps-transformations of C’éﬁ are given by
5a(EAPA)CTE = dao(eM)Cr — 6p(A(€))Clm = 1 F» 2.26
c(§7Pa) 0] cc(§M) 0] (A(6)) ] = Yty (2.26)

The Py-transformation laws of superfields which are invariant under d7 transformations
are not changed. Note that we obtain SUSY transformations of p-form gauge fields if we
choose €4 = ¢2.

Field strengths obey the following Bianchi identities:

dF? = —(qP) - Fl)'r. (2.27)



form |gauge field field strength Bianchi identity

4-form Ul Gl =dUuls =0 -

3-form Chs »is = qcts — (¢® . U)s axls —
2-form B2 H2 = qB2 — (q(2) OV dH = —(¢®@ - n)k
1-form Ah Fhi=dAl — (¢ . By | dFh = —(¢ . H)It
0-form flo glo = aflo — (@ . A)lo | dglo = —(4© . p)lo
—1-form 0 wh-t = —(¢D -l dwl-1 = — (gD - g)I

Table 1. The p-forms, their corresponding field strengths and Bianchi identities.

The existence of the tensor hierarchy deforms the Bianchi identites: the tensor hierarchy
relates the exterior derivatives on the (p + 1)-form field strengths to the (p + 2)-form field
strengths. The Bianchi identities play an important role in the next section.

Explicitly, we denote the p-form gauge fields, the field strengths and the Bianchi iden-
tities in table 1. In table 1, 4-form gauge fields appear. The bosonic component of gauge
fields U;;nm exist in principle, but the bosonic components of the field strengths are zero:
Gf‘}]pnm = 0. This is because Gi‘}]pnm
be zero in 4D. Thus, we impose by hand that field strengths G™ are equal to zero as in

is the fifth rank antisymmetric tensor, which must

ref. [32]. There are also O-form “field strengths” in principle, but (—1)-form gauge field
does not exist. Thus 0-form field strengths are defined by dw!-1 = —(q(_l) ~g)-1.

From the higher-dimensional view point [8], V}, can be understood as spaces of differen-
tial forms on extra dimensions. The matrices ¢(P) are understood as the exterior derivative
with respect to extra dimensions.

3 Constraints and Bianchi identities

In this section, constraints on the field strengths are imposed to construct irreducible
superfields. We solve the Bianchi identities under these constraints. As a result, each
of field strengths is expressed in terms of the corresponding gauge invariant superfields
straightforwardly.

3.1 Constraints

In the previous section, we have defined the field strengths of the p-form gauge fields. The
field strengths have redundant degrees of freedom, and we eliminate them by imposing con-
straints. We will take the constraints as the same ones without the tensor hierarchy [30, 33].
The constraints are explicitly given by table 2. Here, L2 and ¥ are real superfields. In
addition, we have imposed that U0 are primary superfields in table 2.

We solve the Bianchi identities under these constraints. On the one hand, the field
strengths obey the Bianchi identities. On the other hand, we impose the constraints on
the field strengths. The consistency between Bianchi identities and the constraints leads to
new relations of the field strengths. Since the constraints are imposed Lorentz covariantly,



form constraints

4-form GJ%DCBA =0
J; J;
3-form ZQBIQA = Eéiﬂm =0
I 1l gl Iy _ . I
2-form HZQ,Q =H}3, = Hﬁ%a =0, HWQBa = +2i(0q), 5 L™

1-form Fal1 =0

0-form| glo =iV, ¥l géo = —iVyuh, Kyl =0

Table 2. The constraints on the field strengths.

it is convenient to express the Bianchi identities (2.27) by flat indices rather than curved

indices:
1 A App1 A B I,
Gl A AESRANESYBES
1
+ ME““ Ao B NBB A ECTopt i FY L (3.1)
1
= _ o 2)!EA1 Ao N EAr2(gP). FAP+2...A1)I”-

This equation follows from eq. (2.10) and (2.19). Equation (2.10) is used to express the
exterior derivative on the vielbein 1-form dE4 in terms of the torsion 2-form. The exterior
derivatives on gauge fields are written by covariant derivatives on the field strengths using
eq. (2.19).

3.2 Solutions to the Bianchi identities

In this subsection we summarize the solutions to the Bianchi identities of table 1 under the
constraints of table 2. The details of the derivations are discussed in appendix B. Each of
the field strengths is expressed by a single gauge invariant superfield (Y3, L2, Wi wlo),
We find the Weyl weights and chiral ones (A, w) of the gauge invariant superfields. We
also find that these gauge invariant field strengths are primary superfields (U0 are imposed
to be primary as in table 2). The weights and K 4-invariance play an important role in
constructing superconformally invariant actions.

3.2.1 3-form gauge fields

For 3-form gauge fields, all the components of the field strengths are expressed in terms of
chiral superfields Y3 and their complex conjugates Y/3. They appear in the 2-spinor/2-
vector components as

s 1 54 : 1 =
N0y, = 5(51,&6)5“*1/13, S5 e = i(obae)MYI?’. (3.2)
From egs. (B.58), (B.59), (B.60) and (B.61), Y’ obey

DY =3yl Ayl =2iys K,y =o. (3-3)



They mean that Y3 are primary superfields and the weights are

(A w) = (3,2). (3.4)
Similarly, Y'3 obey
DY =3yl AV = —2ivB, K, Y3 =0. (3.5)
Other Bianchi identities lead to
VoY =0, VaYh =0, (3.6)

which mean that Y3 and Y’ are chiral and anti-chiral superfields, respectively. Further-
more, 1-spinor/3-vector components are expressed in terms of spinor derivatives of Y3 and
their conjugates:

. 1 1 — i
EIg(scba = +E0—d66€dcbavz5y137 Eégc,ba = _E(Ud)&;eddmvéyh' (37)

chlib ., are identified as the imaginary parts of V2Y s
i L
nh = @6d0ba(v2yl3 — V2B, (3.8)

We can understand the non-dynamical 4-form field strength in terms of the F-component
of Y13 by the § = 6 = 0 projection of both hand sides of this equation, where the §# = § = 0
projection is the projection from the superspace to the bosonic spacetime. The solutions
to the Bianchi identities for 3-form gauge fields are the same as the case without tensor
hierarchy [4, 30]. Note that our normalization of Y3 is equivalent to 8G* in ref. [8].

3.2.2 2-form gauge fields

The field strengths of 2-form gauge fields are expressed by real superfields L2. We list the
solutions to the Bianchi identities.

e 1l-spinor/2-vector components

Hgga = 2(Jba)56v,3LI2a le(sba = 2(5—ba)5q§v¢l’[27 (39)
e 3-vector components
1 . _
Hi, = 7€ pag(07) [V, VEIL™. (3.10)

e Deformed linearity conditions
VAL = (g V)R, VL= (g V)R (3.11)
e D-, A-, K g-transformation laws
DL =2L2 AL =0, KsLZ=0. (3.12)

Hence, we find
(A, w) = (2,0). (3.13)



Note that the tensor hierarchy deforms ordinary linearity conditions of L2 by ¢(2).2 If the
tensor hierarchy does not exist, the deformed linearity conditions reduce to the ordinary
linearity conditions V2L2 = V2L2 = 0. Note that our normalization of L2 is equivalent
to $HM in ref. [8].

3.2.3 1-form gauge fields

The solutions to 1-form gauge fields are mostly the same as an ordinary Abelian case. The
field strengths are expressed in terms of the gaugino superfields W/t and their conjugates.
The explicit solutions to the Bianchi identities are as follows.

e 1-spinor/2-vector components

Ft o= —265,Wa' Fglys = —2e5a Wy (3.14)
e Chirality conditions
VWi =0, vav‘VBfl =0. (3.15)
e 2-vector components
Fyy = —% (008" VoW = (300) 7V ;W04 (3.16)
e Deformed reality conditions
vewh — v whe = —4i(qW . L), (3.17)
e D-. A-, K g-transformation laws
DWh = %Wah, AW = qwh K wh =o,
(3.18)

e LA N}
Then, we find the weights of W/t:

(A, w) = (3/2,1). (3.19)

The reality conditions of W/ are deformed by the tensor hierarchy, i.e., ¢: L™ appear
in the imaginary parts of V¥W/i in the presence of the tensor hierarchy. The deformed
reality conditions reduce to the ordinary reality conditions VWt = VW14 if the tensor
hierarchy does not exist. Note that our normalization of W/t is equivalent to that of ref. [8].

2A deformed linear multiplet in 4D A = 1 SUGRA is discussed in ref. [34].

,10,



3.2.4 O-form gauge fields

The field strengths of 0-form gauge fields are expressed in terms of real primary superfields
Wlo The solutions to the Bianchi identities are as follows.

e Vector components

1 . _ 1 . _
B = (0% (Vagl + Vagh) = =10 [Va, Va¥P. (320)

e Modified higher component conditions
1= 1_oe -
ZVQVQ\I'IO = (¢ W), sz’vdqﬂo = (0. W), (3.21)

e D-. A-transformation laws
Dwl =0, Awl =, (3.22)

We find the weights of W/o:
(A,w) = (0,0). (3.23)

The conditions in eq. (3.21) are a bit peculiar in the presence of tensor hierarchy ¢(®: in
the case of the absence of the tensor hierarchy, the Bianchi identities lead to the constraints
V2V, 0o = 0 and V2V4 0% = 0. We can find the expression of W10 which can be consistent
with the constraints. We can use chiral and anti-chiral primary superfields. Chiral primary
superfields S as well as anti-chiral primary superfields S’ satisfy V>V oS0 = V2V ,800 =
0. The field strengths of O-form gauge fields W0 can be defined as the imaginary part of
the chiral superfields:

who — %(sfo _ gh), (3.24)
1

which are consistent with the constraints and the solutions to Bianchi identities. Note that
ST can be understood as the prepotentials for the 0-form gauge fields. Now we consider
the case of the existence of the tensor hierarchy. U/ are deformed to

1 _
vl — ?(SID — 5Ty — (g0 . v)lo, (3.25)
i
where V!t are the prepotentials for 1-form gauge fields. Using Wl = —inVth,
we obtain .
Zanqﬂo = (¢ . W)k, (3.26)

The results are consistent with eq. (3.21). Note that S0 are not gauge invariant in the
presence of tensor hierarchy.

4 Component formalism

In this section we show the correspondence between the conformal superspace and super-
conformal tensor calculus [27] using the results in ref. [31]. Superconformal tensor calculus
is presumably the most practically useful formalism. We focus on the correspondence of
the superfields Y3, L2, WOIf and W10, which characterize the corresponding field strengths.

— 11 —



component superspace

Cr
Z ( iVa <I>p>

+iVidp
Hr +1(V2®p + V20r)|
Kr —L(V2®r — V20r)|
Bar  |~1(62)%[V5, V] r|

[~V 0 W
Ar L T i [ 7Y ) @
2
4\ 4 V2Vedr wa

Dy %@dv2@d¢p| + Wd?d(l)ﬂ
= iVeV2V,op| — WOV, Or|

Table 3. The components of conformal multiplets. The components are expressed in terms of the
0 = 6 = 0 projections of the superfields ®r. In this table, [Cr, Zr, Hr, Kt, Bar, Ar, Dr] correspond
to those of [Cr, Zr, Hr, Kr, Bar, Ar, Dr] in ref. [27].

4.1 Components of the superfields Y3, L2, VVO{1 and Ul

We express Y13, L2, T/VO{1 and ¥/ within the superconformal tensor calculus. In the
superconformal tensor calculus, we denote the components of a general complex multiplet
Vr with arbitrary Lorentz indices I' as

VF = [CF72F7HF7KrvBaF7AF7DF]- (41)

The components of V1 are expressed by corresponding primary superfields ®r as in table 3.
In this table, the symbol of “|” means the § = § = 0 projection. As already appeared in
section 3, the # = § = 0 projection is the projection from the superspace to the bosonic
spacetime. Component fields are obtained by § = § = 0 projections of superfields.

We also denote chiral conformal multiplets Tt as

Tt = [Ar, Prxr, FT]. (4.2)
Tt are embedded into the general complex multiplets as
V(TF) = [AF, _iPRXFa —FF, iFF, iVaAF, 0, 0]. (4.3)

The components of gauge invariant superfields Y /3, L2 WO{I and U0 are given in
tables 4, 5, 6 and 7, respectively. In these tables, note that the tensor hierarchy deforms
the higher components of the L2, W/t and ¥ in the presence of ¢’s.

4.2 Bosonic field strengths

In the previous subsection, the lowest component of the field strengths glo|, F Il| H | and

abc
ECI[Z .q| appear. They are covariantly transformed under SUSY transformations, because
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component superfield
A(Y5) v
Prx(Y") VoY’
T — .
FYD) | =o(V2Y T 4 VoY )| — cetoxly |

Table 4. The components of the chiral primary superfields Y /3.

component superfield
C(L™) L2
—iVo L2
Z (L") e |
+iVeL!2
H(LR) (g (V£ 7))
K (L") @@ (V= ¥)"
Ba(LIQ) _éeadchIQdCb|
I
c) . s I s
Aty i Y A [+ = (g®- Vel
()% 0 +iVA L 16 +iVaY
1 1 oo\
D(L™) VOV, L2 + T <q<2> (VY + v?m) |

Table 5. The components of the real primary superfields L2.

component superfield
AW W

Prx (W) %(Ubaﬁ)ﬁanﬁi! + i%(ww,{l + VW) —iega(qh) - L)1
F(Wh) —iV W] = 2i(qW) - L)1]

Table 6. The components of the chiral primary superfields W/i. The spinor index « is used for
the external Lorentz index of W/t.

they have only Lorentz indices. The lowest components of them are related to the lowest
components of bosonic p-form gauge fields Cii’p_._ml |. In SUGRA, they are also related to
vierbein e,,* and gravitino ¥,,%. Thus, we express the lowest components of field strengths
in term of the lowest components of the bosonic p-form gauge fields, vierbein, and gravitino.
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component superfield

C () o]
—iVa 0l
Z (Wl tVa
H (o) %(VZ\I/IO + V2l
K () —3(v2\1110 — 2gh)|
Bo(¥h) | glo| = —*(aa) s Va] Ul

we | (e (;;;;))

D(wlo) (q9 - (VOW, + VoW )

o~

Table 7. The components of real primary superfields ¥,

The expressions are obtained by the so-called “double bar projection” [30, 35]. The
double bar projections of the p-form gauge fields are defined as

LY My 1 1 I
At A N "Cyp ol = ;!dxml A AdE™ Oy (4.4)
The symbol of “||” means the projection from superforms to forms on the bosonic spacetime:

ction: df2 = 9~ = 0. However, there still exist fermion parts through contractions between
indices as shown below.
Explicitly, the double bar projections of the p-form gauge fields are as follows:

ol = £l
Ah” _ d[IZmA;CH,
1
Bb” — 7d{17m A dCEnB7{Lm|
ChB|| = dx A dx"™ /\dﬂUpCI%m’v
Uli)| = Idxm Ada™ A daP A dz UL,

The double bar projections of the field strengths systematically lead to the expressions of
the bosonic field strengths. We consider the simplest case. For the 1-form field strength of
0-form gauge field, the double bar projections of ¢/0 are

gl = d2"g0| = d2"™ Epgf| = da™ B g,°| + da"™ En®|. (4.6)
This relation gives rise to the component expression

m I()‘ I()O‘é‘

1
cILO’ = €q *eam¢mag | — ieamwmag

. . (4.7)
m(amflo _ (q(O) . Am)10)| _ %eamwmavaqﬂ% + %%m&md@a‘l}h)"
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Here, we used
d=Mg || = dfol] = (@ - Al = da™ (0] = (¢ - A))'). (4.8)

The same procedure can be applied to higher forms. The results are summarized in
appendix C.

5 Summary and discussion

In this paper, we have considered a way to couple the Abelian tensor hierarchy to 4D N =1
conformal supergravity. We have used the conformal superspace formalism and covariant
approach. The constraints on the field strengths have been imposed. The constraints are
the same as the case that Abelian tensor hierarchy does not exist. We have solved the
Bianchi identities under the constraints. Each of the field strengths is expressed in terms
of the single superfield and its conjugate. The linearity conditions which appear in 2-form
gauge fields are deformed by the tensor hierarchy. The reality conditions which appear in
1-form gauge fields are also deformed. Furthermore, we have obtained nontrivial conditions
of superconformal transformation laws.

We have obtained the irreducible superfields Y/3, L2, Wi and ¥0, which contain p-
forms in a covariant manner. We have also clarified the Weyl and chiral weights (A, w)
of each superfield. Then, it is straightforward to construct the superconformally invariant
kinetic terms of p-forms with action formulas shown in ref. [19], although the construction of
Chern-Simons terms requires the so-called prepotential superfields. It is worth mentioning
that the Weyl and chiral weights of irreducible superfields tell us possible couplings between
conformal compensator and p-forms, which lead to possible interactions of p-forms due to
SUGRA effects. Such effects are clarified within conformal SUGRA, and this is one of
the utilities of conformal SUGRA. In particular, chiral superfields Y3 can appear also in
superpotential terms, which would produce couplings of 4-form field-strengths. Such terms
are expected to be important, e.g., for SUGRA realization of models in refs. [10, 11].

There are other remaining issues. As mentioned above, one can think the Chern-
Simons couplings of tensor fields. To introduce these terms, we need to reconstruct the
tensor hierarchy with the so-called prepotential approach. Further, when there exist (non-
Abelian) gauge/matter fields, one has to take chiral anomalies into account. Then the
prepotential ST will appear also in the superpotential or gauge kinetic functions. It is also
important to show the component expression of the kinetic and Chern-Simons terms not
only for phenomenological applications but also for understanding the relation between 4D
expressions and effective superstring models. We will address these issues elsewhere [36].
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A Notations

In this section, we summarize our notations. The notations are the same as those of Wess-
Bagger [29]. The Minkowski metric and the totally antisymmetric tensor are is given by

Nab = (_17 +17 +17+1)7 60123 = —€p123 — +1. (Al)

The standard contractions of two-component spinors are given by £*t, and £49%. The
raising and lowering rules of indices are defined by

P =Py, o = €apth’, Yo = edeZB, P& = €d61/;37 (A.2)

where €8, €aBs €4 and €8 are antisymmetric tensors that satisfy €'? = ey; = +1. The
Hermitian conjugate of a spinors is defined as (1)o)" = 1)o. Hermitian conjugate reverses
the order of the product of spinors:

(Pabs)" = Egda (A.3)

Pauli matrices are defined as

<ao>aﬁ-:<; ﬁ’) <al>aﬁ-:<§’ ;) <a2>a5:<‘j ‘0> <ag>a5:(; _01). (A4)

Their Hermitian conjugates are given by
(3a)% = (0)"* = 7P (00) 55 (A.5)
Pauli matrices satisfy

(02 (30) T+ (00) 3 (00) = 20007, (30) (00) 55+ (66) % (00) 53 = —2068%5,  (A.6)
(6%)03(3a)Y° = —25,°57 5. (A7)

Lorentz vectors are expressed as mixed Lorentz spinors and vice versa:

Vag = (0)agter  va = =5 vy, (A-8)
The matrices o4, and 7, are given by
(ap)a” = 1 ((0)a3 (307 — (00)es (3)).  (Gw)s = 1 (60 (04)5 — (01) (0w, )
ab)a *4 a)ay\Yb b)ay\Ya ) ab ﬁ*4 a b,yﬁ b a)~y3):
(A.9)
Any anti-symmetric tensor F,; can be decomposed into chiral and anti-chiral parts:
Fop = —(ﬁaab)aﬁFa_@ + (5ab€)dBF;rB7 (A.10)
where 1 1
Fa_ﬂ = 5(O'abe)oégf:‘ab, F:B = _§(€6ab>dBFab' (All)
In spinor notations, the equation is rewritten as
Fad,ﬂ/j’ = (o’a)ad(o'b)ﬂBFab = fQEQﬂF;B + 26@BF<;/3' (A12)
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B Solving the Bianchi identities

In this appendix, we show detailed derivations of solutions to the Bianchi identities. Subsec-
tions B.1, B.2, B.3 and B.4 are devoted to derive the results in 3.2.1, 3.2.2, 3.2.3 and 3.2.4,
respectively. In the subsection B.5, we show derivations of the D-, A-, K 4-transformations
of the gauge invariant superfields.

B.1 The Bianchi identities for 3-form gauge fields

Firstly, we solve the Bianchi identities for 3-form gauge fields. The Bianchi identities are
given by

EA/\EB/\EC/\ED/\EEVEE Bopatss L pANEBAEC AEP AEPTpp" s =0. (B.1)

4! 312!

Explicitly they are written by

0= VeE5opa+ VoEpar + VoEEamp + VeEispe + VaZipes
+Tep" Liopa — Toc" Lippa — Tes" SPopa — Tea" SFopp
+ TDCFE?EBA - TDBFE?ECA - TDAFE%EBC (B-2)
+Tes"S2ppa — Toa" Sippp
- TBAFE?ECD'
The constraints for 3-form are given in table 2. Under these constraints, we solve the

Bianchi identities.
For E=¢, D =46, C =+, B=§, A=a, the Bianchi identities are

_ I3 I3 I3
0= T Ehﬁa + T Efega + Tj Efe,ya (B.3)
This equation is equivalently written as
I3 I3 — I3
265 B, T Ew&eﬂ,ad o 2[35,6%0@’ (B4)
We decompose ZI3 B mto chiral part and anti-chiral part as
13 + ]3
Ze5,7,ﬁ,aa QemE G + 2¢€5, %, pE (B.5)
Substituting this decomposition into eq. (B.4), we obtain
_ +1. —I +13 I3 +1
0= —2660425&7?’77/8—{—265@26&;”8—2e,ya2 o 7/8—{—266&27&6/8—2650[25,; +2660¢Zﬁo¢'ye' (B.6)
We find that anti-chiral parts vanish:
+I3
ESd,’y,B =0. (B.7)
Eq. (B.6) is then expressed as
T+ Sl B 5 =0, B.5)
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where we used X7 , =~ Contracting v and « by €7¢, we obtain

va, e B va,ﬁ €
0=x"5g +27 B, (B.9)
This equation means that
1
Nl = 56562—135W,M. (B.10)

Then, E 5 are calculated as

Ly
ey, 9 \Teayy, B Ba v, 5) 56652 N a,y,0

| —I36
= _5 OL’Y?E,ﬂ + 566182 ° (X:'Yyé
11 L -1 -1 1 I35
= _izaeﬁy,ﬁ - i(za'y?e,ﬁ B Eae,?:y,ﬁ) + 56652 ans (Bll)
1 1 _ 1 I
=3 DR 256X a6+ 5 €eB® 00
1 1 _ 1 _
= _izaiiﬂﬁ — 1676€a/32 13457574 + Zegﬂea’yz 1354-,4'75.
Therefore, Ee_ab’v 8 have only scalar components:
_ 1 _
Eealéyﬁ - 6(604/3667 + 6047665)2 13%7(777' (B.12)
Thus, we obtain
1
I —I
Eegmﬁ,ad - 5650'4(6&666’7 + €ar€ep)E Bnc,c,n' (B.13)
We define Y3 as )
Vi = 52—137747477,. (B.14)

This definitions of Y3 agree with those of eq. (VI-2.7) in ref. [30]. Equation (B.13) is equiv-
alently expressed as in eq. (3.2). Similarly, dotted versions of the Bianchi identities (B.4)
lead to eq. (3.2).
For E=¢, D=46,C =7, B=f3, A= ad, eq. (B.2) is written as
— I3 I3
0=V 25 b o T VX ,ﬂﬁaae+v725ﬁaaea
= Eﬁd(€55607 + 66¥5657)VGY + Eﬁ'd(eﬂveae + Eoryeﬂe)vdiflg’ + EBd(eﬂ€6a5 + €a€655)v,y§7[3.

(B.15)

Contracting spinors by BB €7, we obtain the anti-chirality conditions of Y3 in eq. (3.6).
Similarly, we obtain chirality conditions of Y3 as in eq. (3.6).
For E=¢, D=46,C=%B=/88, A= ad, eq. (B.2) is written as

— I3 f I3 f I3
0=V 25 BB +1g Zfﬁ BB, 1o Zfﬁ BB,ac” (B.16)
This is solved as 5 .
V5YI3 _ +§6d6baad552136cba7 (Bl?)
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or equivalently expressed as in eq. (3.7). Similarly, Egib ., are expressed in terms of VoY ls:

— i 2 3 .
véylg — _gdebaggézgibaa (B18)
or eq. (3.7).
For E=¢, D=6 C=c¢, B=b, A=a, eq. (B.2) is expressed as
0=V, - VEE + TSR, (B.19)

Using (3.7), and contracting spinors, we obtain
8 o
giedCb“Efliba =Vl - vyl (B.20)
They are equivalently written as in eq. (3.8). There is no more non-trivial Bianchi identity
from constraints.
B.2 The Bianchi identities for 2-form gauge fields
Next, we solve the Bianchi identities for 2-form gauge fields. The Bianchi identities are
written as
0=VpHgs — VeHgap + VeHine — VaHpop
+Tpc” Hizg s =Tpp" Hizo s+ Toa" Hi g —Top" Hipgp+Toa" Hig p+Tea" Hizne
+(q® - Spepa)”. (B.21)

The constraints on the field strengths of 2-form gauge fields are given in table 2.
For D=0,C =+, B=0, a=adq, eq. (B.21) is

0=VsH? = VyH2 ATy H2 o~ T H 2 5 (B.22)
Using the constraints in table 2, we obtain
— dieyqes, Vsl — diesae g, VoL + 2¢H§§mm - 2¢H§‘g7ad’ ;=0 (B.23)
We decompose H 6127 braq 3
HP oo = 2600 ™5 50+ 265 HP 500 (B.24)
Substituting this into eq. (B.23) and contracting spinors by eBd, we obtain
€ar V5L + €5V L2 — H2™ 5, — H275_, =0. (B.25)
Furthermore, contracting spinor indices by €*7, we find that
HPo5 = —3VsL™2. (B.26)
Substituting this equation to eq. (B.25), we obtain
H" 5 = —€a, V5L — €45V, L7, (B.27)

where we used H27, 50 = €y H27? 54+ H27 5, and H2 5 o = €5 H27? o+ H27, 5.
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The symmetrization of & <+ 3 in eq. (B.23) with eq. (B.24) reads

I+ .
H é

50 =0. (B.28)

Therefore, we obtain

Hﬁﬁ',aa = =2¢44(60yVal™ + €50V, L), (B.29)

which is equivalent to eq. (3.9). Similarly, for D =4, C =4, B = 3, a = acv, we obtain

H 2 e = —2680(€55Va Ll + €56 VL"), (B.30)

which is equivalent to eq. (3.9).
For D=0,C =%, B=0, A=a, eq. (B.21) is written as

0=VsH?

yba + v'yHl{;J + vaI2

asy VoH32, + Ts; HE

: i (B.31)

This equation implies

0=2(5pa)., évav%b +2(000)5 V4 Vo L2 + 2i(04) 55 Vo L — 2i(04) 55 Vo L2 + 2i (00 ) 5 H

eba”
(B.32)
From this identity, we obtain
P (oe)y Hizy = =3[V, V4], (B.33)
which is equivalent to eq. (3.10).
For D=90,C =+, B=0, A=a, eq. (B.21) is expressed as
0= VsHE, +V,HE, + (@ - Dspa). (B.34)

Using egs. (3.2) and (3.9), we obtain eq. (3.11). Similarly, for D =4, C' =4, B=b, A = a,
we find eq. (3.11).

B.3 The Bianchi identities for 1-form gauge fields
Thirdly, we solve the Bianchi identities for the field strengths of 1-form gauge fields [29]:

0 =VeFLy +VeF + VaFLy + TopP FL 4+ TeaP Fl + TacP Fhy + (¢ - Hopa).

(B.35)
For C =4, B = 3, A = «, Bianchi identities are
0=Tys"Fit + Tay"F b (B.36)
This means symmetric part of undotted spinors in F. % o 1s equal to zero. Then, we can write
I I
Fai% = —2ea5Wﬁ1. (B.37)

Similarly, for C' =+, B = 3, A = &, we obtain

I I
F = =2, W) (B.38)
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For C =%, B = B, A = ad, the Bianchi identities are

S = ol
0= VWFB,IM = ViFo 4 (B.39)

Using (B.37) we obtain chirality condition for W/ as
v, Wl =o. (B.40)

Similarly for C =~, B = 3, A = ad, we find

v, Wi =o. (B.41)

For C =~, B = f3, A = a, the Bianchi identities are

0=V, Fil —VsFiL +T ;'F . —dieyacgs (g - L)1 (B.42)

v ,B,aa ﬁ Oé(jé{y

Contracting the spinor indices by €70 , we obtain eq. (3.17). Then, symmetrizing spinors
in eq. (B.42), we also obtain eq. (3.16).
B.4 The Bianchi identities for 0-form gauge fields

Finally, we solve the Bianchi identities for O-form gauge fields. The Bianchi identities are
given by
0=VpgY — Vagh + Tpa%8 + (@ - Fpa)™. (B.43)

For B= 03, A= a, eq. (B.43) is

0= Vgl + Vagl. (B.44)
This means that 1
V5gé = §eﬁaVVg§0. (B.45)

Furthermore, the actions of V# on both hand sides lead to

Vigl = 0. (B.46)
Similarly, for B = 3, A = &, we obtain
_ 1 _ .
Vs = —iﬁgdel‘”, (B.47)
Vgl = 0. (B.48)

These consequences suggest that we may impose the constraints
gl = v, wl gl = \*v,ul (B.49)

where we took \ as a complex constant, and ¥ are real primary superfields.
For B =, A= a&, eq. (B.43) is

0= Vsg: + Vagh + Tpage. (B.50)
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If we take A = i, this equation reproduces the results in ref. [8]. In this choice, gcfﬁl are
written as 1
9o = 5 [Va Va] &P, (B.51)

This equation is equivalently written as in eq. (3.20). Eq. (B.51) means that ¥’ contain
the field strengths of O-form gauge fields in the vector components.
For B = 3, A = ad, eq. (B.43) is

0= ?Bgi‘g — Vmgéo + (¢ F, . (B.52)

B,ad
Using egs. (B.49), (3.20) and the identity V,V? 4 4iV,; V7 = V2V, — 8W,, we obtain
the former equation in eq. (3.21). Similarly for B = §, A = aq, the latter equation in
eq. (3.21) is obtained.

Note that the degrees of freedom between bosons and fermions in W0 are matched. If
the tensor hierarchy does not exist, eq. (3.21) means that the higher fermion components
of W10 vanish:

ViVl =0, viv,uh =o. (B.53)

So it seems that degrees of freedom in W0 are mismatched. In a general real superfield
case, the degrees of freedom of the components [C, Z, H, K, B,, A\, D] are [1,4,1,1,4,4,1].
In this case, Bianchi identity (3.20) follows that vector components of W/ are the bosonic
field strengths: [V, Va] U] < 9, f10|. Thus, vector components have only one freedom.
Then, under the constraint (B.53), degrees of freedom are [1,4,1,1,1,0,0]. So the degrees
of freedom between bosons and fermions in W0 are matched. The same argument holds
even if the tensor hierarchy exists.

B.5 D-, A-, K, -transformation laws

We present the derivations of the D-, A-, K 4-transformation laws of (YI?’, L2, Wél, \IJIO).

The transformation laws of the superfields follow from those of F' Iy . Since F!?
Ap+1...A1 Mp+1...M1

are invariant under X 4/ transformations, the properties are reduced to those of the vielbein:

e (64 X ) EgM = —EpN (5G(gA’X A/)ENC> EGM. (B.54)
The D-, A- and K g-transformation laws of the vielbein are obtained as follows.

e D-transformations

Sa(E(D)D)EM = +E(D)EM,  sa(&(D)D)BSM = +J&(D)E.  (B.55)

e A-transformations

SG(E(A)A)EPM = 1ig(A)EPM, (B.56)
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e S-transformations
S (E(K)*Sa) B = (BN By €KY (0.)53 B = i€(K)(0p)55 B,
S (E(K)aS*) ByM = iByN Ex¢(K);(5.) B, M = it(K)s(a,)B,M. (B.5T)
0 (E(K)*Sa) E™ = 0.

e All the K -transformations of the vielbein are equal to zero.

Using these equations, the D-, A- and K s-transformation laws of (Y3, L2, W11 W) are
determined. Note that the M-transformation laws of (Y3, L2, Wt W) are obtained by
their spinor indices.

B.5.1 3-form gauge fields

We show the D-, A-, K s-transformation laws of YI3.. Y’ are given in terms of 2135%& as
in eq. (3.2). The D-, A-, K 4-transformations of »130%, are determined as follows.

e D-transformations

5c(E(D)D)S9y, = 66(¢(D)D)E*RE BN EMEE = 36(D)SBY,  (B.58)

o A-transformations

Sc(E(A) ATy, = 66 (E(A)A)ERET ENEMEL L = 12i6(A)SB,, (B.59)

e S, -transformations
0 (E(K)” Sa) B4
= 36(E(K)*Sa) BB BN EMEE Ly
= BB (i6(K)* (00)ac BN EM S5 p g + EPCETT BN (16 (K)*(00)ac M) SE ppens
= i€(K)*(03)ac D07 4 +i€(K)  (00)ac D10
= 0. (B.60)

e S%transformations
5 (E(K) 5%,
= 3(E(K)aSY BB BN EMEE
=E 9BV (i¢(K)a(00)*“ EN) E M S8 pyy + EPCET BN (i€(K)a(6a) *“EM) S pvag
= i€(K)(33) 2B  +i8(K) 4(F4) Y2397,
=0. (B.61)
Here, we used the constraints 2135%6' = 2135%6 = 0 in the last lines of S, and S¢ trans-

formation laws. These equations lead to the superconformal transformation laws of Y in
eq. (3.3). Those of Y are obtained similarly.
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B.5.2 2-form gauge fields

The D-, A-, K 4-transformation laws of L2 are obtained by the same procedure as the case
of 3-form gauge fields. We summarize the results.

e D-transformations

Sa(§(D)D)H™ g, = 26(D)H™ g, (B.62)
e A-transformations
S (E(A)A)H™ 5, = 0. (B.63)
e S, -transformations
0 (E(K)*Sa) H gy = i€(K)*(00)ac HF ' = 0. (B.64)
e S% transformations
06 (E(K)aS* H™ 5, = i€(K)(64)*H™ 5. = 0. (B.65)

B.5.3 1-form gauge fields

The D-, A-, K -transformation laws of W/2 are the same as the case that the tensor
hierarchy does not exist. The results are as follows.

e D-transformations

Sa(E(D)D)F, = Se(D)FNS, (B.66)
e A-transformations ' .
0c(E(A)A)FIP, = vie(A)FHS,. (B.67)
e S, -transformations
S (E(K)Sa) PP, = —i(K)*(04)ac P11 = 0. (B.68)
e S%transformations
SG(E(K)aSY)FIP, = —ie(K)4(4)* F1P, = 0. (B.69)

B.5.4 0O-form gauge fields

The D-, A-, K s-transformation laws of U/ are determined as follows.

e D-transformations

1
5(6(D)D)gld = S6(D)gls (5.70)
lead to
Dl =, (B.71)
This is because 1
[D, V.| = §Va. (B.72)
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A-transformations

Sa(E(A)A)gle = —ig(A)gle (B.73)
lead to
Awlo =0, (B.74)
This is because
[A, V4] = —iV,. (B.75)
S,-transformations
36 (£(K)7S5)ged = 0. (B.76)
S%_transformations
Sa(E(K);5%) gk = 0. (B.77)

We need to check the consistency between the weights of ¥/ and the Sq-invariances
of W0, The Sy-invariances of g0 require that the weights of ¥/0 must be (A, w) =
(0,0) [27]. The requirements are understood as follows. The S,-transformations of
VQ\IIIO are generally given by

SaVallo = e,5(2D — 3iA)U,  §9VAWI = (2D 4 3iA) W0, (B.78)
These equations lead to the conditions for the S,-invariances of VQ\I/IO:
DUl =0, Awl =, (B.79)

Actually, U0 satisfy the weight conditions. Thus, the weights are consistent with
Se-invariances of géo.

C The explicit forms of bosonic field strengths

In this appendix, we summarize the explicit forms of the bosonic field strengths.

For 3-form gauge fields, the double bar projections of /3 lead to the following relations

1
Idﬂ” Adx™ N dxP A d$q§]$’mm|

C.1)
1 (
= da"™ Ada" A daP A Az By E,PE,CBPYE g Al
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We expand this relation, and obtain

a, b c  dyI
em”en’ep e Bty

= aqcz{%m‘ + (_ ) 8PC(§3LWL| + ( ) CISm| + ( )38mcégsm| - (q(g) . UvqpanI3
1
_ 5(emoLenbepc,(?Z}qé + (—1)1€ma€nb€qc¢p5

1 L
et + (1% e ) (<15 ) (0T

+

(em®en’ey 1/Jq5 + (- 1)1emaenbeqcz/;p5

- - 1
SUlentelert g+ (Pt ter i) (44 ) 09 ey
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For the 2-form gauge fields, the double bar projections are
H2|| = dx Ada" NdaPH, | = —d:c Adz" A daP B EPE,CHYy . (C.3)
We obtain the component expressions of bosonlc field strengths
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(C.4)
For 1-form gauge fields, the double bar projections are
Fh| = dw Ade"Fh | = —dw A dz" By, E,PFL). (C.5)
We obtain the expressions of the bosonic field strengths
emen’ Fyy | = OnA| = 0m A — (@) - Bu|)"
1 . .
= 5 lemUn’ = en“Un”) (=1)(00) 55 W 1| (C.6)
1 o
— 5 (em g —entp)(+1)(0 )W,
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The above expressions are basic building blocks in the constructions of component field

actions.
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